
Registered Functional Encryption for Pseudorandom

Functionalities from Lattices:

Registered ABE for Unbounded Depth Circuits and Turing Machines, and More

Tapas Pal 1, Robert Schädlich 2, and Erkan Tairi 2

1Karlsruhe Institute of Technology, KASTEL Security Research Labs

tapas.pal@kit.edu
2DIENS, École normale supérieure, PSL University, CNRS, Inria

{robert.schaedlich,erkan.tairi}@ens.fr

Abstract

Registered functional encryption (RFE) is a generalization of public-key encryption that enables compu-

tation on encrypted data (like classical FE), but without needing a central trusted authority. Concretely, the

users choose their own public keys and register their keys together with a function with an (untrusted) key

curator. The key curator aggregates all of the individual public keys into a short master public key, which

serves as the public key of the FE scheme.

Currently, we only know RFE constructions for restricted functionalities using standard assumptions, or

for all circuits using powerful tools such as indistinguishability obfuscation, and only in the non-uniform

model. In this work, we make progress on this front by providing the first lattice-based constructions of RFE

for pseudorandom functionalities, where the model of computation is either non-uniform (unbounded depth

circuits) or uniform (Turing machines). Intuitively, we call a functionality pseudorandom if the output of the

circuit is indistinguishable from uniform for every input seen by the adversary. Security relies on LWE and

a recently introduced primitive called pseudorandom FE (prFE), which currently can be instantiated from

evasive LWE.

We illustrate the versatility of these new functionalities for RFE by leveraging them to achieve key-policy

and ciphertext-policy registered attribute-based encryption and registered predicate encryption schemes

(KP-RABE, CP-RABE and RPE) for both unbounded depth circuits and Turing machines. Existing RABE con-

structions support only bounded depth circuits, and prior to our work there neither existed RABE for uniform

models of computation nor RPE. As an appealing feature, all our constructions enjoy asymptotic optimality

in the sense that their parameters depend neither on the length of public attributes nor the size of policies.

Along the way, we can also improve on the state-of-the-art for classical attribute-based encryption (ABE)

and predicate encryption (PE). Specifically, we obtain new constructions for KP-ABE, CP-ABE and PE for

Turing machines with optimal asymptotic parameters. For KP-ABE, this is an in improvement in terms of

efficiency, whereas for CP-ABE and PE we are not aware of any prior purely lattice-based construction sup-

porting Turing machines.

1

https://orcid.org/0000-0001-6278-0418
https://orcid.org/0000-0001-8643-9046
https://orcid.org/0000-0002-2283-4829

Contents

1 Introduction 4

1.1 Our Results . 5

1.2 On prFE as an Assumption . 8

2 Technical Overview 9

2.1 Pseudorandom RFE for Bounded Depth Circuits . 10

2.2 Pseudorandom RFE and RABE for Unbounded Depth Circuits . 17

2.3 Pseudorandom RFE and RABE for Turing Machines . 22

3 Preliminaries 26

3.1 Notational Conventions . 26

3.2 Computational Models . 27

3.3 Lattice Preliminaries . 28

3.4 GSW Homomorphic Encryption and Evaluation . 29

3.5 Homomorphic Evaluation Procedures . 29

3.6 Pseudorandom Functions . 30

3.7 Blind Garbled Circuit . 30

3.8 (Unbounded) Blind Batch Encryption . 31

3.9 Symmetric Key Encryption . 33

3.10 Functional Encryption . 33

3.11 Attribute-Based and Predicate Encryption . 35

3.12 Registered Attribute-Based and Predicate Encryption . 37

3.13 Poly-Domain Obfuscation for Pseudorandom Functionalities . 38

3.14 Laconic Poly-Domain Obfuscation for Pseudorandom Functionalities 39

4 prCT-Secure sRFE for Unbounded Depth Circuits and Turing Machines 41

4.1 Definition . 41

4.2 Construction for Bounded Depth Circuits . 43

4.3 Proof of Correctness and Compactness . 45

4.4 Proof of Security . 47

4.5 Construction for Unbounded Depth Circuits . 52

4.6 Proof of Correctness and Compactness . 55

4.7 Proof of Security . 56

4.8 Construction for TMs with Bounded-Length Private Inputs . 59

4.9 Proof of Correctness and Compactness . 62

4.10 Proof of Security . 64

4.11 Improving Asymptotic Parameters and Achieving Unbounded-Length Private Inputs 68

4.12 Proof of Correctness and Compactness . 70

4.13 Proof of Security . 70

5 Applications to sRABE and sRPE with (Nearly) Optimal Parameters 72

5.1 Definition . 72

5.2 Construction of KP-sRABE and sRPE for Unbounded Depth Circuits and TMs 74

5.3 Proof of Correctness and Compactness . 76

5.4 Proof of Security . 76

5.5 Construction of CP-sRABE for Unbounded Depth Circuits and TMs 77

5.6 Proof of Correctness and Compactness . 79

5.7 Proof of Security . 80

2

6 Results in the Registration-Based Setting 82

7 prCT Secure FE for Turing Machines and Applications to ABE 85

7.1 Construction of prCT Secure FE for TMs . 85

7.2 Proof of Correctness and Efficiency . 88

7.3 Proof of Security . 89

7.4 Application to KP-ABE and PE for TMs with Optimal Asymptotic Parameters 90

7.5 Application to CP-ABE for TMs with Optimal Asymptotic Parameters 92

A Unbounded Blind Batch Encryption 101

A.1 Overview . 101

A.2 Construction . 101

A.3 Proof of Correctness, Efficiency and Succinctness . 103

A.4 Proof of Security . 104

B Laconic pPRIO with Global Setup 106

B.1 Overview . 106

B.2 Construction . 107

B.3 Proof of Correctness and Compactness . 109

B.4 Proof of Security . 109

3

1 Introduction

Registered Functional Encryption. Registered functional encryption (RFE) [FFM+23, DPY24] has recently

emerged as a promising public-key cryptographic paradigm designed to address the longstanding key-escrow

issue prevalent in the existing functional encryption (FE) schemes [BSW11, GGH+13, WW21, JLS21]. In RFE, a

key curator initializes a common reference string (CRS) and publicly distributes it to all users. Once the CRS is

generated, the random coins used in its creation can be discarded. Importantly, the curator does not possess

any secret information but merely facilitates user registration. This is a key distinction from traditional FE,

where a central authority, acting as the key curator, possesses a master secret key capable of decrypting any

ciphertext. Using the CRS, a new user can independently generate a public-private key pair (pk,sk) and submit

a function f along with pk to the curator of RFE for registration. Upon receiving (f ,pk), the curator updates

the master public key mpk and the helper secret key hsk for the user. To encrypt data, a provider utilizes mpk

to generate a ciphertext associated with private input x. The user, in turn, can decrypt the ciphertext using

(sk,hsk) to obtain f (x) while learning no additional information about x. Fundamental requirements of this

framework are that the registration process remains deterministic to guarantee transparency and that mpk

and hsk are compact, i.e., they have polylogarithmic size in the total number of users, and can be efficiently

updated.

A special case of RFE is the notion of registered attribute-based encryption (RABE) [HLWW23], where an

unchanging message µ is encrypted along with a public attribute x, public keys are registered with respect to

a public policy f and decryption returns µ if and only if f (x) = 0. Security is similar to the case of RFE except

that x must not be hidden. RABE comes in two flavors – key-policy RABE (KP-RABE) where the policy is en-

coded in the public key, or ciphertext-policy RABE (CP-RABE) where the policy is encoded in the ciphertext. An

interesting strengthening of KP-RABE is the so-called registered predicate encryption (RPE) where ciphertexts

hide not only the message µ but also the attribute x.

Prior Work. Substantial progress has been made in constructing RFE for specific classes of functionalities. In

particular, early work by Garg et al. [GHMR18] introduced the first registration-based encryption (RBE) scheme

focused on identity-based policies, which laid the foundation for subsequent advancements [GV20, DKL+23,

GKMR23] in security and efficiency. Constructions for more general forms of RABE have been developed based

on standard assumptions in bilinear groups [HLWW23, ZZGQ23, AT24, GLWW24] and lattice-based cryptogra-

phy [FWW23, CHW25, ZZC+25, YZGC25]. These developments demonstrate the potential of RFE in achieving

fine-grained access control while mitigating the trust-related limitations of traditional FE schemes.

Moving beyond all-or-nothing type encryption paradigm, several works proposed group-based RFE con-

structions for specific function classes such as (attribute-based) linear functions [FFM+23, DPY24], quadratic

functions [ZLZ+24, BLM+24] and (attribute-based) attribute-weighted sums [PS25]. On the other hand, RFEs

for all polynomial-sized circuits are currently based on indistinguishability obfuscation (iO) [FFM+23, DPY24].

Despite significant efforts to construct iO from well-founded and standard assumptions [JLS21, JLS22, RVV24],

the existing approaches remain dependent on pairings. Thus, all these RFE schemes, including the group-

based ones mentioned above, are inherently insecure against quantum attacks. Recently, Zhang et al. [ZCHZ24]

built RFE for all circuits providing security only in the bounded collusion model, where the total number of

compromised users, Q, must be predetermined and fixed during the setup phase. The sizes of both the master

public key and the helper key in [ZCHZ24] scale with Q, which diminishes the original compactness of RFE. Al-

though their bounded collusion RFE guarantees adaptive simulation security under the post-quantum secure

learning with errors (LWE) and evasive LWE [Wee22] assumptions, the scheme is proven secure in the random

oracle model (ROM). Therefore, a natural open question is:

Can we build fully collusion-resistant and compact RFE, for any functionality beyond ABE, from lattice

assumptions (preferably, in the standard model)?

Moreover, prior works consider non-uniform models of computation, where the function f is represented

4

as a circuit, and this is regardless of whether the RFE (including the special case of RABE) operates in the

fully collusion-resistant or bounded collusion setting [FWW23, FFM+23, DPY24, ZCHZ24, CHW25, ZZC+25,

YZGC25]. The circuit model imposes inherent limitations as it necessitates that the input size be fixed in ad-

vance and enforces a worst-case runtime for every input. Such constraints are undesirable from both theo-

retical and practical perspectives. While there has been remarkable progress in developing plain FE or ABE

schemes that support uniform models of computation [Wat12, GKP+13, AS16, AS17, AM18, AMY19a, KNTY19,

GWW19, AMY19b, LL20, GW20, AMVY21, AKM+22, AKY24a], to the best of our knowledge, no existing work

has explored RFE or RABE in this setting. This leads to another fundamental open question in the field:

Can we construct compact RFE and RABE for any uniform model of computation?

Pseudorandom Functionalities. A recent work by Agrawal, Kumari and Yamada [AKY24b] initiates the study

of so-called pseudorandom functionalities in the context of (classical) FE. Intuitively, a functionality is said

to be pseudorandom if the output is (pseudo)random for any given input that is seen by the adversary in the

security game.1 [AKY24b] considers pseudorandom functionalities in the setting, where the underlying com-

putational model is the circuit model. More general, we observe that pseudorandom functionalities can also

be studied with respect to other models of computations, e.g., Turing machines. For notational convenience,

we adopt the use of the acronym prFE from [AKY24b] for the particular case of FE for pseudorandom function-

alities, where the underlying computational model captures bounded depth circuits, and we refer to Section 1.2

for a detailed discussion about existing instantiations of prFE.

Besides other computational models, the notion of pseudorandom functionalities can also be adapted

from classical to registered functional encryption. In this case, the requirement for pseudorandomness is not

imposed on all functions (as is the case in classical FE) but only on those registered by corrupt users whose

secret keys are known by the adversary. Moreover, as in the classical setting [AKY24b], we can refine the security

notion by considering partially-hiding pseudorandom functionalities. In this case, an input x to the function

f is divided into a public part xpub and a private part xpri. While the correctness requirement remains the same

as in standard RFE, we adopt a relaxed security notion where the public input is visible to the adversary. The

key advantage of this relaxation is that it enables shorter ciphertexts whose size does not depend on the length

of xpub, following the convention of disregarding the public part when measuring ciphertext size.

