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Abstract

Recently, the concept of incompressible encryption has emerged as a powerful enhancement
to key-leakage resilience. In an incompressible encryption scheme, an adversary who intercepts
ciphertexts is forced to dedicate a significant amount of memory to store them in full if they
wish to extract any information about the plaintext later when the secret key becomes available.
Given two messages, the security game involves two adversaries: the first adversary receives an
encryption of one of the messages and produces a compressed state. Then, the second adversary,
given both the secret key and the compressed state, attempts to determine which message was
encrypted.

Several positive results exist in incompressible cryptography. On the one hand, there are
constructions based on minimal assumptions but with a poor rate (i.e., rate tends to 0). On
the other hand, there are rate-1 constructions that achieve optimal efficiency but rely on strong
cryptographic assumptions, such as obfuscation.

A stronger security notion, known as everlasting security, has been proposed for incompress-
ible encryption. In this formulation, the second adversary, who receives the compressed state
and the secret key, is allowed to be computationally unbounded. While this notion is conceptu-
ally appealing, no constructions of everlasting incompressible encryption are currently known,
regardless of the underlying assumption or even in idealized models.

In this work, we give the first construction of everlasting incompressible encryption. In fact,
we show that everlasting incompressible encryption is inherent in any sufficiently secure public-
key encryption scheme. Specifically, we prove that any public-key encryption scheme with
subexponential security (when instantiated with an appropriate security parameter) already
satisfies the definition of everlasting incompressible encryption with subexponential security.
Furthermore, our scheme achieves rate-1, improving upon existing results even for the weaker
notion of standard incompressible encryption.
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1 Introduction

Public-key encryption is a fundamental pillar of modern cryptography, enabling secure communica-
tion over untrusted networks without the need for a prior exchange of secret keys. Over the years,
increasingly strong security notions have been developed to address various adversarial threats and
real-world constraints. One such notion is forward security, which ensures that even if the secret
decryption key is compromised at a later stage, previously encrypted messages remain private. For-
ward security is particularly useful in scenarios where key exposure is a realistic threat, such as in
long-term encrypted storage or communication over extended periods. However, this notion typi-
cally relies on either multi-round protocols or periodic key updates, both of which can be impractical
in many scenarios.

Recently, the concept of incompressible encryption has emerged as a powerful enhancement
to key-leakage resilience [Dzi06; GWZ22]. It serves as a key example of the broader trend of
incompressible cryptography, a rapidly growing area that has garnered significant attention in recent
years [Dzi06; DGO19; GLW20; MW20; GZ21; GWZ22; GKRV25]. In an incompressible encryption
scheme, an adversary who intercepts ciphertexts is forced to dedicate a significant amount of memory
to store them in full if they wish to extract any information about the plaintext later when the secret
key becomes available. This requirement imposes a tangible cost on the adversary, as maintaining
large storage resources can be impractical or even prohibitive, especially for high-volume data or
long retention periods. The idea behind incompressible encryption is to make ciphertexts resistant
to succinct representation, ensuring that adversaries cannot efficiently store them in a compressed
form while retaining the ability to extract private information in the future when the key is leaked.

Beyond its fundamental importance, incompressible encryption has also served as a useful tool for
achieving various results. [BGKNPR24] presented a transformation from incompressible symmetric-
key encryption (SKE) to leakage-resilient incompressible SKE. On a different lane, [ABY25] lever-
aged the existence of incompressible public-key encryption to demonstrate the non-existence of a
computational notion of instance compression.

The implications of incompressible encryption are particularly relevant in settings where adver-
saries have intermittent access to secret keys, such as in cloud storage security, data breaches, or
state-sponsored surveillance. By increasing the storage burden on attackers, incompressible encryp-
tion provides an additional layer of security, complementing traditional encryption schemes that
rely solely on computational hardness assumptions.
The security game. Several notions of incompressibility have been proposed, each offering distinct
security guarantees. In this work, we focus on the recent formalization by Guan, Wichs, and Zhandry
[GWZ22]. Their framework retains the standard syntax of public-key encryption in the standard
model but introduces a fundamentally different security game. Informally, they require that any
efficient adversary (A1,A2) has only a negligible probability of success in the following game:

1. The challenger first gives the adversary the public key.
2. A1 then produces two messages m0,m1.
3. The challenger encrypts mb for a random b ∈ {0, 1} and sends the ciphertext c to A1.
4. The adversary produces a state s of size somewhat smaller than c.
5. The challenger then reveals the secret key to A2.
6. A2, given the small state s and the secret key, guesses b (and wins if the guess is correct).

The rate of the construction is the ratio between the message size and the ciphertext size. In a
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rate-1 scheme, the size of the ciphertext is (1+o(1)) · |m| for large enough messages. It is, of course,
desirable to construct schemes with rate approaching 1.
Constructions of incompressible encryption. Guan, Wichs, Zhandry [GWZ22] provided two
constructions of incompressible encryption. The first construction assumed only any standard
public-key encryption scheme, but did not have a good rate (rate approaches 0). The second
construction assumed the existence of indistinguishability obfuscation, but achieved a rate-1 incom-
pressible encryption, where the ciphertext size is S + poly(λ), where S is the storage bound size, λ
is the security parameter, and the message length can be as large as roughly S. Later, Branco, Döt-
tling, and Dujmovi [BDD22] constructed rate-1 incompressible encryption assuming the existence of
programmable hash proof systems (HPS), incompressible encodings and pseudorandom generators.
Everlasting security. A stronger security notion for incompressible encryption, known as ever-
lasting security, was introduced in [DKMMMMQT25]. In this formulation, the second adversary
A2 is considered to run in a long offline phase after the secret key has been leaked, and is thus
considered to have more computational power. In particular, they allow the adversary A2 to be
computationally unbounded. Thus, schemes that satisfy this notion are sometimes referred to as
having everlasting security. Notably, if A1 were unbounded, it could simply decrypt the ciphertext
and store only the plaintext, making the notion infeasible. However, since A2 does not have access
to the ciphertext, allowing it to run in unbounded time does not invalidate the definition.

Despite the conceptual appeal of this stronger notion, no constructions of everlasting incom-
pressible encryption were known prior to this work, regardless of the underlying assumptions or
even in idealized models. This leads us to ask:

Do incompressible encryption schemes with everlasting security exist?

The work of Harnik and Naor [HN10] shows strong limitations for encryption schemes with a similar
flavor of everlasting security. However, crucially their model allows the second adversary A2 to get
the entire ciphertext but only a compressed version (created by A1) of the key agreement protocol
performed at the beginning. Their limitations do not apply to the notion of everlasting security
considered in this paper.

A positive result has been recently obtained in [DKMMMMQT25] for a quantum analog of
the everlasting notion, referred to as the Quantum Decoherence Model. In this model, both the
encryption and decryption algorithms themselves are quantum algorithms (not only the adversary),
and the first adversary, A1, outputs only a limited number of qubits, while the second adversary,
A2, remains computationally unbounded. The security of their construction relies on the quantum
random oracle model (QROM). Thus, despite this progress, we still lack a construction of standard
everlasting incompressible encryption where the encryption algorithm is executed by a classical
computer.

1.1 Our results

We answer the above question affirmatively (and in the standard model). Surprisingly, our main re-
sult shows that everlasting incompressible encryption is inherent in any sufficiently secure public-key
encryption scheme. Specifically, we prove that any public-key encryption scheme with subexponen-
tial security (when instantiated with an appropriate security parameter) already satisfies the
definition of everlasting incompressible encryption with subexponential security. Our result
requires no additional cryptographic assumptions and no additional tools. This also means that
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we can achieve an everlasting public-key encryption scheme with rate-1 (the rate of an encryption
scheme is the message length over the ciphertext length).

Theorem 1.1 (Informal). Any subexponential secure (secret-key/public-key) encryption scheme,
applied with security parameter λ′ = λ · poly(S) is an everlasting incompressible (secret-key/public-
key) encryption scheme, with subexponential security.

Moreover, if the original encryption scheme is rate-1, then the incompressible encryption scheme
is also rate-1.

See Corollary 3.3 and Corollary 4.4 for a precise theorem statement with additional parameters.
An additional benefit of our schemes is that they are plausibly post-quantum secure, provided that
the underlying public-key encryption scheme is post-quantum secure.
Key size vs. rate. One of the main complexity measures of an encryption scheme is its rate. The
rate is defined as the ratio between the message length and the ciphertext length, i.e., |m|

Enc(pk,m) .
This ratio is a function that depends on two parameters: the message length |m| and the security
parameter λ. A scheme is considered rate-1 if, for a fixed λ, the ratio approaches 1 as |m| tends to
infinity, and λ is fixed.

While our scheme obtains the optimal rate-1 (assuming the underlying scheme has rate-1), the
size of the private key is large. In particular, if the underlying scheme had private key size λ, our
incompressible scheme has private key size λ′ = λ · poly(S), which, in particular, is much larger
than S. It is very desirable to obtain schemes with short private keys, with size that is independent
of S.

However, to this date, there are no incompressible schemes that obtain both rate-1 and short
private keys, even without everlasting security. Furthermore, it was argued (informally) that rate-1
and short private keys are at odds, and it could be the case that no scheme can have both properties
simultaneously.

Table 1 summarizes existing incompressible encryption schemes in terms of their rate, key sizes,
whether they offer everlasting security, and the underlying cryptographic assumptions. The work of
[GWZ22] provides two constructions: one achieves short keys but suffers from rate that approaches
0, while the other achieves rate-1 with a short public key but a large private key, and relies on
indistinguishability obfuscation, a strong and non-standard assumption. Then, the work of [BDD22]
made notable progress by constructing a rate-1 incompressible encryption scheme based only on
standard assumptions (DDH and LWE). However, this construction requires both the public and
private keys to be large. Our scheme continues this line of work by additionally providing everlasting
security.
On the incompressibility of deployed schemes. Our results have shown so far that encryption
schemes instantiated with a sufficiently large security parameter are incompressible with everlasting
security, for any storage bound S. This general statement can also be applied to concrete schemes
used in practice. For example, consider the widely used AES block cipher, which is believed to
provide (approximately) λ bits of security when instantiated with a key of length λ1. What can we
say about AES in terms of its incompressibility?

The work of [BDD22] highlights the challenges in proving the incompressibility of ideal ciphers
within the standard model. They construct a scheme that is incompressible (though not everlastingly

1The notion λ bits of security means that any adversary that runs in time T succeeds in the security game with
advantage at most T · 2−λ.
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Work Rate-1 Short Keys Everlasting Assumptions

Private Public Security

[GWZ22] ✗ ✓ ✓ ✗ PKE

[GWZ22] ✓ ✗ ✓ ✗ iO

[BDD22] ✓ ✗ ✗ ✗ DDH + LWE

This work ✓ ✗ ✗ ✓ rate-1 subexp-PKE

Table 1: Comparison of our incompressible encryption scheme with prior works regarding encryption
rate, key size, security, and underlying assumptions. A key is considered short if its size is polynomial
in the security parameter λ and does not depend on the message length or compression parameters.

secure) in the ideal cipher model (ICM), and show that any concrete instantiation of the ideal cipher
renders the scheme insecure.

In contrast, we provide positive results for ciphers in the standard model. Leveraging the same
techniques as in our main theorem, we show that AES, as deployed in practice, is incompressible
with everlasting security against adversaries whose storage capacity is slightly below λ, assuming
AES provides λ bits of security. More generally, we prove that

Corollary 1.2 (Informal). Any secret-key encryption scheme with λ bits of security (Definition 2.2)
has everlasting incompressible security for storage bound S ≤ λ− o(λ).

See Corollary 4.3 for the formal theorem with the precise parameters.

1.2 Discussion and open problems

Our results can be interpreted in multiple ways. On the one hand, they provide a positive perspec-
tive, revealing that public-key encryption inherently offers additional security guarantees. On the
other hand, they raise concerns about whether the current definition of incompressible encryption
fully captures the properties one might expect from such a scheme, suggesting that refinements to
the definition may be necessary.
Storage-rate. One possible refinement involves redefining the notion of rate in the context of in-
compressible encryption. The standard ciphertext rate is natural for standard encryption schemes.
However, we propose a different notion of ciphertext rate that is suitable for incompressible encryp-
tion schemes, where the storage bound is considered to be larger than the message size. Incom-
pressible encryption schemes introduce an additional parameter, S, representing the adversary’s
available storage bound. As a result, the ciphertext size becomes a function of three parameters:
|m|, S, and λ.

