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Abstract. Secret sharing is a foundational cryptographic primitive for
sharing secret keys in distributed systems. In a classical threshold setting,
it involves a dealer who has a secret, a set of n users to whom shares
of the secret are sent, and a threshold t which is the minimum number
of shares required to recover the secret. These schemes offer an all-or-
nothing security approach where less than t shares reveal no information
about the secret. But these guarantees are threatened by side-channel
attacks which can leak partial information from each share. Initiated by
Benhamouda et. al. (CRYPTO’18), the security of such schemes has been
studied for precise and worst-case bounded leakage models. However,
in practice, side-channel attacks are inherently noisy. In this work, we
propose a noisy leakage model for secret sharing, where each share is
independently leaked to an adversary corrupted by additive noise in the
underlying field Fq. Under this model, we study the security of linear
secret sharing schemes, and show bounds on the mutual information
(MI) and statistical distance (SD) security metrics. We do this by using
the MacWilliams’ identity from the theory of error-correcting codes. For
a given secret, it enables us to bound the the statistical deviation of
the leaked shares from uniform as δt, where δ is the Fourier bias of the
added noise. Existing analyses for the security of linear (n, t)-threshold
schemes only bound the SD metric, and show resilience for schemes with
t ≥ 0.668n. In this work, we show that these constraints are artifacts of
the bounded leakage model. In particular, we show that (n, t)-threshold
schemes over Fq with t ≥ τ(n + 1) leak O(q−2t(γ+1−1/τ)) bits about
the secret, given the bias of added noise satisfies δ ≤ q−γ . To the best
of our knowledge, this is the first attempt towards understanding the
side-channel security of linear secret sharing schemes for the MI metric.

Keywords: Secret sharing · Side-channel leakage · Information-theoretic
cryptography · Leakage-resilient cryptography.

1 Introduction

The design and analysis of cryptographic primitives often assume cryptosystems
as impervious black-boxes. However, in real-world applications, adversaries can
bypass theoretical security guarantees by exploiting the implementation and
physical environment of these cryptosystems. Side-channel attacks constitute a



class of cryptanalytic techniques that leverage the operational behavior of hard-
ware systems such as power consumption, electromagnetic emanations etc. to
reveal sensitive information. These attacks aim to leak partial information from
the intermediate values involved in storage, computation, and communication.
Side-channel attacks on fundamental cryptographic building blocks undermine
the security guarantees of all computer systems that incorporate them. Moti-
vated by the emergence of such attacks, protocols that attempt to provide prov-
able security guarantees against side-channel attacks have attracted significant
attention in the cryptographic community (survey [29]).

Secret sharing, introduced by Shamir [54] and Blakley [8], is a fundamen-
tal cryptographic primitive central to security in distributed systems. It protects
against collusion by distributing shares of a secret among parties/users such that
only specific subsets of users, called access structures, can reconstruct the secret
by combining their shares. In the classical (n, t)-threshold setting, shares of the
secret are distributed among n users such that all subsets of size at least t con-
stitute the access structures. These schemes have found numerous applications
such as in the domains of multi-party computation, zero-knowledge proofs, cryp-
tographic masking etc. (survey [5]). Despite their adoption in several real-world
systems, the impact of threshold and scalability on the security of secret sharing
schemes is not fully understood. In this work, we study the security guarantees
of (n, t)-threshold secret sharing schemes constructed using linear codes, where
noisy version of each secret share are leaked to an adversary. In particular, we
propose an additive noise leakage model where the adversary obtains each secret
share corrupted by independent additive noise over the underlying field Fq. This
model generalizes the ϵ-Bernoulli noise model first studied by Faust et. al. [20].

Although the proposed model may seem unnatural from a perspective of
cryptographic engineering, it is amenable to widely used mathematical tech-
niques (such as Fourier analytical methods), while still offering a more general
noisy leakage framework. Therefore, this work should be seen as a step in study-
ing the resilience of cryptographic primitives with more realistic leakage models.
Initiated by Chari et al. [12], the resilience of (n, n)-threshold schemes has been
studied extensively against diverse noisy leakage models [3, 4, 9, 16, 17, 18, 19,
20, 21, 32, 44, 48]. But research in leakage-resilient (n, t)-threshold schemes has
largely focused on models where the adversary can leak arbitrary bounded func-
tions of the secret shares [6, 7, 30, 31, 35, 36, 37, 39, 46]. Such models characterize
worst-case discrete leakage and do not directly capture real-world side-channel
attacks [55, 56]. This results in conservative security guarantees and that too
with severe constraints on the underlying field Fq. In practice, side-channels are
inherently noisy and techniques exist to amplify this noise [40]. Subsequently,
the proposed model is more relaxed, and the security guarantees are dependent
on side-channel noise. Furthermore, existing works usually prove formal security
guarantees only for secret sharing schemes with thresholds t > n/2, even though
schemes with t ≤ n/2 are often used in practice. Therefore, understanding the
security of schemes with general thresholds, and implemented over arbitrary
finite fields, for noisy adversarial models is necessary.
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1.1 Relation to Prior Work

In context of leakage resilience of (n, t)-threshold secret sharing, most research
has focused on bounded leakage models [6, 7, 30, 31, 35, 36, 37, 39, 46]. Gu-
ruswami and Wootters’ reconstruction algorithm [22, 23] showed that even a
single adversarial bit leaked from each secret share compromises the security
of Shamir’s secret sharing scheme over fields of characteristic 2. This led Ben-
hamouda et al. [6, 7] to investigate the leakage resilience of linear secret sharing
schemes for other finite fields. They prove that the (n, t)-Shamir’s scheme is
leakage-resilient against one bit leakages, when the underlying field is of a large
prime order, and t ≥ 0.92n. This ratio has been progressively improved to 0.668
in a series of works by different authors [7, 30, 31, 34, 37]. For the noisy probing
model, Adams et al. [1] proved that for additive secret-sharing schemes over a
prime field where the prime requires λ-bits for its binary representation, k must
be at least ω(log λ/ log log λ) to ensure security against even a single physical-bit
leakage per share. However, a general drawback of such models is the restric-
tions required on the underlying field Fq. For example, the state-of-art results
by Kasser [30] require a prime field F with size |F| = O(2n). In another series of
works [38, 39, 46], it was shown that Shamir’s secret sharing scheme constructed
using random evaluation points is almost always secure against physical prob-
ing attacks over finite fields irrespective of the field size or characteristic. This
result seems to suggest that a (n, t)-threshold linear secret sharing with ran-
dom leakage in finite fields might also be secure over all fields. In this work, we
answer this affirmatively. Several works have focused on the resilience of (n, n)-
threshold schemes against noisy, and consequently more practical leakage models
[2, 3, 4, 9, 13, 17, 18, 19, 20, 21, 27, 28, 44, 48].

Information Leakage Measures. In cryptanalysis literature, mutual infor-
mation (MI) is widely regarded as a fundamental metric for quantifying leakage
in side-channel attacks [50, 55]. But all existing works studying leakage-resilient
(n, t)-threshold secret sharing have only evaluated security guarantees in the
statistical distance (SD) metric. For random variables corresponding to secret S
and leakage L, MI(S;L) quantifies the information revealed about S from ob-
serving L by measuring the average reduction in uncertainty about S. The MI
metric provides operationally meaningful insights, letting hardware engineers
translate system design into measurable security guarantees. Motivated by the
growing interest in using MI metric for evaluating security of leakage-resilient
(n, n)-threshold schemes [2, 13, 17, 21, 28, 44], we adopt this metric to study
side-channel leakage in (n, t)-threshold secret sharing. The MI and SD metrics
are related by Pinsker’s inequality and are formally discussed in Section 2.2.