1.1 Our Results

In this work, we make significant progress in answering the above two questions by designing RFE schemes

based on lattice assumptions for the following functionalities and models of computation. Our results are

summarized and compared with the state of the art in Table 1.

Unbounded-Depth Circuit Model. We achieve RFE for partially-hiding pseudorandom functionalities for

unbounded depth circuits with (nearly) optimal2 parameter sizes. We refer to Section 4 for the details, and

summarize our result with the following informal theorem:

Theorem 1.1 (Pseudorandom RFE for Circuits – Informal). Assuming LWE and prFE, there exists a selectively

secure compact RFE scheme for partially-hiding pseudorandom functionalities supporting unbounded depth

1As we will see later, the formal definition of “pseudorandom functionality” establishes a particular security notion: a FE scheme

for some function class F is said to be secure against pseudorandom functionalities if ciphertexts for challenge inputs x∗ cannot be

distinguished from random bit strings as long as the function values f (x∗) (of functions f ∈F for which the adversary possesses a secret

key) cannot be distinguished from random elements of the codomain. Importantly, the condition of pseudorandom function values is

only imposed on challenge inputs x∗, while nothing is required for other elements x of the domain.
2Our parameters are optimal in the sense that they depend neither on the public input length nor the function size. However, there is a

logarithmic dependency on the number L of users. Since the optimal parameters for RFE in terms of L are unclear, we refer to our scheme

as “nearly” optimal. Known lower bounds only relate the parameter sizes to the number of updates [MQR22].

5

circuits and unbounded number of users with the following parameters:

|crs| = logL ·poly(λ) |mpk| = logL ·poly(λ)

|hsk| = (logL)2 ·poly(λ) |ct| = (logL)2 ·poly(λ)+|xpri|

where L denotes the total number of registered users in the system.

Note that the parameter sizes are optimal up to a factor of logL, in particular they do not depend on the circuit

size or depth. By leveraging the RFE from Theorem 1.1, we instantiate the first KP-RABE, CP-RABE and RPE for

unbounded depth circuits with (nearly) optimal parameters, as detailed in Section 5.

Theorem 1.2 (RABEs and RPE for Unbounded Depth Circuits – Informal). Assuming LWE and prFE, there exist

selectively secure compact KP-RABE, CP-RABE and RPE schemes supporting unbounded depth circuits and

having message space {0,1}ℓ with the following parameters:

|crs| = logL ·poly(λ) |mpk| = logL ·poly(λ)

|hski | = (logL)2 ·poly(λ) |ct| = (logL)2 ·poly(λ)+ℓ +ℓatt

where ℓatt denotes the length of an attribute.

Uniform Model. We study a uniform model of computation in the area of registration-based encryption for

the first time in the literature. More precisely, we consider pseudorandom functionalities where functions are

expressed as Turing machines allowing unbounded length public and private inputs. We construct RFE for

partially-hiding pseudorandom functionalities supporting Turing machines with (nearly) optimal parameters.

Our scheme is optimal in the sense that the parameters do not restrict the size of the Turing machine and input,

nor the time/space complexity. Moreover, it obeys the standard compactness requirement of RFE, i.e., the

parameters only grow logarithmically in the total number of users in the system. This is detailed in Section 4

and summarized in the following theorem:

Theorem 1.3 (Pseudorandom RFE for Turing Machines – Informal). Assuming LWE and prFE, there exists a

selectively secure compact RFE scheme for partially hiding pseudorandom functionalities expressed as Turing

machines and supporting an unbounded number of users with the following parameters:

|crs| = logL ·poly(λ) |mpk| = logL ·poly(λ)

|hsk| = logL ·poly(λ) |ct| = (logL)2 ·poly(λ)+|xpri|

where L denotes the total number of registered users in the system.

Similar to the constructions in the circuit model, we can directly leverage the RFE for pseudorandom function-

alities to realize KP-RABE, CP-RABE3 and RPE for Turing machines. This gives rise to the first RABE/RPE with

unbounded length attributes from a plausibly post-quantum assumption.

Theorem 1.4 (RABEs and RPE for Turing machines – Informal). Assuming LWE and prFE, there exist selectively

secure compact KP-RABE, CP-RABE and RPE schemes for Turing machines having message space {0,1}ℓ with

the following parameters:

|crs| = logL ·poly(λ) |mpk| = logL ·poly(λ)

|hski | = (logL)2 ·poly(λ) |ct| = (logL)2 ·poly(λ)+ℓ +ℓatt

where ℓatt denotes the length of the attribute.

3More precisely, the construction of CP-ABE for some policy class F also requires a (classical) KP-ABE for F with certain properties. In

the case of unbounded depth circuits, a suitable KP-ABE scheme was presented in [AKY24b] and proven secure assuming LWE and prFE.

For the case of Turing machines, we provide a similar result in this work (see Theorem 1.5 below).

6

Scheme Type Policy Security Assumption |crs| |mpk| |hski | |ct|

[FFM+23] KP/CP/PE UD-Cir Adp-IND iO + SSB poly(logL) poly(logL) poly(logL) |iO(f)|

[HLWW23] CP LSSS Adp-IND composite-order L2 ·poly(logL, |x|) |x| ·poly(logL) |x| ·poly(logL) | f | ·poly(logL)

[FWW23] CP BD-Cir Sel-IND witness encryption poly(logL) poly(logL) poly(logL,d , |x|) |WE.ct|

[ZZGQ23] KP/CP ABP Adp-IND prime-order L2 ·poly(logL, |x|) |x| ·poly(logL) |x| ·poly(logL) | f | ·poly(logL)

[AT24] CP LSSS Adp-IND prime-order L2 ·poly(logL) |x|2 ·poly(logL) |x|2 ·poly(logL) |x| · | f | ·poly(logL)

[GLWW24] CP LSSS Adp-IND composite-order L1+o(1) ·poly(logL, |x|) poly(logL, |x|) poly(logL, |x|) | f | ·poly(logL)

[CHW25] KP BD-Cir Sel-IND succinct LWE + RO (L2 +|x|2) ·poly(d) poly(d) poly(d) poly(d)

[ZZC+25] KP BD-Cir Sel-IND
LWE + (private-coin)

evasive LWE
poly(logL,d) poly(logL,d) poly(logL,d) poly(logL,d)

[YZGC25] KP BD-Cir Sel-IND
(public-coin) evasive

LWE + tensor LWE
(L(logL)2 +|x|) ·poly(d) (logL+|x|) ·poly(d) (logL)2 ·poly(d) (logL+|x|) ·poly(d)

this work KP/CP/PE UD-Cir + TM Sel-IND LWE + prFE logL logL (logL)2 (logL)2

Table 1: Comparison with existing RABE schemes. Here, “KP”, “CP” and “PE” stand for key-policy, ciphertext-

policy and predicate encryption, respectively. The policy classes “LSSS”, “ABP”, “BD-Cir”, “UD-Cir” and “TM”

refer to linear secret sharing schemes, arithmetic branching programs, bounded depth circuits, unbounded

depth circuits and Turing machines, respectively. By “Adp" and “Sel" we denote adaptive and selective security,

and by “RO” we indicate the use of a random oracle. L denotes the number of users, d denotes the circuit

depth, |x| denotes the attribute length and | f | denotes the policy size. We denote by |iO(f)| and |WE.ct| the

size of the obfuscated circuit and the size of the witness encryption ciphertext, respectively. We ignore factors

polynomial in the message length ℓ and security parameter λ.

Our techniques developed in the registration-based setting prove useful to also improve the state of the art in

the classical setting. Specifically, we provide the first plain FE for partially-hiding pseudorandom functionali-

ties supporting Turing machines. While in the circuit model this was already provided by [AKY24b], we do not

have such a scheme for Turing machines yet. By further observing that existing compilers for circuits [AKY24b]

can also be leveraged in the case of Turing machines, we then obtain KP-ABE, CP-ABE and PE for TMs all with

asymptotically optimal parameter (in Section 7).

Theorem 1.5 (ABEs and PE for Turing Machines – Informal). Assuming LWE and prFE, there exist very se-

lectively secure KP-ABE, CP-ABE and RPE schemes for Turing machines having message space {0,1}ℓ with the

following parameters:

|mpk| = poly(λ), |sk| = poly(λ), |ct| = poly(λ)+ℓ +ℓatt .

Here, very selective security means that the adversary must commit to the challenge query and key queries be-

fore seeing the public parameters. We compare our KP-ABE for TM with the previous constructions of [HLL24,

AKY24a, AKY24b, CW25] in Table 2. We remark that we are not aware of any previous work in the literature

constructing CP-ABE or PE for TMs.

As can be observed from Table 2, ours is the first construction that has ciphertext size independent of

the running time t . To achieve this we follow the approach of the KP-ABE scheme for circuits in [AKY24b],

where the authors achieve optimal parameters by using decomposable garbled circuits to deal with each input

bit and gate independently. Concretely, we generalize their approach to uniform models of computation by

using two “layers” of decomposable garbled circuits where the first circuit receives the attribute length ℓatt

and runtime t encoded in binary using bitstrings of fixed length λ (but not the actual values of ℓatt and t) and

computes a garbling of the second circuit that performs the actual evaluation of the Turing machine on inputs

of length ℓatt and runtime t . This allows us to also get rid of the |M | dependence on |sk| from [AKY24b]. For

more details about this technique we refer the reader to Section 2.3.

7

Scheme Assumption |mpk| |sk| |ct|

[HLL24]
LWE + (public-coin) evasive LWE

with structured errors
O(1) |M | t ·2s

[AKY24a]
LWE + (private-coin) evasive LWE

+ circular tensor LWE
O(1) |M |2 t 2

[AKY24b] LWE + prFE O(1) |M | t

[CW25] (public-coin) circular evasive LWE O(1) O(1) t

this work LWE + prFE O(1) O(1) O(1)

Table 2: Comparison with existing KP-ABE schemes for TM. Here, |M | denotes the size of the Turing machine

M as a circuit, which is roughly linear in the number of states, t denotes the running time and s denotes

the space of M . We ignore factors polynomial in the message length ℓ and attribute length ℓatt as they are

swallowed by the running time t . We additionally ignore polynomial factors in the security parameter λ. The

assumption “prFE” is currently implied by (private-coin) evasive LWE.

1.2 On prFE as an Assumption

Our schemes rely on prFE [AKY24b] (i.e., pseudorandom FE for bounded depth circuits) and a primitive called

poly-domain pseudorandom iO (pPRIO) [AKY24c] which can be built generically from prFE and one-way func-

tions. The security of prFE and pPRIO currently rely on LWE and private-coin evasive LWE [AKY24b]. Even

though evasive LWE has seen several recent counterexamples [BÜW24, DJM+25, AMYY25, HJL25], we believe

that in the post-quantum setting the use of primitives for pseudorandom functionalities that rely on evasive

LWE is still preferable over general purpose tools such as FE and iO for all circuits. More precisely, while in

the non-post-quantum setting we can construct FE and iO for general circuits under well-studied assump-

tions [JLS21, JLS22, RVV24], in the post-quantum setting the situation is more grim. The existing (plausi-

bly) post-quantum iO candidates can be roughly classified into two categories. The first category involves

iO constructions based on (constant-degree) graded encoding schemes [LV16, Lin17, LT17], which rely on

ad-hoc lattice-based assumptions and are subject to so-called “zeroizing attacks” [CGH17, Pel18, CHKL18,

CVW18, CCH+19]. The second category involves constructions based on some form of “circular LWE with

leakage” assumptions [BDGM20, GP21, WW21, DQV+21, BDGM22, HJL25], where subsequent cryptanaly-

sis [HJL21, JLLS23, BDJ+24] has demonstrated either counterexamples or attacks against these assumptions

(with the exception of the newly proposed candidate from [HJL25]).