To analyze the asymptotic behavior of the rate, we must decide which parameters remain fixed
and which tend to infinity. If we fix λ and S and take |m| to infinity, we get the standard rate
definition. However, in the case where the storage bound is larger than the message size (e.g.,
when using a bit encryption scheme), we might instead fix |m| and λ, and define the rate to be the
ratio S

Enc(pk,m) , where S grows to infinity, and |m| and λ are fixed. We denote this limit of rate by
storage-rate.

Under this alternative definition, a rate-1 scheme would produce ciphertexts only slightly larger
than the adversary’s storage bound (which is not the case with the current definition), ensuring
that an adversary must store nearly the entire ciphertext to later decrypt it.

4



We demonstrate the difference between the two rate definitions. First, consider a scheme
with ciphertext size |m| + S · poly(λ). Under the standard rate definition, this scheme achieves
rate-1, but does not achieve storage-rate-1. Alternatively, consider a scheme with ciphertext size
S + |m| · poly(λ). This scheme does not achieve rate-1, but does achieve storage-rate-1. Finally,
consider a scheme with ciphertext size |m| + S + poly(λ). This scheme achieves both rate-1 and
storage-rate-1.

We additionally give positive results for everlasting incompressible schemes that have both con-
stant storage-rate and have (standard) rate-1. We apply our techniques to an exponential secure
public-key encryption with cipher text length m+O(λ) (when instantiated with an appropriate se-
curity parameter) and get an everlasting incompressible encryption scheme with a constant storage
rate and rate-1. That is, an adversary must store a constant fraction of the ciphertext, in order to
later decrypt, even if the message is a single bit long.

Corollary 1.3 (Informal). Any exponentially secure secret-key encryption scheme with cipher text
length m + O(λ), applied with security parameter λ′ = O(S + λ) is an everlasting incompressible
encryption scheme with storage-rate-O(1) and (standard) rate-1.

See Corollary 3.3 for the precise theorem statement. Our scheme does not satisfy storage-rate-1,
which is left as an open problem.

Other possible refinements could consider factors such as the size of the public and private keys
or the efficiency of the encryption and decryption processes. Additionally, alternative security for-
mulations might involve a scenario where the adversary is required to compress multiple ciphertexts
rather than just a single one, as suggested in [GWZ23].

1.3 Paper organization

The paper is organized as follows:

• Section 2 provides the necessary preliminary definitions.
• Section 3 presents our main result on public-key incompressible encryption. The section begins

with a formal definition of everlasting security, followed by a high-level overview of our techniques
in Section 3.1.

• Section 4 contains our result on secret-key incompressible encryption. It opens with a definition
of symmetric-key encryption with everlasting security, and continues with an overview of our
approach in Section 4.1.

• Section 5 establishes general claims about learning distributions that are used throughout the
paper.
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2 Preliminaries

In this section we present the basic notions and the cryptographic primitives and tools that are used
in this work. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we
denote by x← X the process of sampling a value x from the distribution X. Similarly, for a set X
we denote by x ← X the process of sampling a value x from the uniform distribution over X . For
a distribution X, we denote by X(x) the probability that x is sampled from the distribution X.

Definition 2.1 (Public-Key Encryption Scheme). Public-key encryption (PKE) scheme for a mes-
sage space M is a tuple of algorithms (PKE.Gen,PKE.Enc,PKE.Dec) where PKE.Gen and PKE.Enc
are probabilistic polynomial-time algorithms, and PKE.Dec is a polynomial-time algorithm with the
following properties:

• Correctness. For every λ ∈ N, messages m ∈M,

Pr
[
m = PKE.Dec(pk, sk,PKE.Enc(pk,m)) (pk, sk)← PKE.Gen(1λ)

]
≥ 1− negl(λ) .

• Security game. For every adversary A, we define the experiment DistIEA(λ) as follows:

1. Generate (pk, sk)← PKE.Gen(1λ).
2. The adversary A is then provided the public key pk and submits an auxiliary input aux, and

messages m0,m1 ∈M.
3. Sample b← {0, 1} uniformly at random.
4. Sample ct← PKE.Enc(pk,mb).
5. The adversary A then receives (pk, aux, ct), and outputs a guess b′.
6. If b = b′ then the adversary succeeds and the experiment outputs 1. Otherwise, the experiment

outputs 0.

• T -security. We say that the scheme is T -secure if for every λ ∈ N, and for every adversary A
such that |A| ≤ T (λ), it holds that,

Pr
[
DistPKE

A (λ) = 1
]
≤ 1

2
+ negl(λ) .

• Sub-exponential security. A PKE scheme is defined as sub-exponentially secure if there exists
some ϵ ∈ (0, 1) such that the scheme is 2λ

ϵ-secure.

• Exponential security. A PKE scheme is defined as exponentially secure if there exists some
ϵ ∈ (0, 1) such that the scheme is 2ϵ·λ-secure.

• Rate. We define the rate by |m|
|PKE.Enc(pk,m)| , which is the size of a message divided by the ciphertext

encrypting the message. We say that the scheme has rate-1 if the rate approaches 1 for large
enough messages.

Definition 2.2 (Symmetric-Key Encryption Scheme). Symmetric-key encryption (SKE) scheme
for a message space M is a tuple of algorithms (SKE.Gen, SKE.Enc,SKE.Dec) where SKE.Gen and
SKE.Enc are probabilistic polynomial-time algorithms, and SKE.Dec is a polynomial-time algorithm
with the following properties:
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• Correctness. For every λ ∈ N, messages m ∈M,

Pr
[
m = SKE.Dec(sk,SKE.Enc(sk,m)) sk← SKE.Gen(1λ)

]
≥ 1− negl(λ) .

• Security game. For every adversary A, we define the experiment DistIEA(λ) as follows:

1. Generate sk← SKE.Gen(1λ).
2. The adversary AIE.Enc(sk,·) submits an auxiliary input aux and messages m0,m1 ∈M.
3. Sample b← {0, 1} uniformly at random.
4. Sample ct← SKE.Enc(sk,mb).
5. The adversary AIE.Enc(sk,·) then receives (aux, ct), and outputs a guess b′.
6. If b = b′ then the adversary succeeds and the experiment outputs 1. Otherwise, the experiment

outputs 0.

• T -security. We say that the scheme is T -secure if for every λ ∈ N, and for every adversary A
such that |A| ≤ T (λ), it holds that,

Pr
[
DistSKE

A (λ) = 1
]
≤ 1

2
+ negl(λ) .

• Sub-exponential security. A SKE scheme is defined as sub-exponentially secure if there exists
some ϵ ∈ (0, 1) such that the scheme is 2λ

ϵ-secure.

• Exponential security. A SKE scheme is defined as exponentially secure if there exists some
ϵ ∈ (0, 1) such that the scheme is 2ϵ·λ-secure.

• λ bits of security. We say that the scheme has λ bits of security if for every λ ∈ N and for every
adversary A that runs in time T , it holds that,

Pr
[
DistSKE

A (λ) = 1
]
≤ 1

2
+

T

2λ
.

• Rate. We define the rate by |m|
|SKE.Enc(sk,m)| , which is the size of a message divided by the ciphertext

encrypting the message. We say that the scheme has rate-1 if the rate approaches 1 for large
enough messages.

Statistical distance. We measure the statistical distance between two random variables in terms
of their total variation distance, as in the definition below.

Definition 2.3 (Statistical distance). The statistical distance between two random variables X
and Y taking values in a finite set S is defined as

∆(X,Y ) :=
1

2

∑
a∈S
|Pr[X = a]− Pr[Y = a]| .

Equivalently, the statistical distance can also be defined as

∆(X,Y ) := max
S′⊆S

∣∣Pr[X ∈ S ′]− Pr[Y ∈ S ′]
∣∣ .
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3 Everlasting PKE from any PKE

In this section, we present our main result. We begin by formally defining incompressible encryption
with everlasting security and stating our key theorems.

• In Section 3.1, we provide a high-level overview of our proof.
• In Section 3.2, we provide a full proof of the main theorem and the proof of the corollaries in

Section 3.3.
• Our main proof relies on several lemmas and claims related to learning distributions and predicting

from estimated distributions, which are deferred to Section 5. This section may be of independent
interest.

We begin with a formal definition of incompressible encryption with everlasting security.

Definition 3.1 (public-key encryption with everlasting security). An everlasting incompressible
public-key encryption (IE) scheme for a message spaceM is a tuple of algorithms (IE.Gen, IE.Enc, IE.Dec)
where IE.Gen and IE.Enc are probabilistic polynomial-time algorithms, and IE.Dec is a polynomial-
time algorithm with the following properties:

• Correctness. For every λ, S ∈ N, messages m ∈M,

Pr
[
m = IE.Dec(pk, sk, IE.Enc(pk,m)) (pk, sk)← IE.Gen(1λ, 1S)

]
≥ 1− negl(λ) .

• Everlasting security game. For every adversary A = (A0,A1,A2), we define the experiment
DistIEA(λ) as follows:

1. The adversary A0, on input 1λ, outputs a space bound 1S.
2. Generate (pk, sk)← IE.Gen(1λ, 1S).
3. Sample b← {0, 1} uniformly at random.
4. The adversary A1 is then provided the public key pk and submits an auxiliary input aux, and

messages m0,m1 ∈M.
5. The adversary A1 then receives ct← IE.Enc(pk,mb), and submits a state st of size at most S.
6. The adversary A2 receives (pk, sk, aux, st) and outputs a guess b′.
7. If b = b′ then the adversary succeeds and the experiment outputs 1. Otherwise, the experiment

outputs 0.

• (T, Smax)-security. We say that the scheme is (T, Smax)-secure if for every λ ∈ N, and for every
adversary A = (A0,A1,A2) such that,

– A0 outputs S ≤ Smax(λ),

– A1 is of size T (λ),

– A2 is unbounded,

the following holds,

Pr
[
DistIEA(λ) = 1

]
≤ 1

2
+ negl(λ) .

• T -security. We say that the scheme is T -secure if it is (T, Smax)-secure for any Smax.
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• Sub-exponential security. An IE scheme is defined as sub-exponentially secure if it satisfies T -
security for some T (λ) ≥ 2λ

ϵ, where ϵ ∈ (0, 1).

• Exponential security. An IE scheme is defined as exponentially secure if it satisfies T -security
for some T (λ) ≥ 2ϵ·λ, where ϵ ∈ (0, 1).

• Standard-rate. We define the standard-rate by |m|
|IE.Enc(pk,m)| , which is the size of a message divided

by the ciphertext encrypting the message. We say that the scheme has rate-1 if the rate approaches
1 for large enough messages.

• Storage-rate. We define the storage-rate by S
|IE.Enc(pk,m)| , which is the compression parameter of

the scheme divided by the ciphertext encrypting the message. We say that the scheme has rate-1
if the rate approaches 1 for large enough S.

Theorem 3.2. If a PKE scheme is T -secure for some T : N → N (Definition 2.1), then the PKE
is also (T IE, Smax)-secure everlasting IE (Definition 3.1) for any T IE : N → N and S ∈ N such that
T (λ) ≥ O(2Smax+o(Smax) · 2O(log2 λ) · T IE(λ)) for every λ ∈ N.

The following corollaries follow by Theorem 3.2. We give a formal proof in Section 3.3.

Corollary 3.3. Given a PKE scheme with public-key size Lpk(λ), private-key size Lsk(λ), and
ciphertext size Lct(ℓm, λ) for message length ℓm,

1. if the PKE has sub-exponential security, then there exists a sub-exponentially secure everlasting
IE scheme that has public-key size Lpk(S

c · λ), private-key size Lsk(S
c · λ), and ciphertext size

Lct(ℓm, S
c · λ) for some constant c, where S is the compression parameter of the scheme.

Moreover, if the PKE scheme has rate-1, then the IE scheme has rate-1.

2. if the PKE scheme has exponential security, then there exists an exponentially secure everlasting
IE scheme that has public-key size L′pk = Lpk(O(S + λ)), private-key size L′sk = Lsk(O(S + λ)),
and ciphertext size L′ct = Lct(ℓm, O(S+λ)), where S is the compression parameter of the scheme.

