
IACR Transactions on Symmetric Cryptology
ISSN XXXX-XXXX, Vol. 0, No. 0, pp. 1–18. DOI:XXXXXXXX

Collision Attacks on Reduced RIPEMD-128
Zhengrong Lu1, Hongbo Yu1,2,3(B), Xiaoen Lin1 and Sitong Yuan1

1 Department of Computer Science and Technology, Tsinghua University, Beijing, 100084,
People’s Republic of China luzr20@mails.tsinghua.edu.cn,yuhongbo@mail.tsinghua.edu.

cn,lxe21@mails.tsinghua.edu.cn,yuanst23@mails.tsinghua.edu.cn
2 Zhongguancun Laboratory, Beijing, People’s Republic of China

3 State Key Laboratory of Cryptography and Digital Economy Security, Tsinghua University,
Beijing, 100084, People’s Republic of China

Abstract. RIPEMD-128 is an ISO/IEC standard hash function based on a double-
branch Merkle-Damgård structure. Its compression function includes two branches
with distinct Boolean functions and message expansion permutations. To perform
a collision attack, differential characteristics must be constructed simultaneously for
both branches under the same message word difference, and the message modification
order must align with conditions in both branches. These factors make collision
attacks on (reduced) RIPEMD-128 highly challenging.
In 2014, an attack on 40 steps of RIPEMD-128 was achieved by Wang with no state
differences in round 3. In this work, we analyze message permutation properties and
propose two new structures for creating message differences. These structures enable
high-probability local collisions in both branches of round 3, extending the attack
to more steps. Notably, the second structure can eliminate all state differences in
round 3, allowing the attack to cover more than three whole rounds.
To ensure practical attacks, we limit the number of conditions based on our message
modification strategy and use multi-step message modification techniques to control
more conditions. As a result, we successfully generate colliding message pairs for
46-step and 54-step reduced RIPEMD-128, with time complexities of approximately
242 and 254, respectively.
Keywords: hash function · RIPEMD-128 · collision attack · message difference ·
message modification

1 Introduction
Cryptanalysis of hash functions is an important subject in cryptography. In general, a
hash function has three basic security properties: preimage resistance, second-preimage
resistance, and collision resistance. In 2005, modular differential attack was introduced,
which could break many hash functions in the MD-SHA family, such as MD4 [WLF+05],
RIPEMD [WLF+05], MD5 [WY05], SHA-0 [WYY05b], and SHA-1 [WYY05a, SBK+17].

RIPEMD [BP95] is a double-branch hash function where the two branches differ only in
their round constants. This implies that the same differential characteristic can be applied
simultaneously to both branches. To address some weaknesses of RIPEMD, RIPEMD-
128 [DBP96] was introduced as a strengthened version in 1996. In addition to round
constants, the message word permutations and Boolean functions within the same round
differ between the two branches. As a result, message word differences are introduced
into different state words and propagate according to distinct state functions. This neces-
sitates high-probability differential characteristics for the same message word differences
in both branches simultaneously. Moreover, this property of RIPEMD-128 increases the

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/XXXXXXXX
mailto:luzr20@mails.tsinghua.edu.cn,yuhongbo@mail.tsinghua.edu.cn,lxe21@mails.tsinghua.edu.cn,yuanst23@mails.tsinghua.edu.cn
mailto:luzr20@mails.tsinghua.edu.cn,yuhongbo@mail.tsinghua.edu.cn,lxe21@mails.tsinghua.edu.cn,yuanst23@mails.tsinghua.edu.cn
http://creativecommons.org/licenses/by/4.0/

2 Collision Attacks on Reduced RIPEMD-128

complexity of message modification, as modifying a message word to satisfy conditions in
one branch simultaneously fixes it in the step function of the other branch.

Related Work. The first attempt at a collision attack on RIPEMD-128 was proposed
by Mendel et al. in 2006 [MPRR06]. However, the differential characteristics they con-
structed were too complex to constitute a valid attack. At FSE 2012, Mendel et al.
discovered a suitable message difference structure and utilized automatic tools to achieve
a 38-step collision attack [MNS12]. In the same paper, they also presented a 44-step near-
collision result and a 48-step free start collision result. Later, at EUROCRYPT 2013, a
theoretical semi-free start collision attack for full RIPEMD-128 was proposed [LP13]. In
2014, Wang demonstrated a practical collision attack on the reduced 40-step RIPEMD-128
[Wan14, WY15], which remains the best collision attack result to date.

There have also been several preimage attacks on reduced RIPEMD-128. In 2011,
preimage attacks on 33-step and 35-step (starting from intermediate steps) were proposed
[OSS10]. Later, an improved result was presented, which extended the attack to 36 steps
starting from intermediate steps [WSK+11].

Finally, several distinguishing attacks on the full RIPEMD-128 are presented in
[MNS12, IPS13, WY15].

Our Contribution. To improve the collision attack results on reduced RIPEMD-128, we
attempt to introduce differences in round 3. This approach presents two challenges. First,
we need to find new message difference structures capable of generating local collisions
in round 3 of both branches with high probabilities. Second, when selecting message
differences suitable for round 3, their corresponding differential characteristics in rounds
1 and 2 become more complex relatively and involve a greater number of uncontrollable
conditions. Therefore, we need to search for better differential characteristics and employ
more advanced message modification techniques to reduce the complexity and achieve
a practical attack. First, we analyze the message permutations and identify a specific
property. Based on this property, we propose two types of message differences that can
generate short local collisions in round 3 of both branches simultaneously. Next, we choose
two specific message differences and search for proper differential characteristics based
on the order of message modification to fully utilize the degrees of freedom in message
words. Finally, we apply our message modification techniques to obtain practical colliding
message pairs. The previous results and our results are summarized in Table 1.

