
LP2+: a robust symmetric-key AKE protocol with perfect forward
secrecy, and an advocacy for thorough security proofs

Pierre-Alain Jacqmina and Jean Liénardya

aDepartment of Mathematics, Royal Military Academy, Brussels, Belgium

May 28, 2025

Abstract

Symmetric-key authenticated key establishment (AKE) protocols are particularly well suited in
resource constraint environments such as internet of things (IoT) devices. Moreover, they often
rely on better understood assumptions than asymmetric ones. In this paper, we review the security
model for symmetric-key AKE protocols. We show why several existing models allow trivial attacks
while they do not protect against some non-trivial ones. We fix these issues with our new security
definitions.

We show that the protocols LP2 and LP3 of Boyd et al. do not satisfy the claimed security
properties. We propose a new 2-message protocol based on them, called LP2+. This protocol is
proved to satisfy correctness, weak synchronization robustness, entity authentication, key indistin-
guishability and, as a consequence, it admits perfect forward secrecy. An instantiation of LP2+ is
presented, whose security only relies on that of a pseudo-random function (PRF). Its total execution
time in normal cases is dominated by only 14 evaluations of the PRF, making it a lightweight
protocol that is particularly well suited for resource-constrained environments such as IoT devices.

The flaws found in the security models as well as in the security arguments could have been
avoided with precise and detailed proofs. We thus take this paper as an opportunity to advocate for
thorough security proofs. Therefore, we have made the choice of rigor over concision.

Contents
1 Introduction 2

2 The security model 6
2.1 Execution environment . 6
2.2 Security definitions . 8
2.3 Comparison with previous security models . 12

3 Building blocks and their security assumptions 14
3.1 Pseudo-random functions . 14
3.2 Message authentication codes . 17
3.3 Nonce generators . 18

4 The protocol LP2+ and its security proofs 19
4.1 LP2, LP3 and their security flaws . 19
4.2 The new protocol LP2+ . 23
4.3 The full security proofs . 24
4.4 Instantiation only based on a PRF . 38

References 42

1

1. Introduction 2

1 Introduction
The most widely key establishment mechanisms used nowadays are probably protocols based on
public-key primitives such as RSA, Diffie-Hellman or, more recently, post-quantum alternatives
such as Kyber. Such asymmetric-key protocols have the major advantage that parties involved in a
protocol run do not need to share a secret in advance. In particular, this allows, with the help of a
public-key infrastructure, for very large networks. However, public-key primitives often require more
computational, communication, power, time, and space resources than their private-key counterparts.
In many scenarios, e.g., when a server or a laptop is available at each node, these requirements are
easily met and do not cause any issue. However, in resource constraint environments such as the
Internet of Things (IoT), Wireless Sensor Networks (WSNs) or medical implants, these limitations
may have a greater impact. In some cases, resource limitations can lead to the reduction of the
security parameters of the public-key primitives below an acceptable threshold. In those cases,
symmetric-key protocols may be the only adequate solution. Indeed, symmetric-key primitives are
particularly well suited when lightweight cryptography is needed.

In addition to their low resource requirements, symmetric-key protocols have another advantage
over public-key ones. Indeed, the latter often rely on the unproven assumptions that certain complex
mathematical problems are hard to solve, while the former rely on the security of well-understood
primitives such as pseudo-random functions or hash functions. Moreover, many public-key primitives
used today, such as RSA, are vulnerable to the advent of quantum computers. More recent post-
quantum algorithms like Kyber are being introduced and standardized, but their underlying problems
are less mature than that of RSA. In contrast, private-key primitives are, up to current knowledge,
naturally immune to quantum computers (up to, e.g., double the secret-key length). Therefore, for
situations where security is critical, symmetric-key solutions might be the most appropriate option.

The main drawback of private-key protocols is the need to exchange secret material in advance
between each pair of parties. While for large networks this task may be infeasible, for small
or medium-sized networks in a given area, this might be achievable and even a cost-effective
solution. Examples of use-cases are industrial networks (e.g. fleet of vehicles of a company),
governmental-grade product, cryptographic systems with short lifetime, domotics, etc.

In order to avoid man-in-the-middle attacks, a key establishment protocol must provide entity
authentication. That is, once each party has accepted a new session key, they are both sure to
have actually communicated with their intended partner. Moreover, to avoid replay attacks, i.e.,
that the adversary resends a previous message between the same parties, each protocol session
needs to authenticate the corresponding protocol session on its partner side. This property is called
entity authentication in the literature and gives the name to Authenticated Key Establishment
(AKE) protocols. Of course, such an informal definition could not lead to descent security proofs,
and the trust that it would provide in protocols would be almost null. The seminal work [5] of
Bellare and Rogaway introduced the first precise model of authenticated protocols, and in particular
of AKE protocols, giving rise to meaningful definitions. This model has then been modified and
improved many times to encompass other contexts or to define other security properties, see e.g.
[7, 4, 9, 16, 14, 10, 19, 8].

These security models give great power to the adversary. In a nutshell, the adversary has
complete control over the communication channel. It can delay, delete, modify, forward, and swap
messages sent by honest parties, as well as create new messages. Moreover, in order to give the
strongest guarantees and to be as close as possible from real use cases, the security models often
take place in a multi-party environment where concurrent sessions are allowed. The adversary can
thus initiate new initiator and responder sessions at will. With these abilities, one of the goals
of the adversary in the security definitions is to distinguish between a session key established by
two parties from a random key. From [4], the adversary is even allowed to corrupt the parties
after the establishment of the tested session key. The extra security guarantee captured by this
additional ability of the adversary is that session keys established at a given time are immune
to future corruption of the parties. This property is often referred to as perfect forward secrecy
(PFS), also known as pre-compromise secrecy. Generally speaking, it is easier to achieve PFS in a
public-key protocol than in a symmetric-key protocol since, in the former case, one can generate
ephemeral secrets on one side such as a secret key for a key establishment mechanism (KEM) or
an exponent for a generator of a group and transmit to the other party the corresponding public

1. Introduction 3

information. In a symmetric-key setting, an ephemeral secret does not have a public counterpart
to be sent to the partner, and so it is harder to use such a secret to generate the session key. In
order to achieve PFS in this case, one can use a (linear) key evolution scheme where the master
key is updated irreversibly after the session key establishment. This technique is used, for example,
in [2, 8] and in the present paper.

One problem that may arise with symmetric-key AKE protocols achieving PFS with a key
evolution scheme is when the master keys of the legitimate parties are desynchronized (due to, e.g.,
an adversarial behavior or to the accidental loss of messages in transit). Such desynchronizations
can cause a break in communication between the two parties, which can lead to denial-of-service
(DoS) attacks. In this context, it is therefore important to design protocols that are resistant to
desynchronizations. This property has been captured in [8] where (weak) synchronization robustness
has been introduced. Informally speaking, this notion requires that, whichever actions the adversary
has made before, if an honest run of the protocol is executed between two parties, then both parties
will accept and generate the same session key.

Our contributions. The contributions made in this paper are divided into four main parts
and can be summarized as follows.

1. We first explain why several widely used security notions in AKE protocols are flawed.
2. In order to correct them, we propose a new security model for symmetric-key AKE protocols.
3. Regardless of the flaws in their security model, we show that the protocols LP2 and LP3 of [8]

do not satisfy their claimed security properties.
4. Finally, we propose a new symmetric-key AKE protocol called LP2+ and comprehensively

prove its security properties.
Let us describe informally our contributions. We refer the reader to the body of the text for the

rigorous statements. The first differences in our security model concerns the notion of matching
conversation and session partnership. In order to avoid trivial wins from the adversary, one needs
to impose some restrictions on the corruption query it can make. In particular, the adversary
is not allowed to reveal the session key of the partner of the session being tested. To properly
define the notion of partner session, the concept of matching conversations [5] is often used (other
possibilities consist of using partner functions [6] or session identifiers [9]). The definitions of
matching conversations (and of partner functions) are based on the properties of the transcript, that
is the ordered list of messages sent and received by a party session. In [14, 2, 1, 8], to treat the case
where a party Pi sent the last message of the conversation (and therefore cannot be sure that its
intended partner received it), this session of Pi is said to have a matching conversation with that of
Pj if the transcript of the session of Pj is a prefix of that of Pi. Therefore, the conversation at Pj ’s
can be much shorter than on Pi’s side. As shown in Subsection 2.3, this both leads to trivial attacks
on the entity authentication and this makes real threats considered as trivial attacks and ignored.
To correct this flaw, we introduce the notion of partially matching conversations in this paper (see
Definition 1), a notion much closer to the original definition of matching conversations of Bellare
and Rogaway from [5]. The idea is to require that Pj has received all messages except, maybe,
the last one which might have been deleted or modified. Moreover, as in the seminal work [5] and
contrary to [14, 2, 1, 8], we require the existence of a strong partner session, that is, one in which
the adversary did not manage to deliver a message to some party before its partner actually created
it (see Definition 8).

A second distinction in our security model regards the definition of key indistinguishability.
In the asymmetric setting of [14], the adversary is allowed to corrupt any party right after the
tested session has accepted. In particular, the adversary may corrupt before the last message of the
protocol is delivered. In this asymmetric setting, this does not seem to raise any issue. However,
the same permission to the adversary was made in [2, 1], but in the symmetric setting. As noted
and corrected in [8], one should not allow the adversary in that setting to corrupt the partner Pj of
the tested session before it has received the last message. Indeed, at that moment, Pj has not yet
updated its master key and its recovery would permit to recover the tested session key. However, [8]
still allows the adversary to corrupt the tested party Pi before its partner Pj has received the last
message. Since, in the symmetric setting, authentication is often done with a message authentication
code (MAC) whose key lies in the master key of the party, the corruption of Pi would make it

1. Introduction 4

possible for the adversary to start a protocol session with Pj spoofing Pi. Since Pj has not yet
updated its master key, the adversary can often recover the tested session key with this illegitimate
conversation. Therefore, in our model, we disallow any corruption between the partners before both
parties have received all messages (see Definition 10).

The security model we propose in this paper is described in Subsections 2.1 and 2.2. The notions
of correctness, weak synchronization robustness, entity authentication and key indistinguishability
are considered. The adversary has full control over the network via the queries NewSessionI,
NewSessionR and Send. It has also access to a lot of secret information (as long as it does not
allow trivial attacks) via the queries RevealKey, RevealState and Corrupt which respectively steal
the accepted session key, the internal state of an oracle (except the master key) and the master
key itself. As a consequence of the presence of the Corrupt query, our model also considers perfect
forward secrecy. Note that the RevealState query allows to dump the memory of a protocol session
in between two protocol steps, and not during the execution of a protocol step. Therefore, in general,
the adversary has no access to the internal randomness used during such a step, although one can
always specify the protocol to include this randomness in the internal state if security is not impacted.
Finally, the adversary can make a unique Test query in order to define key indistinguishability.

Let us make explicit that, since our model pertains to symmetric-key cryptography, it does not
protect against key compromise impersonation (KCI) attacks. That is, if a party is corrupted, the
attacker can use its master key to establish a session key with that compromised party. Moreover,
it does not offer post-compromise security, also known as backward secrecy. We also note that the
paper is written in the context of concrete security. This means that we define the advantages of a
fixed arbitrary adversary in various security experiments and do not specify when these advantages
are sufficiently small. This is of course more general than the asymptotic approach, as one can
always particularize our definitions to the case of a protocol and an adversary depending on a
security parameter n and require that, under some restrictions on the adversary, the advantage is
negligible in n.

LP2 and LP3 are symmetric-key AKE protocols from [8]. LP2 is a 2-message protocol which
can only be used in a one-way mode, that is, one party is always the initiator and the other is
always the responder. This restriction can be overcome using the protocol in duplex mode, with
two independent instances of the protocol where the roles are switched. This protocol does not use
nonces and we show in Subsection 4.1 how one can attack both the entity authentication and the
key indistinguishability of LP2 using this lack of nonces. LP3 was designed as a 3-message two-way
protocol (that is, any party can be the initiator) that uses nonces. However, in Subsection 4.1, we
also show an attack on the key indistinguishability of LP3. This attack is based specifically on
the fact that the protocol was claimed to allow two-way use. Let us make explicit here that these
attacks do not rely on the modifications of the security models and take place both in the model
of [8] and in that of the present paper.

In order to correct these protocols, we introduce in this paper the protocol LP2+ (see Figure 4).
This is a symmetric-key AKE protocol with 2 messages that uses nonces, built on the same ideas as
LP2 and LP3. It is designed as a two-way protocol (to fit our security model) but is essentially the
duplex mode of a one-way protocol, in the sense that part of the master key is only used when the
party is the initiator while another part is only used when the party is the responder. The building
blocks of LP2+ are a pseudo-random function (PRF) F , a message authentication code (MAC) Σ
and a nonce generator GenN, which makes it suitable for resource-constrained environments. We
prove in Subsection 4.3 the correctness, weak synchronization robustness, entity authentication
and key indistinguishability of LP2+ (thus including perfect forward secrecy): see Theorems 19,
20, 23 and 24. These security properties only rely on the pseudo-randomness of F , the strong
unforgeability of Σ and the absence of nonce collision on the initiator side. Moreover, all our security
proofs sit in the standard model. Let us also notice that LP2+ is, by its symmetric-key nature, a
quantum-safe protocol. The correctness and the weak synchronization robustness of LP2+ imply
that, in a multi-party environment with concurrent sessions, whatever the behavior of the adversary
was before, and however the parties are desynchronized, if an uninterrupted honest run of the
protocol is executed between two parties, they will both accept with the same session key, and they
will be resynchronized at the end of the protocol run. Let us notice however that, if an honest
run of the protocol is interrupted by other queries, the honest run might abort and the parties
be desynchronized. This desynchronization is not a big issue in view of the weak synchronization

1. Introduction 5

robustness as explained above and the fact that this does not break the security of other session
keys.

In Subsection 4.4, we instantiate the protocol LP2+ to obtain LP2+(n, F) which depends
only on the security parameter n and the pseudo-random function F : Fn

2 × Fn
2 → Fn

2 . The MAC
Σ is instantiated using F in CBC-MAC mode and nonces are uniformly chosen. The resulting
protocol consists of two messages of 5n

2 bits each and its complexity is dominated, if the parties
are synchronized, by a total of 14 evaluations of the PRF F , making it a lightweight protocol. Its
security relies solely on the security of F (see Theorem 26).

Let us stress the fact that many of the flaws found in previous security models and protocols
would not have existed if complete security proofs were proposed instead of just mere sketches of
proofs. We take this paper as an opportunity to advocate for comprehensive, detailed, and precise
security proofs, whence the title of the paper. Such proofs may seem long and boring, but the
uninterested reader can skip them and, more importantly, they should be considered as the minimum
requirement to trust a security item. Another direction to corroborate the correctness and rigor in
proofs is the use of automated formal verification methods. Although these tools have been proven
valuable in eliminating ambiguities and uncovering subtle flaws, they remain relatively uncommon.
Although our work does not rely on such tools, we recognize their potential as a promising direction
to strengthen the trustworthiness of security proofs in cryptography. However, we stress that one
should keep in mind the inherent limitations of these tools: they can only verify the properties
explicitly specified by the user, and their conclusions are valid only within the confines of the chosen
model.

Related works. The formal treatment of AKE protocols and their security properties was
initiated in [5]. In that paper, adversaries have full control over the communication channel and they
can make RevealKey queries. However, they have no access to the internal states of the protocol
sessions, neither they can corrupt the master keys of the parties. Therefore, PFS was not considered
there. As in our model, authentication requires the existence of a (unique) partner session via
the notion of matching conversations. The Corrupt queries were introduced in [7], but were not
allowed to be queried on the parties involved in the session being tested. Perfect forward secrecy
was formalized in [4] where Corrupt queries were allowed on these parties after the Test query. The
RevealState queries were first considered in the model of [9]. There are countless different security
models in the literature, making it infeasible to list them all here. Let us cite e.g. [14], where, on
the contrary to [5, 7, 9], the adversary does not specify the intended partner of a session when it
initializes one. That paper defines matching conversations using prefixes of transcripts, leading to
trivial attacks as explained above and in Subsection 2.3.

The paper [10] introduces a symmetric-key AKE protocol with forward security named FOR-
SAKES. This protocol and its security is only based on a random oracle. A important feature
in [10] is that the protocol updates the master key at specific time intervals. As a consequence,
one needs synchronized clocks at each party to properly run FORSAKES. This technique has the
advantage that concurrent runs of the protocol are less likely to cause abortion than with LP2+ or
the protocols of [2, 1, 8]. On the other hand, this has the disadvantage that forward secrecy is only
provided once the time interval at which the session key was established is over. Thus, this provides
only delayed forward secrecy and not perfect forward secrecy.

In [2], the authors introduce two symmetric-key AKE protocols called SAKE and SAKE-AM,
running in 5 and 4 messages, respectively. They both admit perfect forward security and are built,
similarly as LP2+, from a MAC, some PRFs and a (uniform) nonce generator. These protocols were
slightly modified in [1] in order to better protect them against denial-of-service (DoS) attacks. The
main difference between these protocols and LP2+ is the efficiency since our protocol only needs 2
messages. Both papers [2, 1] use the same definition of matching conversations as in [14], which
causes trivial attacks of the security model of [14]. However, it is unclear how this notion is used in
the security model of [2, 1].

Our inspiration for the design of the protocol LP2+ comes from LP2 and LP3 from [8]. These
protocols are symmetric-key AKE protocols based on a MAC and a PRF and use, respectively, 2
and 3 messages. While LP2 is designed as a one-way protocol not using nonces, LP3 is a two-way
protocol with nonces. We show in Subsection 4.1 that these two protocols do not meet their security
claims. In addition, the security model of [8] is also affected by the flaws described in Subsection 2.3.

2. The security model 6

Besides, that paper introduces the security notion of (weak) synchronization robustness whose weak
version is satisfied by LP2+.

Let us make explicit here that our protocol LP2+ does not require a trusted authority as
in [11, 13, 20] and that we do not consider in this document privacy preservation as in [19, 12].

Outline. The rest of the paper is organized as follows. In Section 2, we present our security
model: Subsection 2.1 is devoted to the execution environment and Subsection 2.2 to security
definitions, while we present the flaws of previous models in Subsection 2.3. In Section 3, we recall the
necessary background on the building blocks of LP2+, i.e., pseudo-random functions (Subsection 3.1),
message authentication codes (Subsection 3.2) and nonce generators (Subsection 3.3). We start
Section 4 by exposing the attacks on LP2 and LP3 (Subsection 4.1). Then, we introduce our new
protocol LP2+ (Subsection 4.2) and prove its security properties (Subsection 4.3). We conclude the
paper by mentioning the instantiation LP2+(n, F) in Subsection 4.4.

Acknowledgment. Both authors were partially funded by the European project BeQCI (No
101091625), as well as by the Defense Funded Research (DFR) study DAP/23-01.

2 The security model
In this section, we describe our security model for symmetric-key authenticated key establishment
protocols with perfect forward secrecy. We define the security environment and the allowed queries
of the adversary in Subsection 2.1 and provide security definitions in Subsection 2.2. Although, as
far as we know, our model is new, it shares many similarities with existing ones, see [5, 9, 14, 2, 8].
In Subsection 2.3, we compare our model with previous ones from the literature and exhibit some
weaknesses in some of them.

Let us remark beforehand that we are interested in concrete security. Our definitions thus do not
depend on a security parameter. In particular, our (probabilistic) algorithms are not polynomial-time,
as this notion depends on a security parameter. Moreover, in security notions, we only define the
advantage of an adversary, but not when this advantage is sufficiently small. This is of course more
general than the asymptotical approach. Indeed, one can always instantiate our definitions with
protocols depending on a parameter n and require that the relevant probabilistic algorithms are
polynomial-time with respect to n and that the advantages of certain adversaries are bounded by
negligible functions in terms of n.