3.1 High-level overview

We give a high-level overview of our proof. Assume the existence of a PKE scheme with T -security.
We begin by assuming that T ≫ Õ

(
2S+polylog(λ)

)
, and we will later address how to prove security for

larger values of S. The proof of the theorem includes the following key ideas. Let A = (A0,A1,A2)
be an adversary that breaks the scheme. We use A to construct an adversary that breaks the
security of the PKE scheme. Recall that A2 gets (pk, sk, st) as input.
Removing the dependency on sk. In Section 3.4, we show that we can assume without loss of
generality, that A2 does not use the private key. That is, we show that if there exists an adversary
that breaks the scheme when given the private key sk, then there is another adversary A′2 that does
not need access to sk and can still break the scheme with exactly the same probability. This result
is not just a technical proof tool, it also has conceptual significance. It shows that the seemingly
weaker definition of everlasting security, where A2 is denied access to sk, is actually equivalent to
the standard definition where A2 does receive sk in the second phase (as in Definition 3.1).

To establish this equivalence, we crucially rely on the fact that A2 is computationally unbounded
(and indeed our A′2 is inefficient). This sets our techniques quite apart from the techniques used
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for incompressible encryption without everlasting security, since the argument does not extend to
the setting of computational IE, where A2 is required to be efficient.

The construction of A′2 proceeds as follows: given (pk, st), it samples a random secret key sk using
the key generation algorithm PKE.Gen, conditioned on the fixed public key pk. It then simulates
A2(pk, sk, st). We show that A′2(pk, st) succeeds with the same probability as A2(pk, sk, st). The
formal proof appears in Lemma 3.7.

From hereon, we assume without loss of generality that A2 does not receive sk as input.
Constructing the PKE adversary. We start the proof by fixing a random pk where the adversary
has a success probability of 1

2 + ϵ. Since pk is fixed, for simplicity, we assume that A2 gets only st
as an input. We then proceed with the following steps.

• Defining the output distributions of A1: We first consider a distribution Db for each b ∈
{0, 1}, which describes the distribution of the adversary A1 given an encryption of mb. Formally,

Db :=

{
st

∣∣∣∣ ct← PKE.Enc(pk,mb)
st← A1(pk, ct)

}
.

These distributions are efficiently samplable, and in fact, our PKE adversary will rely on them
to distinguish between ct ← PKE.Enc(pk,m0) and ct ← PKE.Enc(pk,m1). Given a challenge
ciphertext ct← PKE.Enc(pk,mb), the adversary will compute st← A1(pk, ct), which corresponds
to a sample from Db. To succeed, the adversary must distinguish between D0 and D1.

• Statistical distance between D0 and D1 is large: Given that A2 successfully distinguishes
between encryptions of m0 and m1 given only their state, it can be viewed as a successful distin-
guisher between D0 and D1. Therefore, the distributions D0 and D1 must differ significantly, in
statistical distance. Otherwise, if the statistical distance between them were small, then even an
unbounded adversary receiving a sample st← Db, where b is chosen uniformly at random, would
not be able to distinguish between the two distributions.

Specifically, we show that the advantage of the adversary A2 defines a lower bound on the
statistical distance: if A2 succeeds with probability 1

2 + ϵ, then ∆(D0, D1) ≥ 2ϵ. This follows
from the following general claim:

Claim 1. For every pair of distributions D0, D1 over X , and for any unbounded distinguisher A,

Pr

[
A(x) = b

∣∣∣∣ b← {0, 1}
x← Db

]
≤ 1

2
+

∆(D0, D1)

2
.

See Claim 5.2 for the formal claim and proof.

• Learning the weights of D0 and D1: While A2 can distinguish between D0 and D1, it is an
inefficient algorithm which we cannot simulate. We begin by defining an algorithm PredictD0,D1

that achieves roughly the same advantage. This algorithm is efficient only if it is given an explicit
representation of D0 and D1 (represented as a list of probabilities, one for each element in the
domain). In our setting, we do not have this explicit representation, and we later show how to
get an approximation of this data. The algorithm is defined as follows,

PredictD0,D1(st) :=

{
0 if Pr[st ∈ D0] ≥ Pr[st ∈ D1],

1 if Pr[st ∈ D0] < Pr[st ∈ D1].

We prove the following general claim,

10



Claim 2. For every two distributions D0, D1,

Pr

[
PredictD0,D1(x) = b

∣∣∣∣ b← {0, 1}
x← Db

]
=

1

2
+

∆(D0, D1)

2
.

See Claim 5.2 for the full formal claim. Note that to predict the distribution, our algorithm
requires the explicit representation of D0 and D1 as list of probabilities over the support. Unfor-
tunately, we don’t have this tuple for D0, D1, as we only have an efficient circuit that describes
those distributions. To bridge this gap, we learn an approximation tuple D̃0, D̃1 that describes
an approximation of D0, D1, and show that this approximation will suffice to get (roughly) the
same advantage, up to a small loss.

We use a learning algorithm, denoted LearnD, which, given oracle access to samples from a
distribution D over a domain X , draws approximately |X | samples and outputs an explicit rep-
resentation of an approximate distribution D̃. With all but negligible probability, it holds that
∆(D, D̃) ≤ negl(λ) (see [Can20, Theorem 1]). In our setting, the supports of D0 and D1 are
of size 2S , so getting close approximation for each distribution requires roughly Õ

(
2S+polylog(λ)

)
samples. Consequently, with overwhelming probability, we have ∆(Db, D̃b) ≤ negl(λ) for each
b ∈ {0, 1}. Since Õ

(
2S+polylog(λ)

)
≪ T , this sampling is feasible for the PKE adversary.

• Distinguishing between D0 and D1: Once the distributions have been approximated, we can
use the algorithm PredictD̃0,D̃1

that, given a sample st, outputs 0 if Pr[st ∈ D̃0] ≥ Pr[st ∈ D̃1]

and 1 otherwise. This algorithm distinguishes between D̃0 and D̃1 with probability 1
2 +

∆(D̃0,D̃1)
2 .

Importantly, PredictD̃0,D̃1
operates efficiently. Given the tuples describing D̃0 and D̃1, it can

directly retrieve the probability Pr[st ∈ D̃b] for any state st from the stored tuple on D̃b. This
allows the algorithm to efficiently determine whether Pr[st ∈ D̃0] ≥ Pr[st ∈ D̃1].

Upon receiving ct ← PKE.Enc(pk,mb), the adversary computes stb ← A1(pk, ct), and then emu-
lates PredictD̃0,D̃1

(st), and outputs the same. Note that st corresponds to a sample from Db. To
prove that the PKE adversary succeeds with high probability, we show that PredictD̃0,D̃1

(st) can

distinguish between D0 and D1 with probability 1
2 + ∆(D0,D1)

2 − negl(λ).

In more detail, we show that:

– The success probability of PredictD̃0,D̃1
(st) when applied to samples from D0 or D1 is negligibly

close to its success when applied to samples from D̃0 or D̃1 (Claim 5.7).

– The success probability of PredictD̃0,D̃1
on samples from D̃0 and D̃1 is 1

2+
E[∆(D̃0,D̃1)]

2 (Claim 5.8).
– The expected statistical distance between the approximate distributions is negligibly close to

that between the original ones: E[∆(D̃0,D̃1)]
2 ≥ E[∆(D0,D1)]

2 − negl(λ) (Claim 5.6).

Taken together, these claims imply that PredictD̃0,D̃1
(st) distinguishes between D0 and D1 with

probability at least 1
2 + ∆(D0,D1)

2 − negl(λ).

Using this approach, an adversary against the PKE scheme can break the encryption as follows:

1. For every b ∈ {0, 1}, D̃b ← LearnDb .

2. Upon receiving a challenge ciphertext ct, the adversary computes st← A1(ct).

11



3. Output PredictD̃0,D̃1
(st).

To satisfy the condition that T ≫ 2S , our IE construction is an instantiation of the PKE scheme with
security parameter λ′, which depends on both λ and S. Then, we show that if for example we start
with T (λ) = 2λ

ϵ for some ϵ ∈ (0, 1), we obtain a new scheme with security T ′(λ) = T (λ′) = 2λ
ϵ+S ,

as required.

3.2 Proof of Theorem 3.2

We now give a formal proof of Theorem 3.2.
Let (PKE.Gen,PKE.Enc,PKE.Dec) be a PKE scheme that is secure against adversaries of size

T (λ). Let AIE = (AIE
1 ,A

IE
2 ) be an adversary, where AIE

1 is of size at most T IE(λ), that breaks the IE
scheme with probability ϵ(λ), for compression parameter S. By Lemma 3.7, we assume without loss
of generality that AIE breaks the scheme without receiving sk.

Fix λ ∈ N. Let PK := {pk | (pk, ·) ∈ Img(IE.Gen(1λ, 1S))}, and let Xpk := {(aux,m0,m1) | (aux,m0,m1) ∈
Img(AIE

1 (pk))}. For every pk ∈ PK, (aux,m0,m1) ∈ Xpk, and b ∈ {0, 1}, let Dpk,mb,aux be the follow-
ing distribution,

Dpk,aux
mb

:=

{
st ∈ {0, 1}S

∣∣∣∣ ct← PKE.Enc(pk,mb)
st← AIE

1 (pk, aux, ct)

}
.

Let APKE be the following adversary to the PKE scheme.

APKE(pk):
1. Emulate AIE

1 (pk) to get (aux′,m0,m1).
2. Set aux := (aux′,m0,m1).
3. Output (aux,m0,m1).

APKE(pk, aux, ct):
1. Parse aux := (aux′,m0,m1).
2. Set t := 2S · 22·(log2 λ+loglog λ).
3. For every b ∈ {0, 1}, set D̃b ← LearnD

pk,aux
mb (t), where LearnD

pk,aux
mb is the algorithm from Defini-

tion 5.4.
4. Compute st← AIE

1 (aux
′, pk, ct).

5. Let PredictD̃0,D̃1
be the algorithm described in Claim 5.2 for distributions D̃0, D̃1.

6. Output PredictD̃0,D̃1
(st).

In the following, we prove that the success probability of APKE in breaking the PKE scheme is equal
to the success probability of AIE in breaking the IE scheme, up to a negligible loss in the security
parameter. More formally, we show that:

Pr

 APKE(pk, aux, ct) = b

∣∣∣∣∣∣∣∣
(pk, sk)← PKE.Gen(1λ)

b← {0, 1}
(aux,m0,m1)← APKE(pk)

ct← PKE.Enc(pk,mb)

 ≥ ϵ(λ)− negl(λ) .

12



Fix some pk ∈ PK, and (aux,m0,m1) ∈ Xpk, and let aux′ := (aux,m0,m1). By construction,

Pr

[
APKE(pk, aux′, ct) = b

∣∣∣∣ b← {0, 1}
ct← PKE.Enc(pk,mb)

]

= Pr

 PredictD̃0,D̃1
(st) = b

∣∣∣∣∣∣∣∣∣∣∣

b← {0, 1}
ct← PKE.Enc(pk,mb)

D̃0 ← LearnD
pk,aux
m0 (t)

D̃1 ← LearnD
pk,aux
m1 (t)

st← AIE
1 (pk, aux, ct)

 .

By the definition of Dpk,aux
m0 and Dpk,aux

m1 ,

Pr

 PredictD̃0,D̃1
(st) = b

∣∣∣∣∣∣∣∣∣∣∣

b← {0, 1}
ct← PKE.Enc(pk,mb)

D̃0 ← LearnD
pk,aux
m0 (t)

D̃1 ← LearnD
pk,aux
m1 (t)

st← AIE
1 (pk, aux, ct)



= Pr

 PredictD̃0,D̃1
(st) = b

∣∣∣∣∣∣∣∣∣
b← {0, 1}

D̃0 ← LearnD
pk,aux
m0 (t)

D̃1 ← LearnD
pk,aux
m1 (t)

st← Dpk,aux
mb

 .