1.2 Our Contributions

To understand the security guarantees of (n, t)-threshold schemes under the
proposed leakage model, we begin by introducing some mathematical notation.
Linear Code-Based Secret Sharing. LetM⊆ Fn+1

q be a linear code over a finite
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field Fq. The secret sharing scheme for n parties based on M is constructed as
follows. Let the secret be s ∈ Fq. Sample a random codeword (s, u1, . . . , un) ∈
M, and assign the secret share ui to the ith user.
Additive Noise Leakage Model. In the proposed leakage model, each share is
leaked to an adversary with i.i.d. additive noise over Fq. The adversary obtains
leaked shares li = ui+ei, where ei ∈ Fq are sampled independently according to
the noise random variable E. For q = 2λ, this generalizes the ϵ-Bernoulli noise
model introduced by Faust et. al. [20], where the adversary obtains each bit of
every secret share with probability 1− ϵ, and a flipped bit with probability ϵ.
Noise Parameter. The noise random variable E is parametrized by its Fourier
bias, δ < 1. This δ quantifies the deviation of E from the uniform distribution,
and how evenly it randomizes the leaked shares li’s. In particular, we have δ ≤∑

α∈Fq
|Pr(E = α)− 1/q|. For the ϵ-Bernoulli noise model, regardless of the size

of the binary extension field q = 2λ, we have δ = 1− 2ϵ.
For an (n, t)-threshold scheme, define the normalized threshold as τ = t/(n+1).
Then, for some given noise parameter δ, the main result of this work (Theorem 3)
can be informally stated as follows. Note that the MI metric is measured in bits.

Theorem 1 (Informal). The mutual information (MI) leaked about the secret
is O(q2(n+1−t)δ2t). For τ > 1/(1− logq(δ)), the leaked information is O(2−Ω(t)).

Using the Pinsker’s inequality, bounds on MI have been used to derive bounds
on the SD-metric in Corollary 2. Consequently, we show that the insecurity of
the Shamir’s secret sharing scheme over fields of characteristic 2 [22, 23], is an
artifact of the worst-case nature of the bounded leakage model. Theorem 1 shows
that for a sufficiently small δ, linear secret sharing schemes are leakage resilient
for arbitrarily small normalized thresholds τ . Countermeasures such as hiding,
and noise amplification can be used to make the noise parameter δ smaller.

Corollary 1 (Informal). For normalized threshold τ = t/(n+ 1), if δ ≤ q−γ ,
where γ > 1

τ−1, then the leakage from the secret for the MI metric is O(q 1
τ −1−γ).

For the bounded leakage model, in a series of works [6, 7, 30, 31, 37, 39], Shamir’s
secret sharing scheme has been shown to be resilient only for t ≥ 0.668n. How-
ever, as noted earlier, bounded leakage models do not translate into real-world
side-channel attacks. In Section 3, we formally introduce the proposed leakage
model, and discuss its theoretical motivation and connections to other works.
Table 1 presents a comparison of the parameter constraints in this work with
those in prior works on the security of linear (n, t)-threshold schemes.

1.3 Technical Overview

The extant analysis of leakage-resilient (n, t)-threshold secret sharing has been
done using a Fourier analytic framework introduced in [6]. Most of these works
[6, 7, 37] directly bound the statistical distance between leakage distributions
corresponding to different secrets via a point-by-point analysis. However, the
security analysis has been restricted to thresholds t ≥ 0.5n [30].
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Table 1. Leakage models & constraints in works on security of (n, t)-threshold schemes.

Paper Scheme Threshold t Field Fq Leakage
Beguinot et. al. [3] Additive t = n Arbitrary δ-noisy
Adams et. al. [1] Shamir t = ω(log λ/ log log λ) Prime p < 2λ Thermal
Maji et. al. [37] MDS code t ≥ 0.78n Prime p > 5 Bounded
Klein et. al. [31] MDS code t ≥ 0.69n Prime p < 2o(n) Bounded
Kasser [30] MDS code t ≥ 0.668n Prime p < O(2n) Bounded
This work Linear t

n+1
> 1

1−logq(δ)
Arbitrary δ-additive

In this work, we will also conduct a point-by-point analysis. However, instead
of bounding the SD metric, we use this analysis to bound the MI metric. Let
X ← x denote a random variable X, and its realization x. For a linear (n, t)-
threshold scheme, let S ← s ∈ Fq be the secret, and the vector of noisy secret
shares leaked to the adversary be L = (L1, . . . , Ln). We wish to bound MI(S;L).
To do this, we will exploit the properties of the MI-metric. Under the proposed
leakage model, the adversary receives each leaked share Li ← li = ui + ei,
perturbed by some noise E ← ei ∈ Fq. Recall that, for linear schemes, the
coefficients of the secret recovery equations span an [n, k, t] code C ⊆ Fn

q .

Intuitively, to recover the secret s, it would appear that the best strategy for
the adversary would be to simply plug in the leaked shares in place of the actual
secret shares, to obtain multiple estimates of the secret. This intuition has been
formalized in Proposition 4 and Corollary 4, where we show that MI(S;L) =
MI(S; S̃ = LC⊤), where S̃, the estimates of the secret and LC⊤ denote the
the secret recovery equations with the ‘plugged in’ leaked shares. Now using the
independent and additive nature of proposed noise model, MI(S;L) = H(LC⊤)−
H(EC⊤), where E ∼ E⊗n. Since the code C has dimension k, H(LC⊤) ≤ k log2(q).
Therefore, all we are left to do is lower bound H(EC⊤).

Lower bounding the entropy of EC⊤ is trying to characterize its deviation
from the uniform distribution. Here we adopt a point-wise analysis approach,
and in Lemma 4 show that |Pr(EC⊤ = v) − q−k| ≤ δt, where v ∈ Fk

q and
δ = bias(E). To prove this bound, we first introduce the complete weight enu-
merator polynomial (cwe) from the theory of error correcting codes (Section 5).
Then, we observe that the required probability is the same as the probability of
the error vector lying in some coset of the dual code C⊥, which can be character-
ized by the cwe polynomial. Mathematically, Pr(EC⊤ = v) = Pr(E ∈ w+C⊥) =
cwew+C⊥(µ0, . . . , µq−1), where µi = Pr(E = αi ∈ Fq). To get the pointwise
bound, we finally invoke the MacWilliams’ identity (Proposition 1), which is a
well-known result lying in the intersection of coding theory and Fourier anal-
ysis. The MacWilliams identity relates the cwe polynomial of a code to that
of its dual, with the coefficients transformed via the discrete Fourier trans-
form, i.e. cweC⊥(µ0, . . . , µq−1) = q−kcweC(µ̂0, . . . , µ̂q−1). Therefore, the mini-
mum weight of code C, and the Fourier bias δ appear naturally in the expression
for |Pr(EC⊤ = v)− q−k|. Intuitively, since the minimum weight of the code C is
t, we expect this bound to resemble the addition of t independent Ei ∼ E’s.

5



To finally lower bound H(EC⊤), we now simply exploit the Taylor expansion
of the entropy function by using − ln(q−k + x) ≥ 1 − qkx/(k ln q). This gives
us the final expression in the main result of this work, Theorem 3. By Pinsker’s
inequality, bounds on mutual information directly yield bounds on statistical
distance. Specifically, we use SD(L/S = s0;L/S = s1) ≤

√
2 loge2 ·MI(S;L).

These results have been discussed in Section 4 (see Theorem 3 and Corollary 2).

