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Abstract. Secure multiparty computation (MPC) is a cryptographic
primitive which enables multiple parties to jointly compute a function
without revealing any extra information on their private inputs. Bottle-
neck complexity is an efficiency measure that captures the load-balancing
aspect of MPC protocols, defined as the maximum amount of commu-
nication required by any party. In this work, we study the problem of
establishing lower bounds on the bottleneck complexity of MPC proto-
cols. While the previously known techniques for lower bounding total
communication complexity can also be applied to bottleneck complex-
ity, they do not provide nontrivial bounds in the correlated randomness
model, which is commonly assumed by existing protocols achieving low
bottleneck complexity, or they are applied only to functions of limited
practical interest. We propose several novel techniques for lower bound-
ing the bottleneck complexity of MPC protocols. Our methods derive
nontrivial lower bounds even in the correlated randomness model and
apply to practically relevant functions including the sum function and
threshold functions. Furthermore, our lower bounds demonstrate the op-
timality of some existing MPC protocols in terms of bottleneck complex-
ity or the amount of correlated randomness.
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1 Introduction

Secure multiparty computation (MPC) [31] is a fundamental cryptographic prim-
itive which enables mutually distrustful n parties to jointly compute a function
f(x1, . . . , xn) without revealing information on their private inputs xi to adver-
saries corrupting at most t parties. Traditionally, total communication complex-
ity, which counts the total number of bits transmitted between parties, has been
considered as the most fundamental metric to measure the efficiency of MPC
protocols. A number of works have made significant progresses to characterize
the minimum total communication complexity (e.g., upper bounds were obtained
in [20, 3, 5, 7, 8, 6, 23, 25, 22] and lower bounds were obtained in [17, 14, 11, 10, 9]).

However, in practical applications where lightweight devices perform MPC
via peer-to-peer communication, the per-party communication cost is a more
effective measure than the total cost. For example, consider an MPC protocol



on a star communication pattern, in which a central party interacts with all the
other parties and computes an output. Then, while total communication cost is
possibly scalable (i.e., O(n)), the central party must bear communication pro-
portional to the total number of parties. In large-scale MPC, these costs quickly
become prohibitive. To address these concerns, Boyle et al. [4] introduced a more
fine-grained efficiency measure, called bottleneck complexity, which is defined as
the maximum amount of communication required by any party during the exe-
cution of the protocol. In this paper, we focus on the bottleneck complexity of
MPC protocols.

On the positive side, Boyle et al. [4] showed that if fully homomorphic en-
cryption [19, 29] is assumed, then any (possibly insecure) protocol computing a
function can be compiled into a secure MPC protocol for the same function pre-
serving bottleneck complexity. As long as computational security is concerned,
their results reduce the goal of minimizing the bottleneck complexity of MPC
to constructing protocols with low bottleneck complexity without any privacy
requirements, which is a purely complexity-theoretic question. Subsequently, a
series of works [24, 15, 16] obtained information-theoretically secure MPC proto-
cols with low bottleneck complexity in the correlated randomness model [1]. In
this model, parties receive correlated randomness from a trusted dealer before in-
puts are known and then consume the randomness to perform input-dependent
computation. Note that without correlated randomness, MPC protocols even
for very simple functions such as addition require bottleneck complexity propor-
tional to n due to the lower bounds in [17, 10].

On the negative side, existing lower bounds on the total communication com-
plexity of MPC also lower bound the bottleneck complexity: By definition, if the
total communication complexity is lower bounded by C, then the bottleneck
complexity is lower bounded by C/n. For example, lower bounds on the total
communication complexity in [17, 10] imply Ω(n) lower bounds on the bottle-
neck complexity for the sum function and threshold functions. However, these
lower bounds do not hold in the correlated randomness model. Indeed, as shown
in [27], the sum function can be computed with O(1) bottleneck complexity if
parties receive additive shares of zero as correlated randomness. To the best of
our knowledge, the only lower bound on bottleneck complexity that still holds in
the correlated randomness model was obtained via the results in [9]. The authors
of [9] introduced a special function related to private information retrieval and
showed that any MPC protocol computing it has roughly at least Ω(nt) total
communication complexity and hence Ω(t) bottleneck complexity, where t is the
number of corrupted parties. However, [9] mainly aimed at showing the existence
of hard functions for which secure computation must incur large communication
overheads, and as such, the function considered there was not directly related
to those of practical interest (e.g., the sum function or threshold functions).
Motivated by the above considerations, we ask the following question:

Can we show a lower bound on the bottleneck complexity of MPC protocols for
functions of practical interest in the correlated randomness model?
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1.1 Our Results

In this paper, we propose three novel methods to provide lower bounds on the
bottleneck complexity of information-theoretic (i.e., perfectly correct and per-
fectly private) MPC protocols. Our methods can be applied even if parties are
allowed to receive correlated randomness and provide lower bounds for func-
tions of practical use including the sum function and threshold functions. Fur-
thermore, as a corollary, our lower bounds demonstrate the optimality of some
existing MPC protocols. Below, we elaborate on our results.

Lower Bounds. Our first method can be applied to functions that have large
ranges even if the inputs of some parties are fixed. Specifically, we show a trade-
off between bottleneck complexity and the amount of correlated randomness for
such functions. As a remarkable implication, any MPC protocol for computing
a special class of low-degree polynomials, including the sum function, must have
Ω(t) bottleneck complexity if the amount of correlated randomness is o(log |F|),
where F is the underlying field.

Secondly, we show that the bottleneck complexity is lower bounded if the
communication pattern of an MPC protocol satisfies a special property that
either the number of corrupted parties interacting with honest parties or the
number of honest parties interacting with corrupted parties is limited. For ex-
ample, any MPC protocol for a threshold function with a threshold k = Ω(n)
must have Ω(log n) bottleneck complexity no matter how much correlated ran-
domness is assumed, as long as its communication pattern satisfies the above
property. Note that these communication patterns include a cycle (where the
i-th party interacts only with the (i − 1)-th and (i + 1)-th parties), and a tree
(where each party interacts only with parties corresponding to its parent or
children nodes). These are common communication patterns assumed by all the
existing MPC protocols achieving low bottleneck complexity [4, 27, 24, 15, 16].

Thirdly, we focus on MPC protocols satisfying a stronger security require-
ment, function privacy, where the protocol is associated with a set F of functions
instead of a single function, and corrupted parties learn no information not only
on honet parties’ inputs but on a function f ∈ F to be evaluated. This property
is actually satisfied by several MPC protocols achieving low bottleneck complex-
ity [24, 15, 16]1. We show that any function-private MPC protocols for a set F of
functions must have roughly Ω(log log |F|)−O(log(n−t)) bottleneck complexity.
Note that function-private MPC protocols for F with |F| > 1 exist only in the
correlated randomness model since parties’ computation in the online phase is
independent of f ∈ F and correlated randomness must “encode” f . We provide
a quantitative analysis of this: Any function-private MPC protocol for F must
assume correlated randomness of size Ω((log |F|)/(n− t)).

We note that our proof techniques rely on the properties of perfect privacy.
For instance, we use the fact that for two inputs x, y satisfying f(x) = f(y),
any transcript m appearing in the protocol execution on x must also appear
1 This fact was not explicitly stated in their original works. For completeness, we prove

it in Appendix A.
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during execution on y. This does not generally hold without perfect privacy. It
remains an open question whether our techniques can be extended to non-perfect
protocols.

Optimality. Our lower bounds show the optimality of existing MPC protocols
for several functions including the sum function and threshold functions.

First, let f : Fn → F be the sum function over a finite field F, that is,
f(x1, . . . , xn) =

∑n
i=1 xi. Orlandi et al. [27] showed an MPC protocol for f in

the correlated randomness model such that its bottleneck complexity isO(log |F|)
and the amount of correlated randomness is O(log |F|) per party. Clearly, the bot-
tleneck complexity cannot be further reduced since the bit-length of each input
xi ∈ F is Ω(log |F|). Our results ensure that if |F| = 2o(n), the amount of cor-
related randomness cannot be further reduced either. Indeed, if each party only
receives correlated randomness of size o(log |F|), then the bottleneck complexity
of such a protocol must be Ω(n).

Secondly, let Tk be a threshold function with a threshold k = Θ(n). Ac-
cording to a series of results in [24, 15, 16], there exist MPC protocols for Tk
in the correlated randomness model achieving O(log n) bottleneck complexity.
All of these protocols assume a communication pattern represented by a cy-
cle. Our lower bound Ω(log n) ensures that the bottleneck complexity cannot
be further reduced as long as a cycle-like communication pattern is assumed.
Note that it remains unknown whether one can circumvent our lower bound and
achieve o(log n) bottleneck complexity by considering communication patterns
other than cycles.