It holds that,

Pr

 PredictD̃0,D̃1
(st) = b

∣∣∣∣∣∣∣∣∣
b← {0, 1}

D̃0 ← LearnD
pk,aux
m0 (t)

D̃1 ← LearnD
pk,aux
m1 (t)

st← Dpk,aux
mb



≥ Pr

 PredictD̃0,D̃1
(st) = b

∣∣∣∣∣∣∣∣∣
b← {0, 1}

D̃0 ← LearnD
pk,aux
m0 (t)

D̃1 ← LearnD
pk,aux
m1 (t)

st← D̃b

− E

[
∆(D̃0, D

pk,aux
m0 )

+∆(D̃1, D
pk,aux
m1 )

∣∣∣∣∣ D̃0 ← LearnD
pk,aux
m0 (t)

D̃1 ← LearnD
pk,aux
m1 (t)

]

=
1

2
+ E

[
∆(D̃0,D̃1)

2

∣∣∣∣∣ D̃0 ← LearnD
pk,aux
m0 (t)

D̃1 ← LearnD
pk,aux
m1 (t)

]
− E

[
∆(D̃0, D

pk,aux
m0 )

+∆(D̃1, D
pk,aux
m1 )

∣∣∣∣∣ D̃0 ← LearnD
pk,aux
m0 (t)

D̃1 ← LearnD
pk,aux
m1 (t)

]

=
1

2
+

1

2
· E

[
∆(D̃0, D̃1)

∣∣∣∣∣ D̃0 ← LearnD
pk,aux
m0 (t)

D̃1 ← LearnD
pk,aux
m1 (t)

]
− E

[
∆(D̃0, D

pk,aux
m0 )

+∆(D̃1, D
pk,aux
m1 )

∣∣∣∣∣ D̃0 ← LearnD
pk,aux
m0 (t)

D̃1 ← LearnD
pk,aux
m1 (t)

]

≥ 1

2
+ ∆(Dpk,aux

m0
,Dpk,aux

m1
)

2
− 3

2
· E

[
∆(D̃0, D

pk,aux
m0 )

+∆(D̃1, D
pk,aux
m1 )

∣∣∣∣∣ D̃0 ← LearnD
pk,aux
m0 (t)

D̃1 ← LearnD
pk,aux
m1 (t)

]
,

where the first inequality is by Claim 5.7, the first equality is by linearity of expectation, the second
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equality is by Claim 5.8, and the second inequality is by Claim 5.6, Overall, we get that,

Pr

[
APKE(pk, ct) = b

∣∣∣∣ b← {0, 1}
ct← PKE.Enc(pk,mb)

]
≥ 1

2
+ ∆(Dpk,aux

m0
,Dpk,aux

m1
)

2
− 3

2
· E

[
∆(D̃0, D

pk,aux
m0 )

+∆(D̃1, D
pk,aux
m1 )

∣∣∣∣∣ D̃0 ← LearnD
pk,aux
m0 (t)

D̃1 ← LearnD
pk,aux
m1 (t)

]
=

1

2
+ ∆(Dpk,aux

m0
,Dpk,aux

m1
)

2
− 3

2
·
∑

b∈{0,1}

E
[
∆(D̃b, D

pk,aux
mb )

∣∣∣ D̃b ← LearnD
pk,aux
mb (t)

]
, (1)

where the second inequality is by linearity of expectation. We apply Claim 5.5 with X := {0, 1}S ,
ξ := 2− log2 λ, and δ := 2− log2 λ. Note that,

t = 2S · 22·(log
2 λ+loglog λ)

= 2S ·
(
2log

2 λ
)2
· 22·loglog λ

= 2S ·
(
2log

2 λ
)2
· log

(
2log

2 λ
)

= |X | · 1
ξ2
· log

(
1

δ

)
≥ Ω

(
|X |+ log

(
1
δ

)
ξ2

)
Therefore, by Claim 5.5, for every b ∈ {0, 1},

E
[
∆(D̃b, D

pk,aux
mb )

∣∣∣ D̃b ← LearnD
pk,aux
mb (t)

]
≤ ξ + δ .

Therefore, by plugging in the above to Equation 1,

Pr

[
APKE(pk, aux, ct) = b

∣∣∣∣ b← {0, 1}
ct← PKE.Enc(pk,mb)

]
≥ 1

2
+ ∆(Dpk,aux

m0
,Dpk,aux

m1
)

2
− 3

2
·
∑

b∈{0,1}

(ξ + δ)

=
1

2
+ ∆(Dpk,aux

m0
,Dpk,aux

m1
)

2
− 3ξ − 3δ . (2)

By Claim 5.2, for every unbounded distinguisher A, and specifically for A := AIE
2 ,

Pr

[
AIE

2 (pk, aux, st) = b

∣∣∣∣ b← {0, 1}
st← Dpk,mb

]
≤ 1

2
+ ∆(Dpk,aux

m0
,Dpk,aux

m1
)

2

Therefore, by plugging in the above into Equation 2,

Pr

[
APKE(pk, aux′, ct) = b

∣∣∣∣ b← {0, 1}
ct← PKE.Enc(pk,mb)

]
≥ Pr

[
AIE

2 (pk, aux, st) = b

∣∣∣∣ b← {0, 1}
st← Dpk,aux

mb

]
− 3ξ − 3δ .
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By the definition of Dpk,aux
mb , we get that,

Pr

[
APKE(pk, aux′, ct) = b

∣∣∣∣ b← {0, 1}
ct← PKE.Enc(pk,mb)

]

≥ Pr

 AIE
2 (pk, aux, st) = b

∣∣∣∣∣∣
b← {0, 1}

ct← PKE.Enc(pk,mb)
st← AIE

1 (pk, aux, ct)

− 3ξ − 3δ . (3)

Since the above is true for any fixed pk ∈ PK, (aux,m0,m1) ∈ Xpk, and aux′ := (aux,m0,m1), it
holds that,

Pr

 APKE(pk, aux′, ct) = b

∣∣∣∣∣∣∣∣
(pk, sk)← PKE.Gen(1λ)

b← {0, 1}
(aux′,m0,m1)← APKE(pk)

ct← PKE.Enc(pk,mb)



= Pr

 APKE(pk, aux′, ct) = b

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← PKE.Gen(1λ)

b← {0, 1}
(aux,m0,m1)← AIE

1 (pk)
aux′ := (aux,m0,m1)

ct← PKE.Enc(pk,mb)



≥ Pr

 AIE
2 (pk, aux, st) = b

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← IE.Gen(1λ, 1S)

b← {0, 1}
(aux,m0,m1)← AIE

1 (pk)
ct← PKE.Enc(pk,mb)
st← AIE

1 (pk, aux, ct)

− 3ξ − 3δ

= ϵ(λ)− 3ξ − 3δ

= ϵ(λ)− 6 · 2− log2 λ

= ϵ(λ)− negl(λ) ,

where the first equality is by the construction of APKE, the first inequality is by Equation 3, the
second equality is by the success probability of AIE on the IE scheme, and the third equality is by
ξ, δ = 2− log2 λ.

To complete the proof, in what follows, we bound the size of APKE.

Claim 3.4. APKE can be implemented with a circuit of size O(2S+o(S) · 2O(log2 λ) · T IE(λ)).

Proof. The APKE algorithm consists of three main steps:

1. Emulating AIE
1 : This step simulates AIE

1 , whose size is at most T IE(λ).

2. LearnD
pk,aux
mb - Sampling Elements: The algorithm samples t elements from Dpk,aux

m0 and Dpk,aux
m1 .

Each sample requires emulating AIE
1 , resulting in a total circuit size of 2 · t · |AIE

1 |.

3. Comparing Sample Counts: Finally, the algorithm checks whether st appears more frequently
in samples from Dpk,aux

m0 or Dpk,aux
m1 . This check can be performed in O(t · S) time, and can be

implemented with circuit of size Õ(t · S).
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Overall, we got that,

|APKE| = Õ(t · S) + t · |AIE
1 |

≤ Õ(t · S) + t · T IE(λ) .

Since t = 2S · 22·(log2 λ+loglog λ).

|APKE| = Õ(t · S) + t · T IE(λ)

= Õ(2S · 22·(log
2 λ+loglog λ) · S) + 2S · 22·(log

2 λ+loglog λ) · T IE(λ)

= O(2S+o(S) · 2O(log2 λ) · T IE(λ)) .

3.3 Proofs of the Corollaries

In this section, we provide a proof for Corollary 3.3.

Proof of Corollary 3.3. We start by proving Item 1 of the corollary.
Fix a PKE scheme ,(PKE.Gen,PKE.Enc,PKE.Dec), that is sub-exponentially secure. Therefore,
there exists some ϵ ∈ (0, 1) such that for T (λ) := 2λ

ϵ , the PKE scheme is T -secure. Let Lpk(λ) be
the public-key size, let Lsk(λ) be the secret-key size , and let Lct(ℓm, λ) be the ciphertext size for
message length ℓm. Let ϵ′ = ϵ

2 . In what follows we give a construction, which we later prove as

everlasting IE with T IE-security for T IE(λ) := 2λ
ϵ′ .

Construction 3.5. The construction is as follows,

• IE.Gen(1λ, 1S):

1. Set λ̃ := (S + o(S) +O(log2 λ) + λϵ′ +O(1))
1
ϵ .

2. Output (pk, sk)← PKE.Gen(1λ̃).

• IE.Enc(pk,m): Output PKE.Enc(pk,m).

• IE.Dec(sk, ct): Output PKE.Dec(sk, ct).

Fix some S ∈ N. The above construction forms a PKE scheme that is T ′-secure, where T ′(λ) :=

T (λ̃) = 2λ̃
ϵ , and with efficiency parameters L′pk(λ) = Lpk(λ̃), L′sk(λ) = Lsk(λ̃), and L′ct(ℓm, λ) =

Lct(ℓm, λ̃). In what follows, we prove that there exists some c such that λ̃ ≤ Sc · λ. This will allow
us to bound the efficiency parameters of the PKE scheme such that,

L′pk(λ) ≤ Lpk(S
c · λ) ,

L′sk(λ) ≤ Lsk(S
c · λ) ,

L′ct(ℓm, λ) ≤ Lct(ℓm, S
c · λ) .
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For large enough λ and S > 1,

λ̃ = (S + o(S) +O(log2 λ) + λϵ′ +O(1))
1
ϵ

≤ (2 · S + λ2ϵ′)
1
ϵ

≤ (S · λ2ϵ′)
1
ϵ

= S
1
ϵ · λ

2ϵ′
ϵ

= S
1
ϵ · λ ,

where the last equality is since ϵ′ = ϵ
2 . Therefore, for c := 1

ϵ , it holds that,

λ̃ ≤ Sc · λ ,

as required.
In what follows, we prove that the T ′-secure PKE scheme is also (T IE, S)-secure everlasting IE.

By the definition of λ̃,

λ̃ = (S + o(S) +O(log2 λ) + λϵ′ +O(1))
1
ϵ .

Raising both sides of the equation to the power of ϵ, we get that,

λ̃ϵ = S + o(S) +O(log2 λ) + λϵ′ +O(1) ,

Therefore,

2λ̃
ϵ
= 2S+o(S) · 2O(log2 λ) · 2λϵ′ · 2O(1)

= O(2S+o(S) · 2O(log2 λ) · 2λϵ′
) .

Since T ′(λ) = 2λ̃
ϵ , and T IE(λ) = 2λ

ϵ′ , we get that,

T ′(λ) = O(2S+o(S) · 2O(log2 λ) · T IE(λ)) .

Therefore, we can apply Theorem 3.2 on the T ′-secure PKE scheme, and get that the scheme is also
(T IE, S)-secure everlasting IE scheme, as required.

Next, we prove Item 2 of the corollary.
Fix a PKE scheme, (PKE.Gen,PKE.Enc,PKE.Dec), that is exponentially secure. Therefore, there

exists some ϵ ∈ (0, 1) such that for T (λ) := 2ϵ·λ, the PKE scheme is T -secure. Let Lpk(λ) be the
public-key size, let Lsk(λ) be the secret-key size , and let Lct(ℓm, λ) be the ciphertext size for message
length ℓm. Let ϵ′ = ϵ

2 . In what follows we give a construction, which we later prove as everlasting
IE with T IE-security for T IE(λ) := 2ϵ

′·λ.

Construction 3.6. The construction is as follows,

• IE.Gen(1λ, 1S):

1. Set λ̃ := 1
ϵ · (S + o(S) +O(log2 λ) + ϵ′ · λ+O(1)).

2. Output (pk, sk)← PKE.Gen(1λ̃).
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• IE.Enc(pk,m): Output PKE.Enc(pk,m).

• IE.Dec(sk, ct): Output PKE.Dec(sk, ct).

Fix some S ∈ N. The above construction forms a PKE scheme that is T ′-secure, where T ′(λ) :=

T (λ̃) = 2ϵ·λ̃, and with efficiency parameters L′pk(λ) = Lpk(λ̃), L′sk(λ) = Lsk(λ̃), and L′ct(ℓm, λ) =

Lct(ℓm, λ̃). By construction,

λ̃ =
1

ϵ
· (S + o(S) +O(log2 λ) + ϵ′ · λ+O(1))

= O(S + λ) ,

Therefore,

L′pk(λ) ≤ Lpk(O(S + λ)) ,

L′sk(λ) ≤ Lsk(O(S + λ)) ,

L′ct(ℓm, λ) ≤ Lct(ℓm, O(S + λ)) .

as required.
In what follows, we prove that the T ′-secure PKE scheme is also (T IE, S)-secure everlasting IE.