In a bit more detail, the main hurdle frequently faced in the aforementioned constructions is hiding the

randomness leakage, i.e., the adversary must not obtain low norm polynomial equations over the integers

that can be solved to obtain harmful leakage via zeroizing attacks. Addressing this state of affairs in a formal

manner, the original intention behind evasive LWE was to define an assumption that completely avoids the

class of zeroizing attacks. Even though the recent works [BÜW24, DJM+25, AMYY25, HJL25] have shown that

this is not entirely true, it indicates that any plausible new assumption in the future will only be more stringent

with respect to this class of attacks. Therefore, despite the attacks on evasive LWE, the challenge in designing

schemes that avoid zeroizing attacks remains. One example here is the construction of prFE from [AKY24b],

which explicitly prevents such harmful leakage by smudging it with a large PRF value and the pseudorandom

decryption result, making the applicability of zeroizing attacks in our opinion unlikely. To us, this intuition is in

line with the previously mentioned works which, despite breaking certain regimes of the (private-coin) evasive

LWE assumption, do not seem to come close to breaking the actual prFE scheme or other constructions based

on the same assumption, e.g., the ABE in [AKY24a]. We therefore believe it to be a plausible scenario that—

after the attacks on evasive LWE have stabilized—a new stricter (maybe even falsifiable) assumption could be

formalized for which no counterexamples would exist and yet still would be sufficient for the proof of prFE.

8

This would immediately imply prFE and all our results from the same assumption.

Lastly, we remark that, analogous to evasive LWE, it is known that prFE and pPRIO cannot be secure for

arbitrary samplers [BDJ+24, AMYY25]. However, for this work we only need to consider specific samplers

along the lines of [AKY24b, AKY24c], which include samplers with natural auxiliary information (as opposed

to samplers with potentially harmful auxiliary information used in the recent counterexamples of [BDJ+24,

AMYY25]). Hence, when we invoke the security of prFE or pPRIO, we always invoke it with respect to a specific

sampler class induced by the respective application. However, for ease of exposition, we sometimes omit the

reference to the specific sampler.

2 Technical Overview

We start with a high-level overview illustrating the modular structure of our results. Figure 1 depicts the con-

nections between our constructions in the registration-based setting.

prFE pPRIO

RFE for BD-Cir RFE for UD-Cir KP-RABE and RPE for UD-Cir

laconic pPRIO

with global setup
RFE for TM KP-RABE and RPE for TM

CP-RABE for UD-Cir CP-RABE for TM

+ LWE

+ LWE

+ KP-ABE for UD-Cir + KP-ABE for TM

[AKY24c]

Sections A + B
Sections 4.8 - 4.10 Sections 5.2 - 5.4

Sections 4.2 - 4.4

Sections 4.5 - 4.7 Sections 5.2 - 5.4

Sections 5.5 - 5.7 Sections 5.5 - 5.7

Figure 1: Roadmap for the technical part (registration-based setting). Here, “BD-Cir”, “UD-Cir” and “TM” refer

to bounded depth circuits, unbounded depth circuits and Turing machines, respectively. For clarity, we do not

mention the use of one-way functions as additional building block.

Our starting point is the abovementioned variant of obfuscation called pPRIO which can be instantiated

from prFE [AKY24b, AKY24c]. Using pPRIO, we can construct RFE for bounded depth circuits as an intermedi-

ate step which can subsequently be leveraged to obtain pseudorandom RFE for both unbounded depth circuits

and Turing machines. For this, we need another tool that we call laconic pPRIO with global setup which can

also be obtained from (plain) pPRIO. Being equipped with pseudorandom RFE for some function class F , we

show how to generically obtain KP-RABE and RPE for policy class F . Furthermore, we show how RFE for un-

bounded depth circuits together with a (classical) KP-ABE for a policy class F can be used to obtain CP-RABE

for F . In the case of unbounded depth circuits, [AKY24b] have provided a suitable KP-ABE construction based

on prFE. For Turing machines, we will establish a similar result in this work (see below).

prFE

laconic pPRIO FE for TM KP-ABE and PE for TM

CP-ABE for TM

+ LWE

+ LWE

[AKY24b] Sections 7.1 - 7.3 Section 7.4

Section 7.5

Figure 2: Roadmap for the technical part (classical setting)

Figure 2 provides an overview of our results in the classical FE setting. Using prFE and another tool called

laconic pPRIO, which is known to exist assuming prFE [AKY24b, AKY24c], we construct pseudorandom FE for

9

Turing machines which can in turn be leveraged to obtain KP-ABE and PE for Turing machines. Furthermore,

using prFE and the KP-ABE from the previous step, we can also obtain CP-ABE for Turing machines.

In the remainder of the technical overview, we start with a discussion of the basic RFE for bounded depth

circuits (Section 2.1). Subsequently, we show how to lift this scheme to unbounded depth circuits, where

we pay particular attention to the challenge of achieving optimal asymptotic parameters. We also present

a simplified version of the generic compilers to obtain KP-RABE, RPE and CP-RABE (Section 2.2). Finally,

we discuss the main ideas behind our construction of pseudorandom RFE for Turing machines which can

subsequently be plugged into the same generic compilers for RABE and RPE (Section 2.3).

2.1 Pseudorandom RFE for Bounded Depth Circuits

Thanks to the powers-of-two compiler developed in [GHMR18, HLWW23, FFM+23], it suffices to design con-

structions for the simpler slotted RFE (sRFE) primitive. In a sRFE scheme, the number L of slots4 is fixed,

hence it does not incorporate the complex update mechanism of RFE. In a bit more detail, each user i ∈ [L]

can generate their own key pair (pki ,ski) and register pki along with a function fi of their choice. After receiv-

ing all tuples {(pki , fi)}i∈[L], the transparent key aggregator generates a short master public key mpk and a set

of helper secret keys {hski }i∈[L]. Encryption of an input x uses mpk to generate a ciphertext ct, and each user i

can decrypt ct using (ski ,hski) to learn fi (x). Security requires that an adversary possessing ski cannot learn

anything about x beyond fi (x).

In addition, sRFE is subject to a strong efficiency requirement: a scheme is called compact if master pub-

lic keys, helper secret keys and ciphertexts scale at most polylogarithmically in the number L of users. We

note that compactness is a crucial requirement without which the sRFE primitive would be completely triv-

ial. Indeed, dropping compactness would allow us to pick any public key encryption (PKE) scheme PKE,

sample key pairs (pki ,ski) ← PKE.Setup(1λ), define mpk = {pki }i∈[L] and generate a ciphertext for an input x

as ct = {cti ← PKE.Enc(pki , fi (x))}i∈[L], i.e., mpk and ct were simply a collection of independent PKE public

keys and ciphertexts. With the compactness requirement, however, constructing sRFE schemes is a highly

challenging task requiring complex techniques to compress master public keys and ciphertexts.

The Registration-Based IBE of [DKL+23]. The scheme of Döttling et al. [DKL+23], henceforthDKL+, chooses

the dual-Regev PKE [GPV08] as their starting point and observe that its structure synergizes remarkably well

with a variant of Ajtai’s collision-resistant hash function [Ajt96, GGH96]. Specifically, they consider the Merkle

tree with respect to this particular hash function with the leaves being the (dual-Regev) public keys of the users.

Intuitively, they show that knowledge of the tree’s root is sufficient to generate ciphertexts for any identity i ∈
[L], i.e., it can serve as master public key. Furthermore, the nodes along the path from the root to an identity’s

leaf are sufficient to decrypt ciphertexts with respect to this identity, making them a suitable helper secret key.

Since the length of this path equals the depth of the hash tree which is ℓ := logL, the size of mpk and hski meet

the compactness condition.

In a bit more detail, let us fix public parameters A,B0,B1
$← Zn×m

q and let (pki := ybits(i) = Aki ,ski := ki) be

the user’s key pairs, where ki
$← {0,1}m for all i ∈ [L]. Here, bits(i) ∈ {0,1}ℓ denotes the binary decomposition

of i . Given additionally j ∈ [0;ℓ], bits(i)1: j denotes the substring consisting of the first j bits of bits(i). In

particular, if j = 0 we obtain the empty string ε of length 0. For all j = ℓ−1, . . . ,0 and str ∈ {0,1} j , the aggregator

computes

ystr = B0G−1(ystr∥0)+B1G−1(ystr∥1) .

Then it outputs mpk = yε and hski = {ybits(i)1: j−1∥b} j∈[ℓ],b∈{0,1} for each i ∈ [L]. To generate a ciphertext of a

message µ ∈ {0,1} with respect to an identity bits(i∗) = (β1, . . . ,βℓ), the encryptor samples s0, . . . ,sℓ
$← Zn

q and

4In this work, we use the terms “slots” and “users” interchangeably.

10

computes

c⊤0 = s⊤0 yε
:::

+⌊q/2⌉ ·µ

c⊤j =−s⊤j−1(B0 ∥ B1)
::::::::::

+s⊤j
(
β̄ j ·G ∥β j ·G

)⊤ for all j ∈ [ℓ]

c⊤ℓ+1 =−s⊤ℓ A
:::

,

(1)

where β̄ j is shorthand for (1−β j) and
::::

wavy underlines are used in place of noise terms. For decryption, we

observe that B0 B1

β̄ j ·G β j ·G

 ·

G−1(ybits(i∗)1: j−1∥0)

G−1(ybits(i∗)1: j−1∥1)

=

ybits(i∗)1: j−1

ybits(i∗)1: j

 (2)

which uses the fact that β̄ j ybits(i∗)1: j−1∥0 +β j ybits(i∗)1: j−1∥1 = ybits(i∗)1: j
. Hence, given ski∗ = ki∗ and hski∗ =

{ybits(i∗)1: j−1∥b} j∈[ℓ],b∈{0,1}, we can recover

c0 +
∑

j∈[ℓ]
c⊤j

G−1(ybits(i∗)1: j−1∥0)

G−1(ybits(i∗)1: j−1∥1)

+c⊤ℓ+1ki∗ ≈
⌊ q

2

⌉
·µ . (3)

Beyond Identity-Based Encryption. In the next step, we attempt to equip the above scheme with more pow-

erful access policies than the identity function. For this, we recall that given a matrix A ∈ Zn×ℓinm
q and a cir-

cuit C : {0,1}ℓin → {0,1}, we can derive a matrix HA,C ∈ Zn×m
q such that for any x ∈ {0,1}ℓin , we can compute a

low-norm matrix HA,C ,x ∈Zℓinm×m
q satisfying the homomorphic relation

(A−x⊤⊗G) ·HA,C ,x = AHA,C −C (x) ·G . (4)

The KP-ABE scheme by Boneh et al. [BGG+14] for bounded depth circuits, henceforth referred to as BGG+,

embeds (A−x⊤⊗G) and AHA,C in the ciphertexts and secret keys, respectively, and multiplication of a ciphertext

by HA,C ,x enables decryption. Our goal is to lift the scheme of DKL+ to a slotted Registered ABE (sRABE), where

each user i ∈ [L] registers a policy Ci : {0,1}ℓin → {0,1}. To do so, we need to bind a user’s policy Ci to their

public key pki during the aggregation process. Looking at DKL+, we can observe that pki is embedded in the

term ybits(i) corresponding to the i -th leaf of the Merkle tree. We therefore try to extend ybits(i) such that it

additionally hardwires the term AHA,Ci .

First of all, we split the matrix A into two independent matrices Auser
$← Zn×m

q and Aatt
$← Z

n×ℓinm
q , taking

into account the different A matrices from the DKL+ and BGG+ scheme. User i ∈ [L] generates a key pair of the

form (pki := ui = Auserki ,ski := ki), where ki
$← {0,1}m , and the term to be placed at the i -th leaf of the Merkle

tree becomes

ybits(i) = ACi r+DG−1(ui) ,

where D $← Zn×m
q and r $← {0,1}m are part of the public parameters and ACi := AattHAatt,Ci .5 Corresponding to

the split of the matrix A into Aatt and Auser, we also divide the ciphertext component cℓ+1 into

c⊤att =−s⊤ℓ (Aatt−x⊤⊗G ∥ D)
::::::::::::::::

+s⊤ℓ+1(0n×ℓinm ∥ G)

c⊤user =−s⊤ℓ+1Auser
:::::::

,
(5)

where sℓ,sℓ+1
$←Zn

q . For decryption, we observe thatAatt−x⊤⊗G D

0n×ℓinm G

 ·

HAatt,Ci∗ ,x · r

G−1(ui∗)

=

ACi∗ r−Ci∗ (x) ·Gr+DG−1(ui∗)

ui∗

=

ybits(i∗) −Ci∗ (x) ·Gr

ui∗

5A similar idea was explored in concurrent works [ZZC+25, YZGC25] building KP-RABE for bounded depth circuits.