1.4 Outline

The remainder of this paper is structured as follows. In Section 2, we recall
the preliminaries, including information leakage measures such as mutual infor-
mation and statistical distance, and the procedure of constructing linear secret
sharing schemes from linear error-correcting codes. Additionally, we discuss the
construction of Shamir’s secret sharing scheme, which is a widely used linear
secret sharing scheme. In Section 3, we formally introduce the additive noise
leakage model and its relationship to other prior works. In Section 6, we present
the main results of this paper, and provide a formal mathematical proof of the
central result of this paper, Theorem 3. In Section 7, we investigate the prac-
tical implications of our findings, by discussing the relationship between SNR,
i.e. signal-to-noise ratio, and the bounds on leakage presented in earlier sections.
Finally, the paper is concluded in Section 8.

2 Preliminaries

In this Section, we present the preliminaries required to formally define the
mathematical framework of side-channel leakage for linear secret sharing schemes
that we consider in our analysis. The notations are given in Subsection 2.1. In
Subsection 2.2, we recall the main information leakage measures used as security
metrics in side-channel analysis. Then, in Subsection 2.3, we discuss the theory
of error-correcting codes, and how they are used in construction of linear secret
sharing schemes.

2.1 Notation

Let Fq be a finite field of order q = pd, where p ≥ 2 is a prime and d ∈ Z+. Let
Fn
q denote the ambient vector space of vectors of length n ∈ Z+ over the field

Fq. Linear codes of length n over Fq, are subspaces of Fn
q , and are denoted by

calligraphic letters, eg. C ⊆ Fn
q . When specifying a generator matrix for a linear

code, we use the same calligraphic letter to denote the matrix associated with
the code. For example, C ∈ Fk×n

q is understood as the generator matrix of the
code C. This notational overlap emphasizes the centrality of the generator matrix
in defining the structure of the code, and any ambiguity is resolved contextually.
The transpose of a matrix A ∈ Fm×n

q will be denoted by A⊤ ∈ Fn×m
q . The sets

of values taken by random variables in this work will be discrete, and usually
belong to Fq. Random variables are denoted by uppercase letters, eg. X, and
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their realization will be denoted by the corresponding smallcase letter X ← x.
For some discrete random variable X, its probability mass function (pmf) will
be written as pX(x) = Pr(X = x). The sets of values taken by the random
vectors in this work will usually belong to some linear code over Fq. Random
vectors are denoted by boldface uppercase letters, eg. X = (X1, . . . , Xn), and
their realization will be denoted by the corresponding boldface smallcase letter
X← x = (x1, . . . , xn). For some random vector X, its probability mass function
(pmf) will be written as pX(x) = Pr(X = x).

The Hamming weight of a vector x ∈ Fn
q , denoted by wt(x), is defined as

the number of non-zero coordinates in the standard representation of x, i.e.,
wt(x = (x1, . . . , xn)) = #{xj : xj ̸= 0, 1 ≤ j ≤ n}. We will use the standard
inner product notation ⟨·, ·⟩ to represent the dot product of two vectors over Fq.
For x = (x1, . . . , xn) ∈ Fn

q and y = (y1, . . . , yn) ∈ Fn
q , their dot product is defined

as ⟨x,y⟩ = x1y1 + · · ·+ xnyn. For a vector x = (x1, . . . , xn) ∈ Fn
q and a random

vector V = (V1, . . . , Vn) taking values in Fn
q , we will extend this notation to

represent a linear combination of random variables as ⟨x,V⟩ = x1V1+· · ·+xnVn,
which is a random variable taking values in Fq. This notation, ⟨·, ·⟩, is used to
emphasize the structural similarity to standard vector operations, even when
one of the vectors is random. For such a linear combination of random variables,
the vector x is called the coefficient vector corresponding to equation ⟨x,V⟩.

2.2 Information Leakage Measures

Following [55], the evaluation of side-channel leakage can be broadly catego-
rized into two types of metrics. First, information-theoretic metrics quantify
the amount of information leaked through a side-channel, independent of any
specific adversarial model. Second, security metrics evaluate the practical ex-
ploitability of this information by a concrete adversary. A key advantage of
information-theoretic metrics is their universality, as they assume an adversary
with unbounded computational power, providing an upper bound on the infor-
mation leakage irrespective of implementation or attack complexity.

Entropy and Mutual Information. Let X be a discrete random variable with
probability mass function pX(x). The base-q entropy of X, denoted by Hq(X),
quantifies the uncertainty of X and is defined as:

Hq(X) = −
∑
x

pX(x) logq pX(x), (1)

where the logarithm is taken to base q. For q = 2, the base is typically omitted,
and Hq(X) is simply written as H(X), commonly measured in bits. The relation-
ship between the two is given by H(X) = log2(q) · Hq(X). Mutual information
between two random variables measures the reduction in uncertainty about X
given knowledge of another random variable Y . For two random variables X and
Y , the base-q mutual information, MIq(X;Y ), is defined as:

MIq(X;Y ) = Hq(X)−Hq(X | Y ). (2)
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For q = 2, we again omit the base, and MI(X;Y ) = log2(q) ·MIq(X;Y ). Mu-
tual information satisfies the data processing inequality, which states that post-
processing cannot increase the MI between two random variables:

Theorem 2 (Data Processing Inequality). Let X,Y, Z be discrete random
variables such that X → Y → Z forms a Markov chain, then

MI(X;Z) ≤ MI(X;Y ). (3)

Statistical Distance. The statistical distance, also known as the total variation
distance, measures the distinguishability between two probability distributions.
For two distributions P and Q over the same domain X , it is defined as

SD(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)|. (4)

The well-known Pinsker’s inequality relates SD and MI metrics. For any x0, x1,

SD(Z/X = x0, Z/X = x1) ≤
√
2 loge2 ·MI(X;Z). (5)

2.3 Codes and Linear Secret Sharing Schemes

It is well-known that several linear secret-sharing schemes (LSSS) can be con-
structed from linear error-correcting codes [10, 15, 42, 43, 45]. Massey utilized
linear codes for secret sharing schemes and established the relationship between
the access structure and the minimal codewords of the dual code of the under-
lying codes [42, 43]. The seminal Shamir’s secret sharing scheme is a specific
instance of Massey’s secret sharing scheme, where the underlying construction
relies upon Reed-Solomon codes [45]. We begin by reviewing the definition of
linear error-correcting codes and dual codes.

Linear codes. A linear code C of length n over Fq is a subspace of the ambient
vector space Fn

q . Recall that weight of a vector u ∈ Fn
q , wt(u), is the number of

non-zero coordinates of u. The minimum distance of a linear code is the small-
est non-zero weight of a vector in C. The notation [n, k, d]q represents a linear
code of length n, dimension k, and minimum distance d, over the finite field Fq.
Vectors belonging to some code C are also called codewords.

Definition 1. An [n, k, d]q code is a k-dimensional subspace C ⊆ Fn
q , with min-

imum distance d, where d = min{wt(c) : c ∈ C, c ̸= 0}, with wt(c) denoting the
Hamming weight of c.

A generator matrix of an [n, k, d]q code C is a matrix in Fk×n
q whose rows span the

subspace C ⊆ Fn
q . We use the same calligraphic letter C to denote the generator

matrix of the code C, where C ∈ Fk×n
q . Any codeword c ∈ C can be written

as c = uC for some row vector u ∈ Fk
q . In Section 5, we recall MacWilliams’

identity, which relates the weight distribution of a code C with its dual code
C⊥ (Proposition 1). In Section 6, the MacWilliams’ identity is used to prove
Lemma 4, which is the main technical result of this paper.
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Definition 2. The dual of an [n, k, d]q code C is an [n, n − k, d⊥]q code C⊥,
defined as the orthogonal complement of C in Fn

q . Formally,

C⊥ = {v ∈ Fn
q : ⟨v, c⟩ = 0 for all c ∈ C},

where ⟨·, ·⟩ denotes the standard dot product over Fq. The dual code C⊥ is a
linear code of dimension n− k and minimum distance d⊥.