Thirdly, let Sd be the set of all symmetric functions f : Xn → {0, 1} with
|X| = d.2 Consider the case of t = n − 1 corruptions. According to the results
in [24, 15], there exists a function-private MPC protocol for Sd such that the
bottleneck complexity is O(d log n) and the amount of correlated randomness is
O(nd−1) per party. On the other hand, our lower bounds for function-private pro-
tocols imply that the bottleneck complexity must be Ω(d log n) and the amount
of correlated randomness must be Ω(nd−1), since |Sd| = 2Θ(nd−1) if d = O(1).
This shows the optimality of the protocol in [24, 15] as a function-private proto-
col for Sd. We show a detailed comparison between upper and lower bounds in
Table 1.

Comparison to Related Works. Franklin and Yung [17] showed that the total
communication complexity for the sum function must be at least Ω(n2) and
hence the bottleneck complexity must be Ω(n). This implies that sublinear bot-
tleneck complexity cannot be achieved if we do not assume correlated random-
ness. Our lower bound (Corollary 1) strengthens the negative result in [17] in the
sense that the sum function over F cannot be computed with sublinear bottleneck
complexity if the amount of correlated randomness is not sufficient (specifically,
if it is less than o(log |F|)).
2 A function f is called symmetric if f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn) for any input
(x1, . . . , xn) ∈ Xn and any permutation σ.
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Table 1. Comparison between upper and lower bounds on bottleneck complexity and
the amount of correlated randomness

Function BC CR Corruption Reference

Sum over F
O(log |F|) O(log |F|) t = n− 1 [27]
BC = Ω(t) or CR = Ω(log |F|) any Cor. 1

Tk

O(logn) O(n) t = n− 1 [24, 15]
O(logn) O(ϵ−1 logn) t = n− ϵn [16]

Ω(logmin{k, n− k, t′}) – any Cor. 2a

Sd
with d = O(1)

O(d logn) O(nd−1) t = n− 1 [24, 15]
O(d logn) O(nd−2ϵ−1 logn) t = n− ϵn [16]
Ω(d logn) Ω(nd−2ϵ−1) t = n− ϵn Cors. 3, 4

“BC” stands for bottleneck complexity and “CR” stands for the amount of correlated
randomness per party. F is a finite field, Tk is a threshold function with a threshold k, Sd
is the set of all symmetric functions f : Xn → {0, 1} with |X| = d, and t′ = min{t, ⌊n/2⌋}.

a The communication pattern is a cycle or a tree.

The lower bound in [10] implies that the bottleneck complexity for threshold
functions must be Ω(n) if correlated randomness is not assumed. Our results
in Corollary 2 show that the lower bound of Ω(log n) still holds even if parties
have access to an unbounded amount of correlated randomness. It is impossible
to obtain a super-logarithmic lower bound ω(log n) in the correlated random-
ness model since threshold functions can be computed with O(log n) bottleneck
complexity assuming correlated randomness of size O(n) [24, 15].

Damgård et al. [9] introduced a special function PIRn,k : ({0, 1}k×{0, 1}log(nk)×
{0, 1})n → {0, 1}n, which on input (xi, zi, bi)i∈[n], outputs bi · x[z] as the i-th
outputs, where x ∈ {0, 1}nk is the concatenation of the xi’s, z ∈ {0, 1}log(nk) is
the bit-wise XOR of the zi’s, and x[z] ∈ {0, 1} is the z-th bit of x. They showed
a lower bound Ω(tn) for this function, which in turn implies a lower bound Ω(t)
on bottleneck complexity. Prior to our work, this was the first lower bound on
bottleneck complexity that holds in the correlated randomness model. However,
the function PIRn,k was introduced to show the existence of functions that are
hard to securely compute, and as such, it was a somewhat “artificial” example.
We are the first to provide lower bounds on bottleneck complexity for functions
that are directly related to real-world applications.

Boyle et al. [4] showed the existence of a function for which any protocol
cannot compute with sublinear bottleneck complexity even without any security
considerations. However, their proof was based on the counting argument and
cannot provide lower bounds on explicit functions. Damgård et al. [12] showed
a general method to lower bound the total communication complexity of MPC
but did not provide nontrivial lower bounds in the correlated randomness model.
Data et al. [14] gave lower bounds on the total communication complexity of
MPC in the three-party setting and Damgård et al. [11] gave lower bounds

5



applicable to a class of MPC protocols following a specific design, which they
termed the “gate-by-gate” design.

On the upper-bound side, there are non-perfect MPC protocols achieving low
bottleneck complexity in the plain model [13, 26, 18]. Concretely, if a function
is computed by an arithmetic circuit with m gates, then the protocol in [13]
achieves bottleneck complexity of roughly O(m/n+

√
n) without assuming cor-

related randomness. It might seem contradictory since lower bounds in [17, 10]
and ours imply that the bottleneck complexity must be large unless a sufficient
amount of correlated randomness is assumed. This gap comes from the fact that
these protocols only achieve non-perfect security while our lower bounds are
applied to MPC protocols with perfect correctness and perfect privacy.

2 Preliminaries

2.1 Notations

For a natural number n ∈ N, we define [n] = {1, 2, . . . , n}. Let X1, . . . , Xn be sets
and (xi)i∈[n] ∈

∏
i∈[n]Xi. For A ⊆ [n], we denote the Cartesian product

∏
i∈AXi

by XA and (xi)i∈[n] by xA. For a set X, let X̄ denote its complement. For two
random variables X,Y , we denote X ≡ Y if they are identically distributed.
For a bit string x = (xi)i∈[n] ∈ {0, 1}n, we denote the Hamming weight of x by
wt(x), i.e., wt(x) = |{i ∈ [n] : xi = 1}|. Let log x denote the base-2 logarithm of
x.

2.2 Secure Multiparty Computation

We recall the definition of secure multiparty computation (or MPC for short)
[21]. We assume that there are n parties P1, . . . ,Pn and that they are connected
with a synchronous point-to-point network with authenticated private channels.
We also assume the correlated randomness model in which there is a trusted
dealer D, who samples and distributes input-independent correlated randomness
among the parties. Note that it includes the notion of MPC in the plain model
if the dealer D outputs an empty string. Roughly speaking, the execution of a
protocol Π among the n parties proceeds as follows. Each party Pi has a private
input xi and the dealer D has a function f . In the offline phase, D computes
correlated randomness (r1, . . . , rn) and distributes ri to Pi for each i ∈ [n]. In
the online phase, the parties compute and send messages to each other in the
way specified by the protocol. Once all messages are computed, each party Pi

obtains a local output yi.
Formally, a protocolΠ among the n parties is specified by a pair of algorithms

Gen and NextMsg of the following syntax:

– Gen is a randomized algorithm that takes a function f ∈ F as input and
outputs an n-tuple (r1, . . . , rn) of correlated randomness. We say that a
tuple (r1, . . . , rn) is valid correlated randomness for f if it appears as an
output of Gen(f) with non-zero probability.
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– NextMsg is a deterministic algorithm specifying how a party computes a next
message from the messages that the party received so far. Concretely, the
input of NextMsg consists of a party index i ∈ [n], a number ℓ specifying the
current round, the correlated randomness ri, the input xi ∈ Xi of Pi, local
randomness sampled by Pi, and all the messages that Pi received so far. The
output of NextMsg is a party index j ∈ [n] and an outgoing message which
Pi should send to a party Pj .

In this paper, we assume that the communication pattern of Π is fixed before
the protocol starts. In other words, the party index j outputted by NextMsg
depends only on the party index i ∈ [n] and the number ℓ of the current round,
independent of the input of Pi or his randomness. Furthermore, without loss of
generality, we may assume that in each round, one party sends a message to
another party and the others send no messages. This is because if we obtain a
lower bound on the communication complexity ofΠ under the above assumption,
then it also applies to a protocol Π ′ where parties send messages in parallel as
much as possible. We can thus define the communication pattern of Π as a
directed labeled graph GΠ = (V,E, L) where V is the set of parties and a pair
(Pi,Pj) of parties is connected by an edge e ∈ E with a label ℓ = L(e) if and
only if Pi sends a message Pj in round ℓ. Note that GΠ possibly has multiple
edges.

First, we define the correctness of MPC protocols.

Definition 1 (Correctness). Let X1, . . . , Xn and Y1, . . . , Yn be finite sets. Let
F be a set of functions from

∏
i∈[n]Xi to

∏
i∈[n] Yi. A protocol Π is correct with

respect to F if for any f ∈ F and any (xi)i∈[n] ∈
∏

i∈[n]Xi, it holds that

Pr[(y1, . . . , yn) = f(x1, . . . , xn)] = 1,

where (y1, . . . , yn) are local outputs of parties obtained as a result of executing
Π on f and (xi)i∈[n].