11

Thus, in the decryption relation (Equation (3)) we replace the term c⊤
ℓ+1ki∗ by

c⊤att

HAatt,Ci∗ ,x · r

G−1(ui)

+c⊤userKi∗ ≈−s⊤ℓ ybits(i∗) +Ci∗ (x) ·s⊤ℓ Gr .

If Ci∗ (x) = 0, then the term Ci∗ (x) ·s⊤
ℓ

Gr vanishes and decryption is possible as in the DKL+ scheme. If Ci∗ (x) =
1, we note that the term Gr has the same distribution as a vector b $← Zn

q chosen uniformly at random and,

skipping several details, we can rely on the LWE assumption with respect to (Aatt,b) to prove that ciphertexts

are pseudorandom.

Towards Functional Encryption. A sequence of recent works [HLL23, AKY24a, AKY24b] explores a technique

that embeds ciphertexts of a fully homomorphic encryption (FHE) scheme into the attributes of BGG+ encod-

ings. This approach has lead to a variety of new lattice-based constructions such as ABE for unbounded depth

circuits and Turing machines or FE for pseudorandom functionalities.

We briefly recall the core idea. Let hctt(x) denote a FHE ciphertext of a message x ∈ {0,1}ℓin decryptable

by secret key t. We consider a BGG+-style encoding E = s⊤(Aatt−hctt(x)⊗G)
:::::::::::::::::

that embeds the FHE ciphertext

as its attribute. Let C : {0,1}ℓin → {0,1}ℓout be a (bounded depth) circuit and denote by EvalC the FHE evalua-

tion circuit with respect to the function C . Using knowledge of the “attribute” hctt(x), we can homorphically

evaluate the encoding E and obtain

s⊤(AEvalC −EvalC (hctt(x))⊗G)
::::::::::::::::::::::::

= s⊤(AEvalC −hctt(C (x))⊗G)
:::::::::::::::::::::

,

where AEvalC = AattHAatt,EvalC . Brakerski et al. [BTVW17] suggested a “vectorization” of the BGG+ ciphertext

evaluation procedure so that homomorphic evaluation yields an encoding of the form s⊤(AEvalC −hctt(C (x)))
::::::::::::::::::

,

i.e., without the gadget matrix G. Furthermore, they noticed that choosing the secrets s and t to be equal —

a.k.a. reusing (or making dual use of) the LWE secret s in the BGG+ encoding as secret of the FHE cipher-

text hcts(C (x)) — can lead to automatic decryption of the FHE ciphertext as described next. Recall that in the

GSW FHE scheme [GSW13], the secret key is s⊤, a ciphertext of a message C (x) is a matrix C and decryption

computes s⊤C to recover (a noisy variant of) C (x). Then we can observe that if the above encoding uses GSW

as its FHE scheme and makes dual use of s, then it is equal to the following

s⊤(AEvalC −hcts(C (x)))
::::::::::::::::::

= s⊤AEvalC −C (x)
::::::::::::

,

which follows from the fact that multiplication of s⊤ and hcts(x⊤) causes GSW decryption to occur automati-

cally. To summarize, the new relation of the homomorphic evaluation is

s⊤(Aatt−hcts(x)⊗G)
:::::::::::::::::

= s⊤AEvalC −C (x)
::::::::::::

. (6)

Our next goal is to incorporate this interleaving of GSW ciphertexts and BGG+ encodings into the sRABE

scheme described in the previous paragraph, thereby turning it into an sRFE scheme. Each user i ∈ [L] registers

a circuit Ci : {0,1}ℓin → {0,1}ℓout and is supposed to learn Ci (x) when decrypting an encryption of a message x.

We discuss the changes in the scheme to adapt it from the classical BGG+ homomorphic evaluation (recalled

in Equation (4)) to the new homomorphic relation in Equation (6).

1. As mentioned above, the “attribute” in the attribute encoding of our sRFE scheme becomes a GSW ci-

phertext encrypting the input x. Thus, the ciphertext component catt in Equation (5) is changed to

c⊤att =−s⊤ℓ (Aatt− hctsℓ (x) ⊗G ∥ D)
:::::::::::::::::::::

+s⊤ℓ+1(0 ∥ G) .

As the message is now embedded in catt, we remove it from c0 and compute c⊤0 = s⊤0 Yε
::::

+����XXXX⌊q/2⌉ ·µ .

12

2. The term ybits(i) placed at the leaves of the Merkle tree is changed to

Ybits(i) = ACi �Ar +DG−1(Ui) ∈Zm×ℓout
q . (7)

Note that we remove the vector r whose only purpose in the sRABE scheme was to provide a random

mask in case decryption is not authorized, i.e., Ci (x) = 1. In contrast, we now want to learn the actual

result Ci (x) of the homomorphic evaluation. We further note that circuits Ci in our sRFE scheme have

ℓout-bits outputs. Therefore, ybits(i) is replaced by a matrix Ybits(i) with ℓout columns.

3. As already indicated in Equation (7), the user public keys are also extended to have ℓout columns now,

which is necessary to maintain valid matrix operations. Hence, we let users generate(
pki := Ui = Auser Ki ∈Zn×ℓout

q , ski := Ki
)

for Ki
$← {0,1}m×ℓout .

Compressing the Ciphertext. At first glance, it might seem that we already built an sRFE scheme for all

bounded depth circuits in the last paragraph. However, there is one issue that we glossed over so far. Re-

call that in a registered IBE, each ciphertext can only be decrypted by one user. Looking again at the form of a

ciphertext in the DKL+ scheme (Equation (1)), we can see that it crucially relies on this fact. Indeed, a DKL+

ciphertext can only be decrypted by the user i∗ whose identity bits(i∗) = (β1, . . . ,βℓ) was used during the gen-

eration of the components {c j } j∈[ℓ]. For more general primitives like sRABE and sRFE, we run into the problem

that ciphertexts may be decrypted by several (or even all) users. Naively, we could generate an independent ci-

phertext for each user. But then the total size of ciphertexts would be O(L) which contradicts the compactness

requirement allowing ciphertexts to grow only logarithmically in L.

We therefore need to develop a different method to make our above construction decryptable by multiple

users. As a starting point, it is instructive to consider the use of indistinguishability obfuscation (iO) and ob-

serve that it would immediately solve our problem. Indeed, we could define a circuit Cenc that on input i ∈ [L]

performs the following steps:

1. If i ∉ [L], return ⊥.

2. Let PRF : {0,1}λ× [L] → {0,1}λ be a PRF and sd ∈ {0,1}λ be a seed hardwired in the description of Cenc.

Compute Ri :=PRF(sd, i).

3. Sample LWE secrets s0, . . . ,sℓ+1
$←Zn

q and noise vectors using random coins Ri .

4. Generate the ciphertext components cti = (c0, . . . ,cℓ,catt,cuser) with respect to user i and return cti .

For security, we can argue that an obfuscation Ĉenc leaks nothing beyond the set of outputs {Cenc(i)}i∈[L] which

is exactly the set of ciphertexts for all users. So security can basically be reduced to the security of the previous

scheme where ciphertexts can only be decrypted by a single user. For compactness, we observe that Cenc’s

only dependency on L is the fact that it generates ciphertext components {c j } j∈[ℓ], where ℓ= logL. Hence, the

size of Cenc grows logarithmically in L satisfying the compactness condition.

As discussed in Section 1.2, iO is a heavyweight tool whose usage we would like to avoid when aiming for

lattice-based constructions. Hence, as an alternative we look into primitives that are weaker than iO but can

be constructed from lattices. One such primitive is the recently introduced pseudorandom iO (PRIO) [MPV24,

AKY24c, BDJ+24]. Consider a circuit C : [L] → [M] for L, M ∈ N. Intuitively, PRIO guarantees that obfuscated

circuits are pseudorandom under the condition that the image of C , i.e., {C (i)}i∈[L], cannot be efficiently dis-

tinguished from a set {δi
$← [M]}i∈[L] of uniform samples from the co-domain of the circuit. In particular,

if L = poly(λ), then the primitive is called poly-input PRIO (pPRIO) and can be instantiated from prFE and

one-way functions [AKY24c]. The poly-sized domain does not pose a restriction in our case since our do-

main [L] has polynomial size anyway. On the other hand, the requirement for pseudorandom outputs is less

obvious and, jumping ahead, the condition is not satisfied for general circuits. We discuss this aspect in more

detail below. For clarity, we first summarize the sRFE scheme that we have constructed so far.

13

Construction 2.1 (sRFE for Bounded Depth Circuits – Insecure).

Setup(1λ): The setup algorithm samples matrices Aatt,Auser,B0,B1 and D of appropriate dimensions and out-

puts crs := (Aatt,Auser,B0,B1,D).

Gen(crs): To generate a key pair, user i ∈ [L] samples a random matrix Ki , computes Ui = AuserKi and sets (pk :=
Ui ,sk := Ki).

Agg(crs, {(pki ,Ci)}i∈[L]): On input L pairs of a public key pki and a circuit Ci , the key aggregator defines the

encoding circuit E [Ci](x) = Ci (x) · ⌊q/2⌉, computes the corresponding matrix AE [Ci] = AattHAatt,EvalE [i ,Ci]

and sets

Ybits(i) = AE [Ci] +DG−1(Ui) .

For j = ℓ−1, . . . ,0 and str ∈ {0,1} j , it computes

Ystr = B0G−1(Ystr∥0)+B1G−1(Ystr∥1)

and outputs mpk := (crs,Yε,ℓ) and hski := {Ybits(i)1: j−1∥b} j∈[ℓ],b∈{0,1} for all i ∈ [L].

Enc(mpk,x): Given the master public key mpk and an input x, the encryptor samples a PRF seed sd $← {0,1}λ

and defines a circuit Cenc[mpk,x,sd](i)6 as follows:

1. Compute Ri =PRF(sd, i).

2. Use Ri to sample LWE secrets s0, . . . ,sℓ+1 and noise vectors (we continue to indicate noise vectors

by wavy underlines).

3. Compute a GSW ciphertext X = hctsℓ (x).

4. Let (β1, . . . ,βℓ) = bits(i) ∈ {0,1}ℓ be the bit representation of i and denote β̄ j = 1−β j for j ∈ [ℓ].

Compute

c⊤0 = s⊤0 Yε
:::

c⊤j =−s⊤j−1(B0 ∥ B1)
::::::::::

+s⊤j
(
β̄ j ·G ∥β j ·G

)
for j ∈ [ℓ]

c⊤att =−s⊤ℓ (Aatt−X⊗G ∥ D)
:::::::::::::::

+s⊤ℓ+1(0 ∥ G)

c⊤user =−s⊤ℓ+1Auser
:::::::

.

5. Output (X, {c j } j∈[0;ℓ],catt,cuser).

Then the encryptor outputs ct := Ĉenc ← pPRIO.Obf(1λ,Cenc[mpk,x,sd]).

Dec(ski∗ ,hski∗ ,Ci ,ct): The decryptor evaluates(
X, {c j } j∈[0;ℓ],catt,cuser

)← pPRIO.Eval(Ĉenc, i∗) ,

and computes the matrix HAatt,E [Ci∗],X using Aatt and X. Then it computes

z = c0 +
∑

j∈[ℓ]
c⊤j

G−1(Ybits(i∗)1: j−1∥0)

G−1(Ybits(i∗)1: j−1∥1)

+c⊤att

HAatt,E [Ci∗],X

G−1(Ui∗)

+c⊤userKi∗ , (8)

rounds z coordinate-wise and outputs the most significant bits.

6The notation C [α](β) indicates that a circuit C has the value α hardwired in its description and takes β as input.