Massey’s Secret Sharing. Given a secret s ∈ Fq and a threshold t ∈ Z+,
Massey’s secret-sharing scheme for n users distributes secret shares u1, u2, . . . , un ∈
Fq among n users such that:

– the secret s is a linear combination of at least t shares;
– fewer than t shares reveal no information about the secret.

Such a scheme is constructed using a [n + 1, k + 1]q linear code M ⊆ Fn+1
q ,

where the dual codeM⊥ is a [n+1, n− k, t+1]q code. For a secret S ← s ∈ Fq,
the scheme samples a uniformly random codeword s = (u0, . . . , un) ∈ M such
that u0 = s. The i-th share is defined as ui ∈ Fq for i ∈ {1, 2, . . . , n}. Massey
established the connection between the access structure of the secret-sharing
scheme and the minimal codewords of the dual code M⊥ [42, 43]. Specifically,
they showed that there exists a codeword c = (c0, . . . , cn) ∈ M⊥ with c0 ̸= 0
and wt(c) = t + 1. Such a codeword is orthogonal to s ∈ M, i.e., ⟨s, c⟩ = 0,
corresponding to a secret recovery equation.

Let the secret shares’ vector be denoted by U← u = (u1, . . . , un) ∈ Fn
q . This

vector is formed by deleting the first coordinate in each codeword of M. The
resulting code U ⊆ Fn

q is a linear code of length n and is called a punctured code
ofM. A Massey secret-sharing scheme with n users and threshold t, constructed
using the codebookM⊆ Fn+1

q , is denoted by MasseySS(n, t,M).

Definition 3. Given v = (v1, . . . , vn) ∈ Fn
q , a linear combination of the secret

shares ⟨v,U⟩ = v1U1 + · · ·+ vnUn is called a secret recovery equation if

S = ⟨v,U⟩. (6)

Given the MasseySS(n, t,M) scheme with threshold t, each secret recovery equa-
tion has at least t non-zero summands. Therefore, for every coefficient vector
v ∈ Fn

q corresponding to a secret recovery equation, we have wt(v) ≥ t. An
adversary with knowledge of the underlying codebookM has access to the coef-
ficients of all secret recovery equations, and consequently, the linear combinations
of these equations. The linear subspace spanned by these coefficient vectors is
denoted as CM. This subspace CM is a linear code of length n over Fq.

Definition 4. Let V be the set of coefficient vectors corresponding to all possible
secret recovery equations, i.e., V = {v ∈ Fn

q : ⟨v,U⟩ = S}. Let CM be the
subspace of Fn

q spanned by the vectors in V,

CM = span(V) =

{
k∑

i=1

αivi : vi ∈ V, αi ∈ Fq, k ∈ Z+

}
. (7)
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Lemma 1 states that the minimum distance of the code CM is equal to the
threshold t. In Section 6, we formally show how the bounds on the MI metric,
for the information leaked about the secret, depend on the threshold t.

Lemma 1. The code CM is an [n, k, d]q code with k ≤ n− t+ 1, and d = t.

3 Leakage Model: Additive Noise in Fq

In this section, we formally introduce the proposed noisy leakage model. The
model assumes that an adversary receives each share corrupted by independent
additive noise over Fq. In Section 3.2, we discuss how this model generalizes the
ϵ-Bernoulli noise model first studied by Faust et. al. [20], which itself is related
to Chari’s framework for modeling analog attacks [11]. Finally, we review other
leakage models studied in leakage-resilient secret sharing in Section 3.3.

3.1 Mathematical Formulation

Consider the Massey’s secret sharing scheme, MasseySS(n, t,M), with n users,
and threshold t, over a finite field Fq. Let S ← s denote the secret that is shared,
and U← u = (u1, . . . , un) ∈ Fn

q denote the secret shares’ vector. Similar to other
local leakage models studied in literature [6, 7], we assume

– the adversary obtains a leaked version of every secret share;
– information leaked to the adversary from each user is independent of the

leakage from other users.

The leaked version of the secret shares’ vector will be denoted by L ← l =
(l1, . . . , ln). Let the leaked shares li be obtained from the secret shares ui by
adding independent noise Ei ← ei ∈ Fq. Let this random noise vector be E ←
e = (e1, e2, . . . , en) ∈ Fn

q . Formally, the leaked shares’ vector is given by

L = U+E. (8)

In Proposition 4, it is shown that to recover the secret S ← s from the leaked
secret shares’ vector L← l, it is sufficient to estimate s using the secret recovery
equations, i.e. lC⊤M is a sufficient statistic for estimating s from the vector l.
However, to quantify the information leaked, i.e. bound MI(S;L), we will need
Ei ∼ E to be i.i.d. copies of some random variable E over Fq, i.e. E ∼ E⊗n.

3.2 Motivation

Noisy leakage models attempt to formalize the physical behavior of embedded
devices by assuming that the adversary observes a noisy function of intermediate
variables. To model analog leakage, such as in template attacks [12] and differ-
ential power analysis [41], Chari et al. [11] proposed the additive Gaussian noise
model, wherein the adversary observes the Hamming weight of the target data
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corrupted by Gaussian noise in R. In parallel, motivated by discrete wire-probing
attacks, Ishai et al. [26] introduced the random probing model, in which each
intermediate value is revealed to the adversary with probability ϵ or otherwise
remains hidden. The ϵ-Bernoulli model studied by Faust et al. [20] occupies a
position between these two frameworks: it is discrete in nature like the random
probing model, but arises as a consequence of hard-decision decoding of analog
leakage. The model proposed in this work generalizes the ϵ-Bernoulli noisy leak-
age model studied by Faust et al. [20] for leakage-resilient circuit compilers.

ϵ-Bernoullli Noisy Leakage Model. The leakage function reveals all the bits
of every secret share to the adversary, perturbed by independent additive bino-
mial noise. Formally, for some ϵ ∈ (0, 1/2], each bit is flipped with probability ϵ,
and remains unchanged with probability 1−ϵ. This leakage model can be reduced
to the proposed additive noise leakage model as follows. Consider the scheme
MasseySS(n, t,M) over the binary extension field F2λ . The additive noise model
with i.i.d. leakage variable E having distribution Pr(E = e) = ϵwt(e)(1− ϵ)λ−wt(e),
where e ∈ F2λ is treated as a binary vector of length λ, is equivalent to the ϵ-
Bernoullli noise model.

Channel Models in Information Theory. It is useful to contextualize side-
channel models via their correspondence with canonical channels in information
theory. In information theory, the erasure channel and the binary symmetric
channel (BSC) are the two most widely studied channel frameworks for under-
standing the capacity of more general noisy channels [14]. The random probing
model can be equivalently viewed as an erasure channel [3], and the ϵ-Bernoulli
model corresponds to the BSC. For (n, n)-threshold schemes, it has been shown
that most noisy discrete leakage models can be reduced to the random probing
model [16]. The BSC plays a foundational role in theoretically modeling chan-
nels with discrete data corrupted by Gaussian noise in R. Formally, consider an
adversary who receives every bit of each secret share individually, and indepen-
dently corrupted by additive noise η ∼ N (0, σ2), i.e., the jth bit of the ith secret
share u(j)

i ∈ {0, 1} is received as u(j)
i +η. If this adversary performs hard-decision

Maximum Likelihood estimation of every received bit, then the adversarial model
is equivalent to the ϵ-Bernoulli noise model, where ϵ = 1

2 erfc
(

1
2
√
2σ

)
[51]. Although

such a leakage model is significantly stronger than Chari’s model (where the ad-
versary only receives the corrupted Hamming weight), ML estimation severely
limits the adversary’s ability. Since the erasure channel has proven useful in an-
alyzing discrete leakage, it is natural to ask whether the BSC model can give
insights in understanding analog leakage attacks, particularly the practically
relevant model of Chari. This makes the proposed model worth studying.