Next, we define the input privacy of MPC protocols. Define the view of Pi

during the execution of Π, as the one including the input xi of Pi, correlated
randomness ri, local randomness sampled by Pi and messages received by Pi.
We say that a protocol is input-private if the views of corrupted parties are
independent of the inputs of honest parties.

Definition 2 (Input privacy). A protocol Π is said to satisfy input privacy
under t corruptions (or t-input-privacy for short) with respect to F if for any
T ⊆ [n] of size t, any f ∈ F and any pair of inputs (xi)i∈[n], (x

′
i)i∈[n] ∈

∏
i∈[n]Xi

such that yi = y′i and xi = x′i for all i ∈ T , where (yi)i∈[n] = f((xi)i∈[n]) and
(y′i)i∈[n] = f((x′i)i∈[n]), it holds that

(viewi)i∈T ≡ (view′
i)i∈T ,

where viewi (resp. view′
i) is the view of Pi during the execution of Π on f and

(xi)i∈[n] (resp. f and (x′i)i∈[n]).
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We also introduce the function privacy of Π, which is a stronger property
that the views of corrupted parties are not only independent of honest parties’
inputs but also of a function to be computed.

Definition 3 (Function privacy). A protocol Π is said to satisfy input and
function privacy under t corruptions (or t-input-function-privacy for short) with
respect to F if for any T ⊆ [n] of size t, any pair of functions f, f ′ ∈ F and any
pair of inputs (xi)i∈[n], (x

′
i)i∈[n] ∈

∏
i∈[n]Xi such that yi = y′i and xi = x′i for

all i ∈ T , where (yi)i∈[n] = f((xi)i∈[n]) and (y′i)i∈[n] = f ′((x′i)i∈[n]), it holds that

(viewi)i∈T ≡ (view′
i)i∈T ,

where viewi (resp. view′
i) is the view of Pi during the execution of Π on f and

(xi)i∈[n] (resp. f ′ and (x′i)i∈[n]).

We say that a protocol Π is a t-input-private (resp. t-input-function-private)
MPC protocol for a set of functions F if it is correct and t-input-private (resp.
t-input-function-private) with respect to F . If F consists only of a single func-
tion f :

∏
i∈[n]Xi →

∏
i∈[n] Yi, i.e., F = {f}, we simply say that Π is an MPC

protocol for f . Furthermore, if f gives the same outcome of a single-output func-
tion f ′ to all parties, i.e., f(x1, . . . , xn) = (y, . . . , y), where y = f ′(x1, . . . , xn),
then by abuse of terminology, we say that Π is an MPC protocol for f ′.

We denote by Commi(Π) the total number of bits sent or received by the
i-th party Pi during the execution of a protocol Π with worst-case inputs.
We define the bottleneck complexity of Π as BC(Π) = maxi∈[n]{Commi(Π)}.
We denote by Randi(Π) the size of correlated randomness for Pi, i.e., the to-
tal number of bits that Pi receives from the dealer D, and define CR(Π) =
maxi∈[n]{Randi(Π)}.

3 Lower Bounds for Functions with Large Ranges

In this section, we show our first method to prove trade-offs between bottleneck
complexity and the amount of correlated randomness. This method can be ap-
plied to functions which have large ranges even if the inputs of some parties are
fixed. First, we provide the formal description of this property.

Definition 4. Let f be a function from
∏

i∈[n]Xi to Y . For a subset A ⊆ [n]

and xA ∈ XA, let fxA
denote a function fxA

: XĀ → Y defined as fxA
(xĀ) =

f(xA, xĀ) for all xĀ ∈ XĀ. Define Vf (t) as

Vf (t) = min
A⊆[n],|A|=t

max
xA∈XA

∣∣Range(fxA
)
∣∣,

where Range(fxA
) = {y ∈ Y : there exists xĀ ∈ XĀ such that fxA

(xĀ) = y}.

For example, for the sum function f : Gn → G over an abelian group G, it
holds that Vf (t) = |G| for any t = 0, 1, . . . , n− 2. Indeed, for any t-sized subset
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A and any xA ∈ G|A|, the function fxA
: G|Ā| → G is surjective. More generally,

Vf (t) can be lower bounded if f is a low-degree polynomial that is nontrivial in
the following sense: Let F be a finite field and f ∈ F[T1, . . . , Tn] be an n-variate
polynomial over F. We say that f is k-trivial if there exists a subset A ⊆ [n]
of size k such that for any xA = (xi)i∈A ∈ Fk, the (n − k)-variate polynomial
fxA

((Ti)i∈Ā) is a constant polynomial, i.e., f is a function on (Ti)i∈A for any A
of size k. We say that f is k-nontrivial if it is not k-trivial. Then, the following
proposition holds.

Proposition 1. Let f ∈ F[T1, . . . , Tn] be a t-nontrivial polynomial of total de-
gree at most d. Then, it holds that Vf (t) ≥ |F|/d.

Proof. Let A ⊆ [n] be a subset of size t. Since f is t-nontrivial, there exist t
elements xA = (xi)i∈A ∈ Ft such that fxA

((Ti)i∈Ā) is an (n− t)-variate degree-
d polynomial that is not a constant. Let S = Range(fxA

) and s = |S|. For
any a ∈ S, define f−1

xA
(a) = {xĀ ∈ Fn−t : fxA

(xĀ) = a} and ma = |f−1
xA

(a)|.
Since

∑
a∈S ma = |F|n−t, there exists a ∈ S such that ma ≥ |F|n−t/s. For

this a, we have that q(xĀ) = 0 for any xĀ ∈ f−1
xA

(a), where q((Ti)i∈Ā) :=
fxA

((Ti)i∈Ā)− a. Since fxA
is not a constant, q is not a zero polynomial. There-

fore, we have from Schwartz–Zippel lemma (e.g., [28]) that ma ≤ d|F|n−t−1 and
that |Range(fxA

)| = s ≥ |F|n−t/ma ≥ |F|/d. ⊓⊔

Now, we show a trade-off between bottleneck complexity and the amount of
correlated randomness for MPC protocols that give the output of a function to
only one party and nothing to others.

Theorem 1. Let f :
∏

i∈[n]Xi → Y be any function. Let Π be a t-input-private
MPC protocol for the function g that takes (xi)i∈[n] ∈

∏
i∈[n]Xi as input and

gives f(x1, . . . , xn) to the n-th party and nothing to others, that is,

g((xi)i∈[n]) = (⊥, . . . ,⊥, f((xi)i∈[n])), ∀(xi)i∈[n] ∈
∏
i∈[n]

Xi.

Then, it holds that either CR(Π) ≥ log Vf (t) or BC(Π) ≥ t.

Proof. Let A = {Pn} denote the set of parties receiving the output, which is a
singleton in this case. Let B denote the set of parties who communicate with
A, and let C = A ∪B. Let mA→B and mB→A denote respectively the messages
from A to B and from B to A. Similarly, we define mC→B and mB→C . Note
that there exists no direct message between A and C. Let xA, xB and xC denote
the inputs of parties in A, B and C, respectively. Let rA, rB and rC denote the
correlated randomness received by parties in A, B and C, respectively. Let RA,
RB and RC denote the local randomness generated in the online phase by parties
in A, B and C, respectively. We call them online randomness to distinguish them
from correlated randomness.

Before proving the statement, we note a key feature of messages between
parties: The message outgoing from A (i.e., mA→B) is uniquely determined
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by incoming message to A (i.e., mB→A), xA, rA, and RA. Similarly, a tuple
(mB→A,mB→C) is uniquely determined by (mA→B , mC→B), xB , rB and RB ,
and mC→B is uniquely determined by mB→C , xC , rC , and RC . Thus, if we fix
all the inputs xS and randomness rS , RS for S ∈ {A,B,C}, we can define the
functions ΨA

xA,rA,RA
, ΨB

xB ,rB ,RB
, ΨC

xC ,rC ,RC
such that

– mA→B = ΨA
xA,rA,RA

(mB→A).
– (mB→A,mB→C) = ΨB

xB ,rB ,RB
(mA→B ,mC→B).

– mC→B = ΨC
xC ,rC ,RC

(mB→C).