14

For correctness, we observe thatAatt−x⊤⊗G D

0n×ℓinm G

 ·

HAatt,E [Ci∗],X

G−1(Ui∗)

=

Ybits(i∗) −E [Ci∗](x)

Ui∗

Combining this with our analysis from Equation (2) for the other ciphertext components, we conclude that z ≈
E [Ci∗](x) =Ci∗ ·⌊q/2⌉. In particular, note that the homomorphic evaluation yields a noisy version of the output.

Therefore, we use the circuit E [Ci] to encode the (binary) result Ci∗ (x) in a way that protects it against small

errors.

Achieving Pseudorandom Ciphertexts. Let us try to argue that the output of the circuit Cenc is pseudoran-

dom. As the circuit generates independent random coins Ri for each i ∈ [L], outputs for different i ’s are inde-

pendent and we can restrict our analysis to some fixed i∗. Loosely speaking, we can start by randomizing the

components (X, {c j } j∈[0;ℓ],catt,cuser) output by Cenc[mpk,x,sd](i∗) by relying on LWE, but there is one relation

between the ciphertext components which ensures decryption correctness (Equation (8)) and, hence, cannot

be changed by relying on any computational assumption. Let us therefore restrict our analysis to only this

relation and disregard all other details of the proof. We can observe that c⊤userKi∗ is the only term in z that

cannot be computed without knowledge of ski∗ = Ki∗ . Hence, the adversary can perform the homomorphic

evaluation on catt and compute z up to this last term which yields z−c⊤userKi∗ ≈ E [Ci∗](x)−c⊤userKi∗ . If slot i∗ is

honest, i.e., Ki∗ is not known to the adversary, we can conclude from an application of the leftover hash lemma

that Auser

c⊤user

 ·Ki∗ ≈s

Ui∗

v⊤i

for some random vector vi

$← Z
ℓout
q . Thus, the term c⊤userKi∗ can serve as a pseudorandom masking term for

the output value E [Ci∗](x).

Conversely, if the adversary has knowledge of the secret key Ki∗ , then by the correctness of the scheme

she is able to decrypt and learn Ci∗ (x). This makes it impossible for general circuits Ci∗ to replace the output

of Cenc[mpk,x,sd](i∗) with a pseudorandom string since this would destroy decryptability and could be ob-

served by the adversary. Hence, if i∗ is a corrupted slot, then we cannot prove security of our scheme without

imposing further restrictions on Ci∗ .

Let us analyze these necessary restrictions for pseudorandomness in more detail. Clearly, we cannot pre-

vent the adversary from running the decryption algorithm in an honest way and leveraging the correctness

of the scheme. Therefore, a minimal assumption is the fact that the real decryption result Ci∗ (x) must not

be distinguishable from the result of decrypting a random string. Inspecting the decryption algorithm of our

scheme, we can observe that if Cenc[mpk,x,sd](i∗) = (X, {c j } j∈[0;ℓ],catt,cuser) is replaced with a random string,

then the decryption result is also a random value. This translates into the following necessary condition on the

set {Ci }i∈C of circuits which are registered in a corrupted slot i ∈ C for which the adversary knows ski :

{Ci (x)}i∈C ≈c {yi
$← {0,1}ℓout }i∈[c]C . (9)

Having established this necessary condition, we may hope that it is also sufficient to prove pseudorandomness

of Cenc[mpk,x,sd](i∗). Unfortunately, it turns out that this is not the case (yet). The problem is that Equation (9)

only requires the final decryption result to be random, i.e., after rounding the vector z in the last step of our

decryption algorithm. However, the distribution of z itself may not be pseudorandom which can be noticed

by the adversary. Taking inspiration from the construction of prFE in [AKY24b], we fix this issue by smudging z

with a large PRF value. Specifically, we extend the encoding circuit E [Ci] as follows:

E [i ,Ci](x,sd′) =Ci (x) · ⌊q/2⌉+PRF′(sd′, i) , (10)

15

where PRF′ : {0,1}λ × [L] → [−q/4+B ; q/4−B]ℓout is another pseudorandom function. For sufficiently large

parameters, we can choose B such that (1) the decryption noise is smaller than B with high probability, and (2)

B is exponentially smaller than q/4. The first condition makes sure that decryption correctness is preserved.

The second condition together with the pseudorandomness of Ci∗ implies that the output of E [i∗,Ci∗] (and

thus z) are pseudorandom.

Defining Security. Our next step consists in turning the above intuition into a formal security definition. As

mentioned above, the idea of considering functionalities with pseudorandom outputs was recently explored

in the context of (plain) FE by Agrawal, Kumari and Yamada [AKY24b], henceforth referred to as AKY. Let us

therefore start by translating their definition of very selective pseudorandom-ciphertext (prCT) security into

the registration-based setting. For simplicity, we only consider the case of honest and corrupted slots, where

a slot i ∈ [L] is said to be corrupted if the secret key ski corresponding to the i -th registered public key pki

is known to the adversary. For simplicity, we ignore so-called malicious slots which allow the adversary to

generate a key pair (pki ,ski) herself and register a potentially malformed public key pki .

Let Samp be a PPT algorithm that on input 1λ outputs a tuple of the form(
C1, . . . ,CL ,x,C ⊆ [L],aux ∈ {0,1}∗

)
,

where C denotes the set of corrupted slots. We say that the sRFE scheme is very selectively prCT secure if for

all PPT samplers Samp, we have(
aux,crs, {Ci ,pki }i∈[L], {ski }i∈C , ct∗

)≈c
(
aux,crs, {Ci ,pki }i∈[L], {ski }i∈C , ct$

)
assuming that (

aux, {Ci }i∈[L]{ δ∗i :=Ci (xi) }i∈C
)≈c

(
aux, {Ci }i∈[L]{ δ

$
i

$← {0,1}ℓout }i∈[C]
)

.

Here, the challenger computes

crs← Setup(1λ) , ct∗ ←Enc(mpk,x) ,{
(pki ,ski) ←Gen(crs)

}
i∈[L] , ct$ $← CT ,

(mpk, {hski }i) ←Agg(crs, {pki ,Ci }) ,

where CT denotes the ciphertext space. Note that the Agg algorithm is deterministic, so the adversary can

derive the master public key and the helper secret keys herself and there is no need to explicitly include it into

the distributions. We further note that this definition reflects the case distinction in the security proof sketched

above. That is, the pre-condition applies only to corrupted slots while it does not impose any restrictions on

the functions of honest slots.

The security of the AKY construction relies on evasive LWE, so it seems natural that they can only prove

a very selective security notion. On the other hand, the only explicit lattice assumption in our construction

is plain LWE.7 It is therefore an interesting question to analyze if the restriction to very selective security is

strictly necessary or if it is possible to prove security with respect to a stronger security notion. Intuitively

speaking, it seems unlikely that we can handle adaptive challenge queries since our construction uses aBGG+-

like attribute encoding which usually requires programming of the public parameters (in our case Aatt) during

the security proof. At the same time, this seems to be the only obvious constraint and an upfront commitment

to the sets of challenge functions, keys and corrupted slots might be unnecessary for the security proof.

While this intuition turns out to be true, it arises the question of how a “less selective” version of prCT se-

curity might actually look like. To find a useful generalization of the very selective version, it is instructive to

7Of course, our construction makes use of pPRIO as a building block which currently is also instantiated from evasive LWE. But since

pPRIO does not have a global setup that fixes public parameters upfront, its security assumption seems rather irrelevant for the security

level of our sRFE scheme.

16

recall in which fashion AKY use their FE construction in applications. E.g., they show how a prCT secure FE

scheme can be used to build ABE schemes. During the security proof, they argue that each admissible adver-

sary against the ABE scheme translates into a sampler against the FE scheme which satisfies the pre-condition.

Then, exploiting the prCT security, all FE ciphertexts in the scheme can be replaced by pseudorandom strings

which can in turn be used to prove security of the ABE scheme. The goal of our security notion is to enable

similar arguments in the registration-based setting. In particular, if we want our final sRABE scheme to achieve

selective security, where the adversary can make adaptive key-generation and corruption queries before com-

mitting to the set of challenge functions, then such an adversary must be convertible into a sampler against

our sRFE scheme. Hence, our definition of selective prCT security considers samplers that have access to key-

generation and corruption oracles before submitting the challenge functions.

We formalize this idea by defining pre- and post-games (rather than static pre- and post-distributions)

which take into account the interaction between the sampler and the challenger. During these games, the

challenger constructs a record of the communication containing either the real values or random strings. At

the end of the game, this record is given to the adversary who must distinguish the real from the random case.

Intuitively, we can think of these records as the pre- and post-distributions in the very selective case. The

difference is however that the records are constructed dynamically depending on the sampler’s oracle queries,

whereas the distributions in the very selective case are the result of samplers outputting all queries upfront in

one shot. For the formal definition, please see Section 4.1. Casting the above intuition about the security of

our scheme into a formal proof (including the fix in Equation (10)), we can conclude that our scheme satisfies

selective prCT security. We omit the details at this point and refer the reader to Section 4.4.

2.2 Pseudorandom RFE and RABE for Unbounded Depth Circuits

Being equipped with a prCT secure sRFE for bounded depth circuits, we first show how to extend the con-

struction to unbounded depth circuits, followed by applications to sRABE and sRPE. These constructions bear

similarities with AKY who presented analogous transformations for classical FE. We will therefore focus on

challenges that are unique to the registration-based setting. Looking ahead, these results will also form the

foundation of our constructions for Turing machines discussed in Section 2.3.

Dealing with Circuits of Unbounded Depth. Our first step consists in upgrading the sRFE scheme for bounded

depth circuits from the previous section to unbounded depth circuits. For this, we make use of a garbling

scheme (Garble,Eval) satisfying two structural properties.

• Decomposability. Let C = {C (k)}k∈|C | be a circuit where C (k) denotes the k-th gate described by a string of

fixed polynomial length. We require that both the garbling for each circuit and the labels of each input

bit {x[k]}k∈[ℓin] can be generated by a circuit of fixed depth, i.e., there exist efficient algorithms

(labk,0, labk,1) ←Garbleinp,k (1λ) for k ∈ [ℓin]

C̃ (k) ←Garblek (1λ,C (k)) for k ∈ [|C |]

such that Eval({C̃ (k)}k∈[|C |], {labk,x[k]}k∈[ℓin]) =C (x).

• Blindness. If the result of the evaluation is pseudorandom, then the garbling looks also pseudorandom.

A garbling scheme with these properties exists assuming one-way functions [BLSV18]. The construction of our

sRFE scheme for unbounded depth circuits combines a sRFE scheme sRFE= sRFE.(Setup,Gen,Agg,Enc,Dec)

for bounded depth circuits and a decomposable and blind garbling scheme bGC = bGC.(Garble,Eval). Intu-

itively speaking, we cannot use sRFE to perform the actual evaluation of the circuit since the depth may be

too high. To circumvent this bound, we let sRFE generate the garbled gates and the input labels, while the

actual evaluation of the circuit happens only at the time of decryption. Here, we leverage the decomposability

of bGC to ensure that all computations performed by sRFE can be implemented by circuits of bounded depth,

so the sRFE can handle them. We summarize the construction as follows.

17

Construction 2.2 (sRFE for Unbounded Depth Circuits – Informal).

Setup(1λ): Run and output crs← sRFE.Setup(1λ).

Gen(crs): Run and output (pk,sk) ← sRFE.Gen(crs).

Agg(crs, {(pki ,Ci)}i∈[L]): Run and output(
mpk, {hski }i∈[L]

)← sRFE.Agg
(
crs, {(pki ,Creg[Ci])}i∈[L]

)
,

where Creg[Ci](x) does the following.

1. Run (labk,0, labk,1) ←Garbleinp,k (1λ) for k ∈ [|x|]
2. Run C̃ (k)

i ←Garblek (1λ,C (k)
i) for k ∈ [|Ci |].

3. Output (C̃i = {C̃ (k)
i }k∈[|Ci |], {labk,x[k]}k∈[|x|]).

Enc(mpk,x): Run and output ct← sRFE.Enc(mpk,x).