2.1 Execution environment
We consider a set {P1, . . . , PM} of M ⩾ 2 parties that are potential participants in an authenticated
key establishment (AKE) protocol Π. We assume that initially each party Pi is in possession, for
each j ∈ {1, . . . , M} \ {i}, of a secret master key MKij . In order to achieve perfect forward secrecy,
we allow these keys to be modified over time. Note that we do not require that MKij = MKji,
although this is often the case. We model parallel executions of the protocol by equipping each
party Pi with session oracles π1

i , π2
i , . . . , where each of them represents a process that executes a

single instance of the protocol. Each of these oracles πs
i has access to Pi’s master keys MKij and is

able to modify them. Moreover, each oracle maintains a set of local variables that are described in
Table 1. We indicate the value of a variable v for the oracle πs

i by πs
i .v.

Variable Description
α execution state ∈ {⊥, negotiating, accepted, rejected}

pid identity of the intended partner ∈ {⊥, P1, . . . , PM}
ρ role ∈ {⊥, initiator, responder}
T transcript
st state to store ephemeral values
sk session key ∈ {⊥} ∪ Ks for some session key space Ks

Table 1: Local variables stored by each oracle.

2. The security model 7

At the initialization of the parties, the local variables of each session oracle πs
i are set to the

default values: πs
i .α = πs

i .pid = πs
i .ρ = πs

i .sk =⊥ and πs
i .T and πs

i .st are empty. The variables
πs

i .α, πs
i .pid and πs

i .ρ are set to a value different from ⊥ when the adversary first interacts with
the oracle πs

i . For the sake of clarity, we will often write πs
i .T as Ts

i . This variable represents the
transcript of the oracle πs

i , i.e., the sequence of all messages sent and received by πs
i in chronological

order. The local state πs
i .st serves as the oracle’s memory to save variables from one round to

another. The variable πs
i .sk is the established session key of the oracle and one has πs

i .sk ̸=⊥ if
and only if πs

i .α = accepted. Once the variables πs
i .pid, πs

i .ρ and πs
i .sk are set to a value different

from ⊥, they can no longer be modified. Similarly, once the variable πs
i .α reaches the value accepted

or rejected, it can no longer be modified and the oracle πs
i accepts no more messages.

To begin any of the experiments in this section, the challenger initializes M parties {P1, . . . , PM}
as described above. That is, it initializes the oracles πs

i as above and, for all i, j ∈ {1, . . . , M} with
i ≠ j, it generates MKij as prescribed by the protocol and gives it to Pi, i.e., all oracles π1

i , π2
i , . . .

have access to it.
We assume that the adversary has complete control over the communication network. It can

forward, modify, drop, and delay any message exchanged between the parties {P1, . . . , PM}, as well
as create new messages. More precisely, the adversary A can interact with the session oracles πs

i

and the parties Pi by issuing the following queries, answered by the challenger.
• NewSessionI(πs

i , Pj) (where πs
i .α =⊥ and i ̸= j): Starts a new initiator session for party Pi

with intended partner Pj . Specifically, this query sets πs
i .α = negotiating, πs

i .pid = Pj and
πs

i .ρ = initiator and runs the actions prescribed by the protocol. If a message is output, it is
returned to A and added to Ts

i .
• NewSessionR(πs

i , Pj , m) (where πs
i .α =⊥ and i ̸= j): Starts a new responder session for

party Pi with intended partner Pj and input message m. Specifically, this query sets πs
i .α =

negotiating, πs
i .pid = Pj and πs

i .ρ = responder, adds m to Ts
i and runs the actions prescribed

by the protocol. If a message is output, it is returned to A and added to Ts
i .

• Send(πs
i , m) (where πs

i .α = negotiating): Delivers message m to oracle πs
i which processes it.

Specifically, this query adds m to Ts
i and runs the actions prescribed by the protocol. If a

message is output, it is returned to A and added to Ts
i .

• RevealKey(πs
i) (where πs

i .α = accepted): Reveals the session key. Specifically, this query
returns πs

i .sk to A.
• RevealState(πs

i): Reveals the state. Specifically, this query returns πs
i .st to A.

• Corrupt(Pi, Pj) (where i ̸= j): Corrupts party Pi with respect to Pj . Specifically, this query
returns MKij to A.

• Test(πs
i) (where πs

i .α = accepted): Selects πs
i as the test oracle for key indistinguishability.

Specifically, this query uniformly chooses sk0 in Ks, sets sk1 = πs
i .sk, uniformly chooses a test

bit btest ∈ {0, 1} and returns skbtest to A. This action can only be queried at most once.
It is implicit that a query made by the adversary which does not respect a constraint (e.g., querying
Test(πs

i) for πs
i such that πs

i .α ̸= accepted) is disregarded by the challenger and left unanswered.
In view of the above capabilities of the adversary, A always knows the value of the variables

πs
i .pid, πs

i .ρ and Ts
i . We also assume that A always has access to the value of πs

i .α. The value
πs

i .α can be modified by some actions prescribed by the protocol. If πs
i .sk is set to a value different

from ⊥, then πs
i .α is set to accepted, while other actions of the protocol may set πs

i .α = rejected.
Since we consider two-party protocols, we assume that the communication is alternated be-

tween the initiator and the responder. That is, we assume that, at the end of each NewSessionI,
NewSessionR and Send query, the targeted oracle πs

i outputs at most one message, and if the oracle
is still in execution state πs

i .α = negotiating, it actually outputs a follow-up message. In those cases,
we say that the oracle has sent that message of its transcript. Similarly, we say that the oracle has
received a message m if it was added to its transcript at the start of a query NewSessionR(πs

i , Pj , m)
or Send(πs

i , m). With the above remark, note that in the transcript Ts
i , the sent and received

messages alternate.
The adversary A can only make one query at a time. Therefore, the RevealState query gives it

access to the state πs
i .st of an oracle only after the completion of an entire step of the protocol (or

2. The security model 8

before the protocol has started, which is useless since πs
i .st = ∅ in that case). In the case where

algorithms were considered as deterministic with access to some internal predefined randomness,
one could also give the possibility to the adversary to have access to this randomness. In this paper,
we instead chose to work with probabilistic algorithms generating their randomness on the fly and
for which the adversary has, in general, no access to it. Of course, if there is no impact on security,
one can still force in the specification of a protocol that this randomness is included in πs

i .st once
the session has started in order to increase the security guarantees provided by the definitions.

2.2 Security definitions
Now that we have described the execution environment of our model, we can define the security
notions. In order to define partnership between sessions, the usual idea is to use matching conversa-
tions. The requirement Ts

i = Tt
j that the transcripts of two oracles be identical (guaranteed delivery

matching conversation in the terminology of [8]) is too strong to define partnership (see [5, 14, 8]).
This is due to the fact that the party who sends the last message cannot be sure that this message
was indeed received by its partner. Thus, one needs the notion of partially matching conversation.
Let us stress here that, as far as we know, the following Definition 1 is new. The standard notion of
partial-transcript matching conversation (using the terminology of [8]) is not suitable here, as will
be explained in Subsection 2.3.

For an non-empty transcript T, we denote by T∗ the transcript T to which the last message has
been removed (whereas if T is empty, T∗ also denotes the empty transcript).
Definition 1. At a given time of the execution of an adversary A, a session oracle πs

i is said to
have a partially matching conversation with oracle πt

j if and only if, at that given time:
1. either πs

i has sent the last message of its transcript and (Ts
i)∗ ∈ {Tt

j , (Tt
j)∗},

2. or πs
i has received the last message of its transcript and Ts

i = Tt
j .

Notice that, in the above definition, it is suitable to use the transcript T∗ where we remove the
last message from T since we consider that protocols are such that transcripts alternate between
sent and received messages (otherwise, one would have to remove maybe more than one message).
Partially matching conversations are the main ingredient to define partnership of oracles.
Definition 2. At a given time of the execution of an adversary A, for two session oracles πs

i and πt
j ,

we say that πs
i has πt

j as partner if and only if the following conditions hold (at that given time):
1. πs

i .pid = Pj ,
2. πt

j .pid = Pi,
3. πs

i .ρ ̸= πt
j .ρ,

4. πs
i .α = accepted,

5. πs
i has a partially matching conversation with πt

j .
Let us stress that the above definition is not symmetric in πs

i and πt
j . The largest symmetric

relation contained in the partnership relation is made explicit in the next definition.
Definition 3. At a given time of the execution of an adversary A, we say that two session oracles
πs

i and πt
j are mutual partners if and only if πs

i has πt
j as partner and πt

j has πs
i as partner; that is,

if and only if the following conditions hold (at that given time):
1. πs

i .pid = Pj ,
2. πt

j .pid = Pi,
3. πs

i .ρ ̸= πt
j .ρ,

4. πs
i .α = accepted = πt

j .α,
5. Ts

i = Tt
j .

We can now define the correctness of a protocol in an adversarial context. To this end, we adopt
from now on the standard cryptographic approach of defining security through games (also called
experiments), wherein an adversary interacts with a challenger under specified rules. Recall from
Subsection 2.1 that we have already required that, for any session oracle πs

i , one has πs
i .sk ̸=⊥ if

and only if πs
i .α = accepted.

2. The security model 9

Definition 4 (Correctness). For an adversary A attacking an AKE protocol Π, let CorrA,Π be the
following game:

1. The challenger initializes M parties {P1, . . . , PM}.
2. A may issue queries NewSessionI, NewSessionR, Send, RevealKey, RevealState, Corrupt and

Test as defined above.
3. Once A has concluded, the experiment outputs 1 if and only if there exist two oracles πs

i and
πt

j such that the following conditions hold:
(a) πs

i and πt
j are mutual partners,

(b) πs
i .sk ̸= πt

j .sk.
The advantage of A in the correctness experiment CorrA,Π is defined as

AdvCorr
Π (A) = Pr(CorrA,Π = 1).

We note that the adversary is allowed to corrupt any party in the above experiment. We also
notice that the correctness takes place in a concurrent setting, but nothing is required when only
one oracle accepts. In particular, it is not asked that πt

j accepts if πs
i does since, in a key evolving

setting, concurrent runs of the protocols may make honest runs abort. In the case where no queries
interrupt the honest run of a protocol, one needs the notion of weak synchronization robustness
from [8] as described below.

Definition 5. For an adversary A, we say that an honest run of the protocol was executed between
two session oracles πs

i and πt
j if and only if A has made the following queries in that order, potentially

after swapping the roles of πs
i and πt

j and potentially interleaved with other queries, excluding
NewSessionI, NewSessionR or Send queries to πs

i or πt
j :

1. the query NewSessionI(πs
i , Pj) was made and produced a message m1,

2. the query NewSessionR(πt
j , Pi, m1) was made,

3. if the above query produced a message m2, then the query Send(πs
i , m2) was made,

4. if the above query produced a message m3, then the query Send(πt
j , m3) was made,

5. and so on, alternating between the oracles, until no more message is produced by those query
or until A tries to deliver a message to an oracle which is no longer negotiating.

We say that an honest run of the protocol is interrupted if there is any other query in between the
above queries.

Definition 6 (Weak Synchronization Robustness). For an adversary A attacking an AKE protocol Π,
let wSRA,Π be the following game:

1. The challenger initializes M parties {P1, . . . , PM}.
2. A may issue queries NewSessionI, NewSessionR, Send, RevealKey, RevealState, Corrupt and

Test as defined above.
3. Once A has concluded, the experiment outputs 1 if and only if there exist two oracles πs

i and
πt

j such that the following conditions hold:
(a) an honest run of the protocol was executed between πs

i and πt
j ,

(b) no queries were made by A to interrupt the honest run between πs
i and πt

j ,
(c) A did not use queries Corrupt(Pi, Pj) or Corrupt(Pj , Pi),
(d) πs

i .α ̸= accepted or πt
j .α ̸= accepted or πs

i .sk ̸= πt
j .sk.

The advantage of A in the weak synchronization robustness security experiment wSRA,Π is defined
as

AdvwSR
Π (A) = Pr(wSRA,Π = 1).

The notion of weak in the above definition comes from [8] and is due condition 3(b) that must
be satisfied. Indeed, a stronger version allows A to perform some queries during the run.

Note that, opposite to what is done in [8], we allow A to make RevealKey, RevealState and
Corrupt queries in the above definition (except from those mentioned in point 3(c)). In particular,

2. The security model 10

A can query RevealKey(πs
i), RevealKey(πt

j), RevealState(πs
i) and RevealState(πt

j) before or after
the honest run. Moreover, we do not require that A specify which are the oracles πs

i and πt
j .

In order to define the entity authentication experiment, one still needs the following two notions.
Definition 7. At a given time of the execution of an adversary A, a session oracle πs

i is said to be
two-sided uncorrupted if and only if the following conditions hold (at that given time):

1. πs
i .α ̸=⊥,

2. A did not make the query Corrupt(Pi, πs
i .pid),

3. A did not make the query Corrupt(πs
i .pid, Pi).

We will also need the notion of strong partnership. This idea goes back at least to [5] and
addresses the undesirable scenario in which an oracle receives a message from A before its partner
actually creates it. The idea is that πs

i has πt
j as a stronger partner if it has it as a partner and an

honest run of the protocol was executed between πs
i and πt

j , up to maybe the last message if πs
i has

sent it.
Definition 8. At a given time of the execution of an adversary A, for two session oracles πs

i and πt
j ,

we say that πs
i has πt

j as strong partner if and only if, at that given time, πs
i has πt

j as partner and
moreover, for each k ∈ {1, . . . , |Ts

i | − 1} in the case πs
i has sent the last message of its transcript, or

for each k ∈ {1, . . . , |Ts
i |} in the case πs

i has received the last message of its transcript, then
• if πs

i received the kth message mk of its transcript during the τ th
k query of A, then πt

j output
its kth message mk of its transcript during the τ ′

k
th query of A with τ ′

k < τk;
• if πs

i sent the kth message mk of its transcript during the τ th
k query of A, then πt

j received its
kth message mk of its transcript during the τ ′

k
th query of A with τ ′

k > τk.
As usually done, we say that the adversary breaks entity authentication if it forces a two-sided

uncorrupted oracle to accept maliciously. Note that this definition does not impose any condition
on the session key πs

i .sk.
Definition 9 (Entity Authentication). For an adversary A attacking an AKE protocol Π, let
EntAuthA,Π be the following game:

1. The challenger initializes M parties {P1, . . . , PM}.
2. A may issue queries NewSessionI, NewSessionR, Send, RevealKey, RevealState, Corrupt and

Test as defined above.
3. Once A has concluded, the experiment outputs 1 if and only if there exists an oracle πs

i such
that the following conditions hold:
(a) πs

i .α = accepted,
(b) πs

i was two-sided uncorrupted at the time it accepted,
(c) there are more than one oracles πt

j such that πs
i has πt

j as partner, or there is no πt
j such

that πs
i has πt

j as strong partner.
The advantage of A in the entity authentication security experiment EntAuthA,Π is defined as

AdvEntAuth
Π (A) = Pr(EntAuthA,Π = 1).

An oracle πs
i accepting in the above sense is said to accept maliciously.

Concerning the secrecy of the session keys established by the AKE protocol, one says that an
adversary breaks the key indistinguishability of the protocol if it can distinguish a random key from
a session key, provided that it cannot access the session key trivially. The definition below makes
precise what is meant by a trivial attack.
Definition 10 (Key Indistinguishability). For an adversary A attacking an AKE protocol Π, let
KeyIndA,Π be the following game:

1. The challenger initializes M parties {P1, . . . , PM}.
2. A may issue queries NewSessionI, NewSessionR, Send, RevealKey, RevealState, Corrupt and

Test as defined above.

2. The security model 11

3. When A concludes, it outputs a bit b′ ∈ {0, 1}.
4. If any of the following conditions is not satisfied, the output of the experiments is uniformly

chosen at random from {0, 1}:
(a) A issued a unique Test query on an oracle πs

i with πs
i .pid = Pj ,

(b) πs
i was two-sided uncorrupted at the time it accepted,

(c) when A issued any of the queries Corrupt(Pi, Pj) or Corrupt(Pj , Pi), one has Ts
i = Tt

j

for any πt
j such that πs

i has πt
j as partner,

(d) A did not issue a RevealKey query to πs
i ,

(e) A did not issue a RevealKey query to any πt
j such that πs

i and πt
j are mutual partners;

otherwise, if all these conditions are satisfied, the output of the experiment is 1 if and only if
b′ = btest (and 0 otherwise) where btest is the test bit from the Test query.

The advantage of A in the key indistinguishability security experiment KeyIndA,Π is defined as

AdvKeyInd
Π (A) =

∣∣Pr(KeyIndA,Π = 1)− Pr(KeyIndA,Π = 0)
∣∣

= 2
∣∣∣∣Pr(KeyIndA,Π = 1)− 1

2

∣∣∣∣ .

Remark 11. Let us comment here on the definitions of correctness, weak synchronization robustness,
entity authentication, and key indistinguishability. First, we compare the definition of correctness
with what is done in the literature. To this end, and as it often the case, we consider that, once an
oracle πs

i accepts and generates a session key πs
i .sk, it also generates a (public) session identifier

πs
i .sid as

πs
i .sid =

{
(Pi, πs

i .pid, Ts
i) if πs

i .ρ = initiator
(πs

i .pid, Pi, Ts
i) if πs

i .ρ = responder.

The notation πs
i .sid =⊥ should be understood as πs

i .α ̸= accepted (or equivalently πs
i .sk =⊥). The

correctness of a protocol can then be stated as: if the adversary did not win the game CorrA,Π,
then the implication

(
πs

i .ρ ̸= πt
j .ρ

)
∧

(
πs

i .α = accepted = πt
j .α

)
∧

(
πs

i .sid = πt
j .sid

)
=⇒

πs

i .sk = πt
j .sk

πs
i .pid = Pj

πt
j .pid = Pi

holds. Combined with the requirement

(πs
i .α = accepted) =⇒ (πs

i .sk ̸=⊥) ∧ (πs
i .sid ̸=⊥) ,

which holds from our definition of execution environment, this is almost the correctness requirement
of [2, 1]. The main difference is that we added πs

i .ρ ≠ πt
j .ρ in the premise of the first implication in

order not to consider as an adversarial win the case where there are two different oracles πs
i and πs′

i

at the same party Pi with πs
i .α = πs′

i .α = accepted, πs
i .pid = πs′

i .pid, πs
i .ρ = πs′

i .ρ and Ts
i = Ts′

i .
We stress that correctness does not ensure that, if an honest run of the protocol was executed

between two session oracles, they will both accept. In full generality, this is impossible for many
symmetric-key AKE protocols because concurrent runs of the protocol, even done honestly by
faithfully transmitting all messages in the right order, may cause sessions to abort due to a lack
of synchronization. If no concurrent runs are allowed during an honest run of the protocol, if the
parties are not corrupted with respect to each other, and if the adversary does not win, the weak
synchronization robustness requires the acceptance and generation of the same session key by the
parties. This captures the ability of the parties to resynchronize after the adversary has had a full
control over the communication channel.

For entity authentication, it is required that, if A does not win and does not corrupt Pi or
πs

i .pid = Pj , an accepting oracle πs
i have a unique πt

j as partner, and moreover that this be a strong
partner. This implies in particular that:

2. The security model 12

• Uniqueness: there is at most one accepting oracle πu
k with πs

i .sid = πu
k .sid and πs

i .ρ ̸= πu
k .ρ,

and in this case one has k = j and u = t, in other words, there is at most one oracle πt
j such

that πs
i and πt

j are mutual partners.
• Existence: an honest run of the protocol was executed between πs

i and an oracle πt
j of its

partner party Pj , up to maybe the last message if πs
i sent it (in that case, πs

i is not sure
whether πt

j received it and whether πt
j has accepted / will accept it).