Then, we define the set of possible messages sent or received byA with (xA, rA, RA),
denoted by M (xA,rA,RA)

A , as follows:

M
(xA,rA,RA)
A =

{
(mA→B ,mB→A) :

mB→A ∈ Domain(ΨA
xA,rA,RA

),
mA→B = ΨA

xA,rA,RA
(mB→A)

}
,

where Domain(ΨA
xA,rA,RA

) is the domain of ΨA
xA,rA,RA

, i.e., the set of all possi-
ble messages that may appear as mB→A. Similarly, we define M (xB ,rB ,RB)

B and
M

(xC ,rC ,RC)
C :

M
(xB ,rB ,RB)
B ={
((mA→B ,mB→A), (mC→B ,mB→C)) :

(mA→B ,mC→B) ∈ Domain(ΨB
xB ,rB ,RB

),
(mB→A,mB→C) = ΨB

xB ,rB ,RB
(mA→B ,mC→B)

}
,

M
(xC ,rC ,RC)
C =

{
(mC→B ,mB→C) :

mB→C ∈ Domain(ΨC
xC ,rC ,RC

),
mC→B = ΨC

xC ,rC ,RC
(mB→C)

}
.

We show the following lemma.

Lemma 1. For any valid correlated randomness (rA, rB , rC), inputs (xA, xB , xC),
and online randomness (RA, RB , RC), the intersection (M

(xA,rA,RA)
A ×M (xC ,rC ,RC)

C )∩
M

(xB ,rB ,RB)
B is a singleton and the only element is the actual transcript of Π

executed on the correlated randomness (rA, rB , rC), the inputs (xA, xB , xC), and
the online randomness (RA, RB , RC).

Proof (of Lemma 1). Let trans = ((mt
A→B ,m

t
B→A), (m

t
C→B ,m

t
B→C)) be the

actual transcript of Π executed on the correlated randomness (rA, rB , rC), the
inputs (xA, xB , xC), and the randomness (RA, RB , RC). By definition, we have

– (mt
A→B ,m

t
B→A) ∈M

xA,rA,RA

A ,
– ((mt

A→B ,m
t
B→A), (m

t
C→B ,m

t
B→C)) ∈M

xB ,rB ,RB

B ,
– (mt

C→B ,m
t
B→C) ∈M

xC ,rC ,RC

C ,

and therefore, we have

((mt
A→B ,m

t
B→A), (m

t
C→B ,m

t
B→C)) ∈ (MxA,rA,RA

A ×MxC ,rC ,RC

C ) ∩MxB ,rB ,RB

B .
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Suppose on the contrary that trans′ = ((m′
A→B ,m

′
B→A), (m

′
C→B ,m

′
B→C)) ̸=

trans belongs to (MxA,rA,RA

A ×MxC ,rC ,RC

C )∩MxB ,rB ,RB

B . Let i be the first round
where trans′ and trans differ and P be a party who sends a message in the i-th
round. We derive the contradiction in the case that P belongs to A. By the
definition of M (xA,rA,RA)

A , we have

– mA→B = ΨA
xA,rA,RA

(mB→A),
– m′

A→B = ΨA
xA,rA,RA

(m′
B→A).

Since the ΨA
xA,rA,RA

is a function that maps the incoming messages to A into
the outgoing messages from A, the message in mA→B sent in the i-th round is
uniquely determined by the incoming messages in mB→A before the i-th round.
Also, the message in m′

A→B sent in the i-th round is uniquely determined by
the incoming messages in m′

B→A before the i-th round. By the definition of i,
messages in mB→A before the i-th round are equal to messages in m′

B→A before
the i-th round, and therefore, the message in mA→B sent in the i-th round is
also equal to the message in m′

A→B sent in the i-th round. This contradicts
the definition of i. Similarly, we can derive the contradiction in the case that P
belongs to B or C. Therefore, the statement holds. ⊓⊔

Then, we prove the statement of Theorem 1. Suppose on the contrary that
BC(Π) < t and CR(Π) < log Vf (t). Since the party Pn in A interchanges at most
|BC(Π)|messages, we have that |B| < t. From the definition of Vf (t) and the fact
that |A|+ |B| ≤ t, there exist x′A, x

′
B such that Range(fx′

A,x′
B
) ≥ Vf (t) =: v. We

thus have the inputs x1C , . . . , x
v
C of C such that {f(x′A, x′B , x1C), . . . , f(x′A, x′B , xvC)}

are pairwise disjoint. In the rest of the proof, we fix the inputs of A and B to
x′A and x′B , respectively. Also, we fix the correlated randomness and the online
randomness of B to r′B and R′

B . Since Π is MPC for the function g, the ad-
versary corrupting all the parties in B cannot obtain any information on the
input of A, the input of C, and the output received by A. That is, the distribu-
tion D of (mA→B ,mB→A,mC→B ,mB→C) only depends on x′B , r′B and R′

B . Let
(m′

A→B ,m
′
B→A,m

′
C→B ,m

′
B→C) be an element of the support ofD. Then, for any

xC , there exists rA, rC , RA, RC such that (rA, r′B , rC) is valid correlated random-
ness and the transcript ofΠ executed on ((x′A, rA, RA), (x

′
B , r

′
B , R

′
B), (xC , rC , RC))

is equal to (m′
A→B ,m

′
B→A,m

′
C→B ,m

′
B→C). Thus, for each i = 1, . . . , v, we

have correlated randomness and online randomness of A and C, denoted by
riA, r

i
C , R

i
A, R

i
C , such that (riA, r

′
B , r

i
C) is valid correlated randomness and the

transcript of Π executed on ((x′A, r
i
A, R

i
A), (x

′
B , r

′
B , R

′
B), (x

i
C , r

i
C , R

i
C)) is equal

to (m′
A→B ,m

′
B→A,m

′
C→B ,m

′
B→C). Since CR(Π) < log v, there exists i ̸= j ∈

{1, . . . , v} such that riA = rjA. Without loss of generality, we can assume that
r1A = r2A =: r′A. From Lemma 1, for i = 1, 2, . . . , N , we have

(m′
A→B ,m

′
B→A) ∈M

(x′
A,riA,Ri

A)
A and (m′

C→B ,m
′
B→C) ∈M

(xi
C ,riC ,Ri

C)
C .

In particular, this implies that ((m′
A→B ,m

′
B→A), (m

′
C→B ,m

′
B→C)) ∈M

(x′
A,r′A,R1

A)
A ×

M
(x2

C ,r2C ,R2
C)

C . Therefore, from Lemma 1, the transcript of Π executed on
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((x′A, r
′
A, R

1
A), (x

′
B , r

′
B , R

′
B), (x

2
C , r

2
C , R

2
C)) is also equal to ((m′

A→B ,m
′
B→A),

(m′
C→B ,m

′
B→C))

3. Since the output that A receives is determined by x′A, r′A,
R1

A, mA→B and mB→A, this implies that f(x′A, x
′
B , x

1
C) = f(x′A, x

′
B , x

2
C). This

contradicts the definition of x1C and x2C . ⊓⊔

Since the value of Vf (t) can be lower bounded for nontrivial low-degree poly-
nomials f , we have the following corollary.

Corollary 1. Let F be a finite field. Let p be an (n − 1)-variate polynomial of
total degree at most d that is (t− 1)-nontrivial. Let f : Fn → F be a polynomial
defined as

f(x1, . . . , xn) = p(x1, . . . , xn−1) + xn, ∀(xi)i∈[n] ∈ Fn.

Then, for any t-input-private protocol Π for f , it holds that either CR(Π) ≥
log(|F|/d)) or BC(Π) ≥ t.

Proof. LetΠ ′ be a protocol where the n-th party Pn samples a uniformly random
element r ∈ F, runs Π on input (x1, . . . , xn−1, xn + r), and after receiving an
output y, Pn outputs y−r. Since f(x1, . . . , xn−1, xn+r) = f(x1, . . . , xn−1, xn)+r,
Π ′ is a t-input-private protocol Π for the functionality g defined as

g((xi)i∈[n]) = (⊥, . . . ,⊥, f((xi)i∈[n])), ∀(xi)i∈[n] ∈ Fn.

Furthermore, CR(Π ′) = CR(Π) and BC(Π ′) = BC(Π).
We show that f is t-nontrivial and hence Vf (t) ≥ |F|/d from Proposition 1.

Assume otherwise that f is t-trivial. Then, there would exist A ⊆ [n] of size t such
that fxA

(·) is a constant polynomial for any xA ∈ Ft. We then have that n ∈ A.
This is because otherwise, fxA

((Ti)i∈[n]\A) = p((xi)i∈A, (Ti)i∈[n−1]\A) + Tn is
never a constant polynomial due to the term Tn. Let A′ = A∩ [n−1], which is of
size t− 1, and xA′ = (xi)i∈A′ ∈ Ft be any elements. Set xn ∈ F as any element,
say xn = 0. Then, pxA′ ((Ti)i∈[n−1]\A′) = f((xA′ , xn), (Ti)i∈[n−1]\A′) − xn =
fxA

((Ti)i∈[n]\A) is a constant polynomial. This implies that p is (t − 1)-trivial,
which is a contradiction.