Dec(ski∗ ,hski∗ ,Ci∗ ,ct): Compute and output y as follows:(
C̃i∗ , {labk,x[k]}k∈[ℓin]

)← sRFE.Dec
(
ski∗ ,hski∗ ,Creg[Ci∗],ct

)
y ← bGC.Eval

(
C̃i∗ , {labk,x[k]}k∈[ℓin]

)
.

The security proof proceeds in three steps.

• First, invoking the prCT security of sRFE, it suffices to show that the output (C̃ , {labi ,k,x[k]}k∈[ℓin]) of the

registered circuit Creg[digCi
](x) is pseudorandom for corrupted i ∈ C.

• Second, we generate the garbling using the bGC simulator(
C̃i∗ , {labk,x[k]}k∈[ℓin]

)← bGC.Sim
(
1λ,Ci∗ (x)

)
.

• Finally, we use the condition from the pre-game to conclude that Ci∗ (x) is pseudorandom. Hence, we

can rely on the blindness of bGC to replace the output of the simulator with random strings.

Application to KP-sRABE and sRPE. Next, we show that a prCT secure sRFE scheme sRFE immediately gives

rise to KP-sRABE and sRPE. In particular, instantiating sRFE with our scheme from Construction 2.2 yields KP-

sRABE and sRPE for unbounded depth circuits. The idea behind the compiler is simple. Given L pairs (pki ,Ci)

of a public key pki and a policy Ci , the aggregator registers pki along with a circuit Creg[i ,Ci] which, on input

an attribute x, a message µ and a PRF seed sd, evaluates the policy on input x and outputs µ if Ci (x) = 0 or a

PRF value PRF(sd, i) if Ci (x) = 1. In a bit more detail, the scheme works as follows.

Construction 2.3 (KP-sRABE and sRPE for Unbounded Depth Circuits – Informal).

Setup(1λ): Run and output crs← sRFE.Setup(1λ).

Gen(crs): Run and output (pk,sk) ← sRFE.Gen(crs).

Agg(crs, {(pki ,Ci)}i∈[L]): Run and output(
mpk, {hski }i∈[L]

)← sRFE.Agg
(
crs, {(pki ,Creg[i ,Ci])}i∈[L]

)
,

where Creg[i ,Ci] is defined as

Creg[i ,Ci](x,µ,sd) =
µ if Ci (x) = 0

PRF(sd, i) if Ci (x) = 1 .

18

Enc(mpk,x,µ): Sample sd $← {0,1}λ and output ct← sRFE.Enc(mpk, (x,µ,sd)).

Dec(ski∗ ,hski∗ ,Ci∗ ,ct): Output µ← sRFE.Dec(ski∗ ,hski∗ ,Creg[i∗,Ci∗],ct).

Correctness easily follows from the correctness of sRFE and the fact that Creg[i ,Ci](x,µ,sd) = µ if Ci (x) = 0.

For security, we note that admissible adversaries satisfy Ci (x) = 1 for all corrupted slots i ∈ C. In this case, the

output Creg[i ,Ci](x,µ,sd) = PRF(sd, i) is pseudorandom. Hence, we can invoke the prCT security of sRFE to

conclude that ct is also pseudorandom and, thus, hides all information about the attribute x and the mes-

sage µ.

Application to CP-sRABE. Moreover, a prCT secure sRFE scheme can also be used to construct CP-sRABE.

The construction additionally uses a classical KP-ABE scheme kpABE= kpABE.(Setup,KeyGen,Enc,Dec) with

INDr security, i.e., ciphertexts not authorized for decryption are pseudorandom. The idea of the construction

is as follows. Given L key-attribute pairs (pki ,xi), the aggregator registers pki along with a circuit Creg[i ,xi]

which, on input a message µ, a PRF seed sd and a master public key kpABE.msk generates a kpABE ciphertext

ofµwith respect to kpABE.mpk and xi , using random coinsPRF(sd, i). Correspondingly, given a policy C and a

messageµ as input, the encryptor samples a PRF seed sd and a fresh key pair kpABE.(mpk,msk), and generates

a sRFE ciphertext encrypting (µ,sd,kpABE.mpk). Moreover, it uses kpABE.msk to generate a kpABE secret key

with respect to the policy C . The decryptor first decrypts the sRFE ciphertext to obtain a kpABE ciphertext

which can subsequently be decrypted using the kpABE secret key for C . We summarize the construction as

follows.

Construction 2.4 (CP-sRABE for Unbounded Depth Circuits – Informal).

Setup(1λ): Run and output crs← sRFE.Setup(1λ).

Gen(crs): Run and output (pk,sk) ← sRFE.Gen(crs).

Agg(crs, {(pki ,xi)}i∈[L]): Run and output(
mpk, {hski }i∈[L]

)← sRFE.Agg
(
crs, {(pki ,Creg[i ,xi])}i∈[L]

)
,

where Creg[i ,xi] is defined as

Creg[xi](µ,sd,kpABE.mpk) := kpABE.Enc
(
kpABE.mpk,xi ,µ;PRF(sd, i)

)
.

Enc(mpk,C ,µ): Sample sd $← {0,1}λ and compute ct= (kpABE.skC ,sRFE.ct) as follows:

kpABE.(mpk,msk) ← kpABE.Setup(1λ)

kpABE.skC ← kpABE.KeyGen(kpABE.msk,C)

sRFE.ct← sRFE.Enc
(
sRFE.mpk, (µ,sd,kpABE.mpk)

)
.

Dec(ski∗ ,hski∗ ,xi∗ ,ct= (kpABE.skC ,sRFE.ct)): Output µ as follows:

kpABE.ct← sRFE.Dec(ski∗ ,hski∗ ,Creg[i∗,xi∗],sRFE.ct)

µ← kpABE.Dec(kpABE.skC ,C ,kpABE.ct,xi) .

For correctness, we observe that sRFE decryption yields a kpABE ciphertext of µ generated with respect to the

attribute xi∗ . Subsequently, this kpABE ciphertext is decrypted using a secret key for C which is included in ct

and was generated using the same kpABE master key pair. Thus, if C (xi∗) = 0, kpABE decryption correctly re-

covers µ. For security, we first rely on the INDr security of kpABE to conclude that kpABE.ct is pseudorandom

for every admissible adversary. Therefore, we can invoke the prCT security of sRFE to conclude that sRFE.ct

is also pseudorandom which is the only component of ct depending on the challenge.

19

We can instantiate kpABE straightforwardly with e.g. the bounded depth KP-ABE of BGG+, in which case

we also obtain a CP-sRABE for bounded depth circuits. However, to our knowledge there is currently no INDr

secure KP-ABE scheme for unbounded depth circuits in the literature. As we show in Section 5.7, Construc-

tion 2.4 can be generalized to KP-ABEs providing a slightly weaker security notion, where not the entire cipher-

text must be pseudorandom but only the part depending on the message µ. This more general construction

can be instantiated with AKY’s KP-ABE for unbounded depth circuits yielding a CP-sRABE for unbounded

depth circuits.

Achieving (Nearly) Optimal Parameters. Achieving asymptotically optimal parameters is a central question

in the construction of ABE schemes that has received a lot of attention in the classical setting [JLL23, Wee24,

AKY24b]. It is therefore natural to study the same problem in the registration-based setting. Ideally, we wish

to obtain crs, mpk, {hski }i and ct such that their sizes do neither depend on the length of the attribute x nor

the size of the circuits {Ci }i . In addition, we measure efficiency with respect to the number L of users. To our

knowledge, there are no tight lower bounds in the existing literature that would clarify what the minimal (a.k.a.

optimal) dependency on L is, from a theoretical perspective. In our constructions, |crs| is independent of L,

and |mpk|, |hski | and |ct| contain a (single) factor of logL each. While these values seem acceptable, we do not

know if they are optimal or if it is theoretically possible to reduce the dependency on L even further.

Regardless of these logL factors, let us focus on eliminating the dependency on the length of the attributes

and the size of the circuits. For the sake of generality, we attempt to optimize the parameters of the sRFE in

Construction 2.2, while noting that any efficiency improvement for that scheme directly translates into anal-

ogous improvements in the applications. We split the input x = (xpub,xpri) to the encryption algorithm into a

public part xpub and a private part xpri. Since xpub must not be hidden, we further assume that it is given to the

decryption algorithm as additional input.

As a starting point, we recall that AKY present a compiler in the plain FE setting which achieves |mpk|,
|skC | and |ct| independent of |xpub| and |C |. The main ingredient of their compiler is a variant of pPRIO called

laconic pPRIO which enables domains of the form X = {Xi }i∈[N] for arbitrary strings X1, . . . , XN ∈ {0,1}ℓ with

arbitrary length ℓ. This gives more control on the shape of the domain compared to plain pPRIO, where input

domains are always of the form 1, . . . , N . Syntax-wise, laconic pPRIO is a triple LprIO = (Digest,Obf,Eval),

where Digest is an additional algorithm that, given the domain X as input, produces a short digest digX of X

whose size does not depend on N . Obf algorithm receives as input the digest digX and a circuit E but not the

entire description of X , and outputs an obfuscated circuit Ê . Finally, Eval algorithm on input the obfuscated

circuit Ê and the input domain X = {Xi }i∈[N] outputs the evaluation results Y = {Yi = E(Xi)}i∈[N].

Using laconic pPRIO, we may try to build a compiler in the registration-based setting that adapts the ideas

of AKY. Let us start with the public input xpub. In Construction 2.2, xpub is encrypted as part of x and the

bounded depth sRFE scheme sRFE produces input labels for xpub during decryption. Since xpub is encrypted

inside the ciphertext ct, the size of ct inherently depends on |xpub|. In other words, to achieve |ct| independent

of |xpub|, we must avoid encrypting xpub. For this, we may consider the use of laconic pPRIO. Specifically,

we let the encryptor generate a short digest digxpub of xpub (whose size is independent of |xpub|) and include

only digxpub into the sRFE ciphertext. In this way, the input length of sRFE can be made independent of the

length of xpub. On the negative side, since digxpub is too short to contain an entire description of xpub, we

cannot use sRFE to produce the input labels {labk,xpub [k]}k∈[|xpub|] for xpub anymore. However, we still can use

sRFE to generate an obfuscation of a circuit Epub which, on input (k,xpub[k]), generates the corresponding

label labk,xpub[k]. This is possible since the laconic obfuscation algorithm takes only digxpub as input, but does

not need xpub itself. At the time of decryption, sRFE outputs an obfuscation of Epub which can be evaluated

to obtain the input labels corresponding to xpub. After this additional step, we can run bGC evaluation as

before in Construction 2.2. We note that Epub can be implemented by a circuit of fixed polynomial size due to

the decomposability property of bGC. Therefore, neither the input length nor the circuit size of sRFE depend

on xpub anymore, as desired.

Next, we may hope that a similar argument helps to remove the dependency on the circuit size as well.

20

AKY demonstrate that this can work in the case of plain FE. A natural approach is to change the definition

of Creg[Ci] such that it does not generate the actual garbled gates {C̃ (k)
i }k∈[|Ci |] anymore, but only an obfuscation

of a circuit Ecir that, on input (k,C (k)
i), generates the corresponding garbled gate C̃ (k)

i . For this idea to work out,

the circuit Creg[Ci] needs to hardwire a digest specifying the input domain {(k,C (k)
i)}k∈[|Ci |] of Ecir. This is

problematic since the digest generation in the laconic pPRIO of AKY is performed by a randomized algorithm,

thus cannot be carried out by the deterministic aggregator. We note that this problem is particular to the

registration-based setting since the key generation algorithm in classical FE can of course be randomized and

thus is able to perform the digest computation.

To make the idea work for registered FE, we need to construct a laconic pPRIO scheme with a deterministic

Digest algorithm. Without further changes to the model, this seems quite challenging. We therefore modify

the laconic pPRIO primitive as introduced in AKY by adding a one-time global setup that produces reusable

randomness in the form of a CRS. This leads to our new primitive called laconic pPRIO with global setup,

which extends the definition of (plain) laconic pPRIO with an additional Setup algorithm that on input 1λ

outputs crs which is later given to all other algorithms as additional input. In the context of registration-based

encryption, this change feels extremely natural since sRFE itself crucially relies on such a setup. Relying on

this additional algorithm, we are able to adapt the construction of laconic pPRIO by AKY and derandomize

the Digest algorithm. More specifically, we first introduce a stronger form of blind batch encryption (BBE) that

we coin unbounded BBE with adaptive security. Using this stronger BBE notion, we can obtain the modified

laconic pPRIO primitive needed in the registration-based setting. For the technical details on BBE and laconic

pPRIO with global setup, please see Sections A and B (and specifically Sections A.1 and B.1 for their respective

technical overviews).