3.3 Other Leakage Models

Substantial research has been conducted in recent years to analyze the security
of (n, t)-threshold schemes against various models of leakage attacks [1, 6, 7, 24,
31, 34, 35, 36, 37, 38, 39, 47]. All these models have been motivated by capturing
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wire probing side-channel attacks, whose framework was first introduced by Ishai
et al. [26]. Such attacks are discrete in nature, and allow adversaries to observe
intermediate values during computation by targeting specific hardware wires.

Probing Models in (n, t)-Secret Sharing. Motivated by the λ-probing model
[26], leakage-resilience of (n, t)-threshold schemes has been studied against adver-
saries who can leak precise outputs from each secret share [6, 7, 31, 35, 36, 37, 39].
The works of Benhamouda et al. [6], and Nielsen and Simkin [47], assume each
share leaks information independently through arbitrary leakage functions with
bounded output-length. Maji et. al. [34], and Adams et. al. [1], consider probing
attacks which leak physical-bits from the memory hardware storing these shares.
In a separate work [35], Maji et al. consider joint leakage, where the adversary
can leak any bounded output-length joint function of the shares.

Noisy Leakage Models in Secret Sharing. A large body of work has stud-
ied the security of (n, n)-threshold schemes and circuit compilers for various
noisy leakage models [2, 3, 4, 9, 13, 17, 18, 19, 20, 21, 27, 28, 44, 48]. The
random probing model introduced by Ishai et. al. [26], and the δ-noisy leakage
model introduced by Prouff and Rivian [52], are the most popular frameworks
for modeling side-channel attacks in such schemes. In the δ-noisy leakage model,
each secret share leaks information with a distortion parameter δ. For the MI
metric, this is expressed as MI(Ui, Li) ≤ δ for each secret share ui ← Ui and
its leaked version li ← Li. Several recent works have investigated δ-noisy leak-
age models in (n, n)-threshold schemes [3, 4, 9, 19, 21, 32, 44, 48]. Results by
Duc. et. al. [16], relate the random probing model to the noisy leakage model
in (n, n)-threshold schemes. Security guarantees were improved for both mod-
els in [3, 17, 44, 50]. Some recent studies have also focused on understanding
the security of (n, t)-schemes under noisy leakage [1, 24], but their alignment
with real-world side-channel attacks, or their more general theoretical relevance
remains unclear.

4 Main Results

Consider the proposed additive noise leakage model (Section 3.1) for the Massey’s
secret sharing scheme, MasseySS(n, t,M), with n users, threshold t, over a finite
field Fq. Let S ← s denote the secret that is shared, and U← u = (u1, . . . , un) ∈
Fn
q denote the secret shares’ vector. Let the additive noise vector be E ← e =

(e1, e2, . . . , en) ∈ Fn
q , and the leakaed shares’ vector L = U+ E. For the rest of

this work, we will need Ei ∼ E to be i.i.d. copies of some random variable E
over Fq, i.e. E ∼ E⊗n. For a given E, we define the noise parameter δ, which we
will use to characterize the security guarantees of MasseySS(n, t,M).
Definition 5 (Noise parameter δ). For the additive noise variable E, we de-
fine the noise parameter as the Fourier bias of E, i.e. δ = bias(E) (Definition 8).
The noise parameter δ is measure of the deviation of E from the uniform dis-
tribution. If E is uniformly distributed, then the adversary receives each share
uniformly randomly, i.e. Pr(Li = li) = 1/q, and cannot reconstruct the secret.
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In such a situation, the δ = 0. In Lemma 2, we show that δ ≤ 2 SD(E;U),
where U is distributed uniformly over Fq. For the ϵ-Bernoulli leakage model
(Section 3.2), where the adversary receives each bit of every secret share flipped
with probability ϵ, we have δ = 1− 2ϵ (Lemma 3).

Theorem 3. For a MasseySS(n, t,M) scheme over Fq, with the additive noise
leakage model, let t

n+1 ≥
1

1−(1−κ) logq δ for some κ < 1. Then

MI(S;L) ≤ log2 (e) q
2(n−t+1)δ2t ≤ log2(e) δ

2κt, (9)

where e ∼ 2.718 is the Euler’s number.

The condition τ = t/(n + 1) ≥ 1
1−(1−κ) logqδ

characterizes the condition on
normalized threshold τ > 1/(1− logq δ) for the given scheme to be secure against
leakage with some known noise parameter δ. This condition is such that δκt ≥
qn−t+1δt, i.e. (κ−1)t logq δ ≥ (n−t+1). Therefore, the constant κ < 1 is a proof
artifact which determines the rate of decay of the leaked information. Using the
relationship between MI and SD metrics in (5), we get the following.

Corollary 2. For a MasseySS(n, t,M) scheme with the additive noise leakage
model, let t

n+1 ≥
1

1−(1−κ) logq δ for some κ < 1. Then

SD(L/S = s0;L/S = s1) ≤
√
2qn−t+1δt ≤

√
2δκt. (10)

4.1 Discussion

We now discuss the qualitative impact of design and noise parameters on the
security of the implemented secret sharing schemes.

Threshold t. For bounded leakage models, Massey’s scheme has been shown
to be secure only when t ≥ 0.66n [30]. Using the bounds in Theorem 3, for any
ratio of the threshold t and n, the Massey’s secret sharing scheme is secure for a
sufficiently small parameter δ. In particular, for a MasseySS(n, t ≥ c(n+1),M)
scheme, the expression in Theorem 3 can be written in terms of c as follows.

Corollary 3. For a MasseySS(n, t,M) scheme with the additive noise leakage
model, let t ≥ τ(n+ 1) for some τ < 1. Then for δ ≤ q−γ , where γ > 1

τ − 1,

MI(S;L) ≤ log2(e) q
−2t(γ+1−1/τ). (11)

To design secure schemes for small τ = t/(n + 1), the noise parameter δ needs
to be made very small. For example, to design secure schemes with t = 0.5n, we
require δ ≤ 1/q. Corollary 3 provides us design inputs for choosing additional
security measures (such as noise amplification) to protect each secret share.

Noise Parameter δ. Intuitively, the noise parameter δ can be considered to
characterize the capabilities of the same adversary attacking different implemen-
tations of (t, n)-secret sharing schemes. The noise parameter δ is a measure of
the deviation of the additive noise E from uniformly random noise. For instance,
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Fig. 1. For the ϵ-Bernoulli noise model over field Fq, i.e. bit-flip probability ϵ, the
noise parameter δ = 1−2ϵ. The figures represent the variation of normalized threshold
τ = t/(n + 1) with δ and ϵ. Note that for δ = 0, i.e. ϵ = 1/2, the adversary receives
each share uniformly randomly, and therefore has no information to recover the secret.

consider the ϵ-Bernoulli noise model over some field F2λ . As shown in Lemma 3,
for the same adversary, the noise parameter δ = 1− 2ϵ remains constant regard-
less of the field size q = 2λ. In practical implementations, such as for q = 232

and δ = 0.1, i.e. ϵ = 0.45, Theorem 3 yields the bound t > 0.906n, with security
guarantees exponentially increasing as the the threshold moves closer to n.