Table 1: Summary of attack results on RIPEMD-128

attack type steps complexity reference

collision 38 214 (practical) [MNS12]
collision 40 235 (practical) [Wan14, WY15]
collision 46 242 (practical) Subsection 4.2
collision 54 254 (practical) Subsection 5.2

near-collision 44 232 (practical) [MNS12]

free start collision 48 240 (practical) [MNS12]

semi-free start collision 64 (full) 261.57 [LP13]

preimage 33 2124.5 [OSS10]
preimage 35 2121 [OSS10]
preimage 36 2126.5 [WSK+11]

distinguishing 64 (full) 2105.4 [MNS12]
distinguishing 64 (full) 295.8 [IPS13]
distinguishing 64 (full) 290.4 [WY15]

Zhengrong Lu, Hongbo Yu, Xiaoen Lin and Sitong Yuan 3

The source code for generating and verifying colliding message pairs is available
at https://github.com/usernamelzr/ripemd128_attack. The automatic differential
characteristics search tool we utilized is provided at https://github.com/usernamelzr/
cipher-auto-search-tool.

The remainder of the paper is organized as follows. We describe the hash function
RIPEMD-128 in Section 2. Some techniques we used to improve the collision attack results
is presented in Section 3. Next, in Section 4 and Section 5, we detail our differential
characteristics and the message modification steps for collision attacks on the reduced
46-step and 54-step RIPEMD-128, respectively. Finally, we summarize our findings and
conclude the paper in Section 6.

2 Description of RIPEMD-128
RIPEMD-128 is a hash function based on the Merkle-Damgård structure. The input
message is padded and then divided into 512-bit message blocks, denoted as Mi. The
algorithm begins with a 128-bit initial value CV0 = IV and iteratively applies the com-
pression function CVi+1 = H(CVi, Mi) to each message block to produce the final output.
The initial value IV is defined as follows:

IV=(0x67452301,0xEFCDAB89,0x98BADCFE,0x10325476).

The compression function H(CV, M) = (H0, H1, H2, H3) of RIPEMD-128 consists of
two branches, each containing 4 rounds with 16 steps per round. While the structure
of both branches is similar, they differ in their message expansion permutations and the
order of Boolean functions. Within the compression function, Xi denotes the state word
in the left branch, and Yi represents the state word in the right branch.

The input CV of the compression function is divided into 4 32-bit words, denoted as
cv0 to cv3. The initial state words for both branches are derived by CV as follows:

X−4 = Y−4 = cv0,

X−3 = Y−3 = cv3,

X−2 = Y−2 = cv2,

X−1 = Y−1 = cv1.

The 512-bit input message block M is also divided into 16 message words, denoted as
m0 to m15. Each step utilizes one message word, and each round employs all 16 message
words exactly once. The step function of RIPEMD-128 at step i is defined as follows,
where i = (0, 1, 2, ..., 63). In the description, + denotes addition modulo 232, ≪ denotes
a circular left shift.

Xi = (Xi−4 + fx
i (Xi−1, Xi−2, Xi−3) + mπx

i
+ Kx

i) ≪ sx
i ,

Yi = (Yi−4 + fy
i (Yi−1, Yi−2, Yi−3) + mπy

i
+ Ky

i) ≪ sy
i .

Boolean functions and round constants used in the step function are listed in Table 2.
In the Boolean functions, ∨, ∧, and ⊕ represent bit-wise OR, AND, and XOR, respectively.
Message permutation constants πx

i and πy
i , and rotation constants sx

i and sy
i in the step

function, are listed in Table 3.
Finally, a feed-forward operation is applied to compute the output (H0, H1, H2, H3) of

the compression function:

https://github.com/usernamelzr/ripemd128_attack
https://github.com/usernamelzr/cipher-auto-search-tool
https://github.com/usernamelzr/cipher-auto-search-tool

4 Collision Attacks on Reduced RIPEMD-128

Table 2: Boolean functions and round constants in RIPEMD-128

round step i fx
i (a, b, c) fy

i (a, b, c) Kx
i Ky

i

1 0 ≤ i ≤ 15 a ⊕ b ⊕ c (c ∧ a) ∨ (¬c ∧ b) 0x00000000 0x50A28BE6
2 16 ≤ i ≤ 31 (a ∧ b) ∨ (¬a ∧ c) (a ∨ ¬b) ⊕ c 0x5A827999 0x5C4DD124
3 32 ≤ i ≤ 47 (a ∨ ¬b) ⊕ c (a ∧ b) ∨ (¬a ∧ c) 0x6ED9EBA1 0x6D703EF3
4 48 ≤ i ≤ 63 (c ∧ a) ∨ (¬c ∧ b) a ⊕ b ⊕ c 0x8F1BBCDC 0x00000000

Table 3: Message permutation constants and rotation constants in RIPEMD-128

step i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

πx
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sx
i 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8

πy
i 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

sy
i 8 9 9 11 13 15 15 5 7 7 8 11 14 14 12 6

step i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

πx
i 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8

sx
i 7 6 8 13 11 9 7 15 7 12 15 9 11 7 13 12

πy
i 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2

sy
i 9 13 15 7 12 8 9 11 7 7 12 7 6 15 13 11

step i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

πx
i 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12

sx
i 11 13 6 7 14 9 13 15 14 8 13 6 5 12 7 5

πy
i 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

sy
i 9 7 15 11 8 6 6 14 12 13 5 14 13 13 7 5

step i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

πx
i 1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2

sx
i 11 12 14 15 14 15 9 8 9 14 5 6 8 6 5 12

πy
i 8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14

sy
i 15 5 8 11 14 14 6 14 6 9 12 9 12 5 15 8

Zhengrong Lu, Hongbo Yu, Xiaoen Lin and Sitong Yuan 5

H0 = cv1 + X62 + Y61,

H1 = cv2 + X61 + Y60,

H2 = cv3 + X60 + Y63,

H3 = cv0 + X63 + Y62.

3 Improve the Collision Attack for RIPEMD-128
The modular differential attack strategy [WLF+05, WY05] for hash functions based on
Merkle-Damgård structure, consists of the following steps:

Step 1: Identify suitable message differences to construct simple local collisions in the
later rounds.