By the definition of λ̃,

λ̃ =
1

ϵ
· (S + o(S) +O(log2 λ) + ϵ′ · λ+O(1)) .

Therefore,

ϵ · λ̃ = S + o(S) +O(log2 λ) + ϵ′ · λ+O(1) .

Raising 2 to the above exponent gives,

2ϵ·λ̃ = 2S+o(S) · 2O(log2 λ) · 2ϵ′·λ · 2O(1)

= O(2S+o(S) · 2O(log2 λ) · 2ϵ′·λ) .

Since T ′(λ) = 2ϵ·λ̃, and T IE(λ) = 2ϵ
′·λ, we get that,

T ′(λ) = O(2S+o(S) · 2O(log2 λ) · T IE(λ)) .

Therefore, we can apply Theorem 3.2 on the T ′-secure PKE scheme, and get that the scheme is also
(T IE, S)-secure everlasting IE scheme, as required.

3.4 Removing the private key

In this subsection, we prove that if there exists an adversary to the IE scheme that breaks the IE
scheme with some probability, then there exists another adversary - who never receives the private
key sk - that breaks the scheme with exactly the same probability.

This result can be interpreted as showing that a weaker notion of everlasting security for IE, in
which the second-phase (unbounded) adversary A2 does not receive the private key sk, is in fact
equivalent to the standard notion defined in Definition 3.1. While the weaker notion appears less
demanding since it restricts A2 from seeing sk, Lemma 3.7 shows that achieving security in this
setting suffices to guarantee security even when A2 is given sk in the second phase.
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Lemma 3.7. If there exists an adversary AIE = (AIE
0 ,A

IE
1 ,A

IE
2 ) such that for every λ ∈ N,

Pr

 AIE
2 (pk, sk, aux, st) = b

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← PKE.Gen(1λ)
(aux,m0,m1)← AIE

1 (pk)
b← {0, 1}

ct← PKE.Enc(pk,mb)
st← AIE

1 (aux, ct)

 = ϵ(λ) ,

then there exists an algorithm A′2 such that for every λ ∈ N,

Pr

 A′2(pk, aux, st) = b

∣∣∣∣∣∣∣∣∣∣
(pk, ·)← PKE.Gen(1λ)

(aux,m0,m1)← AIE
1 (pk)

b← {0, 1}
ct← PKE.Enc(pk,mb)

st← AIE
1 (aux, ct)

 = ϵ(λ) .

Proof. Let A′2 be the following algorithm:

• Given as input (pk, aux, st).

• Sample (pk′, sk)← IE.Gen(1λ, 1S) conditioned on pk′ = pk.

• Emulate AIE
2 (pk, sk, aux, st) and output the same.

We show that A′2, without giving the secret key, breaks the scheme with the same probability as
AIE

2 that is giving the secret key as input. By assumption,

ϵ(λ) = Pr

 AIE
2 (pk, sk, aux, st) = b

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← PKE.Gen(1λ)
(aux,m0,m1)← AIE

1 (pk)
b← {0, 1}

ct← PKE.Enc(pk,mb)
st← AIE

1 (aux, ct)

 .

Next, we break down the sampling of (pk, sk) in the above experiment into two steps: first, sampling
pk, and then sampling sk given pk. We get that,

Pr

 AIE
2 (pk, sk, aux, st) = b

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← PKE.Gen(1λ)
(aux,m0,m1)← AIE

1 (pk)
b← {0, 1}

ct← PKE.Enc(pk,mb)
st← AIE

1 (aux, ct)



= Pr

 AIE
2 (pk, sk, aux, st) = b

∣∣∣∣∣∣∣∣∣∣∣∣

(pk, ·)← PKE.Gen(1λ)
(pk′, sk)← IE.Gen(1λ, 1S) | pk′ = pk

(aux,m0,m1)← AIE
1 (pk)

b← {0, 1}
ct← PKE.Enc(pk,mb)

st← AIE
1 (aux, ct)

 .

19



As sk is only used by AIE
2 , we can defer its sampling and move it to the end of the experiment.

Pr

 AIE
2 (pk, sk, aux, st) = b

∣∣∣∣∣∣∣∣∣∣∣∣

(pk, ·)← PKE.Gen(1λ)
(pk′, sk)← IE.Gen(1λ, 1S) | pk′ = pk

(aux,m0,m1)← AIE
1 (pk)

b← {0, 1}
ct← PKE.Enc(pk,mb)

st← AIE
1 (aux, ct)



= Pr

 AIE
2 (pk, sk, aux, st) = b

∣∣∣∣∣∣∣∣∣∣∣∣

(pk, ·)← PKE.Gen(1λ)
(aux,m0,m1)← AIE

1 (pk)
b← {0, 1}

ct← PKE.Enc(pk,mb)
st← AIE

1 (aux, ct)
(pk′, sk)← PKE.Gen(1λ) | pk′ = pk

 .

By the definition of A′2, we get that,

Pr

 AIE
2 (pk, sk, aux, st) = b

∣∣∣∣∣∣∣∣∣∣∣∣

(pk, ·)← PKE.Gen(1λ)
(aux,m0,m1)← AIE

1 (pk)
b← {0, 1}

ct← PKE.Enc(pk,mb)
st← AIE

1 (aux, ct)
(pk′, sk)← PKE.Gen(1λ) | pk′ = pk



= Pr

 A′2(pk, aux, st) = b

∣∣∣∣∣∣∣∣∣∣
(pk, ·)← PKE.Gen(1λ)

(aux,m0,m1)← AIE
1 (pk)

b← {0, 1}
ct← PKE.Enc(pk,mb)

st← AIE
1 (aux, ct)

 .

Overall, by the above equations, we get that,

Pr

 A′2(pk, aux, st) = b

∣∣∣∣∣∣∣∣∣∣
(pk, ·)← PKE.Gen(1λ)

(aux,m0,m1)← AIE
1 (pk)

b← {0, 1}
ct← PKE.Enc(pk,mb)

st← AIE
1 (aux, ct)

 = ϵ(λ) .

20



4 Everlasting SKE from any SKE

In this section, we present our result on symmetric-key encryption with everlasting security. We
begin by formally defining symmetric-key encryption with everlasting security and stating our key
theorems.

• Section 4.1 provides a high-level overview of our approach.
• Section 4.2 contains the full proof of the main theorem, while the proofs of the corollaries appear

in Section 4.3.
• The main proof relies on several claims concerning learning distributions and prediction from es-

timated distributions. These technical results, which may be of independent interest, are deferred
to Section 5.

We begin with a formal definition of symmetric-key encryption with everlasting security.

Definition 4.1 (symmetric-key encryption with everlasting security). An everlasting symmetric-key
encryption (SKE) scheme for a message space M is a tuple of algorithms (IE.Gen, IE.Enc, IE.Dec)
where IE.Gen and IE.Enc are probabilistic polynomial-time algorithms, and IE.Dec is a polynomial-
time algorithm with the following properties:

• Correctness. For every λ, S ∈ N, messages m ∈M,

Pr
[
m = IE.Dec(sk, IE.Enc(sk,m)) sk← IE.Gen(1λ, 1S)

]
≥ 1− negl(λ) .

• Everlasting security game. For every adversary A = (A0,A1,A2), we define the experiment
DistIEA(λ) as follows:

1. The adversary A0, on input 1λ, outputs a space bound 1S.
2. Generate sk← IE.Gen(1λ, 1S).
3. Sample b← {0, 1} uniformly at random.
4. The adversary A

IE.Enc(sk,·)
1 submits an auxiliary input aux and messages m0,m1 ∈M.

5. The adversary A
IE.Enc(sk,·)
1 then receives ct ← IE.Gen(sk,mb), and submits a state st of size at

most S.
6. The adversary A2 receives (sk,m0,m1, aux, st) and outputs a guess b′.
7. If b = b′ then the adversary succeeds and the experiment outputs 1. Otherwise, the experiment

outputs 0.

• (T, Smax)-security. We say that the scheme is (T, Smax)-secure if for every λ ∈ N, and for every
adversary A = (A0,A1,A2) such that,

– A0 outputs S ≤ Smax(λ),

– A1 is of size T (λ),

– A2 is unbounded,

the following holds,

Pr
[
DistIEA(λ) = 1

]
≤ 1

2
+ negl(λ) .

• T -security. We say that the scheme is T -secure if it is (T, Smax)-secure for any Smax.
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• Sub-exponential security. An IE scheme is defined as sub-exponentially secure if it satisfies T -
security for some T (λ) ≥ 2λ

ϵ, where ϵ ∈ (0, 1).

• Exponential security. An IE scheme is defined as exponentially secure if it satisfies T -security
for some T (λ) ≥ 2ϵ·λ, where ϵ ∈ (0, 1).

• Standard-rate. We define the standard-rate by |m|
|IE.Enc(pk,m)| , which is the size of a message divided

by the ciphertext encrypting the message. We say that the scheme has rate-1 if the rate approaches
1 for large enough messages.

• Storage-rate. We define the storage-rate by S
|IE.Enc(pk,m)| , which is the compression parameter of

the scheme divided by the ciphertext encrypting the message. We say that the scheme has rate-1
if the rate approaches 1 for large enough S.

Theorem 4.2. If a SKE scheme is T -secure for some T : N → N (Definition 2.2), then the SKE
is also (T IE, Smax)-secure everlasting SKE (Definition 4.1) for any T IE : N→ N and Smax ∈ N such
that T (λ) ≥ 2(Smax+O(logSmax)+3·log2 λ) · T IE(λ) for every λ ∈ N.

The following corollaries follow by Theorem 4.2. We give a formal proof in Section 4.3.

Corollary 4.3. If a SKE scheme is (2λ−log
2 λ)-secure (Definition 2.2) with secret-key size Lsk(λ) =

λ, and ciphertext size Lct(λ) = λ for messages of length λ, then the SKE is also everlasting SKE
with (λlog λ, Smax)-security (Definition 4.1) for any Smax : N→ N such that Smax(λ) ≤ λ− log4(λ).

Corollary 4.4. Given a SKE scheme with secret-key size Lsk(λ), and ciphertext size Lct(ℓm, λ) for
message length ℓm,

1. if the SKE scheme has sub-exponentially security, then there exists a sub-exponentially secure
everlasting SKE scheme that has secret-key size Lsk(S

c · λ), and ciphertext size Lct(ℓm, S
c · λ) for

some constant c, where S is the compression parameter of the scheme.

Moreover, if the SKE scheme has rate-1, then the everlasting SKE scheme has rate-1.

2. if the SKE scheme has exponential security, then there exists an exponentially secure everlasting
SKE scheme that has secret-key size L′sk = Lsk(O(S+λ)), and ciphertext size L′ct = Lct(ℓm, O(S+
λ)), where S is the compression parameter of the scheme.

Moreover, if we apply SKE scheme with Lct = ℓm + O(λ), we get everlasting SKE with L′ct =
ℓm +O(S + λ).

4.1 High-level overview

The proof proceeds along similar lines to the proof of Theorem 3.2, with one key difference. In
Theorem 3.2, the first step is to remove sk from the security game. This is justified by Lemma 3.7,
which shows that if there exists an adversary that breaks the everlasting security of the PKE scheme
with some probability, then there exists another adversary, who never receives sk, that achieves the
same success probability. This simplification allows us to prove security against a weaker adversary,
one that does not rely on access to sk.

In the current setting, we would like to repeat this step by proving an analogous claim for SKE.
However, a fundamental difference between PKE and SKE in this context prevents us from doing
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so. In the PKE setting, once the public key pk is known, the adversary A2 can compute as many
encryptions as it wishes without access to the secret key. In contrast, in the SKE setting, if the secret
key sk is not provided to A2, the adversary faces significantly stronger restrictions. In particular,
it cannot compute encryptions of messages on its own: A2 does not have access to an encryption
oracle, and the internal state is not large enough to contain any ciphertexts. Furthermore, the
ciphertexts may be entirely independent of the plaintext messages, making it infeasible for the
adversary to simulate encryptions. This inherent limitation makes it unclear how to eliminate sk
from the security game in the SKE setting.

Our proof still closely follows the structure of the public-key case, but we now need to augment
the distributions to account for the secret key. Since the distribution depends on the secret key, the
adversary we construct in the reduction (i.e., the adversary for the SKE scheme) cannot compute
it directly, as it does not have access to the secret key. However, this adversary can simulate oracle
access to the distribution by leveraging its access to the encryption oracle, which is provided in the
secret-key security game. This simulation is sufficient for the proof to carry through.