For key indistinguishability, we require that an adversary cannot (substantially) distinguish a
random key from a session key generated by πs

i provided that
• the adversary did not corrupt Pi or its intended partner Pj before πs

i has accepted,
• the adversary did not corrupt Pi or its intended partner Pj before the last message that πs

i

sent was delivered to its partners,
• the session key generated by πs

i was not revealed to the adversary,
• the session key generated by any other oracle with the same sid but opposite role was not

revealed to the adversary.
These four conditions correspond, respectively, to the items 4(b), 4(c), 4(d), and 4(e) in Definition 10,
and provide the assumptions under which the key indistinguishability property holds.

Therefore, if key indistinguishability and entity authentication are achieved, given two two-sided
uncorrupted oracles πs

i and πt
j that are mutual partners, future corruption of one of the parties Pi

or Pj does not compromise the secrecy of their session key. This property is called perfect forward
secrecy.

2.3 Comparison with previous security models
Our model is largely inspired by what is classically done in the literature, but there are several
important differences. In this subsection, we make them explicit and explain why these modifications
must have been made. Since the small differences concerning the definitions of correctness and
weak synchronization robustness have already been described in Remark 11 and after Definition 6
respectively, we focus here on the definitions of entity authentication and key indistinguishability.

One of the first major differences with what already exists in the literature is the definition of
partially matching conversations (Definition 1), see [14, 2, 1, 8]. In these papers, πs

i is said to have
a partial-transcript matching conversation to πt

j (using the terminology of [8]) if

• Tt
j is a prefix of Ts

i and πs
i has sent the last message, or

• Ts
i = Tt

j and πt
j has sent the last message.

In the above lines, a transcript Tt
j is a prefix of Ts

i if Tt
j contains at least one message and the

messages in Tt
j are identical to and in the same order as the first |Tt

j | messages of Ts
i . One can see

that this definition is not implied by and does not imply our Definition 1. The use of matching
conversations in the models of [2, 1] is unclear. Besides, the definition of entity authentication
in [14, 8] is almost identical to our Definition 9 except that

• partially matching conversations as in Definition 1 are replaced with partial-transcript matching
conversations as above in the definition of partner (Definition 2);

• point 3(c) is replaced by the equivalent of the following statement: “there is no unique πt
j such

that πs
i has πt

j as partner”.
The other differences (if any) are irrelevant for this discussion. Let us explain here why, on the one
hand, the definition of [14, 8] is almost impossible to satisfy as it allows for trivial attacks and, on
the other hand, does not forbid adversarial behavior that should be considered as a winning attack
in our opinion. In the following, we consider two legitimate parties, Pi and Pj that we call Alice
and Bob, respectively, and an adversary, Eve.

Firstly, let us consider the case where Eve lets a protocol instance running honestly between
Alice’s oracle πs

i and Bob’s oracle πt
j up to the point where Alice creates the last message mℓ of

the protocol. Then, Eve transmits a modified message m′
ℓ to Bob (who will probably reject it). In

that scenario, Alice’s oracle πs
i will accept (with high probability), while Ts

i and Tt
j have the same

2. The security model 13

number |Ts
i | of messages, have the same |Ts

i | − 1 first messages, but Ts
i ≠ Tt

j . Hence, Tt
j is not a

prefix of Ts
i and there is no πt′

j such that πs
i has a partial-transcript matching conversation to πt′

j .
Therefore, Eve trivially succeeded in her entity authentication attack according to the definition
of [14, 8]. This problem disappears with our Definition 1 since (Ts

i)∗ = (Tt
j)∗ and πs

i has a partially
matching conversation with πt

j .
For the second problem, Eve faithfully delivers the first message of Alice’s oracle πs

i to Bob’s
oracle πt

j , and then she delivers Bob’s answer from πt
j to πs

i . Then, suppose that Eve manages to
spoof Bob and continues the discussion for several rounds with Alice until πs

i accepts. We suppose
that Alice sent the last message of the protocol. In that case, Tt

j contains two messages (Alice’s
first message and Bob’s response), while Ts

i may contain many more. Since Tt
j is a prefix of Ts

i , the
accepting πs

i has a partial-transcript matching conversation to πt
j . Therefore, the above scenario

is not considered a valid attack in the sense of entity authentication of [14, 8], although Eve has
spoofed Bob for maybe several rounds. In our Definition 9, this is considered as an attack, since
(Ts

i)∗ /∈ {Tt
j , (Tt

j)∗} and so πs
i has no partners.

Thirdly, we consider the following scenario. Eve initializes Alice’s oracle πs
i and spoofs Bob

making Alice’s oracle πs
i accept a certain number of messages, but keeping πs

i negotiating. Then,
Eve delivers Alice’s messages to Bob and manages that Bob replies with exactly the same messages
Eve delivered to Alice. Then, Eve faithfully delivers subsequent messages between Alice and Bob
until both Alice and Bob accept. In that scenario, one has Ts

i = Tt
j and therefore this is not

considered a winning attack in the sense of entity authentication of [14, 2, 1, 8]. However, Alice did
not have an honest conversation with Bob, since she received messages before Bob created them.
This makes us believe that the above scenario should be considered as a valid attack. This is why
we explicitly added that the unique partner πt

j of πs
i must be a strong partner. This idea already

appears in the seminal work [5] of Bellare and Rogaway. Note that the uniqueness requirement in
Definition 9 is on (simple) partners and not only on strong partners so that each accepting oracle
can compute its sid as in Remark 11 (without knowledge of Eve’s information) and this definition
implies there is at most one other oracle with the same sid and opposite role (if A’s attack was not
successful and it did not corrupt the parties).

Let us also remark that, with both styles of definition (that of [14, 2, 8] or of the present paper),
a protocol terminating by a constant unsigned message “Confirmation” will never satisfy entity
authentication. Indeed, Eve can modify the last message Alice sends to Bob and reply with the
correct answer “Confirmation”. This means that, if a secure protocol is modified by adding this
last “Confirmation” message, it becomes insecure in that sense. This has already been noticed
in [17]. Although it might look counterintuitive, we think that it should indeed be considered as not
providing entity authentication in a context where the adversary controls the entire communication
network. The reason is that the reception of this last “Confirmation” message does not bring any
information to its receiver (since anyone could have sent it), while it makes the sender of that
message not sure whether its partner received it (whereas it was sure that all messages have been
transmitted so far). A similar situation occurs with our Definition 9 if a constant unsigned message
“Hello” is added at the beginning of the protocol. This time, the violation of the entity authentication
comes from the requirement that the partner πt

j must be a strong partner although Eve is able to
first deliver the message “Hello” to Bob before Alice actually creates it.

Let us now look at the definition of key indistinguishability. According to points 4(b) and 4(c)
of Definition 10, in order to hope for an advantage, the adversary A is only allowed to use the
queries Corrupt(Pi, Pj) and Corrupt(Pj , Pi) after πs

i has accepted and after the last message it sent
has been correctly delivered to its partners. In contrast, in [14, 2, 1, 8], A is allowed to corrupt Pi

with respect to Pj as soon as πs
i accepts (A thus does not need to deliver this last message before

corrupting Pi). In the asymmetric setting of [14], this does not seem to raise any problem, but
in the symmetric-key setting of [2, 1, 8], where perfect forward secrecy is often achieved via key
evolution, the following might occur.

We describe a generic attack for an n-message protocol for which the key is updated after the
last message is received. This attack works, e.g., for LP2 and LP3 from [8] but does not as such
to the protocols of [2, 1] due to the extra message they have after the last key evolution. We
refer the reader to Subsection 4.1 for a description of the protocols LP2 and LP3. In this attack,
the adversary A first launches an honest run of the protocol between Alice’s oracle π1

i and Bob’s

3. Building blocks and their security assumptions 14

oracle π1
j . Suppose, without loss of generality, that Bob creates the (n− 1)th message. To launch

the attack, the adversary A does not deliver this message to Alice’s π1
i . Instead, A starts a new

honest run of the protocol between Alice’s oracle π2
i and Bob’s oracle π2

j but does not deliver the
last message to Bob’s π2

j . The adversary then queries Test(π2
i) and corrupts Alice with respect

to Bob. That way, A can reply to Bob’s first oracle π1
j since A can now spoof Alice’s identity

(having her master key). The problem that might occur at that moment is that A can query
RevealKey(π1

j) and get π1
j .sk which might be close to (or equal to) π2

i .sk since they both might have
been generated with the same update of the master key. The problem comes from the fact that,
since Bob’s second oracle π2

j never received its last message, it might not have updated Bob’s master
key to achieve forward secrecy. A similar attack also works for LP1 from [8] if the MAC used is not
deterministic. Here, A queries NewSessionI(πs

i , Pj), which makes πs
i already accepts and outputs a

signed message m. Then A queries Test(πs
i) and Corrupt(Pi, Pj). Having the MAC key, A can then

modify the signature of m to another valid one and deliver it to Bob with NewSessionR(πt
j , Pi, m′).

The session keys πs
i .sk and πt

j .sk will be the same but A is allowed to query RevealKey(πt
j). This

attack on LP1 is a no-match attack in the terminology of [17].
Although these attacks break the claimed security of LP2, LP3 and (if the MAC is not deter-

ministic) LP1, we think they should not. That is the reason why we made the conditions stronger
on the ability of A to corrupt Pi and Pj . The drawback is that when a party notices it has been
corrupted at a certain time, it does not know by itself which accepted session keys can still be
trusted and which ones are unsafe. However, if entity authentication and key indistinguishability
are achieved, it knows that every session key that has actually been used by its mutual partner
before one of them got corrupted is safe (assuming these session keys were not directly revealed to
the adversary). This is the reason why we chose Definition 10 as it stands.

As a final remark on Definition 10, let us notice that, in the case where A does not follow the
rules of the game (point 4), the output of the experiment is uniformly chosen in {0, 1} instead of
always being set to 0 as is often done in the literature. This prevents the trivial attack that A
does not respect the rules on purpose to have a probability of success far from 1

2 , and thus a big
advantage.

3 Building blocks and their security assumptions
This section serves as a reminder on pseudo-random functions (PRF), message authentication codes
(MAC), and nonce generators, the three building blocks of our protocol LP2+. As in the previous
section, we describe their security properties in the concrete setting, thus not depending on a security
parameter.

3.1 Pseudo-random functions
A keyed function is a function F : K × D → R where K is considered as the key space, D is the
domain or input space and R is the range or codomain. For a key k ∈ K, we write as usual
Fk : D → R for the function F (k, ·). Roughly speaking, a keyed function is called a pseudo-random
function if it is infeasible for some kind of adversary to distinguish a random function D → R from
a function Fk for an unknown key k uniformly chosen. More precisely, we define the advantage of
an adversary as follows.

Definition 12 (Pseudo-randomness). Let F : K × D → R be a function. For an adversary A
attacking the pseudo-randomness of F , let PRFA,F be the following game:

1. The challenger uniformly chooses a key k ∈ K.
2. The challenger uniformly and independently chooses a bit b ∈ {0, 1}. If b = 0, the challenger

uniformly chooses a function g : D → R in the set of all functions D → R; if b = 1, the
challenger lets g = Fk.

3. A has access to an oracle Og which, upon query x ∈ D, returns g(x) ∈ R.
4. A outputs a bit b′ ∈ {0, 1}.
5. The output of the experiment is 1 if and only if b = b′ (and 0 otherwise).

3. Building blocks and their security assumptions 15

The advantage of A in the pseudo-randomness security experiment PRFA,F is

AdvPRF
F (A) = |Pr(PRFA,F = 1)− Pr(PRFA,F = 0)| = 2

∣∣∣∣Pr(PRFA,F = 1)− 1
2

∣∣∣∣ .

As already mentioned, in our definitions, it is implicit that a query made by the adversary which
does not respect a constraint on the domain of the oracle (e.g., querying x /∈ D to Og) is disregarded
by the oracle and unanswered.

As in the protocols LP1, LP2 and LP3 of [8], we use a linear key evolution scheme. That is, we
use a pseudo-random function F : K×D → R with K = R, and we fix a constant upd ∈ D. Part of
the initial master key will consist of a random key k0 ∈ K, and the subsequent ones are generated
by induction as

ki+1 = Fki(upd) =: update(ki).
The session key of a protocol execution is obtained by a key derivation function (KDF) as

ski,datai
= Fki

(datai) =: derive(ki, datai)

where datai is some element of D \ {upd} derived from the data generated during the protocol
execution (typically, nonces). While in [8], a constant element of D \ {upd} was used, here we allow
a nonce-dependent value in order to provide some key freshness and reduce key control. The key
evolution scheme can be displayed as in Figure 1. Its security property is formalized in Definition 13
and follows from the pseudo-randomness of F as shown in Lemma 14.

k0
update //

derive
��

k1
update //

derive
��

k2
update //

derive
��

k3
update //

derive
��

. . .

sk0,data0 sk1,data1 sk2,data2 sk3,data3

Figure 1: The linear key evolution scheme, similar as in [8]

Definition 13 (Key Evolution Security). Let F : K × D → R be a function with K = R, let
upd ∈ D be a fixed input and q ∈ N. For an adversary A attacking the key evolution of F , let
KEvolA,F,upd,q be the following game:

1. The challenger uniformly chooses a bit b ∈ {0, 1}.
2. The challenger uniformly and independently chooses a key k0 ∈ K.
3. For each i ∈ {0, . . . , q − 1}, the challenger computes ki+1 = Fki(upd) ∈ K.
4. A has access to the following three oracles:

• an oracle OReveal that on input (i, x) with 0 ⩽ i < q and x ∈ D \ {upd}, returns
ski,x = Fki

(x);
• an oracle OCorrupt that on input i with 0 ⩽ i ⩽ q, returns ki;
• an oracle OTest that on input (i, x) with 0 ⩽ i < q and x ∈ D \ {upd}, returns ski,x,

where, if b = 0, ski,x ∈ K is chosen uniformly at random, while if b = 1, ski,x = Fki(x);
restricted to the following constraints:
(a) A can only use its OTest oracle once;
(b) A cannot make both a query OReveal(i, x) and a query OTest(i, y) (with the same first

component i);
(c) A cannot make three queries OReveal(i, x), OReveal(i, y) and OReveal(i, z) (with the same

first component i);
(d) A cannot make both a query OTest(i, x) and a query OCorrupt(j) with j ⩽ i.

5. A outputs a bit b′ ∈ {0, 1}.
6. The output of the experiment is 1 if and only if b = b′ (and 0 otherwise).

3. Building blocks and their security assumptions 16

The advantage of A in the key evolution security experiment KEvolA,F,upd,q is

AdvKEvol
F,upd(A, q) = |Pr(KEvolA,F,upd,q = 1)− Pr(KEvolA,F,upd,q = 0)|

= 2
∣∣∣∣Pr(KEvolA,F,upd,q = 1)− 1

2

∣∣∣∣ .

In the above definition, we allow in 4(c) the adversary to ask for two session keys on the same
level i derived with different datai (but no more) since, after corruption, an initiator oracle and a
responder oracle may accept with the same ki but different nonces. Constraint 4(d) forbids a trivial
win but allows the adversary to corrupt on levels higher than that of the test query, hence ensuring
perfect forward secrecy.

The following lemma derives the security of the key evolving scheme from the pseudo-randomness
of F . A similar lemma, although less general, has been proved in [8].

Lemma 14. Let F : K × D → R be a function with K = R, let upd ∈ D be a fixed input and
q ∈ N. Let also A be an adversary attacking F in the experiment KEvolA,F,upd,q. There exists an
adversary B attacking the pseudo-randomness of F such that

AdvKEvol
F,upd(A, q) ⩽ 2q ·AdvPRF

F (B).

Moreover, B queries at most three times its oracle and its running time is about the running time
of A plus the time needed to generate 3q elements of K either by evaluation of F or by uniform
selection.

Proof. The statement being trivial for q = 0, let us suppose that q > 0. For each j ∈ {0, . . . , q}, let
Gj be the game KEvolA,F,upd,q except for the following differences:

• For each i ∈ {0, . . . , j}, the challenger uniformly chooses ki ∈ K and for each i ∈ {j, . . . , q − 1},
the challenger computes ki+1 = Fki(upd) ∈ K.

• OReveal, on input (i, x), answers as follows. If i < j, the oracle returns ski,x ∈ K uniformly
chosen at random (although on twice the same OReveal(i, x) query, it outputs the same ski,x).
Otherwise, if j ⩽ i < q, it returns ski,x = Fki

(x) ∈ K.
• If OCorrupt is queried on input i with i ⩽ j, the game aborts and outputs a uniform value in
{0, 1}.

• If OTest is queried on input (i, x) with i < j, the game aborts and outputs a uniform value in
{0, 1}.

It is easily checked that the games G0 and KEvolA,F,upd,q are similar, except for the query
OCorrupt(0), which is allowed in the latter, but forbids a further query OTest, and aborts the game
in the former game. As this discrepancy does not impact the output of the game (if it queries
OCorrupt(0), the output will be random), we have Pr(G0 = 1) = Pr(KEvolA,F,upd,q = 1). It is
furthermore obvious that Pr(Gq = 1) = 1

2 . For each j ∈ {0, . . . , q− 1}, let us construct an adversary
Bj attacking the pseudo-randomness of F such that

|Pr(Gj = 1)− Pr(Gj+1 = 1)| = AdvPRF
F (Bj).

Bj simulates an execution of Gj except that, at initialization, kj is left undefined and kj+1 = Og(upd).
Moreover, when queried OReveal(j, x), Bj returns skj,x = Og(x) to A. Finally, when queried
OTest(j, x), Bj returns a uniformly chosen skj,x ∈ K if b = 0 or skj,x = Og(x) if b = 1. At the end
of the experiment, Bj will output as guess bit the output of the experiment.

Let b′′ ∈ {0, 1} be the bit chosen at the beginning of the experiment PRFBj ,F . If b′′ = 1 (i.e.
g = Fk), one has that Bj perfectly simulates Gj , so that

Pr(1← Bj | b′′ = 1) = Pr(Gj = 1).

Moreover, if b′′ = 0 (i.e. g is a random function), let E be the event that, in the run of Bj , A queries
OTest(j, x) or OCorrupt(j+1). In the former case, skj is uniformly chosen whatever b is and no further
information on it can be obtained by A since it cannot make a query OReveal(j, x) in that case. In the

3. Building blocks and their security assumptions 17

latter case, either A does not query OTest, or A queries OTest(j, x), or A queries OTest(i, x) for some
i < j. In all these cases, Bj outputs 1 with probability 1

2 . Therefore, Pr(1← Bj | b′′ = 0 ∧E) = 1
2 .

We denote by E′ the event that, in the run of game Gj+1, A queries OTest(j, x) or OCorrupt(j + 1).
If b′′ = 0, Bj perfectly simulates Gj+1 up to the point where E (or equivalently E′) occurs. So one
has Pr(E | b′′ = 0) = Pr(E′) and Pr(1← Bj | b′′ = 0 ∧ ¬E) = Pr(Gj+1 = 1 | ¬E′). Thus,

Pr(1← Bj | b′′ = 0)
= Pr(1← Bj | b′′ = 0 ∧ E) Pr(E | b′′ = 0) + Pr(1← Bj | b′′ = 0 ∧ ¬E) Pr(¬E | b′′ = 0)

= 1
2 Pr(E | b′′ = 0) + Pr(1← Bj | b′′ = 0 ∧ ¬E) Pr(¬E | b′′ = 0)

= Pr(Gj+1 = 1 |E′) Pr(E′) + Pr(Gj+1 = 1 | ¬E′) Pr(¬E′)
= Pr(Gj+1 = 1).