By applying Theorem 1, we have that if CR(Π) < log(|F|/d)) then CR(Π ′) <
log(|F|/d)) and hence BC(Π) = BC(Π ′) ≥ t. ⊓⊔

On the upper-bound side, it was shown in [27] that there is an (n−1)-input-
private MPC protocol Π for the sum function f(x1, . . . , xn) =

∑
i∈[n] xi over F

such that BC(Π) = O(log |F|) and CR(Π) = O(log |F|). Due to Corollary 1, the
amount of correlated randomness cannot be further reduced if |F| = 2o(n) since
otherwise, the bottleneck complexity would be Ω(n).

3 Note that (r′A, r′B , r2C) is valid correlated randomness, and therefore the the protocol
execution is valid.
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4 Lower Bounds for MPC with Special Communication
Patterns

In this section, we show our second method to prove lower bounds on bottleneck
complexity. This method is well applied if the communication pattern of a pro-
tocol satisfies a property that either the number of corrupted parties interacting
with honest parties or the number of honest parties interacting with corrupted
parties is limited. To put it formally, we introduce the notion of the boundary of
a subset of parties in the communication pattern.

Definition 5 (Boundary). Let Π be an MPC protocol whose communication
pattern is GΠ = (V,E,L) and A ⊆ V be a subset of parties. We define the
boundary BodΠ(A) of A as

{P ∈ A : there exists a party P′ ∈ Ā such that (P,P′) ∈ E or (P′,P) ∈ E}.

There are two examples where we can choose a subset A of parties such that
|BodΠ(A)| is small. The first one is the case where the communication pattern
of Π is a cycle, i.e., each party Pi interacts only with Pi−1 or Pi+1, where indices
are modulo n. The other case is that the communication pattern is a tree, i.e.,
parties correspond to the nodes of a k-ary tree and each party interacts only
with parties corresponding to its parent or children nodes. Then, the following
lemma holds.

Lemma 2. If the communication pattern of a protocol Π is a cycle, then for any
1 ≤ t < n, there exists a subset A of parties such that |A| = t and |BodΠ(A)| ≤ 2.
If the communication pattern of Π is a tree, then for any 1 ≤ t < n, we can
choose a subset A of parties such that t/2 ≤ |A| ≤ t and |BodΠ(A)| ≤ 1.

Proof. The case of a cycle is straightforward. A subsetA = {Pi,Pi+1, . . . ,Pi+t−1}
of t consecutive parties in the cycle satisfies the requirement.

Next, assume that the communication pattern of Π is a k-ary tree T . Let P
be a party corresponding to the root of T . For j ∈ [k], let Aj be the sub-tree
whose root is the j-th children of P, and nj = |Aj |. If there exists j ∈ [k] such
that t/2 ≤ nj ≤ t, then the set A = Aj satisfies the requirement as the root of
Aj is the only party who may interact with parties not in Aj . Otherwise, either
of the following two cases occurs: (1) nj < t/2 for all j ∈ [k] or (2) nj > t for
some j ∈ [k].

If the case (1) occurs, since
∑k

j=1 nj = n − 1 ≥ t > t/2, there exists the
smallest integer ℓ ∈ [k] such that

∑ℓ
j=1 nj > t/2. For this ℓ, we have that∑ℓ

j=1 nj < t since
∑ℓ

j=1 nj =
∑ℓ−1

j=1 nj + nℓ < t/2 + t/2 = t. Then, the set
A = {P} ∪

⋃ℓ
j=1Aj satisfies the requirement as |A| = 1 +

∑ℓ
j=1 nj is between

t/2 and t, and P is the only party who may interact with parties not in A.
If the case (2) occurs, then we may assume without loss of generality that

n1 > t. Then, we apply the above procedure to a new tree T ′ = A1. Concretely,
let P′ be the party corresponding to the root of the tree T ′ = A1. Let A′

j be

13



the sub-tree whose root is the j-th children of P′, and n′j = |A′
j |. While we

have to ensure the existence of the smallest integer ℓ such that
∑ℓ

j=1 n
′
j > t/2

to continue the procedure, it is indeed the case since
∑k

j=1 n
′
j = |A1 \ {P′}| =

n1 − 1 ≥ t > t/2. Since the size of sub-trees eventually becomes less than or
equal to t, the case (1) will occur at some point during the procedure and then
we get a desired set A. ⊓⊔

Furthermore, we introduce an equivalence relation associated with a boolean
function f .

Definition 6 (f-equivalence). Let f be a function from
∏

i∈[n]Xi to {0, 1}.
For a subset A ⊆ [n], we define an equivalence relation ∼f on XA as follows:
For any xA, x′A ∈ XA,

xA ∼f x
′
A ⇐⇒ ∀xĀ ∈ XĀ, f(xA, xĀ) = f(x′A, xĀ).

We let Sf (A) denote the size of the quotient set XA/ ∼f .

Now, we show a main theorem in this section.

Theorem 2. Let Π be a t-input-private MPC protocol Π for a function f :∏
i∈[n]Xi → {0, 1}. Then, it holds that

BC(Π) ≥ max
A⊆[n],|A|≤t

logSf (A)

min {|Bod(Π,A)|, |Bod(Π, Ā)|}
,

no matter how much correlated randomness is assumed.

Proof. Without loss of generality, we may assume that the online-phase of Π is
deterministic by including randomness generated in the online phase in corre-
lated randomness. Let A be a set of at most t corrupted parties and let B = Ā.
We denote the inputs of the parties in A and B by xA ∈ XA and xB ∈ XB ,
respectively. Also, we denote correlated randomness distributed to the parties in
A and B by rA and rB , respectively. Let M be the set of all possible transcripts
between A and B. For each rA, rB , xB such that (rA, rB) is valid correlated ran-
domness, we define ϕrA,rB ,xB

: XA → M as a deterministic function that maps
xA ∈ XA into the transcript of Π executed on ((xA, rA), (xB , rB)).

We show the following lemma.

Lemma 3. Let pA, p′A ∈ XA. If there exist r′A, r
′
B , x

′
B such that (r′A, r

′
B) is valid

correlated randomness and ϕr′A,r′B ,x′
B
(pA) = ϕr′A,r′B ,x′

B
(p′A), then f(pA, xB) =

f(p′A, xB) for any xB ∈ XB, that is, pA ∼f p
′
A.

Proof (of Lemma 3). Let m = ϕr′A,r′B ,x′
B
(pA) = ϕr′A,r′B ,x′

B
(p′A). First, since

the output that B receives in Π is determined by the transcript m, input x′B
and correlated randomness r′B , it takes the same value both in Π executed on
((pA, r

′
A), (x

′
B , r

′
B)) and in Π executed on ((p′A, r

′
A), (x

′
B , r

′
B)). We thus have

that f(pA, x′B) = f(p′A, x
′
B). Without loss of generality, we may assume that
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f(pA, x
′
B) = f(p′A, x

′
B) = 0. Since Π securely computes f , for any xB ∈ XB

such that f(pA, xB) = 0, there exists rB such that (r′A, rB) is valid correlated
randomness and the transcript of Π executed on ((pA, r

′
A), (xB , rB)) is equal to

m.
Then, we can prove that the transcript of Π executed on ((p′A, r

′
A), (xB , rB))

is also equal to m by the following argument. Note that the transcripts of Π
executed on ((pA, r

′
A), (xB , rB)), ((pA, r

′
A), (x

′
B , r

′
B)) and ((p′A, r

′
A), (x

′
B , r

′
B)) are

equal to m from the definition of m and rB . Towards a contradiction, assume
that the transcript m′ of Π executed on ((p′A, r

′
A), (xB , rB)) is not equal to m.

Let i be the index of the first round where m′ differs from m, i.e., the first i− 1
messages of m and m′ are the same and the i-th message of m′ differs from the
i-th message of m. Let m<i denote the first i− 1 messages of m, mi denote the
i-th message of m, and m′

i denote the i-th message of m′. Let P be a party who
sends a message in the i-th round in Π. If the party P belongs to A, then m′

i is
determined by m<i, p′A and r′A. We then have that m′

i = mi since the first i− 1
messages, the inputs of A and the correlated randomness of A are common in
the executions of Π on ((p′A, r

′
A), (xB , rB)) and ((p′A, r

′
A), (x

′
B , r

′
B)). If the party

P belongs to B, then m′
i is determined by m<i, xB and rB . Again, we have

that m′
i = mi since the first i− 1 messages, the inputs of B and the correlated

randomness of B are common in the executions of Π on ((p′A, r
′
A), (xB , rB)) and

((pA, r
′
A), (xB , rB)). Therefore, mi = m′

i in both cases, which contradicts the
definition of i.