Step 2: Search for suitable modular differential characteristics in preceding rounds and
compute their corresponding conditions. These modular differential characteristics are
consisted by modular differences in each state word and conditions controlling the prop-
agation of these differences. In Step 3, we must identify message pairs satisfying all
differential characteristic conditions. Consequently, the time complexity depends on the
number of uncontrolled conditions, which should be minimized during the search process.

Step 3: Randomly generate message pairs and apply message modification techniques
to satisfy some conditions. Then, verify whether the modified message pair results in a
collision for the hash function. If not, repeat this step until a colliding message pair is
found.

In the remainder of this section, we will describe our techniques to improve the above
three steps to achieve a better collision attack result.

3.1 New Message Difference Structures
RIPEMD-128 is a double-branch hash function with distinct message word permutations
and Boolean functions in its two branches. Consequently, selecting suitable message word
differences that can generate high-probability local collisions in both branches simultane-
ously is essential.

The theoretical semi-free start collision attack on full RIPEMD-128 [LP13] utilizes a
single-bit difference in m14 to construct state differences cancellation in round 4. This
approach results in numerous conditions in rounds 2 and 3. Their method involves starting
from the midpoint of both branches, performing backward modification, and searching for
a suitable IV to merge the branches. However, for collision attacks where the IV cannot
be arbitrarily selected, we face significantly constrained degrees of freedom for message
modification.

Previous collision attack results, such as the 38-step [MNS12] and 40-step [Wan14,
WY15] collision attacks, primarily focused on message words appearing late in round 3.
This approach allowed them to avoid introducing state differences in round 3 and instead
focus on finding differential characteristics in rounds 1 and 2 to achieve collisions. However,
to attack reduced versions of the hash function with more steps, it becomes necessary to
introduce differences in round 3. This introduces additional complexity, as it may lead to
more intricate differential characteristics with higher number of uncontrollable conditions.
Therefore, identifying new message difference structures capable of generating short local
collisions in round 3 is crucial. In the remainder of this subsection, we present two new

6 Collision Attacks on Reduced RIPEMD-128

types of message differences that can produce local collisions in both branches of round 3
with high probabilities.

To identify short differential characteristics simultaneously in round 3, a key idea is
to introduce differences in message words that appear in both branches with the same
distances. From Table 3, we observe that within the same round, when πx

i = πy
j , it

always holds that sx
i = sy

j . This implies that the same message word bit affects the same
state word bit in both branches. Based on the message permutations in round 3, we
can categorize all the message words (excluding m5) into three groups such that if two
message words belong to the same group, they exhibit the same distance in both branches
during round 3. Each group is highlighted in the same color, as shown in Table 4, and
summarized in Table 5. This approach enables similar difference cancellation structure in
both branches when introducing differences to message words in the same group. That
helps us generate local collisions in both branches simultaneously in round 3 with high
probabilities.

Table 4: Message permutations in round 3

step i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

πx
i 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12

πy
i 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

Table 5: Message words with the same distance in both branches in round 3

Group Message words
1 m3,m14,m9,m8,m2,m0,m13
2 m10,m4
3 m15,m1,m7,m6,m11,m12

Another challenge we need to address is how to handle the Boolean functions used
in round 3. For the right branch, if only one input bit of the function (a ∧ b) ∨ (¬a ∧ c)
has a difference, we can use conditions on the other input bits to control the difference
of its output. However, for the left branch, the Boolean function is (a ∨ ¬b) ⊕ c. When
c has a difference and the input bits a and b do not, the output of the Boolean function
will always exhibit a difference. Therefore, we need to introduce an additional message
word difference to cancel it out. In this way, we obtain the message differences type 1
and their corresponding local collisions in round 3. For the message differences type 1,
we introduce two differences into message words within the same group so that they can
cancel each other in the right branch. We then use an additional message difference to
cancel the difference introduced by the Boolean function in the left branch. For example,
the message differences ∆m3 = +221, ∆m4 = +20, and ∆m9 = −20 constitute a suitable
choice because m3 and m9 belong to the same group. The corresponding local collisions
and conditions are illustrated in Table 6 and Table 7. The conditions on Xi and Yi regulate
the modular differences and Boolean functions to ensure proper differential propagation
in local collisions. Especially, conditions X32[0] = 0 and Y35[0] = 0 restrict the modular
differences to bit 0 exclusively, while the remaining conditions control the output of the
Boolean functions. To demonstrate how these conditions control differential propagation,
we provide the following example. In the Boolean function (a ∨ ¬b) ⊕ c, when a = 1, the
output becomes independent of b and when b = 0, the output becomes independent of a.
Thus, the conditions X31[0] = 0 and X33[0] = 1 in Table 6 prevent difference propagation
from step 32 to steps 33 and 34. Conditions in step 34 of the left branch and steps 34, 36,
and 37 of the right branch employ a similar mechanism to control the output differences

Zhengrong Lu, Hongbo Yu, Xiaoen Lin and Sitong Yuan 7

of the Boolean functions.
However, since the extra difference cannot be canceled in the right branch, this type

of message difference is limited to collision attacks on fewer than 48 steps.

Table 6: Local collision of the left branch for message differences type 1

step i πx
i sx

i ∆mπx
i

∆Xi conditions on Xi

31 X31[0] = 0
32 3 11 +221 +20 X32[0] = 0
33 X33[0] = 1
34 X34[0] = 1
35 4 7 +20

36 9 14 −20

Table 7: Local collision of the right branch for message differences type 1

step i πy
i sy

i ∆mπy
i

∆Yi conditions on Yi

34 Y34[0] = Y33[0]
35 3 11 +221 +20 Y35[0] = 0
36 Y36[0] = 0
37 Y37[0] = 1
38
39 9 14 −20

To attack more than 48 steps, we must ensure that each state difference in round 3
is canceled, meaning that each message difference must be part of a local collision. This
requires an alternative approach to cancel the extra difference. By analyzing the left
branch Boolean function (a ∨ ¬b) ⊕ c, we observe that when two adjacent input bits (a
and b, or b and c) have the same difference, the output can still be controlled to remain
unchanged. This approach allows us to cancel all extra differences. Consequently, we
derive the message differences type 2 by introducing differences into three message words
within the same group, which can mutually cancel each other in round 3. For example,
the message differences ∆m15 = +226, ∆m7 = −23 + 29, and ∆m11 = −217 is a proper
choice because m15, m7, and m11 belong to the same group. The corresponding local
collisions and conditions are illustrated in Table 8 and Table 9.