Therefore,

|Pr(Gj = 1)− Pr(Gj+1 = 1)| = |Pr(1← Bj | b′′ = 1)− Pr(1← Bj | b′′ = 0)|
= |Pr(1← Bj | b′′ = 1) + Pr(0← Bj | b′′ = 0)− 1|
=

∣∣2 Pr(PRFBj ,F = 1)− 1
∣∣

= AdvPRF
F (Bj)

as announced. Taking B as the Bj that maximizes AdvPRF
F (Bj), one has

AdvKEvol
F,upd(A, q) = 2

∣∣∣∣Pr(G0 = 1)− 1
2

∣∣∣∣
⩽ 2

q−1∑
j=0
|Pr(Gj = 1)− Pr(Gj+1 = 1)|

⩽ 2
q−1∑
j=0

AdvPRF
F (B)

= 2q ·AdvPRF
F (B)

as desired. Notice that the complexity of B is as mentioned in the statement since, at initialization,
Bj generates q − 1 elements of K and uses once its oracle and, for each level i, at most two OReveal
or OTest queries can be made.

3.2 Message authentication codes
In our protocol LP2+, a MAC is used to authenticate messages. A MAC is a triplet Σ =
(KeyGen, Mac, Vrfy) of (probabilistic) algorithms where:

• KeyGen takes no input and outputs a key k ∈ KMAC in a key space KMAC,
• Mac takes as input a key k ∈ KMAC and a message m ∈ M in the message space M, and

outputs a tag σ ∈ T in the tag space T ,
• Vrfy is a deterministic algorithm that takes as input a key k ∈ KMAC, a message m ∈M and

a tag σ ∈ T , and outputs a bit Vrfyk(m, σ) ∈ {0, 1}.
We require that MACs be correct, that is, for every key k ∈ KMAC, for every message m ∈M and
for every tag generated as σ ← Mack(m), one has Vrfyk(m, σ) = 1.

The security property that we will need on our MAC is the strong existential unforgeability
under chosen message attack (SEUF-CMA). Roughly speaking, this means that it is hard for an
adversary to forge a new pair message–valid tag, even when equipped with a tagging oracle. This is
formalized by the following definition.
Definition 15 (Strong Unforgeability). Let Σ = (KeyGen, Mac, Vrfy) be a MAC with key
space KMAC, message spaceM and tag space T . For an adversary A attacking Σ, let SEUF-CMAA,Σ
be the following game:

3. Building blocks and their security assumptions 18

1. The challenger runs KeyGen to obtain a key k ∈ KMAC.
2. The challenger initializes the set Q to the empty set ∅.
3. A has access to an oracle OMac which, when queried on m ∈M, runs σ ← Mack(m), returns

σ to A and updates Q ← Q∪ {(m, σ)}.
4. A outputs (m, σ) ∈M× T .
5. The output of the experiment is defined as 1 if and only if (m, σ) /∈ Q and Vrfyk(m, σ) = 1.

The advantage of A in the strong unforgeability security experiment SEUF-CMAA,Σ is

AdvSEUF-CMA
Σ (A) = Pr(SEUF-CMAA,Σ = 1).

In order to ease the readability of our security proofs, we consider a version of the above definition
where the adversary has access to a verification oracle to which it can make q tries.
Definition 16. Let Σ = (KeyGen, Mac, Vrfy) be a MAC with key space KMAC, message space
M and tag space T , and let q ∈ N. For an adversary A attacking Σ, let SEUF-CMAA,Σ,q be the
following game:

1. The challenger runs KeyGen to obtain a key k ∈ KMAC.
2. The challenger initializes the sets Q and V to the empty set ∅.
3. • A has access to an oracle OMac which, when queried on m ∈ M, runs σ ← Mack(m),

returns σ to A and updates Q ← Q∪ {(m, σ)}.
• A has access to an oracle OVrfy that A can query at most q times and which, when

queried on (m, σ) ∈M× T , runs b← Vrfyk(m, σ), returns b to A and, if b = 1, updates
V ← V ∪ {(m, σ)}.

4. Once A has concluded, the output of the experiment is defined as 1 if and only if V \ Q ̸= ∅.
The advantage of A in the experiment SEUF-CMAA,Σ,q is

AdvSEUF-CMA
Σ (A, q) = Pr(SEUF-CMAA,Σ,q = 1).

The above two security notions are linked via the following theorem from [3].
Theorem 17. [3] Let Σ = (KeyGen, Mac, Vrfy) be a MAC, let q ∈ N and let A be an adversary
attacking Σ in the experiment SEUF-CMAA,Σ,q. There exists an adversary B attacking Σ in the
experiment SEUF-CMAB,Σ such that

AdvSEUF-CMA
Σ (A, q) ⩽ q ·AdvSEUF-CMA

Σ (B).

Moreover, the number of OMac queries made by B is upper bounded by the number of OMac queries
made by A, and the running time of B is about by that of A plus the time to save (m, σ) in Q for
each OMac query of A plus the time to check if (m, σ) ∈ Q for each OVrfy query of A.

3.3 Nonce generators
A nonce generator with nonce space N and state space S is a (potentially stateful) algorithm GenN
that on input state st ∈ S, outputs an element N ∈ N and updates the state st. We denote these
operations by N ← GenN(st). When S is a singleton, we say that the nonce generator is stateless.

For q consecutive calls to the algorithm GenN starting with initial state st0, we denote by
Coll(GenN, q, st0) the probability that a collision occurs between two of the q outputs of these calls.

As an example of GenN, one can choose a stateless uniform selection of an element of N , in
which case one has

Coll(GenN, q, st0) ⩽ q2

2|N | .

Another example for GenN is a cyclic counter, where N = S = Zn and N ← GenN(st) outputs
N = st and updates st← st + 1. In this case, one has

Coll(GenN, q, st0) =
{

0 if q ⩽ |N |,
1 if q > |N |.

4. The protocol LP2+ and its security proofs 19

In LP2+, only the absence of collision on the initiator side is important, not on the responder
side (see Theorems 23 and 24). We can thus also choose S = {0, 1} with the initial state on the
initiator side always being stinitN = 1 and the initial state on the responder side always being
strespN = 0. Then N ← GenN(1) uniformly chooses N ∈ N (and does not update the state), while
N ← GenN(0) always selects a constant nonce cst ∈ N (and does not update the state). In this
case, one has

Coll(GenN, q, 1) ⩽ q2

2|N |
while Coll(GenN, q, 0) = 1 as soon as q > 1.

4 The protocol LP2+ and its security proofs
In this section, we first expose the protocols LP2 and LP3 from [8] and explain why they fail to
satisfy their claimed security properties. Then, in Subsection 4.2, we propose a new 2-message
protocol LP2+, based on LP2 and LP3, and prove in Subsection 4.3 that LP2+ achieves correctness,
weak synchronization robustness, entity authentication, and key indistinguishability (and thus also
perfect forward secrecy). These security proofs rely on the assumptions that a function is a PRF
and that a MAC is strongly unforgeable. Finally, in Subsection 4.4, we instantiate the protocol in
order to have a lightweight AKE protocol with perfect forward secrecy that relies only on a PRF
hypothesis.

Let us make explicit here that our security proofs are complete proofs and not just mere sketches
of proofs. Those sketches occur frequently in the cryptographic literature and are the cause of many
errors. We take the opportunity here to promote rigorous and complete proofs in a domain where
mistakes, as small as they might appear, may have dramatic consequences.

4.1 LP2, LP3 and their security flaws
The ingredients that are common to both protocols LP2 and LP3 of [8] are the following:

• a PRF F : K ×D → R with K = R;
• two distinct constants upd, der ∈ D;
• a strongly unforgeable MAC Σ = (KeyGen, Mac, Vrfy) with key space KMAC, message spaceM

and tag space T .
We start with the protocol LP2. It has been designed with fixed roles: Alice will always be

the initiator and Bob always the responder (or vice versa). As mentioned in [8], we can use it in
duplex mode to remove this constraint. That is, for each pair of parties, we can generate two master
keys (one for each direction). In order to integrate it into our model from Section 2, we follow this
approach. Note that this choice is made for the coherence of the paper and that the security flaw
has nothing to do with it.

Therefore, in the initialization phase of the protocol LP2, for each (unordered) pair of parties
{A, B} ⊆ {P1, . . . , PM}, one uniformly and independently chooses K init,kdf

AB = Kresp,kdf
BA ∈ K and

K init,kdf
BA = Kresp,kdf

AB ∈ K. Moreover, KeyGen is run twice to get K init,mac
AB = Kresp,mac

BA ∈ KMAC and
K init,mac

BA = Kresp,mac
AB ∈ KMAC. Finally, one initializes four counters CTRinit

AB, CTRresp
AB , CTRinit

BA

and CTRresp
BA to 0. The keys K init,kdf and K init,mac and the counters CTRinit serve for the initiator,

while the keys Kresp,kdf and Kresp,mac and the counters CTRresp serve for the responder. The keys
K init,kdf and Kresp,kdf are used for the KDF, while the keys K init,mac and Kresp,mac are used for the
MAC. The master keys on both sides are initially

MKAB =
(

K init,kdf
AB , K init,mac

AB , CTRinit
AB , Kresp,kdf

AB , Kresp,mac
AB , CTRresp

AB

)
and

MKBA =
(

K init,kdf
BA , K init,mac

BA , CTRinit
BA, Kresp,kdf

BA , Kresp,mac
BA , CTRresp

BA

)
.

Although they are public state values, we include the counters as part of the master keys since they
should be accessible and modifiable by any oracle of the party with the correct intended partner.

4. The protocol LP2+ and its security proofs 20

In the first step of the protocol LP2, a function NextOdd : N → N is used, which associates to a
natural number n the least odd natural number m > n. We also assume that the message space M
of the MAC contains the product {P1, . . . , PM} × N. The protocol LP2 is described in Figure 2.

Alice(
K init,kdf

AB , K init,mac
AB , CTRinit

AB , Kresp,kdf
AB , Kresp,mac

AB , CTRresp
AB

) Bob(
K init,kdf

BA , K init,mac
BA , CTRinit

BA, Kresp,kdf
BA , Kresp,mac

BA , CTRresp
BA

)
C ← NextOdd(CTRinit

AB)

while C > CTRinit
AB

K init,kdf
AB ← F

K
init,kdf
AB

(upd)

CTRinit
AB ← CTRinit

AB + 1
σA ← Mac

K
init,mac
AB

(
A, CTRinit

AB

)
mA =

(
CTRinit

AB , σA

)
if VrfyK

resp,mac
BA

((
A, CTRinit

AB

)
, σA

)
= 0

abort

if CTRinit
AB < CTRresp

BA

abort

while CTRinit
AB > CTRresp

BA

Kresp,kdf
BA ← F

K
resp,kdf
BA

(upd)

CTRresp
BA ← CTRresp

BA + 1

σB ← MacK
resp,mac
BA

(B, CTRresp
BA)

mB = (CTRresp
BA , σB)

sk← F
K

resp,kdf
BA

(der)

Kresp,kdf
BA ← F

K
resp,kdf
BA

(upd)

CTRresp
BA ← CTRresp

BA + 1

if Vrfy
K

init,mac
AB

((B, CTRresp
BA) , σB) = 0

abort

if CTRinit
AB ̸= CTRresp

BA

abort
sk← F

K
init,kdf
AB

(der)

K init,kdf
AB ← F

K
init,kdf
AB

(upd)

CTRinit
AB ← CTRinit

AB + 1

Figure 2: The protocol LP2 from [8].

Let us show an attack against entity authentication of LP2 (both in the model of [8] and in our
model). This attack exploits the absence of nonces in LP2. The actions of the adversary A are as
follows (where Alice is designated by A = Pi and Bob by B = Pj):

1. NewSessionI(π1
i , Pj) //A initiates a new initiator session at Alice.

//This outputs the message mA = (1, σA).
//This step concludes with CTRinit

AB = 1.

2. NewSessionI(π2
i , Pj) //A initiates a new initiator session at Alice.

//This outputs the message m′
A = (3, σ′

A).
//This step concludes with CTRinit

AB = 3.

4. The protocol LP2+ and its security proofs 21

3. NewSessionR(π1
j , Pi, m′

A) //A initiates a new responder session at Bob with message m′
A.

//This outputs the message mB = (3, σB).
//π1

j accepts with π1
j .sk derived from the 3rd update of Kresp,kdf

BA .
//This step concludes with CTRresp

BA = 4.

4. Send(π1
i , mB) //A delivers mB to Alice’s first oracle π1

i .
//π1

i accepts with π1
i .sk derived from the 3rd update of K init,kdf

AB .
//This step concludes with CTRinit

AB = 4.

At the end of these four steps, one has T1
i = (mA, mB), T2

i = (m′
A) and T1

j = (m′
A, mB).

Therefore, the accepting oracle π1
i does not have any partner, as it does not have a partially

matching conversation with π1
j (the only other party’s oracle), nor a partial-transcript matching

conversation in the sense of [8]. Hence this contradicts the entity authentication of the protocol.
One can continue this attack to turn it into an attack against the key indistinguishability of

LP2 as follows:

5. Test(π1
j) //A gets a test key sk.

6. RevealKey(π1
i) //A gets π1

i .sk = π1
j .sk.

7. (sk = π1
i .sk)← A //A outputs 1 if and only if sk = π1

i .sk.
The advantage of A in this key distinguishing attack is AdvKeyInd

LP2 (A) = 1− 1
|K| .

Let us now describe the protocol LP3 from [8]. In contrast to LP2, LP3 is designed as a non-
fixed-role 3-message protocol. In addition to the PRF F : K ×D → K, the constants upd, der ∈ D,
and the MAC Σ = (KeyGen, Mac, Vrfy) as mentioned above, one also needs a constant “conf” as
well as a nonce generator GenN with nonce space N .

The initialization phase of LP3 is done as follows. For each (unordered) pair of parties {A, B} ⊆
{P1, . . . , PM}, one uniformly chooses Kkdf

AB = Kkdf
BA ∈ K and KeyGen is run to get Kmac

AB = Kmac
BA ∈

KMAC. Finally, one initializes the counters CTRAB and CTRBA to 0 and selects the initial states
stnonce

AB and stnonce
BA of GenN. The master keys are initially

MKAB =
(
Kkdf

AB , Kmac
AB , CTRAB , stnonce

AB

)
and

MKBA =
(
Kkdf

BA, Kmac
BA , CTRBA, stnonce

BA

)
.

Note that, as for LP2, we incorporate the state values that are common to every oracle of A with
intended partner B in the master key MKAB (and vice versa). The protocol LP3 is described in
Figure 3 where we assume that the message space M of the MAC contains {P1, . . . , PM} × N × N
and {P1, . . . , PM} × N ×N × N and {P1, . . . , PM} × N ×N × N× {conf}.

4. The protocol LP2+ and its security proofs 22

Alice(
Kkdf

AB , Kmac
AB , CTRAB , stnonce

AB

) Bob(
Kkdf

BA, Kmac
BA , CTRBA, stnonce

BA

)
N1 ← GenN(stnonce

AB)

σ1 ← MacKmac
AB

(A, N1, CTRAB)
m1 = (N1, CTRAB , σ1)

if VrfyKmac
BA

((A, N1, CTRAB) , σ1) = 0

abort

while CTRAB > CTRBA

Kkdf
BA ← FKkdf

BA
(upd)

CTRBA ← CTRBA + 1

N2 ← GenN(stnonce
BA)

σ2 ← MacKmac
BA

(B, N1, N2, CTRBA)
m2 = (N2, CTRBA, σ2)

if VrfyKmac
AB

((B, N1, N2, CTRBA) , σ2) = 0

abort

while CTRBA > CTRAB

Kkdf
AB ← FKkdf

AB
(upd)

CTRAB ← CTRAB + 1

σ3 ← MacKmac
AB

(A, N1, N2, CTRAB , conf)
m3 = (CTRAB , σ3)

sk← FKkdf
AB

(der)

Kkdf
AB ← FKkdf

AB
(upd)

CTRAB ← CTRAB + 1

if VrfyKmac
BA

((A, N1, N2, CTRAB , conf) , σ3) = 0

abort

if CTRAB ̸= CTRBA

abort
sk← FKkdf

BA
(der)

Kkdf
BA ← FKkdf

BA
(upd)

CTRBA ← CTRBA + 1

Figure 3: The protocol LP3 from [8].

Let us show a key distinguishing attack against LP3 (both in the model of [8] and in our model).
The attack is based on the fact that the roles are not fixed in LP3. The actions of the adversary A
are as follows (where Alice is designated by A = Pi and Bob by B = Pj):

1. NewSessionI(π1
j , Pi) //A initiates a new initiator session at Bob.

//This outputs the message m1 = (N1, 0, σ1).
//This step concludes with CTRBA = 0.

2. NewSessionR(π1
i , Pj , m1) //A initiates a new responder session at Alice with message m1.

//This outputs the message m2 = (N2, 0, σ2).
//This step concludes with CTRAB = 0.

4. The protocol LP2+ and its security proofs 23

3. NewSessionI(π2
i , Pj) //A initiates a new initiator session at Alice.

//This outputs the message m′
1 = (N ′

1, 0, σ′
1).

//This step concludes with CTRAB = 0.

4. NewSessionR(π2
j , Pi, m′

1) //A initiates a new responder session at Bob with message m′
1.

//This outputs the message m′
2 = (N ′

2, 0, σ′
2).

//This step concludes with CTRBA = 0.

5. Send(π2
i , m′

2) //A delivers m′
2 to Alice’s second oracle π2

i .
//This outputs the message m′

3 = (0, σ′
3).

//π2
i accepts with π2

i .sk derived from the initial Kkdf
AB .

//This step concludes with CTRAB = 1.

6. Send(π1
j , m2) //A delivers m2 to Bob’s first oracle π1

j .
//This outputs the message m3 = (0, σ3).
//π1

j accepts with π1
j .sk derived from the initial Kkdf

BA.
//This step concludes with CTRBA = 1.

7. Test(π2
i) //A gets a test key sk.

8. RevealKey(π1
j) //A gets π1

j .sk = π2
i .sk.

9. (sk = π1
j .sk)← A //A outputs 1 if and only if sk = π1

j .sk.

Since T1
i = (m1, m2), T2

i = (m′
1, m′

2, m′
3), T1

j = (m1, m2, m3) and T2
j = (m′

1, m′
2), nothing

forbids A to use RevealKey(π1
j) which gives it the key π2

i .sk. Again, the advantage of this attack
against key indistinguishability is AdvKeyInd

LP3 (A) = 1− 1
|K| . However, notice that, if A delivers m′

3
to π2

j , it will abort because the value of its internal counter equals 1 and is thus different from 0 as
specified in m′

3 (and similarly if A delivers m3 to π1
i). For this reason, we do not know how to apply

this attack in practice. But in theory as in the real world, security notions are often composed
many times and a mistake, which may appear insignificant at first sight, might have dramatic
consequences. Therefore, we promote rigorous statements and proofs of security notions.

4.2 The new protocol LP2+
Our new protocol LP2+ has been designed based on the following ideas. The protocol LP3, which
uses three messages while LP2 uses only two, was designed to work with no fixed roles. But, as
we have shown above, one can actually not use it bidirectionally. In order to design a new fully
proved AKE protocol that fixes the security flaws of LP2 and LP3, it thus seems more promising to
design a 2-message protocol in duplex mode. However, as it stands, LP2 does not ensure entity
authentication due to the lack of nonces. Hence, similarly as for LP3, we use a nonce selection in
both parties. With these nonces, the update of the KDF key in the first step of LP2 is no longer
necessary. Even though nonce collisions must be avoided only at the initiator side, we chose to
explicitly include a nonce selection also at the responder side to prevent key control for the initiator,
which could be unwanted in some applications. If one is not interested by this feature, one can use
our last example of nonce generator in Subsection 3.3.