Now, the output of Π is uniquely determined by the transcript, the in-
puts of B, and the randomness of B. Therefore, for any xB ∈ XB such that
f(pA, xB) = 0, we have f(p′A, xB) = f(pA, xB) = 0 since f(p′A, xB) is deter-
mined by (m,xB , rB) considering the execution of Π on ((p′A, r

′
A), (xB , rB)) and

f(pA, xB) is also determined by (m,xB , rB) considering the execution of Π on
((pA, r

′
A), (xB , rB)). Note that the above argument in the previous paragraph

was based on the assumption that f(pA, xB) = 0, and therefore we proved
f(p′A, xB) = f(pA, xB) = 0 for any xB ∈ XB such that f(pA, xB) = 0. By
the same argument, we have f(p′A, xB) = f(pA, xB) = 0 for any xB ∈ XB such
that f(p′A, xB) = 0. These imply f(pA, xB) = f(p′A, xB) for any xB ∈ XB since
the range of f is {0, 1}, and therefore we have pA ∼F p′A. ⊓⊔

Finally, we show that

BC(Π) ≥ logSf (A)

k
,

where k = min {|Bod(Π,A)|, |Bod(Π,B)|}. Suppose on the contrary that BC(Π) <
(logSf (A))/k. Then, the size of M is less than Sf (A) since M consists of
messages between Bod(Π,A) and Bod(Π,B). Thus, for any valid correlated
randomness (rA, rB) and the input xB of B, there exist pA, p′A ∈ XA such
that pA ≁f p

′
A and ϕrA,rB ,xB

(pA) = ϕrA,rB ,xB
(p′A). However, as shown above,

ϕrA,rB ,xB
(pA) = ϕrA,rB ,xB

(p′A) implies that pA ∼f p
′
A, which is a contradiction.

⊓⊔
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We apply Theorem 2 to obtain lower bounds for threshold functions. Let
Tk : {0, 1}n → {0, 1} be a threshold function defined as

Tk(x1, . . . , xn) = 1(wt(x1, . . . , xn) ≥ k) =

{
1, if wt(x1, . . . , xn) ≥ k,
0, otherwise.

The following lemma shows a lower bound on STk
(A).

Lemma 4. Let A ⊆ [n] be a set such that |A| ≤ n/2. Then, it holds that

STk
(A) ≥ min{k, n− k, |A|}.

Proof. Let a = |A| ≤ n/2 and fn,k(a) = min{k, n − k, a}. Let xA, x′A ∈ XA =
{0, 1}a. Clearly, if wt(xA) = wt(x′A), then xA ∼Tk

x′A. Suppose that wt(xA) <
wt(x′A). Since Tk(xA, xĀ) = 1(wt(xA) + w ≥ k) where w = wt(xĀ), it holds
that xA ∼Tk

x′A if and only if wt(x′A) + w < k for all w ∈ {0, 1, . . . , n − a} or
wt(xA) +w ≥ k for all w ∈ {0, 1, . . . , n− a}. This condition is equivalent to the
condition that wt(x′A) < k − n+ a or wt(xA) ≥ k.

First, assume that k ≥ n/2. If a ≤ n − k, then fn,k(a) = a. Furthermore,
since k − n+ a ≤ 0 and a ≤ n/2 ≤ k, all the equivalence classes under ∼Tk

are

{xA : wt(xA) = i} (0 ≤ i ≤ a)

and hence STk
(A) = a + 1 ≥ fn,k(a). On the other hand, if a > n − k, then

fn,k(a) = n− k. Furthermore, since k−n+ a ≥ 1 and a ≤ k, all the equivalence
classes are

{xA : 0 ≤ wt(xA) < k − n+ a} and {xA : wt(xA) = i} (k − n+ a ≤ i ≤ a),

and hence STk
(A) = n− k + 2 ≥ fn,k(a).

Second, assume that k < n/2. If a ≤ k, then fn,k(a) = a. Furthermore, since
k − n+ a < 0 and a ≤ k, all the equivalence classes are

{xA : wt(xA) = i} (0 ≤ i ≤ a)

and hence STk
(A) = a+1 ≥ fn,k(a). On the other hand, if a > k, then fn,k(a) =

k. Furthermore, since k − n+ a < 0, all the equivalence classes are

{xA : wt(xA) = i} (0 ≤ i ≤ k) and {xA : k < wt(xA) ≤ a},

and hence STk
(A) = k + 2 ≥ fn,k(a). ⊓⊔

Corollary 2. Let Π be a t-input-private MPC protocol Π for a threshold func-
tion Tk. Let t′ = min{t, ⌊n/2⌋}. If the communication pattern of Π is a cycle, it
holds that BC(Π) ≥ logmin{k, n − k, t′}/2. If the communication pattern of Π
is a tree, it holds that BC(Π) ≥ logmin{k, n− k, t′/2}.
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Proof. First, assume that the communication pattern of Π is a cycle. From
Lemma 2, there exists a set A of parties such that |A| = t′ and |BodΠ(A)| ≤ 2.
Then, since |A| ≤ n/2, it follows from Lemma 4 that STk

(A) ≥ min{k, n−k, t′}.
Therefore, since |A| ≤ t, we obtain the first statement by applying Theorem 2.

Second, assume that the communication pattern is a tree. From Lemma 2,
there exists a set A of parties such that t′/2 ≤ |A| ≤ t′ and |BodΠ(A)| ≤ 1. Then,
since |A| ≤ n/2, it follows from Lemma 4 that STk

(A) ≥ min{k, n − k, |A|} ≥
min{k, n− k, t′/2}. Therefore, since |A| ≤ t, we obtain the second statement by
applying Theorem 2. ⊓⊔

On the upper-bound side, [24, 15] showed a t-input-private MPC protocol Π
for Tk such that BC(Π) = O(log n) and CR(Π) = O(n), assuming a cycle com-
munication pattern. The lower bound in Corollary 2 implies that the bottleneck
complexity cannot be further improved as long as a cycle or tree communication
pattern is assumed. In other words, achieving o(log n) bottleneck complexity
must adopt a different communication pattern than a cycle or a tree.

5 Lower Bounds for MPC with Function Privacy

In this section, we show a method to prove lower bounds on the bottleneck
complexity and on the amount of correlated randomness for function-private
MPC protocols. First, we provide a lower bound on bottleneck complexity.

Theorem 3. Let F be a set of functions from
∏

i∈[n]Xi to Y . For each f ∈ F ,
let gf :

∏
i∈[n]Xi → Y n denote a function that takes (xi)i∈[n] ∈

∏
i∈[n]Xi

as input and distributes y = f((xi)i∈[n]) to all parties, i.e., gf (x1, . . . , xn) =
(y, . . . , y), and let F ′ = {gf : f ∈ F}. Let Π be a t-input-function-private MPC
protocol for F ′. Then, it holds that

BC(Π) ≥ 1

2

(
log

log |F|
n− t

− ℓin
)
,

no matter how much correlated randomness is assumed, where ℓin = maxi∈[n] log |Xi|.

Proof. Let A be a set of t corrupted parties and let B = Ā. We denote the
inputs of the parties in A and B by xA ∈ XA and xB ∈ XB , respectively. Also,
we denote correlated randomness distributed to the parties in A and B by rA
and rB , respectively. By fixing randomness generated in the online phase, the
correlated randomness ri of the i-th party Pi determines a function Mri

i that
maps a tuple of his input and incoming messages into outgoing messages.

First, we show that

max
i∈[n]

log |Ri| ≥
log |F|
n− t

, (1)

whereRi = {Mri
i : ri is possible correlated randomness distributed to Pi}. Sup-

pose on the contrary that maxi log |Ri| < (log |F|)/(n − t). For any correlated
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randomness rB of B, let MrB
B = (Mri

i )i∈B denote the function that maps a
tuple of xB and incoming messages of B into outgoing messages of B. Since
maxi log |Ri| < (log |F|)/(n − t), the function Mri

i can be represented with
less than (log |F|)/(n − t) bits, and therefore MrB

B can be represented with
(log |F|)/(n − t) × |B| < log |F| bits. Fix rA arbitrarily. From the security re-
quirement, for any function f ∈ F , there exists rB such that (rA, rB) is valid
correlated randomness for f . We let rB|f denote such rB .4 Hence, there exist
distinct f, f ′ ∈ F such that MrB|f

B = M
rB|f′

B . Since the output of Π is deter-
mined by xA, rA, xB and MrB

B , this implies that f(xA, xB) = f ′(xA, xB) for all
xA and xB , and contradicts that f and f ′ are distinct.