Table 8: Local collision of the left branch for message differences type 2

step i πx
i sx

i ∆mπx
i

∆Xi conditions on Xi

36 X36[3] = 0
37 15 9 +226 +23 X37[3] = 0
38 X38[3] = 1
39 X39[3] = 0, X39[17] = 0
40 14 +217 X40[17] = 0
41 7 8 −23 + 29 +217 X41[17] = 0
42 X42[17] = 0
43
43
44 11 12 −217

For round 4, we can adopt a method from [LP13] to cancel differences in the last four
steps, thereby improving the attack result. If πx

a = πy
a+3, and there are no other differences

8 Collision Attacks on Reduced RIPEMD-128

Table 9: Local collisions of the right branch for message differences type 2

step i πy
i sy

i ∆mπ
y
i

∆Yi conditions on Yi

31 Y31[3] = Y30[3]
32 15 9 +226 +23 Y32[3] = 0
33 Y33[3] = 0
34 Y34[3] = 1
35 Y35[17] = Y35[17]
36 7 8 −23 + 29 +217 Y36[17] = 0
37 Y37[17] = 0
38 Y38[17] = 1
39
40 11 12 −217

on mπx
a+1

, mπx
a+2

, mπx
a+3

, mπy
a
, mπy

a+1
, and mπy

a+2
, we can select an appropriate differential

bit for mπx
a

and leverage the feed-forward structure to cancel its difference with additional
conditions. For example, when ∆m15 = +226, ∆m7 = −23 + 29, and ∆m11 = −217, we
have πx

50 = πy
53 = 11. By introducing five conditions, we can ensure ∆X50 = ∆Y53 = −231

and ∆X51 = ∆X52 = ∆X53 = ∆Y50 = ∆Y51 = ∆Y52 = 0. When these equations are
satisfied, the feed-forward operation of the reduced 54-step RIPEMD-128 ensures the
output differences ∆H0 = ∆H1 = ∆H2 = ∆H3 = 0.

3.2 Search for Differential Characteristics

After identifying suitable message differences, we need to search for proper differential
characteristics in rounds 1 and 2 to complete the attack. In the compress function of
RIPEMD-128, the same message word is used in the step functions of both branches in
one round. This implies that in most cases, if we utilize the degrees of freedom of a
message word to modify conditions in one branch of round 1, we cannot simultaneously
use it to control the corresponding state word in the other branch, as other parameters in
the state function have not yet been determined at that point. Consequently, only partial
state words in round 1 can be modified directly, while conditions in other state words will
impact the time complexity.

Different message modification strategies can directly modify different state words,
resulting in varying time complexities. Therefore, our approach is as follows: first, we
determine the order of message modification based on the structure of differential char-
acteristics. This allows us to identify which state words are controlled by which message
words and which state words are not directly modified by their corresponding message
words, thus the conditions associated with the latter should be minimized. Based on
this information, we can then search for optimal differential characteristics by automatic
tools. In addition, for a single message word, we only have 32 degrees of freedom. There-
fore, if multiple state words are controlled by a single message word, the total number
of conditions across these state words must not exceed 32 to avoid additional time com-
plexity caused by insufficient degrees of freedom. Because the restriction of differential
characteristics in our strategy is complex, we utilized an automated search tool based on
SAT-solver. Based on the above properties, we outline our high-level method for finding
differential characteristics in rounds 1 and 2:

Step 1: Determine the order of message modification based on the structure of the
differential characteristics. State words near the first state difference are likely to have
more conditions and thus should be given higher priority for controlled directly.

Zhengrong Lu, Hongbo Yu, Xiaoen Lin and Sitong Yuan 9

Step 2: Identify which state words are controlled by each message word and determine
which state words cannot be directly modified. If a single message word controls multiple
state words, we must impose a limitation in step 3.

Step 3: Use automatic tool to search for differential characteristics based on the above
strategy. The limitations are that the number of conditions controlled by the same message
word cannot exceed 32 to avoid additional time complexity, and the conditions in state
words that are not directly modified by their corresponding message words should be
minimized. Finally, state words with a large number of conditions will be fully fixed to
simplify subsequent message modification.

3.3 Multi-step Message Modification
To reduce the time complexity of the collision attack, we can employ more precise multi-
step message modification techniques to satisfy more conditions in round 1. In brief, when
mπx

i
is predetermined, we cannot directly modify its corresponding state word Xi (the

same for mπy
i

and Yi). However, we can adjust Xi−1 or Xi−2 to modify the conditions in
Xi using the Boolean functions.

For the left branch, the Boolean function in round 1 is a ⊕ b ⊕ c. This implies that if
any bit of its input is modified, the output will also change. Consequently, we can adjust
Xi+1 or Xi+2 by altering the corresponding bit in Xi by the step function. In addition,
the conditions required to control the output difference of this Boolean function include
a = b, a ̸= c, and similar expressions (conditions described by symbols a, b, c and d in
Table 14, will be introduced in Appendix A). Although these conditions pertain to later
steps, we can modify the bit in the previous step to satisfy these conditions. For example,
when the condition is Xi+1[j] = Xi[j], modifying Xi[j] is also a valid approach to satisfy
the condition.

For the right branch, the Boolean function in round 1 is (c∧a)∨ (¬c∧ b). This implies
that when c = 0 or c = 1, the output of this function depends solely on b or a, respectively.
Therefore, if Yi and Yi+1 have degrees of freedom in the same bit j, we can impose the
condition Yi[j] = 0 and use Yi+1 to control the conditions in Yi+3. Similarly, if Yi and
Yi+2 both have degrees of freedom in bit j, we can impose the condition Yi[j] = 1 and
utilize Yi+2 to control the conditions in Yi+3.