The design of LP2+ is based on the following ingredients:
• a PRF F : K ×D → R with K = R (and where K = Ks will be the session key space);
• a strongly unforgeable MAC Σ = (KeyGen, Mac, Vrfy) with key space KMAC, message spaceM

and tag space T ;
• a nonce generator GenN with nonce space N ;
• a constant upd ∈ D;
• a function der : N ×N → D \ {upd}.

4. The protocol LP2+ and its security proofs 24

The initialization phase of the protocol LP2+ is as follows. For each unordered pair of distinct
parties {A, B} ⊆ {P1, . . . , PM}, one uniformly and independently chooses K init,kdf

AB = Kresp,kdf
BA ∈ K

and K init,kdf
BA = Kresp,kdf

AB ∈ K. Moreover, KeyGen is run to get Kmac
AB = Kmac

BA ∈ KMAC. Finally, one
initializes four counters CTRinit

AB , CTRresp
AB , CTRinit

BA and CTRresp
BA to 0 and selects the initial states

stinitN
AB , strespN

AB , stinitN
BA and strespN

BA of GenN. The master keys on both sides are initially

MKAB =
(

K init,kdf
AB , CTRinit

AB , stinitN
AB , Kresp,kdf

AB , CTRresp
AB , strespN

AB , Kmac
AB

)
and

MKBA =
(

K init,kdf
BA , CTRinit

BA, stinitN
BA , Kresp,kdf

BA , CTRresp
BA , strespN

BA , Kmac
BA

)
.

Again, we put the state values that are common to several oracles in the master keys to provide
them access to those states. We assume that the message space M of the MAC contains as disjoint
subsets {P1, . . . , PM} × N×N and {P1, . . . , PM} × N×N ×N . The protocol LP2+ is described
in Figure 4. Let us make precise the following points:

• an abort instruction for an oracle πs
i means πs

i .α← rejected and the execution of the query
aborts, meaning that the next instructions are not performed;

• an instruction sk← X for an oracle πs
i means πs

i .sk← X; πs
i .α← accepted;

• in a NewSessionI(πs
i , Pj) query, the nonce NA that is generated is stored in the state of the

oracle πs
i .st← NA and reused during a Send(πs

i , m) query.
In the security theorems below, we denote by Coll(GenN, q, stinitN

0) the maximum value of
Coll(GenN, q, st0) as in Subsection 3.3 when st0 runs through the initial value of stinitN

AB for all
distinct A, B ∈ {P1, . . . , PM}.

4.3 The full security proofs
In this subsection, we prove the correctness (Theorem 19), weak synchronization robustness (Theo-
rem 20), entity authentication (Theorem 23), and key indistinguishability (Theorem 24) of LP2+.
These properties rely on the assumptions that the function F is a PRF, the MAC Σ is strongly
unforgeable, and on the absence of nonce collision at the initiator side.

Let us first start with a lemma that we will use several times without always making an explicit
reference to it. For point 3 below, for a function f : K → K, we define as usual the following
functions K → K by induction: f0 = idK and fn+1 = f ◦ fn for each n ∈ N. We apply in particular
this definition to the function update : K → K, which maps k 7→ Fk(upd).

Lemma 18. Consider an adversary A attacking LP2+ as usual: a challenger initializes M parties
{P1, . . . , PM} and A may issue queries NewSessionI, NewSessionR, Send, RevealKey, RevealState,
Corrupt and Test as defined in Section 2. Let A, B ∈ {P1, . . . , PM} be two distinct parties. Then,
the following properties hold.

1. At any time during the experiment, one has Kmac
AB = Kmac

BA and this key does not evolve over
time.

2. The counters CTRinit
AB , CTRresp

AB , CTRinit
BA and CTRresp

BA are non-decreasing over time.
3. At any time during the experiment (except between consecutive instructions KX,kdf

Y ←
FKX,kdf

Y
(upd); CTRX

Y ← CTRX
Y + 1 with (X, Y) = (init, AB) or (X, Y) = (resp, BA)), one has

K init,kdf
AB = updateCTRinit

AB (K) and Kresp,kdf
BA = updateCTRresp

BA (K)

where K is the initial K init,kdf
AB = Kresp,kdf

BA .

Proof. 1. No query of A can ever change Kmac
AB or Kmac

BA . Since the equality Kmac
AB = Kmac

BA holds
at the initialization phase, it remains true at all time.

2. The only way these counters can evolve is via protocol actions. Since all instructions modifying
these counters are of the form CTR← CTR + 1, the claim is obvious.

4. The protocol LP2+ and its security proofs 25

Alice(
K init,kdf

AB , CTRinit
AB , stinitN

AB , Kresp,kdf
AB , CTRresp

AB , strespN
AB , Kmac

AB

) Bob(
K init,kdf

BA , CTRinit
BA, stinitN

BA , Kresp,kdf
BA , CTRresp

BA , strespN
BA , Kmac

BA

)
NA ← GenN(stinitN

AB)

σA ← MacKmac
AB

(
A, CTRinit

AB , NA

)
mA =

(
CTRinit

AB , NA, σA

)
if mA /∈ N×N × T

abort
if VrfyKmac

BA

((
A, CTRinit

AB , NA

)
, σA

)
= 0

abort

while CTRinit
AB > CTRresp

BA

Kresp,kdf
BA ← F

K
resp,kdf
BA

(upd)

CTRresp
BA ← CTRresp

BA + 1

NB ← GenN(strespN
BA)

σB ← MacKmac
BA

(B, CTRresp
BA , NA, NB)

mB = (CTRresp
BA , NB , σB)

sk← F
K

resp,kdf
BA

(der(NA, NB))

Kresp,kdf
BA ← F

K
resp,kdf
BA

(upd)

CTRresp
BA ← CTRresp

BA + 1

if mB /∈ N×N × T

abort
if VrfyKmac

AB
((B, CTRresp

BA , NA, NB) , σB) = 0

abort

if CTRresp
BA < CTRinit

AB

abort

while CTRresp
BA > CTRinit

AB

K init,kdf
AB ← F

K
init,kdf
AB

(upd)

CTRinit
AB ← CTRinit

AB + 1
sk← F

K
init,kdf
AB

(der(NA, NB))

K init,kdf
AB ← F

K
init,kdf
AB

(upd)

CTRinit
AB ← CTRinit

AB + 1

Figure 4: The AKE protocol LP2+ with perfect forward secrecy and weak synchronization robustness.

4. The protocol LP2+ and its security proofs 26

3. Since the counters CTRinit
AB and CTRresp

BA are initialized to 0, the statement is clearly true at
the beginning. The statement for K init,kdf

AB then follows from the fact that K init,kdf
AB evolves

always just before CTRinit
AB evolves, CTRinit

AB evolves always just after K init,kdf
AB evolves and they

do it always as K init,kdf
AB ← update(K init,kdf

AB) followed directly by CTRinit
AB ← CTRinit

AB + 1. One
shows with similar arguments the statement for Kresp,kdf

BA .

The correctness of LP2+ depends neither on the security of the PFR, the MAC or the nonce
generator, nor on any assumptions on the power of the adversary.

Theorem 19 (Correctness of LP2+). Let A be an adversary attacking the correctness of the
protocol LP2+. One has

AdvCorr
LP2+(A) = 0.

Proof. In view of Definition 4, one must show that if the oracles πs
i and πt

j are mutual partners,
then πs

i .sk = πt
j .sk. From Definition 3, we know that both oracles have accepted with the same

transcript and πs
i .pid = Pj , πt

j .pid = Pi and πs
i .ρ ̸= πt

j .ρ. Without loss of generality, we can thus
assume that πs

i .ρ = initiator and πt
j .ρ = responder and we denote Pi = A and Pj = B.

Since πs
i has accepted, its transcript Ts

i must consist of two messages mA, mB of the form
mA = (C, NA, σA) ∈ N × N × T and mB = (C ′, NB , σB) ∈ N × N × T . Moreover, because
of the third if test in the query Send(πs

i , mB) and the subsequent while loop, we know that
CTRinit

AB = C ′ when πs
i accepted, that is, at the time of instruction sk ← FKinit,kdf

AB
(der(NA, NB)).

In view of Lemma 18.3, this means that πs
i .sk = FupdateC′ (K)(der(NA, NB)) where K is the initial

K init,kdf
AB = Kresp,kdf

BA .
Since Ts

i = Tt
j = (mA, mB), we know that the nonces received and generated by πt

j are
respectively NA and NB. Moreover, when πt

j accepted, that is, at the time of instruction sk ←
FKresp,kdf

BA
(der(NA, NB)), we know that CTRresp

BA = C ′. In view of Lemma 18.3, this means that
πt

j .sk = FupdateC′ (K)(der(NA, NB)) and so πs
i .sk = πt

j .sk.

As for correctness, the weak synchronization robustness of LP2+ also holds for an adversary
with unlimited resources, and independently of the security of the PRF, the MAC and the nonce
generator.

Theorem 20 (Weak synchronization robustness of LP2+). Let A be an adversary attacking the
weak synchronization robustness of the protocol LP2+. One has

AdvwSR
LP2+(A) = 0.

Proof. We prove here that if an honest run of the protocol was executed between oracles πs
i

and πt
j and A made no queries to interrupt the protocol execution between πs

i and πt
j , then

πs
i .α = πt

j .α = accepted and πs
i .sk = πt

j .sk. Note that, contrary to Definition 6, we even allow the
adversary to corrupt Pi with respect to Pj and vice versa. Without loss of generality, we assume
that πs

i .ρ = initiator and πt
j .ρ = responder and we denote Pi = A and Pj = B.

Let us denote by C and C ′ the respective values of CTRinit
AB and CTRresp

BA at the start of the honest
run of the protocol. We also denote by k the constant key k = Kmac

AB = Kmac
BA (see Lemma 18.1),

and by K the initial key K init,kdf
AB = Kresp,kdf

BA .
The honest run starts with the query NewSessionI(πs

i , Pj). Upon this query, a nonce NA ∈ N is
selected, a tag σA ∈ T is generated as σA ← Mack(A, C, NA) and the message mA = (C, NA, σA) is
output.

The immediate next query of A is NewSessionR(πt
j , Pi, mA). By construction, one has mA ∈

N×N × T and Vrfyk((A, C, NA), σA) = 1 since our MACs are required to be always correct (see
Subsection 3.2). After these checks, the while loop has the effect of turning CTRresp

BA to max{C, C ′}
and updating Kresp,kdf

BA accordingly. A nonce NB ∈ N is then selected and a tag σB ∈ T is generated
as σB ← Mack(B, max{C, C ′}, NA, NB). The message mB = (max{C, C ′}, NB , σB) is then output
and πt

j accepts with πt
j .sk = Fupdatemax{C,C′}(K)(der(NA, NB)) (see Lemma 18.3). Moreover, another

update of Kresp,kdf
BA and CTRresp

BA is performed.

4. The protocol LP2+ and its security proofs 27

The last query of the honest run by A is Send(πs
i , mB). By construction, one has mB ∈ N×N×T ,

Vrfyk((B, max{C, C ′}, NA, NB), σB) = 1

and max{C, C ′} ⩾ CTRinit
AB = C. After these checks, the while loop has the effect of turn-

ing CTRinit
AB to max{C, C ′} and updating K init,kdf

AB accordingly. Then, πs
i accepts with πs

i .sk =
Fupdatemax{C,C′}(K)(der(NA, NB)) (see Lemma 18.3). Finally, another update of K init,kdf

AB and CTRinit
AB

is done.
We thus have proved that, after the execution of the honest run of the protocol between πs

i

and πt
j , one has πs

i .α = πt
j .α = accepted and πs

i .sk = Fupdatemax{C,C′}(K)(der(NA, NB)) = πt
j .sk.

Before proceeding with the proofs of entity authentication and key indistinguishability of LP2+,
we first need the following lemma.

Lemma 21. Consider an adversary A attacking LP2+ as usual: a challenger initializes M parties
{P1, . . . , PM} and A may issue queries NewSessionI, NewSessionR, Send, RevealKey, RevealState,
Corrupt and Test as defined in Section 2. Let {A, B} be an unordered pair of distinct parties. Let
EAB be the event that, at some point in the execution of A,

(a) A made a NewSessionR query or a Send query to an oracle πs
i which was, at the end of this

query, two-sided uncorrupted with {Pi, πs
i .pid} = {A, B},

(b) that this query passed the Vrfy test of the oracle,
(c) and that the message-tag pair (m, σ) that passed this Vrfy test had not been previously

obtained by an instruction σ ← Mac(·)(m) of an oracle πt
j with Pj = πs

i .pid, πt
j .pid = Pi and

πt
j .ρ ̸= πs

i .ρ.
Then, there exists an adversary BAB attacking the MAC Σ such that

Pr(EAB) = AdvSEUF-CMA
Σ (BAB , q) (1)

where q is an upper bound on the number of oracles πs
i with {Pi, πs

i .pid} = {A, B}. Moreover, BAB

makes at most q queries to each of its oracles OMac and OVrfy, and its running time is about the
same as that of A plus the time needed to simulate the protocol instructions to answer A’s queries
plus the time needed to initialize the parties plus the time needed to check if V \ Q = ∅ after each
successful query of BAB to its oracle OVrfy.

Proof. The algorithm BAB starts by initializing the oracles of the parties {P1, . . . , PM} as usual
and, for each unordered pair {A′, B′} of distinct parties, BAB uniformly and independently chooses
K init,kdf

A′B′ = Kresp,kdf
B′A′ ∈ K and K init,kdf

B′A′ = Kresp,kdf
A′B′ ∈ K, it initializes the counters CTRinit

A′B′ , CTRresp
A′B′ ,

CTRinit
B′A′ and CTRresp

B′A′ to 0, and it selects the initial states stinitN
A′B′ , strespN

A′B′ , stinitN
B′A′ and strespN

B′A′ of
GenN. Moreover, if {A′, B′} ̸= {A, B}, BAB generates Kmac

A′B′ = Kmac
B′A′ by running KeyGen. The

key Kmac
AB = Kmac

BA ∈ KMAC is not chosen by BAB but it will use its oracles instead. Then BAB

runs A and answers its queries as specified in the protocol (see Figure 4). In more detail, for
all queries NewSessionI, NewSessionR and Send issued to oracles πs

i with intended partner Pj

with {Pi, Pj} ̸= {A, B}, BAB can answer exactly as specified. If {Pi, Pj} = {A, B}, BAB will
simply use its oracles OMac and OVrfy to sign and verify the tags, respectively (see Definition 16).
Upon queries RevealKey, RevealState and Test, BAB simply answers as in their definitions. For
queries Corrupt(Pi, Pj) with {Pi, Pj} ≠ {A, B}, BAB also answers as in its definition. Upon query
Corrupt(Pi, Pj) with {Pi, Pj} = {A, B}, BAB aborts and the output is considered as 0. As soon as
V \ Q ≠ ∅ (see Definition 16), BAB stops and thus wins. Notice that the running time of BAB is as
given in the statement. For each oracle πs

i , A can issue at most one NewSessionR or Send query to
it, thus BAB makes at most q queries to OVrfy. Moreover, A can issue at most one NewSessionI or
NewSessionR query to πs

i , thus BAB makes at most q queries to OMac.
It remains to prove the equality (1). Let us notice that, while BAB is running, it perfectly

simulates A. Moreover, there are only two possibilities for BAB to stop A in advance. Either A
issues a Corrupt(A, B) query or a Corrupt(B, A) query (and in both of these events, BAB looses),
or, at some point, V \ Q ̸= ∅ (and in that case BAB wins).

4. The protocol LP2+ and its security proofs 28

In the first case, it is already known at that point whether the event EAB will occur: if it has not
been realized before that corruption, it is known that it will not occur afterwards since all oracles
πs

i with {Pi, πs
i .pid} = {A, B} are no longer two-sided uncorrupted.

In the second case, V \ Q ≠ ∅ means that A made a NewSessionR query or a Send query to
an oracle πs

i with intended partner Pj with {Pi, Pj} = {A, B}, as it is the only way for V to be
updated. The oracle was two-sided uncorrupted at the end of this query, otherwise BAB would
have aborted. Hence, condition (a) is met. Furthermore, V \ Q ̸= ∅ means that the query passed
the Vrfy test of the oracle (hence condition (b) is met) and that the message-tag pair (m, σ) that
passed this Vrfy test had not been previously obtained by an instruction σ ← Mac(·)(m) of an
oracle πt

j with {Pj , πt
j .pid} = {A, B} (which implies condition (c)). Therefore, V \ Q ≠ ∅ implies

that EAB occurs. Conversely, if EAB occurs and if the message-tag pair (m, σ) of condition (c)
had been obtained by an oracle πt

j with {Pj , πt
j .pid} = {A, B}, since {P1, . . . , PM} × N ×N and

{P1, . . . , PM}×N×N ×N are disjoint subsets ofM (by assumption, see Subsection 4.2) and since
the identity of the tagging party is included in the tagged message, one must have πt

j .ρ ̸= πs
i .ρ,

Pj = πs
i .pid, and πt

j .pid = Pi, contradicting condition (c). Therefore, V \ Q ̸= ∅ occurs exactly
when EAB occurs.

Hence, the probability that EAB occurs in a normal execution of A is equal to the probability
that EAB occurs in an execution of A as a subroutine of BAB, which is equal to the probability
that BAB wins.

Corollary 22. Consider an adversary A attacking LP2+ as usual: a challenger initializes M parties
{P1, . . . , PM} and A may issue queries NewSessionI, NewSessionR, Send, RevealKey, RevealState,
Corrupt and Test as defined in Section 2. Suppose that, for each ordered pair (A, B) of distinct
parties, A makes at most q queries NewSessionI and q queries NewSessionR to A with intended
partner B. For each unordered pair {A, B} of distinct parties, let EAB be the event that, at some
point in the execution of A,

(a) A made a NewSessionR query or a Send query to an oracle πs
i which was, at the end of this

query, two-sided uncorrupted with {Pi, πs
i .pid} = {A, B},

(b) that this query passed the Vrfy test of the oracle,
(c) and that the message-tag pair (m, σ) that passed this Vrfy test had not been previously

obtained by an instruction σ ← Mac(·)(m) of an oracle πt
j with Pj = πs

i .pid, πt
j .pid = Pi and

πt
j .ρ ̸= πs

i .ρ.
Then, there exists an adversary B attacking the MAC Σ such that

Pr(EAB) ⩽ 4q ·AdvSEUF-CMA
Σ (B)

for all unordered pairs {A, B} of distinct parties. Moreover, B queries at most 4q times its
oracle OMac. In terms of F , Mac and Vrfy evaluations, B makes at most those made by A plus
those needed to simulate the protocol instructions to answer A’s queries.

Proof. For each unordered pair {A, B} of distinct parties, we know that there are at most
• q oracles πs

i with Pi = A, πs
i .pid = B and πs

i .ρ = initiator,
• q oracles πs

i with Pi = A, πs
i .pid = B and πs

i .ρ = responder,
• q oracles πs

i with Pi = B, πs
i .pid = A and πs

i .ρ = initiator,
• q oracles πs

i with Pi = B, πs
i .pid = A and πs

i .ρ = responder.
Therefore, there are at most 4q oracles πs

i with {Pi, πs
i .pid} = {A, B}. For each such {A, B}, let

BAB be the adversary given by Lemma 21. We thus know that Pr(EAB) = AdvSEUF-CMA
Σ (BAB , 4q).