We sketch our construction of (nearly) optimal sRFE using a laconic pPRIO with global setup denoted by

LprIO= LprIO.(Setup,Digest,Obf,Eval).

Construction 2.5 (Asymptotically Efficient sRFE for Circuits – Informal).

Setup(1λ): Run sRFE.crs← sRFE.Setup(1λ) and LprIO.crs← LprIO.Setup(1λ). Then output the common ref-

erence string crs= (sRFE.crs,LprIO.crs).

Gen(crs): Run and output (pk,sk) ← sRFE.Gen(crs).

Agg(crs, {(pki ,Ci)}i∈[L]): Run digCi
:= LprIO.Digest(LprIO.crs, {(k,C (k)

i)}k∈[|Ci |]) for all i ∈ [L] and output(
mpk, {hski }i∈[L]

)← sRFE.Agg
(
crs, {(pki ,Creg[LprIO.crs,digCi

])}i∈[L]
)

,

where Creg[LprIO.crs,digCi
](digxpub ,xpri) does the following.

1. Run (labk,0, labk,1) ← bGC.Garbleinp,k (1λ) for k ∈ [|xpub|].
2. Run Êpub ← LprIO.Obf(LprIO.crs,digxpub ,Epub), where Epub takes as input (k,xpub[k]), computes

labels (labk,0, labk,1) ← bGC.Garbleinp,k (1λ) and outputs labk,xpub[k].

3. Run Êcir ← LprIO.Obf(LprIO.crs,digCi
,Ecir), where Ecir takes as input (k,C (k)

i), generates a garbled

gate C̃ (k)
i ← bGC.Garblek (1λ,C (k)

i) and outputs C̃ (k)
i .

4. Output (labxpri = {labk,xpri[k]}k∈[|xpri|], Êpub, Êcir).

Enc(mpk,x): Generate a digest digxpub ← LprIO.Digest(LprIO.crs, {(k,xpub[k])}k∈[|xpri|]) and output a sRFE ci-

phertext ct← sRFE.Enc(mpk, (digxpub ,xpri)).

Dec(ski∗ ,hski∗ ,Ci∗ ,ct,xpub): Run

(labxpri , Êcir, Êpub) ← sRFE.Dec
(
ski∗ ,hski∗ ,Creg[LprIO.crs,digCi∗],ct

)
labxpub = {labk }k ← LprIO.Eval

(
LprIO.crs, {(k,xpub[k])}k , Êpub

)
C̃i∗ = {C̃ (k)

i∗ }k∈[|Ci∗ |] ← LprIO.Eval
(
LprIO.crs, {(k,C (k)

i∗)}k∈[|Ci∗ |], Êcir
)

and output z ← bGC.Eval(C̃i∗ , labxpub , labxpri).

21

Correctness of the scheme follows straightforwardly from the correctness of the ingredients. For efficiency,

we can observe that both the input length and size of the registered circuits Creg[LprIO.crs,digCi
] are bounded

by poly(λ, |xpri|). Noting that the circuit size in particular bounds its depth, we conclude that the sRFE scheme

in Construction 2.5 has the following parameters:

|crs| = poly(|xpri|,λ) |mpk| = loglogL+poly(|xpri|,λ)

|hski | = logL ·poly(|xpri|,λ) |ct| = logL ·poly(|xpri|,λ) .

Using the hybrid encryption framework [AKY24b], we can (1) completely remove the dependency on |xpri|
from |crs|, |mpk|, |hski | and (2) reduce the size of ct to an additive dependency on |xpri|. This is asymptotically

optimal since the ciphertext size inherently depends on the length of the private input which it is supposed to

hide. The security proof proceeds in several steps.

• First, invoking the prCT security of sRFE, it suffices to show that the output of the registered circuit

Creg[LprIO.crs,digCi
](digxpub ,xpri) = (Êi ,pub, Êi ,cir, {labi ,k,xpri[k]}k∈[|xpri|]) is pseudorandom for i ∈ C.

• Second, the security of LprIO guarantees that Êi ,pub and Êi ,cir are pseudorandom if their respective out-

puts labxpub and C̃i∗ are pseudorandom.

• Third, we use the bGC simulator to generate the garbling, i.e.,

(C̃i∗ , labxpub , labxpri) ← bGC.Sim
(
1λ,Ci∗ (xpub,xpri)

)
.

• Finally, we use the condition from the pre-game to conclude that Ci∗ (xpub,xpri) is pseudorandom, so we

can rely on the blindness of bGC to replace the output of the simulator with random strings.

The above scheme and security proof provides a high-level overview, though there are several details miss-

ing. One aspect we have not paid attention to is the fact that the circuits Creg[LprIO.crs,digCi
], Epub and Ecir

run randomized algorithms. Therefore, we need to include several PRF values in our construction to make

sure that all algorithms receive (pseudo-)random coins. Furthermore, Construction 2.5 makes use of an ideal

instantiation of LprIO. In reality, we only have a weaker version, where not the entire obfuscated circuit is

pseudorandom. This requires a careful modification of the construction and an adjustment of the security

notions. We skip the details as related issues also appear in AKY and we handle them in a similar fashion.

Putting it all together, we can state the following theorem.

Theorem 2.6 ((Nearly) Optimal sRFE for Circuits – Informal). Assuming LWE and prFE, there exists a prCT

secure sRFE scheme supporting unbounded depth circuits with the following parameters:

|crs| = poly(λ) |mpk| = loglogL+poly(λ)

|hski | = logL ·poly(λ) |ct| = logL ·poly(λ)+|xpri| .

Combining Theorem 2.6 with the compilers in Constructions 2.3 and 2.4, we obtain the following corollary.

Corollary 2.7 ((Nearly) Optimal sRABE and sRPE). Assuming LWE and prFE, there exist selectively secure KP-

sRABE, CP-sRABE and sRPE schemes supporting unbounded depth circuits with the following parameters:

|crs| = poly(λ) |mpk| = loglogL+poly(λ)

|hski | = logL ·poly(λ) |ct| = logL ·poly(λ)+|µ|+ |x| .

Furthermore, we can apply the powers-of-two transformation to lift our constructions to the (non-slotted) RFE

and RABE models, giving us the statements of Theorems 1.1 and 1.2 from the introduction.

2.3 Pseudorandom RFE and RABE for Turing Machines

The rest of the technical overview is dedicated to the description of our constructions for Turing machines.

22

Bundling Functionalities. A popular approach to deal with uniform models of computation uses so-called

bundling functionalities as an intermediate step [GKW16]. For a functionality Fℓ where the input length ℓ is

specified at setup (e.g., a circuit class), the bundling functionality Fbndl describes a family of functionalities

under one set of public parameters where the input length is only specified by the encryption algorithm. There

exist various compilers that turn a FE scheme FE for F into an FE scheme FEbndl for Fbndl [GKW16, AMY19a,

AMVY21, AKY24a]. The key idea behind all these constructions is to delay the execution of FE.Setup and only

perform it duringFEbndl.KeyGen instead ofFEbndl.Setup. If we aimed for a similar compiler in the registration-

based model, the natural choice would be to run FE.Setup during aggregation. But this is impossible since this

step is performed by the deterministic and fully transparent key aggregator. Therefore, the idea of approaching

uniform models through bundling functionalities seems incompatible with the registration-based setting.

Our Approach. As an alternative pathway, we try to directly generalize the previous construction of sRFE

for unbounded depth circuits. We note that it suffices to construct a sRFE where only public inputs have

unbounded length while private inputs are still bounded. Indeed, such a scheme can immediately be lifted to

unbounded-length private inputs using the hybrid encryption framework.

Let us begin by observing at which point Construction 2.5 fails for unbounded length inputs xpub. On

the positive side, the encryption algorithm still works: thanks to the power of laconic pPRIO to generate a

digest digxpub of fixed size poly(λ), the input length of the registered circuit Creg[LprIO.crs,digCi
](digxpub ,xpri)

does not change if xpub grows. Thus, encryption can be performed as before, regardless of the length of xpub.

The problem occurs during aggregation. In Construction 2.5, the aggregator generates a digest digCi
and hard-

wires it in the circuit Creg[LprIO.crs,digCi
]. During decryption, this digest is used to generate an obfuscation

of Ci which can later be evaluated on the input x = (xpub,xpri). But if the length of xpub is unknown at the time

of aggregation, then a digest digCi
for a single circuit Ci is not sufficient anymore. Instead, we would need one

circuit Tℓ[M] (and thus one digest digTℓ) for each input length ℓ = |x|, where Tℓ[M] simulates the evaluation

of M on inputs of length ℓ.

As we cannot hardwire digests for all (unbounded) lengths of xpub in the description of Creg, we need a

mechanism to generate the digest for a particular input length “on the fly” during decryption. It may seem

natural to include the digest generation in the circuit Creg itself, where we recall that Creg is the circuit that is

registered in the underlying sRFE scheme sRFE for bounded depth circuits. In this way, we can generate the

digest corresponding to the correct length of the current input while evaluating Creg. However, this renders

the use of laconic pPRIO rather useless since Creg now needs to hardwire the entire description of the Turing

machine M – and the goal of using laconic pPRIO in the first place was to avoid exactly this.

Nevertheless, the idea of performing the generation of the digest by a circuit during decryption turns out

to be the right approach. The only issue is that we cannot hardwire M in the circuit Creg which is registered

in sRFE. Let us therefore separate the two tasks of

• generating the digest for Tℓ[M] with respect to a particular input length ℓ and the obfuscation of a gate-

wise garbling of Tℓ[M], and

• the obfuscation of a bit-wise garbling of an input x of length ℓ

into two circuits Ctm[M] and Creg, respectively. Since the garbling of x is performed bit-wise, we can easily

use sRFE for the obfuscation by registering Creg during the aggregation phase of sRFE (note that this is exactly

the same as in the case of unbounded depth circuits). On the other hand, as mentioned above, the digest

generation for Tℓ[M] requires a description of M , so we cannot directly register Ctm[M].

On the positive side, however, we can observe that contrarily to Creg, Ctm[M] does not need the actual

input x. Indeed, the digest generation for Tℓ[M] only needs knowledge of the input length ℓ which can be

encoded in a binary string of fixed length λ. This is crucial as it allows us to use a single circuit Ctm with fixed

input lengthλ to generate the digests digTℓ for all possible input lengths ℓ. While this observation still does not

help us to directly register the circuit Ctm[M] in sRFE, it does enable the generation of a digest digM of Ctm[M]

23

during aggregation such that hopefully Ctm[M] can be evaluated later during decryption. Importantly, we note

that being able to encode M in a digest digM during aggregation saves us from registering a circuit whose size

depends on M .

It remains the question of how to connect the circuits Ctm[M] and Creg. Intuitively, we want Creg to per-

form the evaluation of the circuit Ctm[M] on a particular input without depending on the size of Ctm[M].8

Fortunately, we already have a solution for this: laconic pPRIO. Indeed, to establish the missing link, the ag-

gregator can generate the succinct digest digM of Ctm[M] and hardwire it in the description of Creg. Then, Creg

does not evaluate Ctm[M] by itself but only provides an obfuscation of a gate-wise garbling of Ctm[M] which

in turn provides a gate-wise obfuscation of a circuit Tℓ[M] that simulates the evaluation of M on an input of

length ℓ. We summarize the construction below.

Construction 2.8 (Asymptotically Efficient sRFE for TMs – Informal).

Setup(1λ): Run sRFE.crs← sRFE.Setup(1λ), LprIO.crs← LprIO.Setup(1λ). Output crs= (sRFE.crs,LprIO.crs).