4.2 Proof of Theorem 4.2

We now give a formal proof of Theorem 4.2.
Let (SKE.Gen,SKE.Enc, SKE.Dec) be a SKE scheme that is secure against adversaries of size

T (λ). Let AIE = (A1,A2) be an adversary, where A1 is of size at most T IE(λ), that breaks the IE
scheme with probability ϵ(λ), for compression parameter Smax. Formally,

Pr

 A2(sk,m0,m1, aux, st) = b

∣∣∣∣∣∣∣∣∣∣∣

b← {0, 1}
sk← SKE.Gen(1λ)

(aux,m0,m1)← A
SKE.Enc(sk,·)
1

ct← SKE.Enc(sk,mb)

st← A
SKE.Enc(sk,·)
1 (aux, ct)

 = ϵ(λ) .

For every b ∈ {0, 1}, let Db be the following distribution,

Db :=

 (sk,m0,m1, aux, st)

∣∣∣∣∣∣∣∣∣
sk← SKE.Gen(1λ)

(aux,m0,m1)← A
SKE.Enc(sk,·)
1

ct← SKE.Enc(sk,mb)

st← A
SKE.Enc(sk,·)
1 (aux, ct)

 .

Therefore,

Pr

[
A2(sk,m0,m1, aux, st) = b

∣∣∣∣ b← {0, 1}
(sk,m0,m1, aux, st)← Db

]
= ϵ(λ) .

By the above and by Claim 5.2 we get that,

1

2
+

∆(D0, D1)

2
≥ ϵ(λ) . (4)

Let G be the following distribution,

G :=

{
(sk,m0,m1, aux)

∣∣∣∣∣ sk← SKE.Gen(1λ)

(aux,m0,m1)← A
SKE.Enc(sk,·)
1

}
.
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Fix (sk,m0,m1, aux) ∈ G, and for every b ∈ {0, 1} let B(sk,m0,m1,aux),b be the following distribution,

B(sk,m0,m1,aux),b :=

{
st

∣∣∣∣∣ ct← SKE.Enc(sk,mb)

st← A
SKE.Enc(sk,·)
1 (aux, ct)

}
.

Note that for every b ∈ {0, 1},

Db =

{
(x, y)

∣∣∣∣ x← G
y ← Bx,b

}
.

By Claim 5.9,

∆(D0, D1) = Ex←G[∆(Bx,0, Bx,1)] .

Therefore, by Equation 4,

1

2
+

Ex←G[∆(Bx,0, Bx,1)]

2
≥ ϵ(λ) . (5)

Let Predict be the algorithm from Claim 5.10 with X := {0, 1}Smax , and ξ := 1

2log2 λ
. Let ASKE be

the following adversary to the SKE scheme.

A
SKE.Enc(sk,·)
SKE :

1. Emulate A
SKE.Enc(sk,·)
1 to get (aux′,m0,m1).

2. Set aux := (aux′,m0,m1).
3. Output (aux,m0,m1).

A
SKE.Enc(sk,·)
SKE (aux, ct):

1. Parse aux := (aux′,m0,m1).
2. Emulate st← A

SKE.Enc(sk,·)
1 (aux′, ct).

3. Emulate b′ ← Predict(st), where for each oracle query Bx,b the adversary
(a) Query the oracle with mb to get ct← SKE.Enc(sk,mb).
(b) Emulate st← A

SKE.Enc(sk,·)
1 (aux′, ct), and return st.

4. Output b′.

It holds that,

Pr

 A
IE.Enc(sk,·)
SKE (aux, ct) = b

∣∣∣∣∣∣∣∣
sk← SKE.Gen(1λ)

b← {0, 1}
(aux,m0,m1)← A

SKE.Enc(sk,·)
SKE

ct← PKE.Enc(pk,mb)


= Pr

 PredictBx,0,Bx,1(st) = b

∣∣∣∣∣∣
b← {0, 1}

x = (sk,m0,m1, aux)← G
st← Bb,x


≥ 1

2
+

Ex←G[∆(Bx,0, Bx,1)]

2
− ξ

≥ ϵ(λ)− ξ

= ϵ(λ)− negl(λ) .
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where the first equality is by construction, the first inequality is by Claim 5.10, the second inequality
is by Equation 5, and the second equality is since ξ = 1

2log2 λ
. Overall, we get that,

Pr

 A
IE.Enc(sk,·)
SKE (aux, ct) = b

∣∣∣∣∣∣∣∣
sk← SKE.Gen(1λ)

b← {0, 1}
(aux,m0,m1)← A

SKE.Enc(sk,·)
SKE

ct← SKE.Enc(pk,mb)

 ≥ ϵ(λ)− negl(λ) .

To complete the proof, in what follows, we bound the size of ASKE.

Claim 4.5. ASKE can be implemented with a circuit of size 2Smax+O(logSmax) · 23·log2 λ · T IE(λ).

Proof. The ASKE algorithm consists of three main steps:

1. Emulating A1: This step simulates A1, whose size is at most T IE(λ).

2. Sampling Elements from Bx,b: Each sample requires to emulate A1, whose size is at most T IE(λ).

3. Emulating Predict: By Claim 5.10, for t := Ω

(
|X |+log

(
1
ξ

)
ξ2

)
, the algorithm Predict runs in time

O(t · log |X |) and makes t oracles queries. We answer each query by simulating T IE(λ). Therefore,
this algorithm can be implemented with circuit size Õ(t · log |X |) + t · T IE(λ).

We got that,

|ASKE| = Õ(t · log |X |) + t · |A1|
≤ Õ(t · log |X |) + t · T IE(λ) .

Note that since X = {0, 1}Smax , and ξ = 1

2log2 λ
, it holds that, t = 2Smax · 22·(log2 λ+loglog λ), we get

that,

t = Ω

 |X |+ log
(
1
ξ

)
ξ2


= Ω

((
2Smax + log2 λ

)
· 22·log

2 λ
)

≤ 2Smax · 22·(log
2 λ+loglog λ)

By the above,

|ASKE| = Õ(t · log |X |) + t · T IE(λ)

= Õ(2Smax · 22·(log
2 λ+loglog λ) · Smax) + 2Smax · 22·(log

2 λ+loglog λ) · T IE(λ)

≤ 2Smax+O(logSmax) · 23·log
2 λ · T IE(λ) .
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4.3 Proofs of the Corollaries

In this section, we provide a proof for Theorem 4.2.

Proof of Corollary 4.3. Let (SKE.Gen,SKE.Enc,SKE.Dec) be a SKE scheme that is secure against
adversaries of size T (λ) = 2λ−log

2 λ. Let S(λ) ≤ λ− log4 λ, and let T IE(λ) = λlog λ.
To prove that the SKE scheme is everlasting SKE scheme with (T IE, S)-security, we need to

prove that,
T (λ) ≥ 2(S+O(logS)+3·log2 λ) · T IE(λ) . (6)

Then, by Theorem 4.2 , we can conclude that the scheme is everlasting SKE with (T IE, Smax)-security.
By definition of T IE and Smax,

2(S+O(logS)+3·log2 λ) · T IE(λ)

≤ 2(λ−log
4 λ+O(log(λ−log4 λ))+3·log2 λ) · λlog λ

≤ 2(λ−log
4 λ+O(log λ)+4·log2 λ)

≤ 2(λ−log
2 λ) = T (λ) .

Overall, we get that Equation 6 holds, as required.

Proof of Corollary 4.4. We start by proving Item 1 of the corollary.
Fix a SKE scheme, (SKE.Gen, SKE.Enc,SKE.Dec), that is sub-exponentially secure. Therefore, there
exists some ϵ ∈ (0, 1) such that for T (λ) := 2λ

ϵ , the SKE scheme is T -secure. Let Lpk(λ) be the
public-key size, let Lsk(λ) be the secret-key size , and let Lct(ℓm, λ) be the ciphertext size for message
length ℓm. Let ϵ′ = ϵ

2 . In what follows we give a construction, which we later prove as everlasting

IE with T IE-security for T IE(λ) := 2λ
ϵ′ .

Construction 4.6. The construction is as follows,

• IE.Gen(1λ, 1S):

1. Set λ̃ := (S +O(logS) + 3 · log2 λ+ λϵ′)
1
ϵ .

2. Output (pk, sk)← SKE.Gen(1λ̃).

• IE.Enc(pk,m): Output SKE.Enc(pk,m).

• IE.Dec(sk, ct): Output SKE.Dec(sk, ct).

Fix some S ∈ N. The above construction forms a SKE scheme that is T ′-secure, where T ′(λ) :=

T (λ̃) = 2λ̃
ϵ , and with efficiency parameters L′pk(λ) = Lpk(λ̃), L′sk(λ) = Lsk(λ̃), and L′ct(ℓm, λ) =

Lct(ℓm, λ̃). In what follows, we prove that there exists some c such that λ̃ ≤ Sc · λ. This will allow
us to bound the efficiency parameters of the SKE scheme such that,

L′pk(λ) ≤ Lpk(S
c · λ) ,

L′sk(λ) ≤ Lsk(S
c · λ) ,

L′ct(ℓm, λ) ≤ Lct(ℓm, S
c · λ) .
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For large enough λ and S > 1,

λ̃ = (S +O(logS) + 3 · log2 λ+ λϵ′)
1
ϵ

≤ (2 · S + λ2ϵ′)
1
ϵ

≤ (S · λ2ϵ′)
1
ϵ

= S
1
ϵ · λ

2ϵ′
ϵ

= S
1
ϵ · λ ,

where the last equality is since ϵ′ = ϵ
2 . Therefore, for c := 1

ϵ , it holds that,

λ̃ ≤ Sc · λ ,

as required.
In what follows, we prove that the T ′-secure SKE scheme is also (T IE, S)-secure everlasting IE.

By the definition of λ̃,

λ̃ = (S +O(logS) + 3 · log2 λ+ λϵ′)
1
ϵ .

Raising both sides of the equation to the power of ϵ, we get that,

λ̃ϵ = S +O(logS) + 3 · log2 λ+ λϵ′ .

Therefore,

2λ̃
ϵ
= 2(S+O(logS)+3·log2 λ+λϵ′ )

= 2(S+O(logS)+3·log2 λ) · 2λϵ′
.

Since T ′(λ) = 2λ̃
ϵ , and T IE(λ) = 2λ

ϵ′ , we get that,

T ′(λ) = 2(S+O(logS)+3·log2 λ) · T IE(λ) .

Therefore, we can apply Theorem 3.2 on the T ′-secure SKE scheme, and get that the scheme is also
(T IE, S)-secure everlasting IE scheme, as required.

Next, we prove Item 2 of the corollary. Fix a SKE scheme, (SKE.Gen,SKE.Enc, SKE.Dec), that
is exponentially secure. Therefore, there exists some ϵ ∈ (0, 1) such that for T (λ) := 2ϵ·λ, the SKE
scheme is T -secure. Let Lsk(λ) be the secret-key size, and let Lct(ℓm, λ) be the ciphertext size for
message length ℓm. Let ϵ′ = ϵ

2 . In what follows we give a construction, which we later prove as
everlasting IE with T IE-security for T IE(λ) := 2ϵ

′·λ.

Construction 4.7. The construction is as follows,

• IE.Gen(1λ, 1S):

1. Set λ̃ := 1
ϵ · (S +O(logS) + 3 · log2 λ+ ϵ′ · λ).

2. Output (pk, sk)← SKE.Gen(1λ̃).
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• IE.Enc(pk,m): Output SKE.Enc(pk,m).

• IE.Dec(sk, ct): Output SKE.Dec(sk, ct).

Fix some S ∈ N. The above construction forms a SKE scheme that is T ′-secure, where T ′(λ) :=

T (λ̃) = 2ϵ·λ̃, and with efficiency parameters L′pk(λ) = Lpk(λ̃), L′sk(λ) = Lsk(λ̃), and L′ct(ℓm, λ) =

Lct(ℓm, λ̃). By construction,

λ̃ =
1

ϵ
· (S +O(logS) + 3 · log2 λ+ ϵ′ · λ)

= O(S + λ) ,

Therefore,

L′pk(λ) ≤ Lpk(O(S + λ)) ,

L′sk(λ) ≤ Lsk(O(S + λ)) ,

L′ct(ℓm, λ) ≤ Lct(ℓm, O(S + λ)) .

as required.
In what follows, we prove that the T ′-secure SKE scheme is also (T IE, S)-secure everlasting SKE.