4 Collision Attack on RIPEMD-128 Reduced to 46 Steps
For the collision attack, we select the message differences ∆m3 = +221, ∆m4 = +20, and
∆m9 = −20 in type 1. The corresponding local collisions in round 3 is shown in Table 6
and Table 7. These message differences enable us to use a single state difference in Y25[0]
to cancel two differences introduced by m4 and m9 in round 2 of the right branch, resulting
in a differential characteristic with fewer uncontrolled conditions. The overall structure
of the differential characteristic generated by these message differences is illustrated in
Figure 1. The curves in the figure represent differences cancel out. Specifically, the curves
in rounds 1 and 2 depict the differential characteristics to be identified, while the curves
in round 3 correspond to the local collisions described in Table 6 and Table 7.

4.1 Differential Characteristic
Based on our message modification strategy outlined in Table 10, we can employ auto-
mated tools to search for the differential characteristic in rounds 1 and 2. The total
number of conditions in the state words controlled by the same message word must not

10 Collision Attacks on Reduced RIPEMD-128

left branch

right branch

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8
round 1 round 2

3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12
round 3

5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2
round 1 round 2

15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13
round 3

Figure 1: Structure of differential characteristic for 46-step RIPEMD-128

exceed 32. State words highlighted in red or not listed in Table 10 are not directly modi-
fied by their corresponding message words; therefore, the conditions in these state words
should be minimized. The detailed results and corresponding conditions are presented in
Table 15.

Table 10: Message modification order for 46-step RIPEMD-128

message words controlled state words

m0 X0
m1 X1
m2 X2
m3 X3
m4 X4
m5 X5 and Y0
m6 X6
m7 X7
m14 Y1, Y2, and Y3
m9 Y4 and Y5
m11 Y6 and Y7
m13 Y8 and Y9
m15 Y10
m8 Y11 and Y12
m10 X10, X11, Y13, and Y14
m12 X12 and Y15

4.2 Find Colliding Message Pair
After obtaining the differential characteristics, we can implement message modification
according to Table 10. The procedure can be divided into the following steps, as illustrated
in Figure 2.

left branch

right branch

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

¬ ® ¯ °

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15

¬ ­ ¯ °

Figure 2: Steps of message modification for 46-step RIPEMD-128

Zhengrong Lu, Hongbo Yu, Xiaoen Lin and Sitong Yuan 11

Step 1: We calculate the message words from m0 to m7, based on the fixed state words
X0 to X7 in the left branch.

Step 2: We begin modifying other message words to satisfy the conditions in the right
branch. Since Y0 has no conditions, it can be calculated directly using m5. We then utilize
the degrees of freedom of m14 to fulfill the conditions from Y1 to Y3. Here, the conditions
in Y1 can be modified directly, while those in Y2 and Y3 are adjusted indirectly. We repeat
the random selection process until all conditions in these steps are satisfied. Next, we
employ a similar approach to randomly generate and modify m9, m11, m13, m15, and m8
to meet the conditions from Y4 to Y12.

Step 3: We use m8 and m9 to calculate X8 and X9, and then verify whether the condi-
tions in these step words are satisfied. If not, we restart steps 2 and 3.

Step 4: There are 66 remaining conditions, but we only have 64 free bits in m10 and
m12. This implies that we need to find 22 solutions of step 3. Subsequently, we use the
message word m10 to modify X10, X11, Y13, and Y14.

Step 5: Finally, we use the remaining message word m12 to modify X12 and Y15. Addi-
tionally, we can implement the multi-step message modification techniques described in
Subsection 3.3 to satisfy more conditions, thereby reducing the complexity. Specifically,
we can use bits 10, 23, 25, 31 of X12 to influence X13[17], X14[0], X13[0] and X14[8], thereby
modifying four conditions. We then test whether the message pair constitutes a 46-step
collision attack. If not, we repeat steps 4 and 5 by selecting alternative values for m10
and m12.

Theoretical Time Complexity. The time complexity of step 2 depends on the number
of conditions that cannot be directly modified. Specifically, Y2 and Y3 collectively have
14 conditions, Y5 has 10 conditions, Y7 has 11 conditions, Y9 has 12 conditions, and Y12
has 11 conditions. Therefore, the overall complexity is 214 + 210 + 211 + 212 + 211 ≈ 215.
Additionally, since there are 24 conditions in X8 and X9, the expected time complexity for
once step 3 is 224 × 215 = 239. There are 40 uncontrolled conditions remaining, resulting
in a complexity of 240 for steps 4 and 5. Since we need 22 solutions from step 3, the overall
complexity of the entire attack is 22 × 239 + 240 ≈ 242.

Using this approach, we successfully identified a colliding message pair for the reduced
46-step RIPEMD-128 on a typical PC within 20 hours. The results are presented in
Table 11.

Table 11: 46-step colliding message pair

CV0 67452301 efcdab89 98badcfe 10325476

M0 2d9942f6 8116c0fa ec95290c 0f23a553 2a34e00f 84797a0c 94c87810 b389dfb7
d673ac60 b89cd050 50cacb0d fd249d61 08e0ba16 ee28d84c 3bfab38c 045080be

M ′
0 2d9942f6 8116c0fa ec95290c 0f43a553 2a34e010 84797a0c 94c87810 b389dfb7

d673ac60 b89cd04f 50cacb0d fd249d61 08e0ba16 ee28d84c 3bfab38c 045080be

H 10a518f7 44a599d3 cae0e914 bd0d53b4

5 Collision Attack on RIPEMD-128 Reduced to 54 Steps
For the 54-step collision attack, we select the message differences ∆m15 = +226, ∆m7 =
−23 + 29, and ∆m11 = −217 in type 2. The corresponding local collisions in round 3 is

12 Collision Attacks on Reduced RIPEMD-128

shown in Table 8 and Table 9. This allows us to apply the method in round 4 to cancel
two differences using the feed-forward structure. The overall structure of the differential
characteristic generated by these message differences is illustrated in Figure 3. The curves
in this figure carry similar significance to those presented in Section 4.