Finite Field Fq. The bounds presented in Theorem 3, do not require any con-
straints on the size or characteristic of the field Fq. In contrast to the additive
noise model, the Shamir’s secret sharing scheme is known to be insecure against
even 1-bit bounded leakage attacks in fields of characteristic 2. This seems to
suggest that the insecurity of (n, t)-threshold schemes over F2λ , is an artifact
of the worst-case leakage functions considered in such models. Several results in
leakage-resilience of Shamir’s secret sharing require bounds on the size of field
size. Our results suggest that the Shamir’s scheme may be provably secure for
noisy leakage models, over all finite fields, at least for large thresholds.

5 Mathematical Background

In this section, we introduce the mathematical background required to prove
the main results presented in Section 4. We recall the theory of discrete Fourier
transformation and the MacWilliams’ identity for error-correcting codes.

Character Function and Fourier Transform. Let C be the field of complex
numbers and Fq be a finite field with characteristic p, where q = pd. Consider
a primitive irreducible polynomial f(x) of degree d over Fp, and let λ be a
root of f(x). Then any element α ∈ Fq can be uniquely expressed as α =
λ0+λ1λ+ · · ·+λd−1λ

d−1, where λi ∈ Fp. Let αi denote the elements of Fq, i.e.,
Fq = {α0, . . . , αq−1}, such that α0 = 0.

Definition 6 (Character Function). Let ω = e
2πi
p ∈ C be a primitive pth

root of unity. The mapping χ : Fq → C, defined by χ(α) = ωλ0 , is called the
canonical additive character of Fq, where α = λ0 + λ1λ+ · · ·+ λd−1λ

d−1.
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Definition 7 (Fourier Transform). Let z = (z0, z1, . . . , zq−1) ∈ Cq be a
complex-valued vector indexed by elements of Fq. The Fourier transform of z,
denoted by ẑ = (ẑ0, ẑ1, . . . , ẑq−1) ∈ Cq, is defined as:

ẑ = (ẑ0, . . . , ẑq−1) =

q−1∑
j=0

χ(α0αj)zj , . . . ,

q−1∑
j=0

χ(αq−1αj)zj

 . (12)

We now introduce the notion of Fourier bias of a random variable. Also called
the spectral bias, it characterizes the deviation of a random variable from the
uniform distribution. This intuition is captured in Lemma 2.

Definition 8 (bias). Given a random variable X over Fq, let p = (p0, . . . , pq−1)
∈ Rq be the vector with pi := pX(αi) for 0 ≤ i < q. Then bias of X is defined as

bias(X) = max
i̸=0
|p̂i|, (13)

where p̂ = (p̂0, . . . , p̂q−1) is the Fourier transform of p.

Lemma 2. Given a random variable X over Fq, let pmed denote the median and
pmin the minimum of the multiset {pX(αi) : 0 ≤ i < q}. Then for all i ̸= 0,

bias(X) ≤
q−1∑
j=0

|pj − pmed| ≤ min{2 SD(X;U), 1− qpmin}, (14)

where U is a uniformly distributed random variable over Fq.

Proof. Since χ is the canonical additive character,
∑q−1

j=0 χ(αiαj) = 0, for αi ̸= 0.
This implies that p̂i =

∑q−1
j=0 χ(αiαj)pj =

∑q−1
j=0 χ(αiαj)(pj − c), for any c ∈ C.

Now using the triangle inequality, |p̂i| ≤ f(c), where f(c) =
∑q−1

j=0 |pj − c|. For a
collection of real numbers, it is well known that f(c) is minimized when c is the
median [53]. Observe f(1/q) = 2 SD(X;U) and f(pmin) = 1− qpmin.

Lemma 3 ([49]). For the ϵ-Bernoulli distribution of E, i.e., for a random vari-
able E over F2λ , such that Pr(E = e) = ϵwt(e)(1− ϵ)λ−wt(e), bias(E) = 1− 2ϵ.

Codes and Weight Enumerator Polynomials. Recall indexing of the field
Fq = {α0 = 0, α1, . . . , αq−1}. For a vector u = (u1, . . . , un) ∈ Fn

q , let ηi(u)
denote the number of coordinates of u equal to αi. Thus wt(u) = n− η0(u).

ηi(u) = #{j : uj = αi, 1 ≤ j ≤ n},where 0 ≤ i ≤ q − 1.

The composition of vector u, defined to be comp(u) = (n0(u), . . . , ηq−1(u)), is
a natural generalization of Hamming weight. The information about the com-
position of vectors in a subset V ⊆ Fn

q can be captured by the complete weight
enumerator polynomial cweV ∈ C[z0, . . . , zq−1].
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Definition 9 (CWE Polynomial, [25]). The complete weight enumerator
polynomial of a subset V ⊆ Fn

q , cweV ∈ C[z0, . . . , zq−1], is defined as

cweV(z0, . . . , zq−1) =
∑
u∈V

q−1∏
i=0

z
ηi(u)
i . (15)

For an [n, k, d]q code C over Fq and its dual C⊥, the relationship between the com-
plete weight enumerator polynomials of C and C⊥ is given by the MacWilliams’
identity. Although it is rarely stated explicitly, the following form of MacWilliams’
identity can be understood to be a consequence of the Parserval’s identity.

Proposition 1 (MacWilliams’ Identity, [33]). For an [n, k]q code C over Fq

and its dual code C⊥, let z = (z0, . . . , zq−1) ∈ Cq. Then

cweC⊥(z0, . . . , zq−1) =
1

qk
cweC(ẑ0, . . . , ẑq−1), (16)

where ẑ = (ẑ0, . . . , ẑq−1) ∈ Cq is the Fourier transform of z (Definition 7).

To characterize the the complete weight enumerator polynomial of a coset of
the dual code v + C⊥, one can imitate the proof for the weight distribution of
non-linear codes in [33] (which is equivalent to using the Parserval’s identity).

Proposition 2. For an [n, k] code C over Fq and its dual code C⊥, let z =
(z0, . . . , zq−1) ∈ Cq. Consider a vector v /∈ C⊥. If D is the [n, n − k + 1] code
generated by C⊥ and v, then

cwev+C⊥(z0, . . . , zq−1) =
1

qk

q−1∑
i=0

χ(αi) cweαi·w+D⊥(ẑ0, . . . , ẑq−1), (17)

where codeword w ∈ C is such that ⟨v,w⟩ = 1.

6 Formal Security Proofs

In this section, we prove the main results of this work presented in Section 4.
Intuitively, an adversary trying to recover the secret s← S would treat the leaked
secret shares as the original shares. In the absence of any additional information,
the best strategy for the adversary seems to be to plug these leaked shares into
the secret recovery equations to obtain multiple estimates of s. In Proposition 4
and Corollary 4, we formalize this intuition by showing that for the additive noise
leakage model, the estimates of s from secret recovery equations (captured by the
estimation vector s̃ = lC⊤M) are a sufficient statistic to recover s from the leaked
secret shares’ vector l. This is done by proving the Markov Chain in (18), and
then using the data processing inequality (Theorem 2). We first begin by showing
for a given secret s, all corresponding secret shares’ vectors are equiprobable
(Proposition 3). This follows from the fact that the MasseySS(n, t,M) scheme
samples a uniformly random codeword (u0, . . . , un) ∈M such that u0 = s.
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Proposition 3. If two secret shares’ vectors u and u′ are such that both of them
correspond to the same secret s ∈ Fq, i.e. uC⊤M = u′C⊤M, then pU(u) = pU(u′).