By the definition of λ̃,

λ̃ =
1

ϵ
· (S +O(logS) + 3 · log2 λ+ ϵ′ · λ) .

Therefore,

ϵ · λ̃ = S +O(logS) + 3 · log2 λ+ ϵ′ · λ .

Raising 2 to the above exponent gives,

2ϵ·λ̃ = 2(S+O(logS)+3·log2 λ+ϵ′·λ)

= 2(S+O(logS)+3·log2 λ) · 2ϵ′·λ .

Since T ′(λ) = 2ϵ·λ̃, and T IE(λ) = 2ϵ
′·λ, we get that,

T ′(λ) = 2(S+O(logS)+3·log2 λ) · T IE(λ) .

Therefore, we can apply Theorem 4.2 on the T ′-secure SKE scheme, and get that the scheme is also
(T IE, S)-secure everlasting IE scheme, as required.
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5 Estimating and Predicting Distributions

In this section, we present general claims and proofs concerning statistical distance, distinguishing
distributions, and estimating distributions.

Claim 5.1 (Triangle inequality). For every three distributions D1, D2, D3,

∆(D1, D3) ≤ ∆(D1, D2) + ∆(D2, D3) .

Proof. Let D1, D2, D3 be distributions over the domain X . By the definition of statistical distance,

∆(D1, D3) =
1

2
·
∑
x∈X
|D1(x)−D3(x)|

=
1

2
·
∑
x∈X
|D1(x)−D2(x) +D2(x)−D3(x)|

≤ 1

2
·
∑
x∈X
|D1(x)−D2(x)|+ |D2(x)−D3(x)|

=
1

2
·
∑
x∈X
|D1(x)−D2(x)|+

1

2
·
∑
x∈X
|D2(x)−D3(x)|

= ∆(D1, D2) + ∆(D2, D3) .

Claim 5.2. For every pair of distributions D0, D1 over X , and for any unbounded distinguisher A,

Pr

[
A(x) = b

∣∣∣∣ b← {0, 1}
x← Db

]
≤ 1

2
+

∆(D0, D1)

2
.

Moreover, for a distinguisher Predict that is defined as follows,

∀x ∈ X , Predict(x) :=

{
0 if D0(x) ≥ D1(x),

1 if D0(x) < D1(x).

It holds that,

Pr

[
Predict(x) = b

∣∣∣∣ b← {0, 1}
x← Db

]
=

1

2
+

∆(D0, D1)

2
.

Proof. Fix D0, D1 over X , and distinguisher A. By the law of total probability,

Pr

[
A(x) = b

∣∣∣∣ b← {0, 1}
x← Db

]
=

1

2
·
(
Pr
[
A(x) = 0

∣∣ x← D0

]
+ Pr

[
A(x) = 1

∣∣ x← D1

])
=

1

2
·

(∑
x∈X

D0(x) · Pr[A(x) = 0] +D1(x) · Pr[A(x) = 1]

)

=
1

2
·

(∑
x∈X

D0(x) · Pr[A(x) = 0] +D1(x) · (1− Pr[A(x) = 0])

)

≤ 1

2
·
∑
x∈X

max (D0(x), D1(x)) ,
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where the inequality is since the expression is maximized when the following holds for every x ∈ X ,

• If D0(x) ≥ D1(x), then Pr[A(x) = 0] = 1.

• If D0(x) < D1(x), then (1− Pr[A(x) = 0]) = 1, which means that Pr[A(x) = 1] = 1.

We get that,

Pr

[
A(x) = b

∣∣∣∣ b← {0, 1}
x← Db

]
≥ 1

2
·
∑
x∈X

max (D0(x), D1(x)) ,

and that the following distinguisher Predict maximizes the above probability,

∀x ∈ X , Predict(x) :=

{
0 if D0(x) ≥ D1(x),

1 if D0(x) < D1(x).

We left to prove that,

1

2
·
∑
x∈X

max (D0(x), D1(x)) =
1

2
+

∆(D0, D1)

2
,

which implies that every algorithm (even unbounded) has a success probability of at most 1
2 +

∆(D0,D1)
2 , and that there exists a poly(|X |) size circuit that equals this probability, as required. To

prove the above, we prove that
∑

x∈X max (D0(x), D1(x)) = 1 + ∆(D0, D1). Let A ⊆ X be the
group of all elements x ∈ X such that D0(x) ≥ D1(x). Therefore,∑

x∈X
max {D0(x), D1(x)} =

∑
x∈A

D0(x) +
∑

x∈X\A

D1(x)

=
∑
x∈A

D0(x) +
∑

x∈X\A

D1(x) +
∑
x∈A

D1(x)−
∑
x∈A

D1(x)

=
∑
x∈X

D1(x) +
∑
x∈A

D0(x)−
∑
x∈A

D1(x)

= 1 +
∑
x∈A

D0(x)−
∑
x∈A

D1(x) .

In what follows, we prove that
∑

x∈AD0(x)−
∑

x∈AD1(x) = ∆(D0, D1).

2 ·∆(D0, D1) =
∑
x∈X
|D0(x)−D1(x)|

=
∑
x∈A

(D0(x)−D1(x)) +
∑

x∈X\A

(D1(x)−D0(x))

=
∑
x∈A

D0(x)−
∑
x∈A

D1(x) +
∑

x∈X\A

D1(x)−
∑

x∈X\A

D0(x)

=
∑
x∈A

D0(x)−
∑
x∈A

D1(x) +

(
1−

∑
x∈A

D1(x)

)
−

(
1−

∑
x∈A

D0(x)

)
(7)

= 2 ·

(∑
x∈A

D0(x)−
∑
x∈A

D1(x)

)
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where Equation 7 is since for every b ∈ {0, 1}, it holds that

1 =
∑
x∈X

Db(x) =
∑
x∈A

Db(x) +
∑

x∈X\A

Db(x) ,

and therefore,
∑

x∈X\ADb(x) = 1−
∑

x∈ADb(x).

Claim 5.3. Let D0, D1, D̃0, D̃1 be distributions over the domain X . For any unbounded distinguisher
A,

Pr

[
A(x) = b

∣∣∣∣ b← {0, 1}
x← Db

]
≥ Pr

[
A(x) = b

∣∣∣∣ b← {0, 1}
x← D̃b

]
−∆(D0, D̃0)−∆(D1, D̃1) .

Proof. For every b ∈ {0, 1},

Pr
[
A(x) = b

∣∣ x← Db

]
=
∑
x∈X

Db(x) · Pr[A(x) = b]

=
∑
x∈X

(
D̃b(x) · Pr[A(x) = b]− (D̃b(x)−Db(x)) · Pr[A(x) = b]

)
≥
∑
x∈X

(
D̃b(x) · Pr[A(x) = b]− |D̃b(x)−Db(x)| · Pr[A(x) = b]

)
≥
∑
x∈X

(
D̃b(x) · Pr[A(x) = b]− |Db(x)− D̃b(x)|

)
=
∑
x∈X

D̃b(x) · Pr[A(x) = b]−
∑
x∈X
|Db(x)− D̃b(x)|

= Pr
[
A(x) = b

∣∣ x← D̃b

]
− 2 ·∆(Db, D̃b) .

By the law of total probability,

Pr

[
A(x) = b

∣∣∣∣ b← {0, 1}
x← Db

]
=

∑
b∈{0,1}

1

2
· Pr

[
A(x) = b

∣∣ x← Db

]
.

Overall, we get that,

Pr

[
A(x) = b

∣∣∣∣ b← {0, 1}
x← Db

]
≥

∑
b∈{0,1}

1

2
·
(
Pr
[
A(x) = b

∣∣ x← D̃b

]
− 2 ·∆(Db, D̃b)

)
= Pr

[
A(x) = b

∣∣∣∣ b← {0, 1}
x← D̃b

]
−∆(D0, D̃0)−∆(D1, D̃1) .

Definition 5.4. Let D be a distribution over the domain X , and let LearnD be the following oracle
algorithm that given oracle access to the distribution D and input t ∈ N, approximates D as follows:

LearnD(t):
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1. For i ∈ [t], sample xi ← D.
2. For every x ∈ X , set D̃(x) := Pri←[t][xi = x].

Claim 5.5. For every distribution D over the domain X , and for every ξ, δ ∈ (0, 1), if t :=

Ω( |X |+log(1/δ)
ξ2

), then

E
[
∆(D̃,D)

∣∣ D̃ ← LearnD(t)
]
≤ ξ + δ .

Proof. It holds that,

E
[
∆(D̃,D)

∣∣ D̃ ← LearnD(t)
]

≤ Pr[∆(D̃,D) ≤ ξ] · ξ + Pr[∆(D̃,D) > ξ] · 1
≤ ξ + Pr[∆(D̃,D) > ξ] .

By Claim A.1,

Pr[∆(D̃,D) > ξ] ≤ δ .

Therefore,

E
[
∆(D̃,D)

∣∣ D̃ ← LearnD(t)
]
≤ ξ + δ .

Claim 5.6. For every two distributions D0, D1 over the domain X , and for every t ∈ N,

E
[
∆(D̃0, D̃1)

∣∣∣∣ D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

]
≥ ∆(D0, D1)− E

[
∆(D̃0, D0)

+∆(D̃1, D1)

∣∣∣∣ D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

]
.

Proof. Fix some distributions D0, D1, D̃0, D̃1. By the triangle inequality (Claim 5.1),

∆(D0, D1) ≤ ∆(D0, D̃0) + ∆(D̃0, D1)

≤ ∆(D0, D̃0) + ∆(D̃0, D̃1) + ∆(D̃1, D1) .

Therefore,

∆(D̃0, D̃1) ≥ ∆(D0, D1)−∆(D0, D̃0)−∆(D̃1, D1) .

We get that,

E
[
∆(D̃0, D̃1)

∣∣∣∣ D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

]
≥ E

[
∆(D0, D1)−∆(D0, D̃0)−∆(D̃1, D1)

∣∣∣∣ D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

]

By linearity of expectation, we get that,

E
[
∆(D̃0, D̃1)

∣∣∣∣ D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

]
≥ ∆(D0, D1)− E

[
∆(D̃0, D0)

+∆(D̃1, D1)

∣∣∣∣ D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

]
.
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Claim 5.7. For every two distributions D0, D1 over the domain X , and for every t ∈ N,

Pr

 PredictD̃0,D̃1
(x) = b

∣∣∣∣∣∣∣∣
b← {0, 1}

D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)
x← Db

 ≥Pr

 PredictD̃0,D̃1
(x) = b

∣∣∣∣∣∣∣∣
b← {0, 1}

D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

x← D̃b


− E

[
∆(D̃0, D0)

+∆(D̃1, D1)

∣∣∣∣ D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

]
.

Proof of Claim 5.7. For every x1 . . . , xt ∈ X , let Dx1...,xt be the distribution such that, for every
x ∈ X , Dx1...,xt(x) := Pri←[t][xi = x], and let D := {Dx1...,xt | x1 . . . , xt ∈ X}. By the law of total
probability,

Pr

 PredictD̃0,D̃1
(x) = b

∣∣∣∣∣∣∣∣
b← {0, 1}

D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)
x← Db


=

∑
D̃0,D̃1∈D

Pr

[
D̃′0 = D̃0

D̃′1 = D̃1

∣∣∣∣ D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

]
· Pr

[
PredictD̃0,D̃1

(x) = b

∣∣∣∣ b← {0, 1}
x← Db

]

Fix two distributions D̃0, D̃1 ∈ D. By Claim 5.3,

Pr

[
PredictD̃0,D̃1

(x) = b

∣∣∣∣ b← {0, 1}
x← Db

]
≥ Pr

[
PredictD̃0,D̃1

(x) = b

∣∣∣∣ b← {0, 1}
x← D̃b

]
−∆(D̃0, D0)−∆(D̃1, D1) .