left branch

right branch

0 1 2 3 4 5 6 7 8 9 101112 13 1415 7 4 13 1 10 6 15 3 12 0 9 5 2 1411 8
round 1 round 2

3 10 14 4 9 15 8 1 2 7 0 6 1311 5 12
round 3

1 9 1110 0 8 12 4 13 3 7 1514 5 6 2
round 4

5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12 6 11 3 7 0 13 5 10 1415 8 12 4 9 1 2
round 1 round 2

15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13
round 3

8 6 4 1 3 1115 0 5 12 2 13 9 7 10 14
round 4

Figure 3: Structure of differential characteristic for 54-step RIPEMD-128

5.1 Differential Characteristic
For the 54-step collision attack, the message modification strategy outlined in Table 12 is
more complex. This is because we first determine some intermediate state words (X5 to
X11) in the left branch and then utilize other message words (m1, m3, m4, m6, and m8)
to connect them with previous state words X−3 to X0. Since there are no conditions in
the state words from X0 to X4, this strategy enables better control over conditions in the
middle of the left branch. For the right branch, we fix the state words Y0 to Y4 to ensure
that message word m9 is consistent in both branches. Other constraints are similar to
those in the 46-step collision attack. The detailed results and corresponding conditions
are presented in Table 16.

Table 12: Message modification order for 54-step RIPEMD-128

message words controlled state words

m5 Y0
m14 Y1
m7 Y2
m0 Y3 and X0

m9, m10 and m11 X5, X6, X7, X8, X9, X10, X11, and Y4
m2 Y5 and Y6

m1, m3, m4, m6, and m8 X1, X2, X3, and X4
m13 Y8 and Y9
m15 Y10, Y11, Y12 , Y13, and Y14
m12 X12 and Y15

5.2 Find Colliding Message Pair
By employing the multi-step message modification techniques described in Subsection 3.3,
and following the strategy outlined in Table 12, we can complete our 54-step collision
attack using the steps illustrated in Figure 4.

Step 1: We randomly generate the first message block to obtain its hash value as the
initial state words. Using these initial state words along with the fixed state words Y0 to

Zhengrong Lu, Hongbo Yu, Xiaoen Lin and Sitong Yuan 13

left branch

right branch

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

¬¬ ® ±

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15

¬ ­ ® ¯ ° ±

Figure 4: Steps of message modification for 54-step RIPEMD-128

Y3 and X5 to X11, we derive the message words m5, m14, m7, m0, m9, m10, and m11.
Finally, we compute X0 using the step function by message word m0.

Step 2: We employ the same method used in the 46-step collision attack, utilizing m2
to satisfy the conditions in Y5 and Y6.

Step 3: We will connect the left branch with the fixed state words while ensuring the
correctness of all step functions. This is the most complex and crucial step. Specifically,
we need to set the message words m1, m3, m4, m6, and m8 to derive the state words X1
to X4. Since there are no conditions in these state words, we only need to ensure they
are consistent with the predetermined message words m2, m5, and m7. By observation,
when m8 is fixed, we can compute X4 and then use m7 to compute X3. Therefore, we can
enumerate m8 and store the corresponding relationship between it and X4 ⊕ X3. Next,
we can enumerate m1 to obtain X1 and X2. From the step function, we know that X5 =
(X1+m5+(X2⊕X3⊕X4)) ≪ 8. This implies that X3⊕X4 = ((X5 ≫ 8)−X1−m5)⊕X2.
Consequently, we can calculate the right-hand side of the equation and retrieve m8 from
the stored data. Now that we have X1 to X4, we can use them to derive m3, m4, and m6.
After obtaining a solution, we compute Y7 by m4 and verify the 11 conditions in it. Since
we have 5 free message words to determine 4 state words, we can obtain 232 solutions for
the left branch on average, and 232−11 = 221 solutions will be retained.

Step 4: Similar to step 2, we utilize the degrees of freedom in m13 to satisfy the conditions
in Y8 and Y9.

Step 5: We use m15 to fulfill conditions in Y10, and then apply multi-step message
modification techniques to satisfy 8 conditions in Y11 and Y12. Specifically, we set Y8[6] =
Y8[12] = Y8[18] = Y8[24] = Y8[26] = Y8[30] = 1 to modify 6 conditions in corresponding
bit of Y11 by Y10, and Y9[15] = Y9[21] = 0 to modify 2 conditions in corresponding bit of
Y12 by Y10. We then verify and retain only those results where all other conditions in the
state words Y10, Y11, Y12 , Y13, and Y14 are satisfied.

Step 6: Finally, we utilize the free bits in the message word m12 to modify 5 conditions
in X12 and 3 conditions in different bits (bits 5, 14, 17) of Y15. We then apply multi-step
message modification techniques to satisfy 10 conditions in X13 and X14. Specifically, we
use bits j = 11, 12, 13, 15, 16, 26 of X12 to fulfill conditions X13[j] = X12[j] or X13[j] ̸=
X12[j]. Then we use bits 0, 1, 20, 28 of X12 to influence X14[9], X14[10], X13[27] and X13[3]
thereby modifying 4 conditions (note that X13[3] satisfy the condition on X14[3]). After
this step, all message words are determined, and we verify whether this constitutes a 54-
step colliding message pair. If all results are tested and no collision is found, we generate
another first message block and restart the entire search process.

14 Collision Attacks on Reduced RIPEMD-128

Theoretical Time Complexity. The time complexity of once step 3 is 232, yielding 221

solutions. Step 4 requires 221+32−15 = 238 time to obtain 221+32−15−10 = 228 partial
message pairs. The time complexity of step 5 is 228+32−8−8 = 244, and since the number
of degrees of freedom matches the number of conditions, we retain 228 results. Finally,
the time complexity of step 6 is 228+32−5−3−10 = 242, producing 242 message pairs for
verification. Given that there are still 52 uncontrolled conditions, the expected retry count
is 210. Overall, the complexity of the entire attack is 210 × (232 + 238 + 244 + 242) ≈ 254.