Then, we show the lower bound for BC(Π) given in the statement. Since
Mri

i is the function whose input is of at most BC(Π) + log |Xi| bits and whose
output is of at most BC(Π) bits, the cardinality of Ri is upper-bounded by the
number of functions from {0, 1}BC(Π)+log |Xi| to {0, 1}BC(Π). Therefore, we have

log
∣∣Ri

∣∣ ≤ BC(Π)2BC(Π)+ℓin ,

and combining it with (1), we have

log
log |F|
n− t

≤ BC(Π) + ℓin + logBC(Π) ≤ 2BC(Π) + ℓin.

This completes the proof. ⊓⊔

We apply Theorem 3 to a special class of symmetric functions and obtain
lower bounds matching the upper bounds in [24, 15, 16]. We call a function f :
Xn → Y symmetric if f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn) for any (x1, . . . , xn) ∈
Xn and any permutation σ over [n]. Let Sd denote the set of all symmetric
functions from [d]n to {0, 1}. Let S ′d = {gf : f ∈ Sd}, where gf is a function that
takes (xi)i∈[n] ∈ Xn as input and distributes y = f(x1, . . . , xn) to all parties.
Since |Sd| = 2(

n+d−1
d−1 ), we have the following corollary.

Corollary 3. For any t-input-function-private protocol Π for S ′d, it holds that

BC(Π) ≥ 1

2

(
log

(
n+ d− 1

d− 1

)
− log(n− t)− log d

)
.

On the upper-bound side, a series of works [24, 15, 16] imply that there exists
an (n − 1)-input-function-private MPC protocol Π for S ′d such that BC(Π) =
O(d log n). If d = O(1), Corollary 3 implies BC(Π) = Ω(d log n) matching the
upper bound in [24, 15, 16].

Next, we provide a lower bound on the amount of correlated randomness.

Theorem 4. Continuing the notations in Theorem 3, it holds that

CR(Π) ≥ log |F|
n− t

.

4 If several rB satisfy that (rA, rB) is valid correlated randomness for f , we choose
one of them arbitrarily as rB|f .
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Proof. Let A be a set of t corrupted parties and let B = Ā. We denote the
inputs of the parties in A and B by xA ∈ XA and xB ∈ XB , respectively. Also,
we denote correlated randomness distributed to the parties in A and B by rA
and rB , respectively.

Suppose on the contrary that CR(Π) ≤ (log |F|)/(n − t). Then, the bit-
length of rB is less than log |F|)/(n − t) × |B| < log |F|. Furthermore, from
the input-function-privacy, for any correlated randomness rA and f ∈ F , there
exists rB such that (rA, rB) is valid correlated randomness for f . This implies
that for any rA, we can define a function ϕrA that maps each function f ∈ F into
part of correlated randomness ϕrA(f) such that (rA, ϕrA(f)) is valid correlated
randomness for f . Since the size of the set of all possible rB ’s is less than 2log |F| =
|F|, there exist rA and f ̸= f ′ ∈ F such that ϕrA(f) = ϕrA(f

′)(=: rB). The
output of Π with input (xA, xB) and correlated randomness (rA, rB) is equal to
f(xA, xB) from the correctness since (rA, rB) = (rA, ϕrA(f)) is valid correlated
randomness for f . It is also equal to f ′(xA, xB) since (rA, rB) = (rA, ϕrA(f

′)) is
valid correlated randomness for f . This implies f is equal to f ′, contradicting
f ̸= f ′. Hence, we have CR(Π) ≥ (log |F|)/(n− t). ⊓⊔

Again, applying Theorem 4 to the class of symmetric functions, we obtain
the following corollary.

Corollary 4. For any t-input-function-private protocol Π for S ′d, it holds that

CR(Π) ≥ 1

n− t

(
n+ d− 1

d− 1

)
.

On the upper-bound side, the (n − 1)-input-function-private MPC protocol
Π for S ′d with BC(Π) = O(d log n) [24, 15] uses per-party correlated randomness
of size O(nd−1). Corollary 4 implies that the amount of correlated randomness
of [24, 15] cannot be further reduced if d = O(1). In the case of t = n − ϵn for
0 < ϵ < 1, [16] showed a t-input-function-private MPC protocol Π for S ′d such
that CR(Π) = O(nd−2ϵ−1 log n).5 Corollary 4 gives an almost matching lower
bound CR(Π) = Ω(nd−2ϵ−1) if d = O(1).
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A A Note on the Protocols in [24, 15, 16]

The authors of [24, 15] showed an (n− 1)-input-private MPC protocol Π for the
class of symmetric functions S ′d such that BC(Π) = O(d log n) and CR(Π) =
O(nd−1). Furthermore, for t = n−ϵn for 0 < ϵ < 1, [16] showed a t-input-private
protocol Π for S ′2 such that BC(Π) = O(log n) and CR(Π) = O(ϵ−1 log n).
In this section, we prove that the protocol in [16] can be generalized into the
case of S ′d for d > 2 and all the above-mentioned protocols satisfy function
privacy. Much of this section is taken almost verbatim from [16]. We assume
basic terminologies and facts on MPC including the composition theorem (see,
e.g., [21] for the details).

A.1 Basic Protocols

Let G be an abelian group (e.g., a finite field or a ring of integers modulo m).
Define AdditiveG(s) as an algorithm to generate additive shares over G for a

21



secret s ∈ G. Formally, on input s ∈ G, AdditiveG(s) chooses (s1, . . . , sn) ∈ Gn

uniformly at random conditioned on s =
∑

i∈[n] si, and outputs it.
The functionality FSum,G receives group elements x1, . . . , xn ∈ G, each from

Pi, and gives s :=
∑

i∈[n] xi to all parties. As mentioned in [27], it is straightfor-
ward to obtain an (n − 1)-input-private protocol ΠSum,G realizing FSum,G such
that CR(ΠSum,G) = O(log |G|) and BC(ΠSum,G) = O(log |G|).

A.2 Ramp Secret Sharing

Let K be the minimum finite field such that |K| ≥ 2n and fix 2n pairwise distinct
elements β0, β1, . . . , βn−1, α1, . . . , αn ∈ K. Let ℓ be a positive integer such that
ℓ ≤ n. Define RSSℓ(s) as an algorithm to generate shares of the (t, ℓ, n)-ramp
secret sharing scheme [30, 17] for a secret vector s ∈ Kℓ. Formally, for s ∈ Kℓ,
we define a set Rs of polynomials as

Rs := {φ ∈ K[X] : degφ ≤ t+ ℓ, (φ(β0), . . . , φ(βℓ−1)) = s}

On input s ∈ Kℓ, RSSℓ(s) chooses a polynomial φ uniformly at random from
Rs, and then outputs (φ(α1), . . . , φ(αn)).

Basic mathematical facts regarding RSSℓ were shown in [16].

Lemma 5. Let T ⊆ [n] be any set of size at most t and s ∈ Kℓ. Then, there is
a polynomial ∆s ∈ Rs such that ∆s(αi) = 0 for all i ∈ T .

Lemma 6. Let s,u ∈ Kℓ and φs ∈ Rs. If φu is uniformly distributed over Ru,
then φs + φu is uniformly distributed over Rs+u.

Lemma 7. Let s = (s0, . . . , sℓ−1) ∈ Kℓ. Then, there is an algorithm Reconstℓ
such that ∑

i∈[n]

Reconstℓ(j, i; vi) = sj , ∀j = 0, 1, . . . , ℓ− 1

for any possible shares (v1, . . . , vn) ← RSSℓ(s). Furthermore, Reconstℓ is linear
in the sense that Reconstℓ(j, i; v) + Reconstℓ(j, i; v

′) = Reconstℓ(j, i; v + v′) for
any v, v′ ∈ K.

We can construct a deterministic algorithm FixedShareℓ that outputs prede-
termined shares consistent with a given secret vector. Formally, we fix a deter-
ministic algorithm FixedSampleℓ which on input s ∈ Kℓ, computes a polynomial
ψs ∈ Rs. It can be implemented efficiently, e.g., with Gaussian elimination. De-
fine FixedShareℓ as follows: On input i ∈ [n] and s ∈ Kℓ, FixedShareℓ(i, s) com-
putes ψs = FixedSampleℓ(s) and outputs ψs(αi). Note that (FixedShareℓ(i, s))i∈[n]

is a tuple of possible shares of a secret vector s.
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A.3 A Function-private MPC Protocol for S′
d

A function g : Gn → {0, 1} is called an abelian program over an abelian group G
if there exists a function f : G→ {0, 1} such that g(x1, . . . , xn) = f(x1+· · ·+xn)
for all (x1, . . . , xn) ∈ Gn, where addition is taken over G [2]. Let AG be the set
of all abelian programs over G and let A′

G = {gh : h ∈ AG}, where gh is a
function that takes (xi)i∈[n] ∈ Xn as input and distributes y = h(x1, . . . , xn) to
all parties. As pointed out in [2], abelian programs can compute a symmetric
function h : [d]n → {0, 1} by setting G = Zd−1

n+1 and encoding each input xi ∈ [d]
into x′i ∈ G as

x′i =

{
exi

, if 1 ≤ xi < d,

0, if xi = d,

where ej is the vector whose entry is 1 at position j and 0 otherwise, and 0 is
the zero vector. From this point of view, we focus on showing an MPC protocol
for A′

G.