Therefore, by the law of total probability,

Pr

 PredictD̃0,D̃1
(x) = b

∣∣∣∣∣∣∣∣
b← {0, 1}

D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)
x← Db


≥

∑
D̃0,D̃1∈D

Pr

[
D̃′0 = D̃0

D̃′1 = D̃1

∣∣∣∣ D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

]
· Pr

[
PredictD̃0,D̃1

(x) = b

∣∣∣∣ b← {0, 1}
x← D̃b

]

−
∑

D̃0,D̃1∈D

Pr

[
D̃′0 = D̃0

D̃′1 = D̃1

∣∣∣∣ D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

]
·∆(D̃0, D0)

−
∑

D̃0,D̃1∈D

Pr

[
D̃′0 = D̃0

D̃′1 = D̃1

∣∣∣∣ D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

]
·∆(D̃1, D1)

= Pr

 PredictD̃0,D̃1
(x) = b

∣∣∣∣∣∣∣∣
b← {0, 1}

D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

x← D̃b

− E
[
∆(D̃0, D0)

+∆(D̃1, D1)

∣∣∣∣ D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

]
.
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Claim 5.8. For every two distributions D0, D1 over the domain X , and for every t ∈ N,

Pr

 PredictD̃0,D̃1
(x) = b

∣∣∣∣∣∣∣∣
b← {0, 1}

D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

x← D̃b

 =
1

2
+ E

[
∆(D̃0,D̃1)

2

∣∣∣∣ D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

]
.

Proof. For every x1 . . . , xt ∈ X , let Dx1...,xt be the distribution such that, for every x ∈ X ,
Dx1...,xt(x) := Pri←[t][xi = x], and let D := {Dx1...,xt | x1 . . . , xt ∈ X}. By the law of total proba-
bility,

Pr

 PredictD̃0,D̃1
(x) = b

∣∣∣∣∣∣∣∣
b← {0, 1}

D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

x← D̃b


=

∑
D̃0,D̃1∈D

Pr

[
D̃′0 = D̃0

D̃′1 = D̃1

∣∣∣∣ D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

]
· Pr

[
PredictD̃0,D̃1

(x) = b

∣∣∣∣ b← {0, 1}
x← D̃b

]

Fix two distributions D̃0, D̃1 ∈ D. By Claim 5.2,

Pr

[
PredictD̃0,D̃1

(x) = b

∣∣∣∣ b← {0, 1}
x← D̃b

]
=

1

2
+

∆(D̃0, D̃1)

2
.

Therefore,

Pr

 PredictD̃0,D̃1
(x) = b

∣∣∣∣∣∣∣∣
b← {0, 1}

D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

x← D̃b


=

∑
D̃0,D̃1∈D

Pr

[
D̃′0 = D̃0

D̃′1 = D̃1

∣∣∣∣ D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

]
·

(
1

2
+

∆(D̃0, D̃1)

2

)

=
1

2
+ E

[
∆(D̃0,D̃1)

2

∣∣∣∣ D̃0 ← LearnD0(t)

D̃1 ← LearnD1(t)

]

Claim 5.9. For every two distributions D0, D1, if there exists a distribution G, and set of distribu-
tions {B0,x}x and {B1,x}x such that, for every b ∈ {0, 1},

Db :=

{
(x, y)

∣∣∣∣ x← G
y ← Bx,b

}
.

Then,

∆(D0, D1) = Ex←G[∆(Bx,0, Bx,1)] .
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Proof. By definition of statistical distance,

∆(D0, D1) =
1

2

∑
(x′,y′)

∣∣Pr [(x, y) = (x′, y′) | (x, y)← D0

]
− Pr

[
(x, y) = (x′, y′) | (x, y)← D1

]∣∣ .
By the definition of D0 and D1,

1

2

∑
(x′,y′)

∣∣Pr [(x, y) = (x′, y′) | (x, y)← D0

]
− Pr

[
(x, y) = (x′, y′) | (x, y)← D1

]∣∣
=

1

2

∑
(x′,y′)

∣∣∣∣Pr [(x, y) = (x′, y′)

∣∣∣∣ x← G
y ← B0,x

]
− Pr

[
(x, y) = (x′, y′)

∣∣∣∣ x← G
y ← B1,x

]∣∣∣∣
=

1

2

∑
(x′,y′)

∣∣Pr[x = x′ | x← G] · Pr[y = y′ | y ← B0,x] − Pr[x = x′ | x← G] · Pr[y = y′ | y ← B1,x]
∣∣

=
1

2

∑
(x′,y′)

Pr[x = x′ | x← G] · |Pr[y ← B0,x] − Pr[y = y′ | y ← B1,x]
∣∣

=
∑
x′

Pr[x = x′ | x← G] · 1
2

∑
y′

∣∣Pr[y = y′ | y ← B0,x] − Pr[y = y′ | y ← B1,x]
∣∣ .

By the definition of statistical distance,∑
x

Pr[x = x′ | x← G] · 1
2

∑
y

∣∣Pr[y = y′ | y ← B0,x] − Pr[y = y′ | y ← B1,x]
∣∣

=
∑
x

Pr[x = x′ | x← G] ·∆(B0,x, B1,x)

= Ex←G[∆(B0,x, B1,x)] ,

where the last equality is by the definition of expected value. Overall, we get that,

∆(D0, D1) = Ex←G[∆(B0,x, B1,x)] ,

as required.

Claim 5.10. For every domain X and ξ ∈ (0, 1), there exist an algorithm Predict such that for
every distribution G over the domain X and set of distributions {B0,x}x∈X and {B1,x}x∈X , given
oracle access to samples from Bx,0, Bx,1 it holds that for ,

Pr

 PredictBx,0,Bx,1(y) = b

∣∣∣∣∣∣
b← {0, 1}

x← G
y ← Bb,x

 =
1

2
+

Ex←G[∆(Bx,0, Bx,1)]

2
− ξ .

Moreover, Predict makes t := Ω

(
|X |+log

(
1
ξ

)
ξ2

)
oracle queries, and runs in time O(t · log(|X |)).

Proof. Let Predict be the following algorithm,

PredictBx,0,Bx,1(y):
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1. For every b ∈ {0, 1}, set B̃b ← LearnBx,b(t), where LearnBx,b(t) is the algorithm from Defini-
tion 5.4.

2. Output b′ ← PredictB̃0,B̃1
(y), where PredictB̃0,B̃1

is the algorithm described in Claim 5.2 for
distributions B̃0, B̃1.

By the above,

Pr

 PredictBx,0,Bx,1(y) = b

∣∣∣∣∣∣
b← {0, 1}

x← G
y ← Bx,b



= Ex←G

Pr
 PredictB̃0,B̃1

(y) = b

∣∣∣∣∣∣∣∣
b← {0, 1}

B̃0 ← LearnBx,0(t)

B̃1 ← LearnBx,1(t)
y ← Bx,b


 . (8)

Fix x. It holds that,

Pr

 PredictB̃0,B̃1
(y) = b

∣∣∣∣∣∣∣∣
b← {0, 1}

B̃0 ← LearnBx,0(t)

B̃1 ← LearnBx,1(t)
y ← Bx,b



≥ Pr

 PredictB̃0,B̃1
(y) = b

∣∣∣∣∣∣∣∣
b← {0, 1}

B̃0 ← LearnBx,0(t)

B̃1 ← LearnBx,1(t)

y ← B̃b

− E
[
∆(B̃0, Bx,0)

+∆(B̃1, Bx,1)

∣∣∣∣ B̃0 ← LearnBx,0(t)

B̃1 ← LearnBx,1(t)

]

=
1

2
+ E

[
∆(B̃0,B̃1)

2

∣∣∣∣ B̃0 ← LearnBx,0(t)

B̃1 ← LearnBx,1(t)

]
− E

[
∆(B̃0, Bx,0)

+∆(B̃1, Bx,1)

∣∣∣∣ B̃0 ← LearnBx,0(t)

B̃1 ← LearnBx,1(t)

]
=

1

2
+

1

2
· E
[
∆(B̃0, B̃1)

∣∣∣∣ B̃0 ← LearnBx,0(t)

B̃1 ← LearnBx,1(t)

]
− E

[
∆(B̃0, Bx,0)

+∆(B̃1, Bx,1)

∣∣∣∣ B̃0 ← LearnBx,0(t)

B̃1 ← LearnBx,1(t)

]
≥ 1

2
+ ∆(Bx,0,Bx,1)

2
− 3

2
· E
[
∆(B̃0, Bx,0)

+∆(B̃1, Bx,1)

∣∣∣∣ B̃0 ← LearnBx,0(t)

B̃1 ← LearnBx,1(t)

]
=

1

2
+ ∆(Bx,0,Bx,1)

2
− 3

2
·
∑

b∈{0,1}

E
[
∆(B̃b, Bx,b)

∣∣ B̃b ← LearnBx,b(t)
]
,

where the first inequality is by Claim 5.7, the first equality is by linearity of expectation, the second
equality is by Claim 5.8, the second inequality is by Claim 5.6, and the third equality is by linearity
of expectation. Next, we apply Claim 5.5 with ξ′ = ξ/3 and δ′ := ξ/3. Note that,

t = Ω

 |X |+ log
(
1
ξ

)
ξ2

 = Ω

(
|X |+ log

(
1
δ′

)
ξ′2

)
.

Therefore, by Claim 5.5, for every b ∈ {0, 1},

E
[
∆(B̃b, Bx,b)

∣∣ B̃b ← LearnBx,b(t)
]
≤ ξ′ + δ′ =

2

3
ξ .
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Therefore,

Pr

 PredictB̃0,B̃1
(y) = b

∣∣∣∣∣∣∣∣
b← {0, 1}

B̃0 ← LearnBx,0(t)

B̃1 ← LearnBx,1(t)
y ← Bx,b


=

1

2
+ ∆(Bx,0,Bx,1)

2
− 3

2
·
∑

b∈{0,1}

E
[
∆(B̃b, Bx,b)

∣∣ B̃b ← LearnBx,b(t)
]

≥ 1

2
+ ∆(Bx,0,Bx,1)

2
− 3

2
· 2
3
ξ

=
1

2
+ ∆(Bx,0,Bx,1)

2
− ξ .

Overall, by plugging in the above into Equation 8,

Pr

 PredictBx,0,Bx,1(y) = b

∣∣∣∣∣∣
b← {0, 1}

x← G
y ← Bb,x



= Ex←G

Pr
 PredictB̃0,B̃1

(y) = b

∣∣∣∣∣∣∣∣
b← {0, 1}

B̃0 ← LearnBx,0(t)

B̃1 ← LearnBx,1(t)
y ← Bx,b




≥ Ex←G

[
1

2
+ ∆(Bx,0,Bx,1)

2
− ξ

]
≥ 1

2
+

Ex←G[∆(Bx,0, Bx,1)]

2
− ξ ,

where the last inequality is by linearity of expectation.
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A Learning distributions – a Folklore Lemma

We use the following “folklore” lemma from Learning theory, which quantifies the number of queries
needed to learn a distribution with high probability up to a small error in statistical distance. The
proof are reproduced verbatim from [Can20, Theorem 1].

Claim A.1 ([Can20, Theorem 1]). Let D be a distribution over the domain X . For every δ, ξ ∈
(0, 1), if t := Ω( |X |+log(1/δ)

ξ2
), then it holds that

Pr
[
∆(D, D̃) ≤ ξ | D̃ ← LearnD(t)

]
≥ 1− δ ,

where LearnD is the algorithm described in Definition 5.4.

Proof. Consider the empirical distribution D̃ obtained by drawing n independent samples s1, . . . , sn
from the underlying distribution D:

D̃(x) =
1

n

n∑
j=1

1{sj=x}, x ∈ X . (9)

We will analyze the behavior of the empirical distribution D̃. The event where ∆(D, D̃) > ξ means
that there exists a subset S ⊆ X such that D̃(S) > D(S) + ξ. There are 2|X | such subsets. Let us
union bound over the sets.

Fix any S ⊆ X . We have,

D̃(S) =
∑
x∈S

D̃(x)
(9)
=

1

n

∑
x∈S

n∑
j=1

1{sj=x} ,

and so, letting Xj :=
∑

i∈S 1{sj=i} for j ∈ [n], we have D̃(S) = 1
n

∑n
j=1Xj where the Xj ’s are i.i.d.

Bernoulli random variable with parameter D(S). In what follows, we use the Hoeffding bound,

Pr
[
D̃(S) > D(S) + ξ

]
= Pr

 1

n

n∑
j=1

Xj > E

 1

n

n∑
j=1

Xj

+ ξ

 ≤ e−2ξ
2n ,

and therefore Pr[D̃(S) > D(S) + ξ] ≤ δ
2|X| for any n ≥ |X | ln 2+log(1/δ)

2ξ2
. A union bound over these 2ξ

possible sets S concludes the proof:

Pr
[
∃S ⊆ X s.t. D̃(S) > D(S) + ξ

]
≤ 2|X | · δ

2|X |
= δ

and we are done.
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