Taking B′ to be the BAB that maximizes AdvSEUF-CMA
Σ (BAB , 4q), we have

Pr(EAB) ⩽ AdvSEUF-CMA
Σ (B′, 4q)

for all {A, B}. Then, taking B to be given by Theorem 17, we have Pr(EAB) ⩽ 4q ·AdvSEUF-CMA
Σ (B)

as desired. Since B′ makes at most 4q queries to its oracle OMac, so does B. The number of
computations made by B comes from that of B′ (see Theorem 17) which comes from those of the
BAB ’s (see Lemma 21).

4. The protocol LP2+ and its security proofs 29

The following theorem shows that entity authentication of LP2+ is independent of nonce collision
at the responder side and of the security of the PRF F .

Theorem 23 (Entity authentication of LP2+). Let A be an adversary attacking the entity
authentication of the protocol LP2+ with M parties. Suppose that, for each ordered pair (A, B)
of distinct parties, A makes at most q queries NewSessionI and q queries NewSessionR to A with
intended partner B. Then, there exists an adversary B attacking the MAC Σ such that

AdvEntAuth
LP2+ (A) ⩽ M(M − 1) ·

(
Coll(GenN, q, stinitN

0) + 2q ·AdvSEUF-CMA
Σ (B)

)
.

Moreover, B queries at most 4q times its oracle OMac. In terms of F , Mac and Vrfy evaluations, B
makes at most those made by A plus those needed to simulate the protocol instructions to answer
A’s queries.

Proof. We proceed via a sequence of reductions using different games.

Game 0. This is the original game G0 = EntAuthA,LP2+ as defined in Definition 9. We thus
have AdvEntAuth

LP2+ (A) = Pr(G0 = 1).

Game 1. This game G1 is the same as G0 except that, as soon as some party A generates
the same nonce NA twice in two different queries NewSessionI with the same intended partner B,
then the experiment aborts and outputs 0. We call this event D and we have Pr(G0 = 1|¬D) =
Pr(G1 = 1|¬D). For a fixed ordered pair (A, B) of distinct parties, the probability that A, as
an initiator, generates twice the same nonce for B is upper bounded by Coll(GenN, q, stinitN

0)
since A is queried at most q times a NewSessionI query with intended partner B. Therefore,
the probability that G1 aborts early (in comparison to G0), that is Pr(D), is upper bounded by
M(M − 1) · Coll(GenN, q, stinitN

0). This means that

Pr(G0 = 1) = Pr(G0 = 1|¬D) Pr(¬D) + Pr(G0 = 1|D) Pr(D)
⩽ Pr(G1 = 1|¬D) Pr(¬D) + Pr(D)
⩽ Pr(G1 = 1) + M(M − 1) · Coll(GenN, q, stinitN

0).

Game 2. This game G2 is the same as G1 except that, at the beginning, the challenger guesses
an unordered pair {A, B} of distinct parties uniformly and, once A has concluded, the experiment
outputs 1 if and only if there exists an oracle πs

i that accepts maliciously with {Pi, πs
i .pid} = {A, B}

(see Definition 9). Then, denoting the guess of the challenger by “guess”, we have

Pr(G1 = 1) = Pr

 ∨
{A,B}

(some πs
i accepts maliciously with {Pi, πs

i .pid} = {A, B})

⩽

∑
{A,B}

Pr (some πs
i accepts maliciously with {Pi, πs

i .pid} = {A, B})

=
∑

{A,B}

Pr(G2 = 1 | guess = {A, B})

= M(M − 1)
2 ·

∑
{A,B}

Pr(G2 = 1 | guess = {A, B}) Pr(guess = {A, B})

= M(M − 1)
2 · Pr(G2 = 1).

Now, for each unordered pair {A, B} of distinct parties, let EAB be the event defined in
Corollary 22 and let B be the adversary attacking Σ given by this corollary. We will prove that for
each such {A, B}, one has

Pr(G2 = 1 | guess = {A, B} ∧ ¬EAB) = 0. (2)

4. The protocol LP2+ and its security proofs 30

This would mean that

Pr(G2 = 1 | guess = {A, B}) = Pr(G2 = 1 | guess = {A, B} ∧ EAB) Pr(EAB | guess = {A, B})
+ Pr(G2 = 1 | guess = {A, B} ∧ ¬EAB) Pr(¬EAB | guess = {A, B})

= Pr(G2 = 1 | guess = {A, B} ∧ EAB) Pr(EAB)
⩽ 4q ·AdvSEUF-CMA

Σ (B).

Therefore,

Pr(G2 = 1) =
∑

{A,B}

Pr (G2 = 1 | guess = {A, B}) Pr (guess = {A, B})

⩽
∑

{A,B}

4q ·AdvSEUF-CMA
Σ (B) Pr (guess = {A, B})

= 4q ·AdvSEUF-CMA
Σ (B)

which, putting everything together, will conclude the proof.
It thus remains to prove (2). We fix an unordered pair {A, B} of distinct parties, we assume

that guess = {A, B} and that EAB does not occur, and we must prove that G2 = 1 is impossible,
that is, there is no oracle πs

i that accepts maliciously with {Pi, πs
i .pid} = {A, B}. By contradiction,

let us suppose that such a πs
i exists. In particular, πs

i accepted and it was two-sided uncorrupted
when it did. In view of the definition of G1, we also suppose that all initiator oracles of a party that
have as intended partner the same fixed party produce different nonces.

Let us first treat the case where πs
i .ρ = initiator. By symmetry, we can suppose Pi = A and

πs
i .pid = Pj = B. Let us notice that it is not possible that there are two distinct πt

j and πt′

j such
that πs

i has both πt
j and πt′

j as partners. Indeed, if it were the case, as πs
i had received the last

message of its transcript, one would have Ts
i = Tt

j = Tt′

j (see Definitions 1 and 2). This would
mean that πt

j and πt′

j both output the same message mB, and in particular they both accepted
with the same value of CTRresp

BA . This is impossible since CTRresp
BA was increased when these oracles

accepted and this counter is non-decreasing (see Lemma 18.2). As we have assumed that πs
i has

accepted maliciously, this implies, in view of Definition 9, that there is no πt
j such that πs

i has
πt

j as strong partner. Let us show that this leads to a contradiction. Since πs
i .α = accepted, the

second message of its transcript must be of the form mB = (C, NB , σB) with C ∈ N, NB ∈ N ,
σB ∈ T and VrfyKmac

AB
((B, C, NA, NB), σB) = 1 where NA, stored in πs

i .st, is the nonce from the first
message of πs

i . Since EAB does not occur, there exists an oracle πt
j that previously produced the tag

σB ← MacKmac
BA

(B, C, NA, NB) and such that πt
j .pid = A and πt

j .ρ = responder. Moreover, it must
have been initialized with a NewSessionR query with a message mA of the form mA = (C ′, NA, σA)
with C ′ ∈ N, NA ∈ N , σA ∈ T and VrfyKmac

BA
((A, C ′, NA), σA) = 1. Since EAB does not occur,

there exists an oracle πs′

i that previously produced the tag σA ← MacKmac
AB

(A, C ′, NA) and such that
πs′

i .pid = B and πs′

i .ρ = initiator. Moreover, at initialization, it has produced the nonce NA, which
means that πs′

i = πs
i (i.e. s′ = s) by definition of G1. Therefore, one has Ts

i = (mA, mB) = Tt
j and

πs
i first produced mA, then mA was delivered to πt

j which produced mB and accepted and finally,
mB was delivered to πs

i which accepted. This means that πs
i has πt

j as strong partner, which is a
contradiction.

Let us conclude with the case πs
i .ρ = responder. By symmetry, we can suppose Pi = B and

πs
i .pid = Pj = A. We first remark that it is not possible that there are two distinct πt

j and πt′

j

such that πs
i has both πt

j and πt′

j as partners. Indeed, if this were the case, the first message of
πs

i , πt
j and πt′

j would be the same. In particular, A would have generated as initiator twice the
same nonce for B, which would contradicts the definition of G1. Therefore and as before, in view
of Definition 9, we can suppose that there is no πt

j such that πs
i has πt

j as strong partner. Since
πs

i .α = accepted, the first message of its transcript must be of the form mA = (C, NA, σA) with
C ∈ N, NA ∈ N , σA ∈ T and VrfyKmac

BA
((A, C, NA), σA) = 1. Since EAB does not occur, there exists

an oracle πt
j that previously produced the tag σA ← MacKmac

AB
(A, C, NA) and such that πt

j .pid = B

and πt
j .ρ = initiator. Moreover, at initialization, this oracle πt

j must have output the message mA.

4. The protocol LP2+ and its security proofs 31

Therefore, πt
j first produced the message mA and then it was delivered to πs

i which accepted. This
means that πs

i has πt
j as strong partner, which is a contradiction.

Finally, we show the key indistinguishability of LP2+. Note that it does not depend on the
collision resistance of nonces in the responder side.

Theorem 24 (Key indistinguishability of LP2+). Let A be an adversary attacking the key
indistinguishability of the protocol LP2+ with M parties. Suppose that, for each ordered pair
(A, B) of distinct parties, A makes at most q queries NewSessionI and q queries NewSessionR to
A with intended partner B. Then, there exist adversaries B and C attacking the MAC Σ and the
pseudo-random function F respectively, such that

AdvKeyInd
LP2+ (A) ⩽ M(M − 1) ·

(
Coll(GenN, q, stinitN

0) + 2q ·AdvSEUF-CMA
Σ (B) + 2q ·AdvPRF

F (C)
)

.

Moreover, B queries at most 4q times its oracle OMac and C queries at most 3 times its oracle Og.
In terms of F , Mac and Vrfy evaluations, B makes at most those made by A plus those needed to
simulate the protocol instructions to answer A’s queries; while C makes at most those made by A
plus those needed to simulate the protocol instructions to answer A’s queries plus 3q evaluations
of F .

Proof. We proceed via a sequence of reductions using different games.

Game 0. This is the original game G0 = KeyIndA,LP2+ as defined in Definition 10. We thus
have

AdvKeyInd
LP2+ (A) = 2

∣∣∣∣Pr(G0 = 1)− 1
2

∣∣∣∣ . (3)

Game 1. This game G1 is the same as G0 except that, as soon as some party A generates the
same nonce NA twice in two different queries NewSessionI with the same intended partner B, then
the experiment aborts and outputs a uniformly chosen value in {0, 1}. We denote by D the event that
such an abortion occurs. For a fixed ordered pair (A, B) of distinct parties, the probability that A,
as an initiator, generates twice the same nonce for B is upper bounded by Coll(GenN, q, stinitN

0)
since A is queried at most q times a NewSessionI query with intended partner B. Therefore,

Pr(D) ⩽ M(M − 1) · Coll(GenN, q, stinitN
0).

We have

Pr(G1 = 1) = Pr(G1 = 1 |D) Pr(D) + Pr(G1 = 1 | ¬D) Pr(¬D)

= 1
2 Pr(D) + Pr(G0 = 1 | ¬D) Pr(¬D)

= 1
2 Pr(D) + Pr(G0 = 1)− Pr(G0 = 1 |D) Pr(D)

and thus, ∣∣∣∣Pr(G0 = 1)− 1
2

∣∣∣∣ =
∣∣∣∣(Pr(G0 = 1 |D)− 1

2

)
Pr(D) + Pr(G1 = 1)− 1

2

∣∣∣∣
⩽

1
2 Pr(D) +

∣∣∣∣Pr(G1 = 1)− 1
2

∣∣∣∣ .

This yields

2
∣∣∣∣Pr(G0 = 1)− 1

2

∣∣∣∣ ⩽ M(M − 1) · Coll(GenN, q, stinitN
0) + 2

∣∣∣∣Pr(G1 = 1)− 1
2

∣∣∣∣ . (4)

Game 2. Let E be the event that, at some point in the execution of A,
(a) A makes a NewSessionR query or a Send query to an oracle πs

i which is, at the end of this
query, two-sided uncorrupted,

4. The protocol LP2+ and its security proofs 32

(b) this query passes the Vrfy test of the oracle,
(c) and the message-tag pair (m, σ) that passes this Vrfy test has not been previously obtained by

an instruction σ ← Mac(·)(m) of an oracle πt
j with Pj = πs

i .pid, πt
j .pid = Pi and πt

j .ρ ̸= πs
i .ρ.

The game G2 is the same as G1 except that, if E occurs, then the experiment aborts and outputs a
uniform value in {0, 1}. One has that

Pr(G2 = 1) = Pr(G2 = 1 |E) Pr(E) + Pr(G2 = 1 | ¬E) Pr(¬E)

= 1
2 Pr(E) + Pr(G1 = 1 | ¬E) Pr(¬E)

= 1
2 Pr(E) + Pr(G1 = 1)− Pr(G1 = 1 |E) Pr(E)

and therefore, ∣∣∣∣Pr(G1 = 1)− 1
2

∣∣∣∣ =
∣∣∣∣(Pr(G1 = 1 |E)− 1

2

)
Pr(E) + Pr(G2 = 1)− 1

2

∣∣∣∣
⩽

1
2 Pr(E) +

∣∣∣∣Pr(G2 = 1)− 1
2

∣∣∣∣ .

By Corollary 22, we know that there exists an adversary B of Σ with the complexity as in the
statement and such that Pr(EAB) ⩽ 4q ·AdvSEUF-CMA

Σ (B) for all unordered pair {A, B} of distinct
parties where EAB is as in Corollary 22. Since E =

∨
{A,B} EAB , we know that

Pr(E) ⩽ 2M(M − 1)q ·AdvSEUF-CMA
Σ (B)

and so

2
∣∣∣∣Pr(G1 = 1)− 1

2

∣∣∣∣ ⩽ 2M(M − 1)q ·AdvSEUF-CMA
Σ (B) + 2

∣∣∣∣Pr(G2 = 1)− 1
2

∣∣∣∣ . (5)

Game 3. This game G3 is the same as G2 except that, at the beginning, the challenger guesses
an ordered pair (A, B) of distinct parties uniformly and, once A has concluded, if A has made
its Test query on πs

i with (Pi, πs
i .pid, πs

i .ρ) /∈ {(A, B, initiator), (B, A, responder)} = SAB , then the
experiment aborts and outputs a uniform value in {0, 1} (otherwise, the output of the experiment is
as in G2). Let T be the random variable that takes the value (Pi, πs

i .pid, πs
i .ρ) if A makes its Test

query on πs
i (and ⊥ if A does not make any Test query). From the description of G3 and of T , we

have
Pr(G3 = 1 |T ∈ SAB) = Pr(G2 = 1 |T ∈ SAB) = Pr(G2 = 1 |T ̸=⊥).

By condition 4(a) in Definition 10, one has Pr(G2 = 1 |T =⊥) = 1
2 . One can then compute

Pr(G2 = 1) = Pr(G2 = 1 |T =⊥) Pr(T =⊥) + Pr(G2 = 1 |T ̸=⊥) Pr(T ̸=⊥)

= 1
2(1− Pr(T ̸=⊥)) + Pr(G2 = 1 |T ̸=⊥) Pr(T ̸=⊥)

= 1
2 + Pr(T ̸=⊥)

(
Pr(G2 = 1 |T ̸=⊥)− 1

2

)
and so

Pr(G3 = 1) = Pr(G3 = 1 |T /∈ SAB) Pr(T /∈ SAB) + Pr(G3 = 1 |T ∈ SAB) Pr(T ∈ SAB)

= 1
2 Pr(T /∈ SAB) + Pr(G2 = 1 |T ∈ SAB) Pr(T ∈ SAB)

= 1
2 (1− Pr(T ∈ SAB)) + Pr(G2 = 1 |T ̸=⊥) Pr(T ∈ SAB)

= 1
2 + Pr(T ∈ SAB)

(
Pr(G2 = 1 |T ̸=⊥)− 1

2

)
= 1

2 + Pr(T ∈ SAB |T ̸=⊥) Pr(T ̸=⊥)
(

Pr(G2 = 1 |T ̸=⊥)− 1
2

)
.

4. The protocol LP2+ and its security proofs 33

Using Pr(T ∈ SAB |T ̸=⊥) = 1
M(M−1) and putting the last two results together, we obtain

Pr(G3 = 1) = 1
2 + 1

M(M − 1) Pr(T ̸=⊥)
(

Pr(G2 = 1 |T ̸=⊥)− 1
2

)
= 1

2 + 1
M(M − 1)

(
Pr(G2 = 1)− 1

2

)
.

This means that
2

∣∣∣∣Pr(G2 = 1)− 1
2

∣∣∣∣ = 2M(M − 1)
∣∣∣∣Pr(G3 = 1)− 1

2

∣∣∣∣ . (6)

Combining (3), (4), (5) and (6), it remains to prove that 2
∣∣Pr(G3 = 1)− 1

2
∣∣ ⩽ 2q ·AdvPRF

F (C) for
some adversary C satisfying the conditions in the statement.

Claim 1. At any time in the course of the execution of G3 and as far as A is not corrupted
with respect to B and vice versa, one has CTRinit

AB ⩽ q and CTRresp
BA ⩽ q.

To prove this claim, let us denote by xAB the number (depending on the stage of execution
of G3) of oracles πt

j with Pj = B, πt
j .pid = A, πt

j .ρ = responder and πt
j .α = accepted. Let us prove

that, in the course of the execution of G3, as far as A is not corrupted with respect to B and vice
versa, we have at any time

max{CTRinit
AB , CTRresp

BA } ⩽ xAB . (7)

At initialization, these numbers are all equal to 0 and thus the inequality holds. A NewSessionI,
RevealKey, RevealState, Corrupt or Test query does not modify these numbers, so we only have to
consider the effect of NewSessionR and Send queries.

For NewSessionR queries, only those of the form NewSessionR(πt
j , A, mA) with Pj = B may

have an impact. Moreover, for such a query to have an impact, one must also have mA = (C, NA, σA)
for some C ∈ N, NA ∈ N and σA ∈ T with VrfyKmac

BA
((A, C, NA), σA) = 1. During such a query,

a new responder oracle of B with intended partner A accepts, therefore xAB is increased by 1.
Furthermore, CTRresp

BA is increased to max{CTRresp
BA , C} + 1 (due to the while loop and the last

instruction) while CTRinit
AB does not change. Since πt

j is supposed to be two-sided uncorrupted
at the end of this query, and by definition of G2, we know that there exists an oracle πs

i that
previously produced the tag σA ← MacKmac

AB
(A, C, NA) and such that Pi = A, πs

i .pid = B and
πs

i .ρ = initiator. By Lemma 18.2, this implies that C is at most the value of CTRinit
AB at the time of

the considered NewSessionR query. Therefore, the left-hand side of (7) increases by at most 1 with
this NewSessionR query, and thus this cannot break the validity of the inequality.

As for Send queries, only those of the form Send(πs
i , mB) with Pi = A and πs

i .pid = B may have
an impact. Moreover, for such a query to have an impact, one must also have mB = (C ′, NB , σB)
for some C ′ ∈ N, NB ∈ N and σB ∈ T with VrfyKmac

AB
((B, C ′, NA, NB), σB) = 1 and C ′ ⩾ CTRinit

AB

where NA, stored in πs
i .st, is the nonce from the first message of πs

i . During such a query, due to the
while loop and the last instruction, CTRinit

AB is increased to C ′ + 1 while CTRresp
BA and xAB do not

change. Since πs
i is supposed to be two-sided uncorrupted at that time and by definition of G2, we

know that there exists an oracle πt
j that previously produced the tag σB ← MacKmac

BA
(B, C ′, NA, NB)

and such that Pj = B, πt
j .pid = A and πt

j .ρ = responder. After this tag is produced, both CTRresp
BA

and xAB increased by 1, so that, by Lemma 18.2, CTRresp
BA ⩾ C ′ + 1 at the time of the considered

Send query. Therefore, the left-hand side of (7) remains unchanged with this Send query, which
concludes the proof of (7).