Using the above method, we successfully identified a colliding message pair for the
reduced 54-step RIPEMD-128 in approximately 2 hours using 8000 core-groups. The
results are presented in Table 13.

Table 13: 54-step colliding message pair

CV0 67452301 efcdab89 98badcfe 10325476

M0 3196321c c183bda8 5948a4a6 b9897a72 952d2821 49e99518 837f0108 a78bcb84
e6344b00 35f1aec2 c6eb8b42 5c135c23 bf669982 916f3793 4edc7b52 066be09b

CV1 dc0f547e c91d0a6b f4664fff 34a8eb58

M1 bcc32b21 21c52df4 56958c72 355a5a6c 3f69982d 0cc0147a eaa3ffe9 31d75d55
baf8e6fa a8c64220 2fade74a ac323113 57446d32 361f18a8 71313ab1 01ddb358

M ′
1 bcc32b21 21c52df4 56958c72 355a5a6c 3f69982d 0cc0147a eaa3ffe9 31d75f4d

baf8e6fa a8c64220 2fade74a ac303113 57446d32 361f18a8 71313ab1 05ddb358

H f465f1aa dba390ce a1aaf407 ffe138ab

6 Conclusion
In this paper, we present new results on collision attacks against the double-branch hash
function RIPEMD-128. We introduce new message differences to achieve practical collision
attacks for reduced 46-step and 54-step RIPEMD-128, surpassing the previous best results.
The 54-step collision attack represents the first collision instance that includes the entire
round 3. Specifically, we leverage the properties of message expansion permutations and
identify new types of message difference structures to construct high-probability local
collisions in round 3. We then search for their corresponding differential characteristics
in rounds 1 and 2 based on our message modification strategy. This strategy involves
arranging proper order of message modification, allowing us to use the degrees of freedom
in one message word to influence many state words. Next, we employ multi-step message
modification techniques to control additional conditions and reduce the time complexity
of the attack to a feasible level. Overall, the time complexity of 46-step and 54-step
collision attacks are approximately 242 and 254, respectively. Finally, we utilize multi-core
computation to obtain the actual colliding message pairs.

Acknowledgments
This work was supported by the National Key Research and Development Program of
China (Grant No. 2024YFA1013003), National Cryptographic Science Foundation of
China (Grant No. 2025NCSF02014), and Zhongguancun Laboratory.

References
[BP95] Antoon Bosselaers and Bart Preneel, editors. Integrity Primitives for Se-

cure Information Systems, Final Report of RACE Integrity Primitives Evalu-

Zhengrong Lu, Hongbo Yu, Xiaoen Lin and Sitong Yuan 15

ation RIPE-RACE 1040, volume 1007 of Lecture Notes in Computer Science.
Springer, 1995.

[DBP96] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A
strengthened version of RIPEMD. In Dieter Gollmann, editor, FSE’96, volume
1039 of LNCS, pages 71–82. Springer, Berlin, Heidelberg, February 1996.

[IPS13] Mitsugu Iwamoto, Thomas Peyrin, and Yu Sasaki. Limited-birthday distin-
guishers for hash functions - collisions beyond the birthday bound can be
meaningful. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part II, volume 8270 of LNCS, pages 504–523. Springer, Berlin, Heidelberg,
December 2013.

[LP13] Franck Landelle and Thomas Peyrin. Cryptanalysis of full RIPEMD-128. In
Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, vol-
ume 7881 of LNCS, pages 228–244. Springer, Berlin, Heidelberg, May 2013.

[MNS12] Florian Mendel, Tomislav Nad, and Martin Schläffer. Collision attacks on the
reduced dual-stream hash function RIPEMD-128. In Anne Canteaut, editor,
FSE 2012, volume 7549 of LNCS, pages 226–243. Springer, Berlin, Heidelberg,
March 2012.

[MPRR06] Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Ri-
jmen. On the collision resistance of RIPEMD-160. In Sokratis K. Katsikas,
Javier Lopez, Michael Backes, Stefanos Gritzalis, and Bart Preneel, editors,
ISC 2006, volume 4176 of LNCS, pages 101–116. Springer, Berlin, Heidelberg,
August / September 2006.

[OSS10] Chiaki Ohtahara, Yu Sasaki, and Takeshi Shimoyama. Preimage attacks on
step-reduced RIPEMD-128 and RIPEMD-160. In Xuejia Lai, Moti Yung, and
Dongdai Lin, editors, Information Security and Cryptology - 6th International
Conference, Inscrypt 2010, Shanghai, China, October 20-24, 2010, Revised
Selected Papers, volume 6584 of Lecture Notes in Computer Science, pages
169–186. Springer, 2010.

[SBK+17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov. The first collision for full SHA-1. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 570–
596. Springer, Cham, August 2017.

[Wan14] Gaoli Wang. Practical collision attack on 40-step RIPEMD-128. In Josh Be-
naloh, editor, CT-RSA 2014, volume 8366 of LNCS, pages 444–460. Springer,
Cham, February 2014.

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the hash functions MD4 and RIPEMD. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 1–18. Springer, Berlin, Hei-
delberg, May 2005.

[WSK+11] Lei Wang, Yu Sasaki, Wataru Komatsubara, Kazuo Ohta, and Kazuo
Sakiyama. (Second) preimage attacks on step-reduced RIPEMD/RIPEMD-
128 with a new local-collision approach. In Aggelos Kiayias, editor, CT-
RSA 2011, volume 6558 of LNCS, pages 197–212. Springer, Berlin, Heidelberg,
February 2011.

16 Collision Attacks on Reduced RIPEMD-128

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions.
In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages
19–35. Springer, Berlin, Heidelberg, May 2005.

[WY15] Gaoli Wang and Hongbo Yu. Improved cryptanalysis on RIPEMD-128. IET
Inf. Secur., 9(6):354–364, 2015.

[WYY05a] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
SHA-1. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages
17–36. Springer, Berlin, Heidelberg, August 2005.