Theorem 5. Let ℓ be any integer such that ℓ ≤ |G|, and suppose that t ≤
n− ⌈|G|/ℓ⌉. The protocol ΠSym described in Fig. 1 is a t-input-function-private
MPC protocol for A′

G in the (FSum,G,FSum,K)-hybrid model.

Proof. First, we prove the correctness of ΠSym. Let x = (xi)i∈[n] ∈ Gn be any
input. Since r =

∑
i∈[n] ri, it holds that ay′ = y = r+

∑
i∈[n] xi. Since (v

(j)
i )i∈[n]

are shares of RSSk for a secret vector U(j), it also holds that

z =
∑
i∈[n]

Reconstk(τ, i; v
(σ)
i ) = U(σ)[τ ] = S[σk + τ ] = S[y′] = f(ay′ − r) = f(y − r)

where U(σ)[τ ] is the τ -th element of U(σ). Therefore, we have that z = f(
∑

i∈[n] xi) =

h(x1, . . . , xn).
Next, we prove the input-function-privacy of ΠSym. Let T ⊆ [n] be the set

of t corrupted parties. Let H = [n] \ T be the set of honest parties. Let x =

(xi)i∈[n], x̃ = (x̃i)i∈[n] ∈ Gn be any pair of inputs and h, h̃ be any pair of abelian
programs such that xi = x̃i (∀i ∈ T ) and h(x1, . . . , xn) = h̃(x̃1, . . . , x̃n). Let
f, f̃ : G → {0, 1} be the functions corresponding to the abelian programs h, h̃,
respectively.

Note that in the (FSum,G,FSum,K)-hybrid model, corrupted parties’ view can
be simulated from the following elements since the other elements are locally
computed from them:

Correlated randomness. (ri, v
(0)
i , . . . , v

(ℓ−1)
i ) for all i ∈ T ;

Online messages. y =
∑

i∈[n] xi + r and z.

It is sufficient to prove that the distribution of the above elements during the
execution of ΠSym on input x and h is identical to that on input x̃ and h̃.
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Protocol ΠSym� �
Notations.

– Let G = {a0, . . . , aN−1} be an abelian group.
– Let ℓ ≤ N , k := ⌈N/ℓ⌉ and m := ℓk.

Input. Each party Pi has xi ∈ G.
Output. Every party obtains z = h(x1, . . . , xn).
Correlated randomness. Given an abelian program h : Gn → {0, 1},

1. Let f : G → {0, 1} be a function such that h(x1, . . . , xn) = f(
∑

i∈[n] xi)

for all (x1, . . . , xn) ∈ Gn.
2. Let r←$G and (ri)i∈[n] ← AdditiveG(r).
3. Define S = (S[i])0≤i≤m−1 ∈ Km as

S[i] =

{
f(ai − r), if 0 ≤ i < N,

0, otherwise.

4. Decompose S into ℓ vectors U(0), . . . ,U(ℓ−1) of dimension k, i.e., S =
(U(0), . . . ,U(ℓ−1)).

5. For each j = 0, 1, . . . , ℓ− 1, let (v
(j)
i )i∈[n] ← RSSk(U

(j)).
6. Each party Pi receives (ri, v

(0)
i , . . . , v

(ℓ−1)
i ).

Protocol.
1. Each party Pi computes yi = xi + ri over G.
2. Parties obtain y = FSum,G((yi)i∈[n]).
3. Each party computes y′ ∈ {0, 1, . . . , N − 1} such that ay′ = y.
4. Each party computes σ, τ such that σ ∈ {0, 1, . . . , ℓ−1}, τ ∈ {0, 1, . . . , k−

1}, and y′ = σk + τ .
5. Each party Pi computes zi = Reconstk(τ, i; v

(σ)
i ).

6. Parties obtain z = FSum,K((zi)i∈[n]).
7. Each party Pi outputs z.� �

Fig. 1. A protocol ΠSym
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To show the equivalence of the distributions, we show a bijection between the
random strings used by ΠSym on input x and h and the random strings used
by ΠSym on input x̃ and h̃ such that the correlated randomness and the online
messages received by T are the same under this bijection. The set of all random
strings is

Qf =
{(

(ri)i∈[n], ϕ
(0), . . . , ϕ(ℓ−1)

)
: ri ∈ G, ϕ(j) ∈ RU(j)

}
,

where r =
∑

i∈[n] ri, (U
(0), . . . ,U(ℓ−1)) = Sf,r and

Sf,r[i] =

{
f(ai − r), if 0 ≤ i < N,

0, otherwise.
(2)

We denote the randomness ofΠSym on input x and h byR = ((ri)i∈[n], ϕ
(0), . . . , ϕ(ℓ−1))

and that on input x̃ and h̃ by R̃ = ((r̃i)i∈[n], ϕ̃
(0), . . . , ϕ̃(ℓ−1)). We consider a bi-

jection that maps the randomness R ∈ Qf to R̃ ∈ Qf̃ in such a way that

r̃i =

{
ri, if i ∈ T,
ri + xi − x̃i, if i ∈ H,

ϕ̃(j) = ϕ(j) +∆Ũ(j)−U(j)

where

r :=
∑
i∈[n]

ri, (U
(0), . . . ,U(ℓ−1)) := Sf,r, r̃ :=

∑
i∈[n]

r̃i, (Ũ
(0), . . . , Ũ(ℓ−1)) := Sf̃ ,r̃,

and ∆Ũ(j)−U(j) ∈ RŨ(j)−U(j) is a polynomial such that ∆Ũ(j)−U(j)(αi) = 0 for
all i ∈ T , whose existence is guaranteed by Lemma 5. The image is indeed
a consistent random string, i.e., ((r̃i)i∈[n], ϕ̃

(0), . . . , ϕ̃(ℓ−1)) ∈ Qf̃ , since ϕ(j) ∈
RU(j) implies that ϕ̃(j) = ϕ(j) +∆Ũ(j)−U(j) ∈ RŨ(j) . The above map is indeed a
bijection since it has the inverse

ri =

{
r̃i, if i ∈ T,
r̃i + x̃i − xi, if i ∈ H,

ϕ(j) = ϕ̃(j) −∆Ũ(j)−U(j) .

This bijection does not change the correlated randomness (ri, v
(0)
i , . . . , v

(ℓ−1)
i )i∈T

of T since

ṽ
(j)
i = ϕ̃(j)(αi) = ϕ(j)(αi) +∆Ũ(j)−U(j)(αi) = ϕ(j)(αi) = v

(j)
i

for all i ∈ T . It can be seen that x̃i+ r̃i = x̃i+(ri+xi− x̃i) = xi+ri for i ∈ H. In
particular, the message y is the same in both executions. Since h(x1, . . . , xn) =
h̃(x̃1, . . . , x̃n), the message z is also the same in both executions, which implies
that the bijection does not change online messages seen by corrupted parties. ⊓⊔
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Recall that FSum,G can be realized by a protocol with bottleneck complex-
ity O(log |G|) and correlated randomness of size O(log |G|). Thus, we have the
following corollary.

Corollary 5. Let ℓ be any integer such that ℓ ≤ |G|, and suppose that t ≤
n − ⌈|G|/ℓ⌉. Then, there exists a t-input-function-private MPC protocol Π for
A′

G such that BC(Π) = O(log |G|+ log n) and CR(Π) = O(log |G|+ ℓ log n).

To compute S ′d, we set G = Zd−1
n+1 and hence log |G| = O(d log n).

Corollary 6. Let t = n − ϵn, where 0 < ϵ < 1. Then, there exists a t-input-
function-private MPC protocol Π for S ′d such that BC(Π) = O(d log n) and
CR(Π) = O(nd−2ϵ−1 log n).

In the case of t = n−1, we can choose additive secret sharing over the binary
field when distributing shares of a function, instead of ramp secret sharing. This
reduces the size of correlated randomness by a factor of log n.

Corollary 7. Let t = n− 1. Then, there exists a t-input-function-private MPC
protocol Π for S ′d such that BC(Π) = O(d log n) and CR(Π) = O(nd−1).
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