Since one has at any time xAB ⩽ q, this concludes the proof of Claim 1.

Let us now construct an adversary C′ attacking the key evolution security of F (see Definition 13)
such that

2
∣∣∣∣Pr(G3 = 1)− 1

2

∣∣∣∣ = AdvKEvol
F,upd(C′, q). (8)

The algorithm C′ starts by uniformly choosing a pair (A, B) of distinct parties. It then initializes the
oracles of the parties {P1, . . . , PM} as usual and, for each ordered pair (A′, B′) of distinct parties with
(A′, B′) ̸= (A, B), C′ uniformly and independently chooses K init,kdf

A′B′ = Kresp,kdf
B′A′ ∈ K. Moreover, for

each unordered pair {A′, B′} of distinct parties, C′ runs KeyGen to generate Kmac
A′B′ = Kmac

B′A′ ∈ KMAC,

4. The protocol LP2+ and its security proofs 34

initializes the counters CTRinit
A′B′ , CTRresp

A′B′ , CTRinit
B′A′ and CTRresp

B′A′ to 0 and selects the initial states
stinitN

A′B′ , strespN
A′B′ , stinitN

B′A′ and strespN
B′A′ of GenN. The key K init,kdf

AB = Kresp,kdf
BA is not generated by C′ but

initially corresponds to the key k0 generated by its challenger. C′ sets K init,kdf
AB ←⊥, Kresp,kdf

BA ←⊥,
and k0 ←⊥ to indicate that it does not know their value yet, and initializes k1, k2, · · · ←⊥, which
correspond to the updates of k0 (yet unknown to C′). C′ keeps track of a register SK for keys sk
that are accepted but unknown to it. This register is initialized to the empty set. Then C′ runs A
and answers its queries as follows.

• NewSessionI(πs
i , Pj): C′ answers exactly as prescribed by the protocol. If the nonce generated

was already generated during a previous query NewSessionI(πs′

i , Pj), then C′ aborts the
experiment and outputs a uniform value in {0, 1}.

• NewSessionR(πs
i , Pj , m): C′ answers exactly as prescribed by the protocol if (Pi, Pj) ̸= (B, A).

If (Pi, Pj) = (B, A), C′ answers as prescribed by the protocol except that
– it replaces each occurrence of the pair of instructions

Kresp,kdf
BA ← FKresp,kdf

BA
(upd)

CTRresp
BA ← CTRresp

BA + 1

that are present in two places by

CTRresp
BA ← CTRresp

BA + 1
if Kresp,kdf

BA ̸=⊥
Kresp,kdf

BA ← FKresp,kdf
BA

(upd)

else if kCTRresp
BA
̸=⊥

Kresp,kdf
BA ← kCTRresp

BA

– it replaces the instruction sk← FKresp,kdf
BA

(der(NA, NB)) by

if Kresp,kdf
BA ̸=⊥
sk← FKresp,kdf

BA
(der(NA, NB))

else
save (i, s, CTRresp

BA , der(NA, NB)) in SK
πs

i .α← accepted.

In both cases, if πs
i is two-sided uncorrupted at the end of this query, if the Vrfy test of πs

i

has been passed and if the message-tag pair (m, σ) that passes this Vrfy test has not been
previously obtained by an instruction σ ← Mac(·)(m) of an oracle πt

j with πt
j .pid = Pi and

πt
j .ρ = initiator, then C′ aborts the experiment and outputs a uniform value in {0, 1}.

• Send(πs
i , m): C′ answers exactly as prescribed by the protocol if (Pi, πs

i .pid) ̸= (A, B). If
(Pi, πs

i .pid) = (A, B), then C′ answers as prescribed by the protocol except that
– it replaces each occurrence of the pair of instructions

K init,kdf
AB ← FKinit,kdf

AB
(upd)

CTRinit
AB ← CTRinit

AB + 1

that are present in two places by

CTRinit
AB ← CTRinit

AB + 1
if K init,kdf

AB ̸=⊥
K init,kdf

AB ← FKinit,kdf
AB

(upd)

else if kCTRinit
AB
̸=⊥

K init,kdf
AB ← kCTRinit

AB

4. The protocol LP2+ and its security proofs 35

– it replaces the instruction sk← FKinit,kdf
AB

(der(NA, NB)) by

if K init,kdf
AB ̸=⊥
sk← FKinit,kdf

AB
(der(NA, NB))

else
save (i, s, CTRinit

AB , der(NA, NB)) in SK
πs

i .α← accepted.

In both cases, if πs
i is two-sided uncorrupted at the end of this query, if the Vrfy test of

πs
i has been passed and if the message-tag pair (m, σ) that passes this Vrfy test has not

been previously obtained by an instruction σ ← Mac(·)(m) of an oracle πt
j with Pj = πs

i .pid,
πt

j .pid = Pi and πt
j .ρ = responder, then C′ aborts the experiment and outputs a uniform value

in {0, 1}.
• RevealKey(πs

i): If C′ has πs
i .sk ̸=⊥, it simply returns it to A and stops its answer there.

Otherwise, C′ looks for the unique entry of the form (i, s, C, x) in SK. If C′ has already made
a OTest(C, y) query for some y, it aborts the experiment and outputs a uniform value in {0, 1}.
Otherwise, it queries its OReveal oracle on input (C, x) to get skC,x, sets πs

i .sk← skC,x, returns
it to A and deletes the entry (i, s, C, x) of SK.

• RevealState(πs
i): C′ always knows πs

i .st so it simply returns it to A.
• Corrupt(Pi, Pj): If {Pi, Pj} ≠ {A, B} or if (Pi, Pj) = (A, B) and C′ has K init,kdf

AB ≠⊥ or
if (Pi, Pj) = (B, A) and C′ has Kresp,kdf

BA ̸=⊥, then C′ knows MKij , it returns it to A and
stops its answer there. Otherwise, if (Pi, Pj) = (A, B) and C′ still has K init,kdf

AB =⊥, let
C = CTRinit

AB; while if (Pi, Pj) = (B, A) and C′ still has Kresp,kdf
BA =⊥, let C = CTRresp

BA . If C′

has already made a query OTest(C ′, x) with C ′ ⩾ C, it aborts the experiment and outputs
a uniform value in {0, 1}. Otherwise, C′ queries OCorrupt(C) to get kC and it inductively
sets ku+1 ← Fku

(upd) for each C ⩽ u < max{CTRinit
AB , CTRresp

BA }. If CTRinit
AB ⩾ C and

K init,kdf
AB =⊥, it sets K init,kdf

AB ← kCTRinit
AB

; and if CTRresp
BA ⩾ C and Kresp,kdf

BA =⊥, it sets
Kresp,kdf

BA ← kCTRresp
BA

. Thus, C′ now knows MKij and returns it to A.
• Test(πs

i): If C′ has πs
i .sk ̸=⊥, it aborts the experiment and outputs a uniform value in {0, 1}.

Otherwise, C′ looks for the unique entry of the form (i, s, C, x) in its register SK. If C′ has
already made a OReveal(C, y) query for some y or a OCorrupt(C ′) query for some C ′ ⩽ C, it
aborts the experiment and outputs a uniform value in {0, 1}. Otherwise, C′ queries its OTest
oracle on input (C, x) to obtain skC,x and returns it to A. (Notice that C′ does not choose the
test bit btest but considers it as the bit hidden by its challenger).

Once A has concluded, if any of the conditions of point 4 of Definition 10 is not satisfied, C′

aborts the experiment and outputs a uniform value in {0, 1}. Otherwise, C′ outputs the same bit b′

as A.
Let us make four remarks showing that C′ is well-defined and that, while running, it perfectly

simulates an execution of A in G3.
First, in view of Lemma 18.3 and the way the kC ’s are computed, one has for each entry (i, s, C, x)

of the register SK that πs
i .sk = FkC

(x) (although C′ cannot compute it immediately).
Second, from the construction of the register SK, for each πs

i , there can be at most one entry of
the form (i, s, C, x). Furthermore, such an entry exists if and only if πs

i has accepted but C′ still has
πs

i .sk =⊥. Therefore, the condition that πs
i has accepted before A can make a Test or RevealKey

ensures that the entry (i, s, C, x) exists in SK when C′ looks for it.
Third, let us observe that the inputs of the oracles of C′ satisfy their respective domain restrictions,

as given in Definition 13. As long as A is not corrupted with respect to B and vice versa, one has
ki =⊥ for all i, K init,kdf

AB =⊥ and Kresp,kdf
BA =⊥. Moreover, in that case, in view of Claim 1, one has

CTRinit
AB ⩽ q and CTRresp

BA ⩽ q. Therefore, when A gets corrupted with respect to B or vice versa for
the first time, if C′ does not abort, it gets kC for C ⩽ q. Hence, after this corruption, since CTRinit

AB

increases one by one, C′ has K init,kdf
AB ̸=⊥ at the latest when CTRinit

AB = C ⩽ q (the assignment to
K init,kdf

AB of a value different from ⊥ may occur in a Send or Corrupt query). Therefore, in any case,

4. The protocol LP2+ and its security proofs 36

if K init,kdf
AB =⊥, one has CTRinit

AB ⩽ q and analogously, if Kresp,kdf
BA =⊥, one has CTRresp

BA ⩽ q. Since
the corresponding counter is increased one more time after saving an entry in the register SK, this
means that, for each entry (i, s, C, x) in SK, one has 0 ⩽ C < q (and x ∈ D \ {upd}, by definition
of the function der). Moreover, this also means that, if C′ queries OCorrupt(C) in a Corrupt query,
then 0 ⩽ C ⩽ q.

Fourth, we show that the constraints on the number and dependencies of calls given in Defini-
tion 13 to the oracles are fulfilled:

• C′ queries at most once its oracle OTest since A makes at most one Test query.
• By the way RevealKey and Test queries are answered, C′ does not make both a query
OReveal(C, x) and a query OTest(C, y).

• By the way Corrupt and Test queries are answered, C′ does not make both a query OCorrupt(C ′)
and a query OTest(C, x) with C ′ ⩽ C.

• C′ does not make three queries OReveal(C, x), OReveal(C, y) and OReveal(C, z). Indeed, if it
were the case, these queries would correspond to A’s queries RevealKey(πs

i), RevealKey(πt
j)

and RevealKey(πu
ℓ) and respectively to entries (i, s, C, x), (j, t, C, y) and (ℓ, u, C, z) of the

register SK. Two of these three oracles πs
i , πt

j and πu
ℓ would have the same role, say πs

i .ρ =
πt

j .ρ without loss of generality. In view of how the register SK is filled in, we know that
(Pi, πs

i .pid, πs
i .ρ) = (Pj , πt

j .pid, πt
j .ρ) ∈ {(A, B, initiator), (B, A, responder)}. If πs

i = πt
j , C′

would not have queried its OReveal oracle for the second RevealKey query to the same oracle.
If πs

i ̸= πt
j , these oracles would not have accepted with the same counter value C (due to the

non-decreasing nature of the counter, see Lemma 18.2), reaching a contradiction.
Let Z be the event that, in the course of an execution of A in G3, the experiment aborts (in

which case, it outputs a uniform value in {0, 1}). This event can be caused by any of the reasons
mentioned in G1, G2 or G3 or because one of the conditions mentioned in point 4 of Definition 10
is not satisfied. Let Z ′ be the event that, in the course of an experiment KEvolC′,F,upd,q, the
experiment aborts (and outputs a uniform value in {0, 1}). We are going to prove that Z ′ occurs
if and only if Z occurs during the simulation of G3 by C′. This would imply that Pr(Z) = Pr(Z ′)
and Pr(G3 = 1 | ¬Z) = Pr(KEvolC′,F,upd,q = 1 | ¬Z ′). It is obvious that Pr(G3 = 1 |Z) = 1

2 and
Pr(KEvolC′,F,upd,q = 1 |Z ′) = 1

2 . Therefore, one would have

Pr(G3 = 1) = Pr(G3 = 1 |Z) Pr(Z) + Pr(G3 = 1 | ¬Z) Pr(¬Z)
= Pr(KEvolC′,F,upd,q = 1 |Z ′) Pr(Z ′) + Pr(KEvolC′,F,upd,q = 1 | ¬Z ′) Pr(¬Z ′)
= Pr(KEvolC′,F,upd,q = 1)

and (8) would follow.
If Z occurs because of the new rule of G1, then Z ′ occurs in view of the way NewSessionI

queries are answered. If Z occurs because of the new rule of G2, then Z ′ occurs based on the
way NewSessionR and Send queries are answered. If Z occurs because of the new rule of G3, i.e.,
if A has made its Test query on πs

i with (Pi, πs
i .pid, πs

i .ρ) /∈ {(A, B, initiator), (B, A, responder)},
this means that the corresponding keys K init,kdf

A′B′ and Kresp,kdf
B′A′ are set from the beginning. Thus

πs
i .sk ̸=⊥ and Z ′ occurs because of the way Test queries are answered. Finally, if Z occurs because

any of the conditions mentioned in point 4 of Definition 10 is not satisfied, then Z ′ occurs by the
way C′ acts once A has concluded.

Let us now prove that, if Z ′ occurs, then Z occurs in the simulation of G3 by C′. We suppose
by contradiction that Z does not occur. If Z ′ occurs by the way C′ acts once A has concluded,
then one has a contradiction because one of the conditions mentioned in point 4 of Definition 10 is
not satisfied. Let us now treat the case where Z ′ occurs by the way C′ answers A’s queries. By
the rule of G1, Z ′ cannot occur in a NewSessionI query. By the rule of G2, Z ′ cannot occur in a
NewSessionR or Send query. Before proving the other cases, let us prove the following two claims
(still supposing that Z does not occur).

Claim 2. If πs
i was a two-sided uncorrupted oracle when it accepted, then there is a unique πt

j

such that πs
i has πt

j as strong partner.
The proof of this claim is the same as the final part of the proof of Theorem 23 and we omit it

here for conciseness. It relies on the rules of G1 and G2.

4. The protocol LP2+ and its security proofs 37

Claim 3. If (i, s, C, x) and (j, t, C, y) are in the register SK (with the same counter value C), if
πs

i ̸= πt
j , and if a Test query has been issued to πs

i or πt
j , then πs

i and πt
j are mutual partners.

In view of how SK is filled in, one has (Pi, πs
i .pid, πs

i .ρ) ∈ {(A, B, initiator), (B, A, responder)}
and similarly for πt

j . By Lemma 18.2, since both πs
i and πt

j accepted with counter value C, one has
πs

i .ρ ̸= πt
j .ρ. Without loss of generality, we can suppose that (Pi, πs

i .pid, πs
i .ρ) = (A, B, initiator) and

(Pj , πt
j .pid, πt

j .ρ) = (B, A, responder). Let us first assume that πs
i was not two-sided uncorrupted

when it accepted. By condition 4(b) of Definition 10, this implies Test(πs
i) was not queried, and thus

Test(πt
j) was queried. Thus, by the same condition, πt

j was two-sided uncorrupted when it accepted.
By Claim 2, there exists an oracle πs′

i such that πt
j has πs′

i as strong partner. By condition 4(c) of
Definition 10, one has Ts′

i = Tt
j before the corruption occurred between A and B (which occurred

before πs
i accepted by assumption). If C ⩾ CTRinit

AB when πs′

i received its second message (faithfully
delivered from πt

j), it accepted with counter value C, which is impossible since πs
i accepted later with

the same counter value. If C < CTRinit
AB when πs′

i received its second message, πs
i could not have

accepted with counter value C, reaching a contradiction. Therefore, πs
i was two-sided uncorrupted

when it accepted. By Claim 2, there is a unique accepting oracle πt′

j such that πs
i has πt′

j as strong
partner. Since they both share the same second message in their transcripts, πt′

j also accepted when
CTRresp

BA = C. Since this counter is non-decreasing, this implies that πt′

j = πt
j and so πs

i and πt
j are

mutual partners, concluding the proof of Claim 3.

Let us now consider the case where Z ′ occurs during a RevealKey, Corrupt, or Test query (still
supposing that Z does not occur).

First, we analyze the case where Z ′ occurs because C′ tries to make queries OTest(C, x) and
OReveal(C, y). This may happen during a RevealKey or a Test query. C′ queries correspond to
entries (i, s, C, x) and (j, t, C, y) of the register SK and A made, in some order, a Test(πs

i) query
and a RevealKey(πt

j) query. By condition 4(d) of Definition 10, we know that πs
i ̸= πt

j . By Claim 3,
πs

i and πt
j are mutual partners, which contradicts condition 4(e) of Definition 10.

We now treat the case where Z ′ occurs for the first reason stated in the description of a Test(πs
i)

query, that is, C′ has πs
i .sk ̸=⊥ at the time of the Test query. By the rule of G3, we know that

(Pi, πs
i .pid, πs

i .ρ) ∈ {(A, B, initiator), (B, A, responder)}. By condition 4(b) in Definition 10, we also
know that πs

i was two-sided uncorrupted when it accepted. Therefore, K init,kdf
AB =⊥ and Kresp,kdf

BA =⊥
when πs

i accepted. Thus, the only way one could have πs
i .sk ̸=⊥ when the Test query is made is if a

RevealKey(πs
i) query was made before. But this is impossible by condition 4(d) of Definition 10.

It remains to treat the case where Z ′ occurs because C′ tries to make queries OTest(C, x) and
OCorrupt(C ′) with C ′ ⩽ C. This OCorrupt query corresponds to a Corrupt(A, B) (in which case
C ′ = CTRinit

AB at that time) or to a Corrupt(B, A) (in which case C ′ = CTRresp
BA at that time). The

OTest query corresponds to a Test(πs
i) query and to an entry (i, s, C, x) of the register SK. By

condition 4(b) of Definition 10, πs
i was two-sided uncorrupted when it accepted. By Claim 2, there

exists πt
j such that πs

i has πt
j as strong partner. If πs

i .ρ = initiator, then Ts
i = Tt

j when πs
i accepted

and both oracles accepted before the Corrupt query, with the same counter value C. After πs
i

accepted, one has thus CTRinit
AB > C ⩾ C ′ and CTRresp

BA > C ⩾ C ′, which is in contradiction with the
definition of C ′. If πs

i .ρ = responder, by condition 4(c) of Definition 10, one has Ts
i = Tt

j before the
corruption. Moreover, once πs

i has accepted, thus before the corruption, one has CTRresp
BA > C ⩾ C ′.

If πt
j accepted, it is thus with counter value C and one also has CTRinit

AB > C ⩾ C ′ at the time of
corruption, which is a contradiction. Since the deliverance of the second message of Ts

i = Tt
j was

faithful and both oracles used the same nonces, the only reason πt
j could have rejected, is because

CTRinit
AB > C ⩾ C ′ at the time πt

j rejected. This is again a contradiction, which concludes the proof
of (8).

Let us notice that, up to ask C′ to save its F computations in order to make at most once an
evaluation of F for a fixed input, C′ makes at most the F , Mac and Vrfy evaluations made by
A plus those needed to answer its queries. Indeed, the F evaluations made to answer a Corrupt
query would have been made earlier in a normal execution of A when the challenger knows the keys
K init,kdf

AB and Kresp,kdf
BA .