[WYY05b] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search
attacks on SHA-0. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of
LNCS, pages 1–16. Springer, Berlin, Heidelberg, August 2005.

A Differential Characteristics and Conditions
Table 14 introduces the symbols used to describe differential characteristics and conditions
in Table 15 and Table 16. Here, A and A′ represent two colliding state words.

Table 14: Symbols and corresponding differential characteristics and conditions

symbol condition
. no condition
0 Ai[j] = A′

i[j] = 0
1 Ai[j] = A′

i[j] = 1
u Ai[j] = 1, A′

i[j] = 0
n Ai[j] = 0, A′

i[j] = 1
a Ai[j] = A′

i[j] = Ai−1[j]
b Ai[j] = A′

i[j] ̸= Ai−1[j]
c Ai[j] = A′

i[j] = Ai−2[j]
d Ai[j] = A′

i[j] ̸= Ai−2[j]

Table 15 and Table 16 describe our differential characteristics and conditions for the
46-step and 54-step collision attacks, respectively. State words that are fully fixed in the
search for differential characteristics are considered to have 32 conditions.

Zhengrong Lu, Hongbo Yu, Xiaoen Lin and Sitong Yuan 17

Table 15: 46-step differential characteristics and conditions

step i Xi conditions Yi conditions

0 00011100010001111100011111100001 32 0
1 01110001100000011011111100011110 32 0
2 11101100110000000000001110101101 321110............. 4
3 01111100110000101110nuuuuuuuuuu1 32 110............0000..........000 10
4 nnnnnnnnnnnnnnnnnuun01uuunn0010u 32 1110...........unnn..........000 11
5 11111u0u10111u0unnnn00nuunn00101 32 nnn1......1....1..0..........unn 10
6 10000n11uuuuu1u011011110nnnnnnnu 32 ..1u......0....0aau..00......0.. 10
7 0010000nuuuuuuu10110111101nuuu01 32 aa11......n..........11.0....1aa 11
8bud.....c.........abb....aa 9 ..nu111111u.......a..un.1....... 13
9uaabbbbna........u..aaab.u 15 ..0n1011111..........11.u....... 12

10nu........n.......u 4 ..1unnnnnnn..........0101....... 13
11b.......n................. 2 ...0.....0n...........n1u..0.... 7
12b.........a.......b 3 ...1aaaaa10...........1n...1.... 11
13b................u 2u...........01a..n.... 5
14n........a.......c 3u.......0....0...1.... 4
150........u.......1 30...0...n........0.... 4
161........0........ 2n...n............. 2
17a................1........ 2n...0............. 2
18n...a..................... 20................. 1
190...u..................... 20......................... 1
201...0..................... 2n......................... 1
211....................a 2n......................... 1
22n 10......................... 1
230 1 0
241 10 1
25 0n 1
26 01 1
27 01 1
28 0 0
29 0 0
30 0 0
310 1 0
32n 1 0
331 1 0
341 1a 1
35 0n 1
36 00 1
37 01 1
38 0 0
39 0 0
40 0 0
41 0 0
42 0 0
43 0 0
44 0 0
45 0 0

18 Collision Attacks on Reduced RIPEMD-128

Table 16: 54-step differential characteristics and conditions

step i Xi conditions Yi conditions

0 0 11000000000000111100110111111001 32
1 0 00101111111111111101000101111111 32
2 0 uuuuuuuuuuuuuu1001un101nuuuuuuuu 32
3 0 00001000110100111n00uuu000110100 32
4 0 00001n00110u01100111n0u001001000 32
5 00100101011001111101001111011001 32 ..1.u0.n....u.u.11..000..0....u. 13
6 11000101011010110010111101100110 32 ..0.1u.0...a0.1.n...0.u..1.0.... 12
7 uuuuuuuuuuuuuuunnnnn100uuuuuuuuu 32 ..n.11.u....n.u........0.u.10.a. 11
8 nnn0uuuuu0101u1100unnnn101101001 32 .10.u1.10....1n.a..1..a1.1.n1... 15
9 nnnnn0111nuuuu0100unnnn001101101 32 ..0....11.0.a.1.0......u.1..n... 10

10 01000u1111101nunuuuuunu001000001 32 ..1.a...n.....u.......00...a1... 8
11 1001un1100101nuuuuuuuun00001n100 32 ..n.....1.....u.......1n..0.u... 7
12d........u.......un.....n... 5 ..1.....0.....n.......u...1.0... 6
13bb........aabbbbb........... 9 ..0...........n.......0a..u.0... 6
14n.......ab.....b... 41..0....u...1.n... 5
151.................. 101..u....u...0.n... 6
161.................. 1u...u....0.....0... 4
17a.......................... 1u...0.............. 2
18n.......................... 10.................. 1
190.......................... 10.......................... 1
201.......................... 1u.......................... 1
21a.. 1u.......................... 1
22n.. 10.......................... 1
230.. 1 0
241.. 1 0
25a................. 1 0
26n................. 1 0
270................. 1 0
281................. 1 0
29 0 0
30 0 0
31 0a... 1
32 0n... 1
33 00... 1
34 01... 1
35 0a................. 1
360... 1n................. 1
37n... 10................. 1
381... 11................. 1
390.............0... 2 0
40n................. 1 0
41n................. 1 0
420................. 1 0
43 0 0
44 0 0
45 0 0
46 0 0
47 0 0
48 0............................... 1 0
49 1............................... 1 0
50 u............................... 1 0
51 0 0
52 a............................... 1 0
53 0 u............................... 1

	Introduction
	Description of RIPEMD-128
	Improve the Collision Attack for RIPEMD-128
	New Message Difference Structures
	Search for Differential Characteristics
	Multi-step Message Modification

	Collision Attack on RIPEMD-128 Reduced to 46 Steps
	Differential Characteristic
	Find Colliding Message Pair

	Collision Attack on RIPEMD-128 Reduced to 54 Steps
	Differential Characteristic
	Find Colliding Message Pair

	Conclusion
	Differential Characteristics and Conditions