Proof. For some secret shares’ vector u corresponding to some secret s, the
coefficients P← p = (s, p1, . . . , pt−1) are uniquely determined. Since the random
variables S, and Pi’s are independent, pU(u) = pS(s)

∏t−1
i=1 pPi

(pi) = pS(s)q
1−t.

Proposition 4. For a MasseySS(N, t,M) scheme over Fq, let CM be the gen-
erator matrix of the code spanned by coefficients of the secret recovery equations.
If L denotes the leaked secret shares’ vector, then

S → LC⊤M → L (18)

is a Markov chain.

Proof. Let s̃ ∈ Fk
q be a row vector of length k, which lies in the image of the

matrix C⊤M, i.e. the equation lC⊤M = s̃ has a solution. We will refer to s̃ as
the estimation vector. To show the Markov chain in (18), we will show that
Pr(L = l/S = s,LC⊤M = s̃), is equal for all s ∈ Fq. Let CM be an [n, k, t]q code,

Pr(L = l/S = s,LC⊤M = s̃) =
Pr(L = l, S = s)

Pr(S = s,LC⊤M = s̃)
(19)

=
Pr(L = l, S = s)∑

l:lC⊤
M=s̃ Pr(L = l, S = s)

(20)

=

∑
u pU(u)Pr(L = l, S = s/U = u)∑

l:lC⊤
M=s̃ Pr(L = l, S = s)

(21)

=

∑
u:S=s pU(u)pE(l− u)∑

l:lC⊤
M=s̃

∑
u:S=s pU(u)pE(l− u)

(22)

=

∑
u:S=s pE(l− u)∑

l:lC⊤
M=s̃

∑
u:S=s pE(l− u)

, (23)

where (23) follows from (22) by Proposition 3. For some secret s, and an estima-
tion vector s̃, the summation

∑
u:S=s pE(l − u) =

∑
e:eC⊤

M=s̃−s(k) pE(e), where
e = l − u, and s(k) := (s, . . . , s) ∈ Fk

q denotes the all s-vector of length k. This
summation is constant for all l which satisfy lC⊤M = s̃. Therefore, we have that
Pr(L = l/S = s,LC⊤M = s̃) = 1/#{l : lC⊤M = s̃} = qk−n.

For a given linear secret sharing scheme, the matrix of secret recovery equations
CM is known. Therefore, LC⊤M can be considered to be a function of L, and
hence S → L → LC⊤M is a Markov Chain. Using the data processing inequality
twice, for this Markov chain and (18), we get the following corollary.

Corollary 4. The statistic S(k) + EC⊤M is sufficient for recovering S from the
leaked secret shares in L = U+E, i.e.,

MI(S;L) = MI(S;S(k) +EC⊤M),

where S(k) := (S, . . . , S)← (s, . . . , s) ∈ Fk
q denotes the all S-vector of length k.
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So far we have not used the assumption that the error random variables Ei are
identically distributed. Since CM is an [n, k, t] code, the linear map character-
ized by E → EC⊤M is such that each output depends on at least t independent
coordinates of E. Therefore, for the probability distribution output of this linear
map, we expect that any pointwise deviation from uniform can only occur when
the biases across these coordinates combine coherently. Independence of coordi-
nates should prevent additive accumulation of bias. In Lemma 4, we show that
for E ∼ E⊗n, the output of this linear map is almost uniform. In particular, if
δ = bias(E) denotes the Fourier bias of E, then the outputs of the linear map
E→ EC⊤M deviate from the uniform distribution by at most δt.

Lemma 4. For some arbitrary row vector v ∈ Fk
q of length k,∣∣Pr(EC⊤M = v)− q−k

∣∣ ≤ δt, (24)

where the random error vector E← e = (e1, . . . , en) ∈ Fn
q .

Proof. Let the probability mass of random variable E be given by pE(αj) = µj ,
where Fq = {α0, . . . , αq−1}. Recalling the definition of ηi(u) and wt(u) from
earlier, for v = 0, and the complete weight enumerator polynomial (Definition 9)

Pr(EC⊤M = 0) = Pr(E ∈ C⊥M) =
∑

u∈C⊥
M

q−1∏
i=0

µ
ηi(u)
i = cweC⊥

M
(µ0, µ1, . . . , µq−1).

Treating µ = (µ0, . . . , µq−1) ∈ Rq as a vector in Cq, and using the MacWilliams
Theorem (Proposition 1),

Pr(E ∈ C⊥M) =
1

qk
cweCM(µ̂0, . . . , µ̂q−1) = q−k

1 +
∑
u∈CM
u̸=0

q−1∏
i=0

(µ̂i)
ηi(u)

 , (25)

where µ̂ = (µ̂0, . . . , µ̂q−1) is the Fourier transform of µ. In particular, since
α0 = 0 ∈ Fq, µ̂0 = µ0 + · · · + µq−1 = 1, and |µ̂i| ≤ bias(E) = δ (Definition 8).
Recall from Lemma 1, that CM is an [n, k, t] code, i.e., the size of codebook CM
is qk, and its minimum weight is the threshold t. Using this with (25),

∣∣Pr(EC⊤M = 0)− q−k
∣∣ = 1

qk

∣∣∣∣∣∣∣∣
∑
u∈CM
u̸=0

q−1∏
i=0

(µ̂i)
ηi(u)

∣∣∣∣∣∣∣∣ ≤
(
1− 1

qk

)
δt. (26)

For v ̸= 0 the noise vector E← e, lies in some coset w + C⊥M,

Pr(EC⊤M = v) = Pr(E ∈ w + C⊥M) = cwew+C⊥
M
(µ0, µ1, . . . , µq−1). (27)

Let D be the [n, n−k+1] code generated by C⊥M and w. Then D⊥ is an [n, k−1]
code, and a subcode of CM, and therefore has size qk−1 and minimum distance
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at least t. Further let z ∈ CM be a vector such that ⟨w, z⟩ = 1. Using the
MacWilliams-like identity from Proposition 2 and triangle inequality,

Pr(EC⊤M = v) =
1

qk

(
q−1∑
i=0

χ(αi)cweαi·z+D⊥ (µ̂0, . . . , µ̂q−1)

)

=
1

qk

1 +
∑
u∈D⊥

u̸=0

q−1∏
i=0

(µ̂i)
ηi(u) +

q−1∑
i=1

χ(αi)
∑

u∈αi·z+D⊥

q−1∏
i=0

(µ̂i)
ηi(u)

 ,

where µ̂ = (µ̂0, . . . , µ̂q−1) is the Fourier transform of µ. Since z ∈ C, and D⊥ ⊂
CM, the cosets of the form αz + D⊥, where α ∈ Fq, are all subsets of the code
CM. Since the minimum weight of C is t, for u ̸= 0 and u ∈ αz+D⊥, wt(u) ≥ t.

∣∣Pr(EC⊤M = v)− q−k
∣∣ = 1

qk

∣∣∣∣∣∣∣∣
∑
u∈D⊥

u̸=0

q−1∏
i=0

(µ̂i)
ηi(u) +

q−1∑
i=1

χ(αi)
∑

u∈αi·z+D⊥

q−1∏
i=0

(µ̂i)
ηi(u)

∣∣∣∣∣∣∣∣
≤ 1

qk

∣∣∣∣∣∣∣∣
∑
u∈CM
u̸=0

q−1∏
i=0

(µ̂i)
ηi(u)

∣∣∣∣∣∣∣∣
≤
(
1− 1

qk

)
δt.