By Lemma 14, there exists an adversary C attacking the pseudo-randomness of F , with the

4. The protocol LP2+ and its security proofs 38

complexity as in the statement, such that

AdvKEvol
F,upd(C′, q) ⩽ 2q ·AdvPRF

F (C). (9)

Putting everything together, we get

AdvKeyInd
LP2+ (A)

= 2
∣∣∣∣Pr(G0 = 1)− 1

2

∣∣∣∣ (3)

⩽ M(M − 1) · Coll(GenN, q, stinitN
0) + 2

∣∣∣∣Pr(G1 = 1)− 1
2

∣∣∣∣ (4)

⩽ M(M − 1) ·
(

Coll(GenN, q, stinitN
0) + 2q ·AdvSEUF-CMA

Σ (B)
)

+ 2
∣∣∣∣Pr(G2 = 1)− 1

2

∣∣∣∣ (5)

= M(M − 1) ·
(

Coll(GenN, q, stinitN
0) + 2q ·AdvSEUF-CMA

Σ (B) + 2
∣∣∣∣Pr(G3 = 1)− 1

2

∣∣∣∣) (6)

= M(M − 1) ·
(

Coll(GenN, q, stinitN
0) + 2q ·AdvSEUF-CMA

Σ (B) + AdvKEvol
F,upd(C′, q)

)
(8)

⩽ M(M − 1) ·
(

Coll(GenN, q, stinitN
0) + 2q ·AdvSEUF-CMA

Σ (B) + 2q ·AdvPRF
F (C)

)
(9)

as desired.

4.4 Instantiation only based on a PRF
We conclude this paper with an instantiation of LP2+ whose security is only based on a PRF. Let
n be an even positive integer and let Fn

2 be the n-dimensional vector space over the two-element
field F2 (elements of Fn

2 are thus represented by n-bit strings). Let also F : Fn
2 × Fn

2 → Fn
2 be a

pseudo-random function. Our instantiation LP2+(n, F) of LP2+ is described as follows.
We require that the number M of parties is such that 2 ⩽ M ⩽ 2 n

2 −1. Each party Pi will be
represented by an element of F

n
2 −1
2 . Moreover, we represent the counters CTRinit

AB and CTRresp
BA by

elements of F
n
2
2 . If, at the end of an accepting protocol step, one of theses counters reaches 1 n

2 , one
must renew the master key generation and clear all sessions between these parties. We also renew
the master key generation (and clear the sessions) if one of these counters cycles and reaches 0 n

2 , to
avoid the the case where a message with counter value 1 n

2 is sent (e.g. when parties are corrupted).
To give an order of magnitude, in the case no attack is successful, if n is 128 and if an adversary

makes one billion NewSessionR(πs
i , Pj , m) queries per second, more than 500 years are necessary to

make the counter reach 1 n
2 .

The nonce generator GenN is a (stateless) uniform selection of an element in N = Fn
2 . We

denote such a selection by N
U←− Fn

2 . For the constant upd ∈ Fn
2 , we simply use upd = 0n. In

order to reduce key control by the parties and to improve key freshness, we choose the function
der : Fn

2 × Fn
2 → Fn

2 \ {0n} as

der(NA, NB) =
{

[NA] n
2
∥[NB] n

2
if [NA] n

2
∥[NB] n

2
̸= 0n

1n if [NA] n
2
∥[NB] n

2
= 0n

where N∥N ′ denotes the concatenation of the strings N and N ′, and [N] n
2
∈ F

n
2
2 denotes the first

n
2 bits of a nonce N ∈ Fn

2 .
It remains to describe the MAC Σ. Since one needs to sign messages of the form (A, CTRinit

AB , NA)
and (B, CTRresp

BA , NA, NB) which are respectively represented by strings of 2n− 1 and 3n− 1 bits,
we take the message space as M = F2n−1

2 ∪ F3n−1
2 . We then instantiate the scheme Σ as the

deterministic CBC-MAC using F and taking care not to use this authentication mode with a
message and one of its prefixes. More precisely, we take KeyGen as the uniform selection of a key
in KMAC = Fn

2 , and, for k, m2, m3 ∈ Fn
2 and m1 ∈ Fn−1

2 , we set

Mack(m1∥m2) = Fk(m2 ⊕ Fk(0∥m1))

4. The protocol LP2+ and its security proofs 39

and
Mack(m1∥m2∥m3) = Fk(m3 ⊕ Fk(m2 ⊕ Fk(1∥m1)))

where ⊕ is the component-wise XOR (i.e., the addition in Fn
2) and the tag space is T = Fn

2 . The
verification is done in the canonical way, i.e., for k, m2, m3, t ∈ Fn

2 and m1 ∈ Fn−1
2 :

Vrfyk(m1∥m2, t) = 1 ⇐⇒ t = Fk(m2 ⊕ Fk(0∥m1))

and
Vrfyk(m1∥m2∥m3, t) = 1 ⇐⇒ t = Fk(m3 ⊕ Fk(m2 ⊕ Fk(1∥m1))).

The security of CBC-MAC for prefix-free sets of arbitrary-length messages has been, to our
knowledge, first mentioned in [18]. We borrow the following theorem from the presentation of [15].

Theorem 25. Let n and q be positive integers, F : Fn
2 × Fn

2 → Fn
2 be a function and Σ be the

CBC-MAC on M = F2n−1
2 ∪ F3n−1

2 as described above. Let also B be an adversary attacking Σ
in the experiment SEUF-CMAB,Σ making at most q queries to its OMac oracle. There exists an
adversary C attacking the pseudo-randomness of F such that

AdvSEUF-CMA
Σ (B) ⩽ AdvPRF

F (C) + 7q2 + 7q + 1
2n

.

Moreover, C queries at most 3(q + 1) times its oracle Og and makes as many evaluations of F as B
does.

Proof. By prepending a 0 before the 2n− 1 bit messages and a 1 before the 3n− 1 bit messages
inM, the CBC-MAC is used here on a prefix-free set of messages. The result then follows from (the
proof of) Theorems 4.6 and 4.11 in [15]. Note that, analyzing the proofs in details and borrowing
the notation from them, one first constructs a distinguisher D for the CBC function that queries at
most q + 1 times its oracle and such that

AdvSEUF-CMA
Σ (B) ⩽

∣∣∣Pr
(

1← DCBCFk
(·)

)
− Pr

(
1← Df(·)

)∣∣∣ + 1
2n

where k is uniformly chosen in Fn
2 and f is a uniformly chosen function M→ Fn

2 . Then, one can
prove that the CBC function is (q + 1, 3, δ)-smooth where δ = 7q(q+1)

2n (using q > 0). From this,
there exists C as in the statement such that∣∣∣Pr

(
1← DCBCFk

(·)
)
− Pr

(
1← Df(·)

)∣∣∣ ⩽ AdvPRF
F (C) + δ

concluding the proof.

The protocol LP2+(n, F) is initialized as follows. For each unordered pair of distinct parties
{A, B} ⊆ {P1, . . . , PM}, one uniformly and independently chooses K init,kdf

AB = Kresp,kdf
BA

U←− Fn
2 ,

K init,kdf
BA = Kresp,kdf

AB
U←− Fn

2 and Kmac
AB = Kmac

BA
U←− Fn

2 . One also initializes to 0 n
2 four counters

CTRinit
AB , CTRresp

AB , CTRinit
BA and CTRresp

BA in F
n
2
2 . The master keys on both sides are initially

MKAB =
(

K init,kdf
AB , CTRinit

AB , Kresp,kdf
AB , CTRresp

AB , Kmac
AB

)
∈ F4n

2

and
MKBA =

(
K init,kdf

BA , CTRinit
BA, Kresp,kdf

BA , CTRresp
BA , Kmac

BA

)
∈ F4n

2 .

The protocol LP2+(n, F) is described in Figure 5. It thus consists of two messages of 5n
2 bits each.

If the parties start synchronized (i.e., CTRinit
AB = CTRresp

BA) and if an uninterrupted honest run of
the protocol is executed between Alice and Bob, Alice’s first step requires 2 evaluations of F , Bob’s
step requires 7 evaluations of F and Alice’s last step requires 5 evaluations of F , for a total of 14
evaluations of F .

4. The protocol LP2+ and its security proofs 40

2 evaluations of F 5n
2 bits

7 evaluations of F5n
2 bits

5 evaluations of F

We conclude with a summary of the security theorems of LP2+(n, F).

Theorem 26. Let n, M, q ∈ N be integers such that n > 0 is even and 2 ⩽ M ⩽ 2 n
2 −1. Let

also F : Fn
2 × Fn

2 → Fn
2 be a function. Let A be an adversary attacking the protocol LP2+(n, F)

with M parties. Suppose that, for each ordered pair (A, B) of distinct parties, A makes at most q
queries NewSessionI and q queries NewSessionR to A with intended partner B. Then, there exists
an adversary C attacking the pseudo-randomness of F such that

AdvCorr
LP2+(n,F)(A) = 0

AdvwSR
LP2+(n,F)(A) = 0

AdvEntAuth
LP2+(n,F)(A) ⩽ M(M − 1) ·

(
2q ·AdvPRF

F (C) + 283q3

2n

)
AdvKeyInd

LP2+(n,F)(A) ⩽ M(M − 1) ·
(

4q ·AdvPRF
F (C) + 283q3

2n

)
.

Moreover, C queries at most 12q + 3 times its oracle Og. In terms of F evaluations, C makes at
most those made by A plus those needed to simulate the protocol instructions to answer A’s queries
plus 3q.

Proof. The first two equalities follow respectively from Theorems 19 and 20. For the last two
inequalities, if q = 0 or q ⩾ 2 n

3 −2, the theorem is vacuous since no oracle πs
i can accept in the

first case and the upper bounds are larger than 1 in the second case. So we can suppose that
0 < q < 2 n

3 −2 < 2 n
2 − 1 and so the addition of the re-initialization of the master keys when a

counter reaches 0 n
2 or 1 n

2 has no influence here, provided no corruption or tag forgery occurred. By
Theorems 23 and 24, there exists adversaries B1 and B2 attacking the MAC Σ and an adversary C3
attacking the pseudo-randomness of F such that

AdvEntAuth
LP2+(n,F)(A) ⩽ M(M − 1) ·

(
Coll(GenN, q, stinitN

0) + 2q ·AdvSEUF-CMA
Σ (B1)

)
and

AdvKeyInd
LP2+(n,F)(A) ⩽ M(M −1) ·

(
Coll(GenN, q, stinitN

0) + 2q ·AdvSEUF-CMA
Σ (B2) + 2q ·AdvPRF

F (C3)
)

.

Moreover, B1 and B2 query at most 4q times their oracle OMac and C3 queries at most 3 times its
oracle Og. In terms of F evaluations, B1 and B2 make at most those made by A plus those needed
to simulate the protocol instructions to answer A’s queries; while C3 makes at most those made
by A plus those needed to simulate the protocol instructions to answer A’s queries plus 3q. By
Theorem 25, there exist adversaries C1 and C2 attacking the pseudo-randomness of F such that

AdvSEUF-CMA
Σ (Bi) ⩽ AdvPRF

F (Ci) + 7 · (4q)2 + 7 · (4q) + 1
2n

⩽ AdvPRF
F (Ci) + 141q2

2n

for each i ∈ {1, 2}. Moreover, C1 and C2 query at most 3 · (4q + 1) times their oracle Og and make
as many evaluations of F as B1 and B2 do, respectively. Finally, as mentioned in Subsection 3.3,
one has

Coll(GenN, q, stinitN
0) ⩽ q2

2n+1

4. The protocol LP2+ and its security proofs 41

Alice(
K init,kdf

AB , CTRinit
AB , Kresp,kdf

AB , CTRresp
AB , Kmac

AB

)
∈ F4n

2

Bob(
K init,kdf

BA , CTRinit
BA, Kresp,kdf

BA , CTRresp
BA , Kmac

BA

)
∈ F4n

2

NA
U←− Fn

2

σA = FKmac
AB

(
NA ⊕ FKmac

AB

(
0∥A∥CTRinit

AB

))
mA = CTRinit

AB∥NA∥σA

mA ∈ F
5n
2

2

if mA /∈ F
5n
2

2

abort

decompose mA as mA = C∥NA∥σA

with |C| = n
2 , |NA| = |σA| = n

if σA ̸= FKmac
BA

(
NA ⊕ FKmac

BA
(0∥A∥C)

)
abort

while C > CTRresp
BA

Kresp,kdf
BA ← F

K
resp,kdf
BA

(0n)

CTRresp
BA ← CTRresp

BA + 1

NB
U←− Fn

2

σB = FKmac
BA

(
NB ⊕ FKmac

BA

(
NA ⊕ FKmac

BA
(1∥B∥CTRresp

BA)
))

mB = CTRresp
BA ∥NB∥σB

mB ∈ F
5n
2

2

if [NA] n
2
∥[NB] n

2
̸= 0n

sk← F
K

resp,kdf
BA

(
[NA] n

2
∥[NB] n

2

)
else

sk← F
K

resp,kdf
BA

(1n)

Kresp,kdf
BA ← F

K
resp,kdf
BA

(0n)

CTRresp
BA ← CTRresp

BA + 1

if CTRresp
BA ∈ {0

n
2 , 1 n

2 }

re-initialize master keys

if mB /∈ F
5n
2

2

abort

decompose mB as mB = C′∥NB∥σB

with |C′| = n
2 , |NB | = |σB | = n

if σB ̸= FKmac
AB

(
NB ⊕ FKmac

AB

(
NA ⊕ FKmac

AB
(1∥B∥C′)

))
abort

if C′ < CTRinit
AB

abort

while C′ > CTRinit
AB

K init,kdf
AB ← F

K
init,kdf
AB

(0n)

CTRinit
AB ← CTRinit

AB + 1

if [NA] n
2
∥[NB] n

2
̸= 0n

sk← F
K

init,kdf
AB

(
[NA] n

2
∥[NB] n

2

)
else

sk← F
K

init,kdf
AB

(1n)

K init,kdf
AB ← F

K
init,kdf
AB

(0n)

CTRinit
AB ← CTRinit

AB + 1

if CTRinit
AB ∈ {0

n
2 , 1 n

2 }

re-initialize master keys

Figure 5: The AKE protocol LP2+(n, F), an instantiation of LP2+.

References 42

for the chosen nonce generator. Taking C as the Ci maximizing AdvPRF
F (Ci), we get

AdvEntAuth
LP2+(n,F)(A) ⩽ M(M − 1) ·

(
Coll(GenN, q, stinitN

0) + 2q ·AdvSEUF-CMA
Σ (B1)

)
⩽ M(M − 1) ·

(
q2

2n+1 + 2q ·AdvPRF
F (C1) + 282q3

2n

)
⩽ M(M − 1) ·

(
2q ·AdvPRF

F (C) + 283q3

2n

)
and

AdvKeyInd
LP2+(n,F)(A) ⩽ M(M − 1) ·

(
Coll(GenN, q, stinitN

0) + 2q ·AdvSEUF-CMA
Σ (B2) + 2q ·AdvPRF

F (C3)
)

⩽ M(M − 1) ·
(

q2

2n+1 + 2q ·AdvPRF
F (C2) + 282q3

2n
+ 2q ·AdvPRF

F (C3)
)

⩽ M(M − 1) ·
(

4q ·AdvPRF
F (C) + 283q3

2n

)
as desired. For the number of oracle queries and F evaluations made by C, we take in each case the
worst among those of the Ci’s.

References
[1] S.F. Aghili, A.A. Jolfaei and A. Abidin, SAKE+: Strengthened symmetric-key authenti-

cated key exchange with perfect forward secrecy for IoT, Cryptology ePrint Archive 2020/778,
(2020).

[2] G. Avoine, S. Canard and L. Ferreira, Symmetric-key authenticated key exchange
(SAKE) with perfect forward secrecy, Topics in Cryptology – CT-RSA 2020, Springer Lecture
Notes in Computer Science 12006, 199–224 (2020).

[3] M. Bellare, O. Goldreich and A. Mityagin, The power of verification queries in message
authentication and authenticated encryption, Cryptology ePrint Archive 2004/309, (2004).

[4] M. Bellare, D. Pointcheval and P. Rogaway, Authenticated key exchange secure against
dictionary attacks, Advances in Cryptology – EUROCRYPT 2000, Springer Lecture Notes in
Computer Science 1807, 139–155 (2000).

[5] M. Bellare and P. Rogaway, Entity authentication and key distribution, Advances in
Cryptology – CRYPTO 1993, Springer Lecture Notes in Computer Science 773, 232–249 (1994).

[6] M. Bellare and P. Rogaway, Provably secure session key distribution: the three party
case, STOC 1995: Proceedings of the twenty-seventh annual ACM Symposium on Theory of
Computing, 57–66 (1995).

[7] S. Blake-Wilson, D. Johnson and A. Menezes, Key agreement protocols and their
security analysis, Cryptography and Coding 1997, Springer Lecture Notes in Computer Science
1355, 30–45 (1997).

[8] C. Boyd, G.T. Davies, B. de Kock, K. Gellert, T. Jager and L. Millerjord,
Symmetric key exchange with full forward security and robust synchronization, Advances in
Cryptology – ASIACRYPT 2021, Springer Lecture Notes in Computer Science 13093, 681–710
(2021).

[9] R. Canetti and H. Krawczyk, Analysis of key-exchange protocols and their use for building
secure channels, Advances in Cryptology – EUROCRYPT 2001, Springer Lecture Notes in
Computer Science 2045, 453–474 (2001).

[10] M.S. Dousti and R. Jalili, FORSAKES: A forward-secure authenticated key exchange pro-
tocol based on symmetric key-evolving schemes, Advances in Mathematics of Communications
9, 471–514 (2015).

References 43

[11] Q. Fan, J. Chen, M. Shojafar, S. Kumari and D. He, SAKE∗: A symmetric authenticated
key exchange protocol with perfect forward secrecy for industrial internet of things, IEEE
Transactions on Industrial Informatics 18, 6424–6434 (2022).

[12] L. Ferreira, Privacy-preserving authenticated key exchange for constrained devices, ACNS
2022, Springer Lecture Notes in Computer Science 13269, 293–312 (2022).

[13] Y. Guo and Y. Guo, CS-LAKA: A lightweight authenticated key agreement protocol with
critical security properties for IoT environments, IEEE Transactions on Services Computing
16, 4102–4114 (2023).

[14] T. Jager, F. Kohlar, S. Schäge and J. Schwenk, On the security of TLS-DHE in the
standard model, Advances in Cryptology – CRYPTO 2012, Springer Lecture Notes in Computer
Science 7417, 273–293 (2012).

[15] J. Katz and Y. Lindell, Introduction to modern cryptography (3rd edition), Chapman &
Hall/CRC Cryptography and Network Security Series (2021).

[16] B. LaMacchia, K. Lauter and A. Mityagin, Stronger security of authenticated key
exchange, ProvSec 2007, Springer Lecture Notes in Computer Science 4784, 1–16 (2007).

[17] Y. Li and S. Schäge, No-match attacks and robust partnering definitions: Defining trivial
attacks for security protocols is not trivial, CCS 2017: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 1343–1360 (2017).

[18] E. Petrank and C. Rackoff, CBC MAC for real-time data sources, Journal of Cryptology
13, 315–338 (2000).

[19] S. Schäge, J. Schwenk and S. Lauer, Privacy-preserving authenticated key exchange and
the case of IKEv2, PKC 2020, Springer Lecture Notes in Computer Science 12111, 567–596
(2020).

[20] Y. Zhang, D. He, P. Vijayakumar, M. Luo and X. Huang, SAPFS: An efficient
symmetric-key authentication key agreement scheme with perfect forward secrecy for industrial
internet of things, IEEE Internet of Things Journal 10, 9716–9726 (2023).

	Introduction
	The security model
	Execution environment
	Security definitions
	Comparison with previous security models

	Building blocks and their security assumptions
	Pseudo-random functions
	Message authentication codes
	Nonce generators

	The protocol LP2+ and its security proofs
	LP2, LP3 and their security flaws
	The new protocol LP2+
	The full security proofs
	Instantiation only based on a PRF

	References