Proof of Theorem 3. In Corollary 4, we showed that the secret estimation
vector, is a sufficient statistic for recovering the secret S ← s from the noisy
leaked secret shares. Equivalently, the amount of information leaked about the
secret from the leaked versions of secret shares is the same as the amount of
information leaked about the secret from the secret recovery equations. Similar
to Corollary 4, let S(k) := (S, . . . , S)← (s, . . . , s) ∈ Fk

q denote the all S random
vector of length k. For the rest of this proof, we will use the entropy function
with the base qk, denoted by Hqk (Section 2.2).

MIqk(S;L) = MIqk(S;S
(k) +EC⊤M)

= Hqk(S
(k) +EC⊤M)−Hqk(S

(k) +EC⊤M/S)

= Hqk(S
(k) +EC⊤M)−Hqk(EC⊤M)

≤ 1−Hqk(EC⊤M).

For some positive real numbers x, y ∈ R+; let x ± y denote some real number
z ∈ [x− y, x+ y]. Now, using the distribution of EC⊤M from Lemma 4, and the
Taylor expansion of the qk-ary entropy function,

Hqk(EC⊤M) = Hqk

(
1

qk
± δt, . . . ,

1

qk
± δt

)
≥ 1− q2kδ2t

logeq
k
. (28)
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Using t
n+1 ≥

1
1−(1−κ) logq δ for some κ < 1, and k ≤ n− t+ 1 from Lemma 1,

logq (q
kδt) = k + t logq δ ≤ −t+

(
n+ 1 + t logq δ

)
≤ κt logq δ. (29)

This implies qkδt ≤ δκt, and we get the following bound on the leaked MI-metric,

MI(S;L) = log2(q
k)
(
1−Hqk(EC⊤M)

)
≤ log2(e) q

2kδ2t ≤ log2(e) δ
2κt. (30)

7 Numerical Results

We conclude by examining the practical implications of our findings. From Sec-
tion 3.2, we will recall the relationship between the ϵ-Bernoulli noise model,
and additive Gaussian noise in R. Consider a MasseySS(n, t,M) scheme over a
binary extension field F2λ . The secret s, and all the secret shares Ui ← ui =

(u
(1)
i , . . . , u

(λ)
i ) ∈ F2λ are represented using λ bits, where the jth bit of the ith

secret share is U
(j)
i ← u

(j)
i ∈ {0, 1}. Consider an adversary who receives every

bit of each secret share independently, perturbed with additive Gaussian noise
N (0, σ2), i.e. the adversary receives the jth bit of the ith leaked secret share as

l
(j)
i = u

(j)
i + η

(j)
i , where η

(j)
i ∼ N (0, σ2). (31)

For analog leakage, the extent of leakage to an adversary is quantified by the
signal-to-noise ratio (SNR) of the leakage function. SNR measures the ratio of
the average signal energy per symbol to the noise energy per symbol received
by the adversary, allowing the hardware engineer to link to the probability of
successful guessing in the presence of additive Gaussian noise [57], to a physically
measurable entity. In this setting, the SNR is defined as the ratio of the variance
of the bit signal u(j)

i ∈ {0, 1}, to the Gaussian noise variance σ2, i.e.,

SNR =
Var(u

(j)
i )

σ2
=

1

4σ2
.

Consider the additive Gaussian noise model by Chari et. al. [11], where the
Hamming weight of each secret share is leaked with additive Gaussian noise
N (0, σ2

w), i.e., the adversary receives
∑λ

j=1 u
(j)
i + ηw, where ηw ∼ N (0, σ2

w).
Then this model is strictly weaker than the bit-wise leakage model, where σ2

w =
λσ2. For an adversary who performs hard-decision Maximum Likelihood (ML)
estimation of each received bit, the adversary rounds each leakage value l

(j)
i to

the nearest bit in {0, 1}. This induces an effective bit-flip probability

ϵ = Pr
(
N (0, σ2) > 1/2

)
=

1

2
erfc

(
1

2
√
2σ

)
=

1

2
erfc

(√
SNR

2

)
, (32)

where erfc(x) = 2√
π

∫∞
x

e−u2

du. Therefore for an adversary doing ML estima-
tion for every received bit, the model in which each bit is leaked with additive
Gaussian noise N (0, σ2), reduces to the ϵ-Bernoulli noise model.
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Although most implementations of linear secret sharing schemes require the
number of users n to be less than the field size q, this constraint does not apply
to (n, n)-threshold schemes. In such schemes, the secret is typically represented
as the sum of independently and uniformly sampled shares from Fq. The adver-
sary’s gain in guessing probability over random guessing is at most twice the
SD-metric. From Corollary 2, this gain is upper bounded by 2

√
2qn−t+1δt. For

binary extension fields F2λ under the ϵ-Bernoulli model, Lemma 3 and equa-
tion (32) give δ = 1− 2ϵ = 1− erfc(

√
SNR/2). Applying Theorem 3, we obtain

the plots in Figure 2, which show mutual information leakage and gain in guess-
ing probability versus adversary SNR. Specifically, for (n, n)-threshold schemes,
mutual information leakage is bounded by log2(e) 2

2λ(1−erfc(
√

SNR/2))2n, and
the gain in guessing probability is bounded by 2λ+1

√
2(1− erfc(

√
SNR/2))n.

Fig. 2. Mutual Information leakage and gain in guessing probability for the adversary
with SNR = 1/4σ2, for (n, n)-threshold schemes over fields F2λ , with λ = 8, 16, 32.
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8 Conclusion

To examine the resilience of linear secret sharing schemes against side-channel
leakage attacks, we proposed the additive noise leakage model. In this model,
each secret share is leaked to the adversary corrupted by independent additive
noise in Fq, characterized by the random variable E. For this model, we then
study the security of (n, t)-threshold secret sharing schemes constructed using
error-correcting codes. For such schemes over some finite field Fq, we show that
the information leakage measures, i.e. the mutual information (MI) metric, and
consequently the statistical distance (SD) metric improve exponentially with t.
In particular, for normalized threshold τ = t/(n+1), we show that if the Fourier
bias the noise variable E, δ ≤ q−γ for some γ > 1/τ − 1, bounds the mutual
information leaked from the secret by O(q−2t(γ+1−1/τ)) bits, thereby making
linear secret sharing schemes with t ≥ τn secure. Through this work, we wish
to initiate the study of security of secret sharing schemes with more general
noisy side-channel leakage models. The proposed model has been inspired as a
generalization of the ϵ-Bernoulli noise model introduced by Faust et. al. [20].
Faust’s model corresponds to a binary symmetric channel (BSC) which is a
fundamental channel model studied widely in information theory to analyze
the behavior of discrete systems with Gaussian noise [51, 57]. We believe that
techniques used to study the security of cryptographic schemes with this leakage
model can be adapted and extended to adversaries with more general noisy
leakage, including analog leakage.

There are several directions for future research. We believe that proofs for
Proposition 4 and Corollary 4 can be adapted to find sufficient statistics for
other noisy leakage models, such as the widely studied random probing model
[26]. Then, using proof techniques similar to this work, we can bound mutual
information leakage (which satisfies the data processing inequality), and con-
sequently the statistical distance metric for other leakage models. Our results
therefore suggest that linear secret sharing sharing schemes with general thresh-
olds, over arbitrary finite fields, can be shown to be resilient against other noisy
side-channel attacks. Moreover, similar to the reduction of δ-noisy leakage mod-
els to the random probing model for (n, n)-threshold schemes, done by Duc et.
al. [16]; it might be possible to reduce the security analysis of more general noisy
leakage models to the additive noise leakage model proposed in this work.
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