Gen(crs): Run and output (pk,sk) ← sRFE.Gen(crs).

Agg(crs, {(pki , Mi)}i∈[L]): Run

digMi
:= LprIO.Digest

(
LprIO.crs,

{
(k,C (k)

tm,i)
}

k∈[|Ctm,i |]
)

,

where Ctm,i =Ctm[LprIO.crs, Mi](ℓ) is defined as follows:

1. Run digTi
← LprIO.Digest(LprIO.crs, {k,T (k)

i }k∈[|T |]), where Ti = Tℓ[Mi] denotes a circuit which sim-

ulates the execution of Mi on inputs of length ℓ.

2. Run Êcir ← LprIO.Obf(LprIO.crs,digTi
,Ecir) and output Êcir.

Output (
mpk, {hski }i∈[L]

)← sRFE.Agg
(
crs,

{
(pki ,Creg[LprIO.crs,digMi

])
}

i∈[L]

)
,

where Creg[LprIO.crs,digMi
](digxpub ,xpri) does the following.

1. Run (lab′k,0, lab′k,1) ← bGC.Garbleinp,k (1λ) for k ∈ [λ].

2. Run (labk,0, labk,1) ← bGC.Garbleinp,k (1λ) for k ∈ [|xpri|].
3. Run Ê ′

cir ← LprIO.Obf(LprIO.crs,digMi
,Ecir), where Ecir takes as input (k,C (k)

i), computes a garbled

gate C̃ (k)
i ← bGC.Garblek (1λ,C (k)

i) and outputs C̃ (k)
i .

4. Run Êpub ← LprIO.Obf(LprIO.crs,digxpub ,Epub), where Epub takes as input (k,xpub[k]), computes

labels (labk,0, labk,1) ← bGC.Garbleinp,k (1λ) and outputs labk,xpub[k].

5. Output
(
lab′bits(ℓ) = {lab′k,bits(ℓ)[k]}k , labxpri = {labk,xpri[k]}k , Ê ′

cir, Êpub
)
. Here, ℓ= |xpub|+ |xpri| denotes

the total input length.

Enc(mpk,x): Generate a digest digxpub ← LprIO.Digest(LprIO.crs, {(k,xpub[k])}k) and output a sRFE cipher-

text ct← sRFE.Enc(mpk, (digxpub ,xpri)).

Dec(ski∗ ,hski∗ , Mi∗ ,ct,xpub): Run

(lab′bits(ℓ), labxpri , Ê ′
cir, Êpub) ← sRFE.Dec

(
ski∗ ,hski∗ ,Creg[LprIO.crs,digMi∗],ct

)
C̃tm,i∗ = {C̃ (k)

tm,i∗ }k ← LprIO.Eval
(
LprIO.crs, {(k,C (k)

tm,i∗)}k , Ê ′
cir

)
Êcir ← bGC.Eval(C̃tm,i∗ , lab′bits(ℓ))

T̃i∗ = {T̃ (k)
i∗ }k ← LprIO.Eval

(
LprIO.crs, {(k,T (k)

i∗)}k , Êcir
)

labxpub = {labk }k ← LprIO.Eval
(
LprIO.crs, {(k,xpub[k])}k , Êpub

)
,

8In more detail, Creg needs to generate the gate-wise garbling of Tℓ[M] inside Ctm[M] with the same random coins as the bit-wise

garbling of the input x to obtain compatible garbled gates and garbled input bits during decryption. For simplicity, we ignore the fact that

both garbling and obfuscation algorithms are randomized in this overview.

24

where Ti∗ = Tℓ[Mi∗] simulates the execution of Mi∗ on input length ℓ. Finally, run bGC evaluation z ←
bGC.Eval(T̃i∗ , labxpub , labxpri) and output z.

For correctness, we observe that the output of the evaluation of the garbled circuit Ẽ ′
cir is again a garbling of the

circuit Ctm,i∗ =Ctm[LprIO.crs, Mi∗]. When being evaluated with respect to the labels lab′bits(ℓ), C̃tm,i∗ outputs

an obfuscation of the circuit Ti∗ = Tℓ[Mi∗] which simulates the Turing machine Mi∗ on length-ℓ inputs. Thus,

evaluating T̃i∗ with respect to the labels labxpub and labxpri yields the output of Mi∗ on input (xpub,xpri) as

desired. For efficiency, we note that the registered circuits Creg[LprIO.crs,digMi
], for i ∈ [L], hardwire only

a digest of the Turing machine rather than an entire description of Mi . Similarly, ct encrypts only a digest

of xpub rather than xpub itself. Therefore, all parameter sizes are independent of |Mi | and |xpub|.
The security proof follows roughly the same idea as the proof sketch of Construction 2.5 outlined above. A

notable difference is that we now have to deal with nested obfuscations, where the output of one obfuscation

is used to derive another obfuscation. To see why this is relevant, let us informally recall the security model of

laconic pPRIO as consisting of a pre- and a post-condition and the requirement that the former implies the lat-

ter with respect to all efficient samplers. Here, the pre-condition requires pseudorandomness for the output of

the circuits and the post-condition implies pseudorandomness of the obfuscations. Now, if we consider nested

obfuscations, this leads to the situation where the pre-condition of the outer layer contains obfuscations of the

inner layer. Therefore, we first need to leverage the security of the inner obfuscation to verify the pre-condition

of the outer obfuscation. To make this sequential security proof work, we must carefully design our scheme to

ensure that the inner and outer layer of the obfuscations are generated independently. We refer the reader to

Section 4.10 for details and summarize our result as follows.

Theorem 2.9 ((Nearly) Optimal sRFE for Turing Machines – Informal). Assuming LWE and prFE, there exists a

prCT secure sRFE scheme supporting Turing machines with the following parameters:

|crs| = poly(λ) |mpk| = loglogL+poly(λ)

|hski | = logL ·poly(λ) |ct| = logL ·poly(λ)+|xpri| .

Combining this theorem with the powers-of-two compiler, we obtain Theorem 1.3 stated in the introduction.

More Implications. The sRABE and sRPE schemes in Constructions 2.3 and 2.4 naturally extend to the case of

Turing machines. In this way, we obtain KP-sRABE, CP-sRABE and sRPE schemes supporting Turing machines.

In particular, Construction 2.4 (CP-sRABE) requires a classical KP-ABE scheme for Turing machines. As an

instantiation, we could use the recently proposed construction by AKY. However, their scheme does not have

optimal parameters which would also ruin the parameters of our CP-sRABE. We therefore first address the task

of constructing a KP-ABE for Turing machines with optimal parameters. To this end, we observe that our ideas

to build prCT secure sRFE for Turing machines equally work in the case of classical FE, giving us a prCT secure

FE for Turing machines with optimal parameters. This scheme can in turn be leveraged to obtain KP-ABE,

CP-ABE and PE for Turing machines with optimal parameters, as demonstrated by AKY in the case of circuits.

Theorem 2.10 (Optimal FE for Turing Machines – Informal). Assuming LWE and prFE, there exists a prCT

secure FE scheme for Turing machines with the following efficiency parameters:

|mpk| = poly(λ) , |skM | = poly(λ) , |ct| = poly(λ)+|xpri| .

As an implication, there exist KP-ABE, CP-ABE and PE schemes for Turing machines with the same efficiency

parameters (where we note that the private input in case of PE also includes the attribute).

Please see Section 7 for details about our constructions in the plain FE model. Combining Theorems 2.9

and 2.10 with the compilers in Constructions 2.3 and 2.4, we obtain the following corollary.

25

Corollary 2.11 ((Nearly) Optimal sRABE and sRPE). Assuming LWE and prFE, there exist selectively secure KP-

sRABE, CP-sRABE and sRPE schemes supporting unbounded depth circuits with the following parameters:

|crs| = poly(λ) |mpk| = loglogL+poly(λ)

|hski | = logL ·poly(λ) |ct| = logL ·poly(λ)+|µ|+ |x| .

Applying the powers-of-two compiler yields Theorem 1.4 as stated in the introduction.

3 Preliminaries

In this section, we present the preliminaries necessary to understand this work.

3.1 Notational Conventions

Let λ ∈ N be the security parameter. Except in the definitions, we will suppress λ in subscripts for brevity. A

nonnegative function ε : N→R is negligible if ε(λ) =O(λ−n) for all n ∈N. An algorithm is said to be efficient if

it runs in probabilistic polynomial time (PPT) in the security parameter.

To avoid confusion, we always write vectors v and matrices A in boldface and use uppercase letters for the

latter. Scalars s are written in italics. We strictly follow the convention of all vectors v being column vectors.

The corresponding row vector is denoted by v⊤. We denote the i -th unit vector in Zn
q by e(n)

i and sometimes

omit the superscript if n is clear from the context. Given an object x, we write bits(x) for its fixed-length bit

representation arranged in a row, i.e., a matrix in {0,1}1×N for some N .

Security Experiments and Distributions. Let Exp be an interactive experiment that interacts with an algo-

rithm A (called the adversary), depends on the security parameter λ and has binary outcome. We also refer

to such objects as games or hybrids. We let “ExpA(1λ) → 1” denote the event that the outcome of running

Exp with A on security parameter λ is 1. For two experiments Exp0 and Exp1, we define the distinguishing

advantage of A against the tuple (Exp0,Exp1) as

AExp0,Exp1,A(λ) :=
∣∣∣Pr

[
Exp1

A(1λ) → 1
]
−Pr

[
Exp0

A(1λ) → 1
]∣∣∣ .

We write Exp0 ≈c Exp1 if the experiments are computationally indistinguishable, i.e. their distinguishing ad-

vantage is negligible for all efficient adversaries A. We write Exp0 ≈s Exp1 if the experiments are statistically

indistinguishable, i.e. their distinguishing advantage is negligible for all (even unbounded) adversaries. We

write Exp0 ≡ Exp1 if the experiments are identically distributed, i.e. their distinguishing advantage is 0 for all

(even unbounded) adversaries. By default, the term indistinguishable refers to computational indistinguisha-

bility.

More general, the same notations can be used for sequences of distributions. Let D0 = {D0
λ

}λ∈N and D1 =
{D1

λ
}λ∈N be two sequences of distributions. For b ∈ {0,1}, we define Expb

A(1λ) as follows: sample x $← Db
λ

, run

A(1λ, x) and use the output of A as the outcome of the experiment. Then we write D0 ≈c D1 (resp. D0 ≈s D1,

D0 ≡ D1) if Exp0
A ≈c Exp1

A (resp. Exp0
A ≈s Exp1

A, Exp0
A ≡ Exp1

A).

Sets and Indexing. We denote by Z and N the sets of integers and natural numbers (positive integers). For

integers m and n, we write [m;n] to denote the set {z ∈Z : m ≤ z ≤ n} and let [n] := [1;n]. For a prime number q ,

Zq denotes the finite field of integers modulo q .

To index a vector or the columns of a matrix, we write v[i] and A[j]. In contrast, objects of some collection

that is not regarded as a vector or matrix are indexed using subscripts (or superscripts in some cases). For

instance, vi represents a vector, not a component of some vector. If i runs through some index set [n], it

means that there are n vectors v1, . . . ,vn . If the n objects are scalars (or not explicitly vectors), we will write

v1, . . . , vn instead.

26

3.2 Computational Models

Circuits. We let Cℓin,ℓdep,ℓout denote the class of functions that can be computed by a circuit C : {0,1}ℓin →
{0,1}ℓout of depth at most ℓdep. We may omit the indices ℓdep and/or ℓout. In the former case the depth of the

circuits is unbounded, in the latter case the default value for ℓout is 1. Furthermore, in our constructions we

may split the input space as {0,1}ℓpub × {0,1}ℓpri . In this case, we replace the index ℓin with the tuple (ℓpri,ℓpub).

Given a circuit C , we write C (k) to refer to a description of its k-th gate and let |C | denote the total number of

gates in C . We note that the description of C (k) can be encoded in a binary string of length 4λ as it is sufficient

to encode its index, two indices of the incoming wires and the type of the gate.

Turing Machines. We recall here the definition of a Turing machine (TM) and some useful lemmata that

are taken verbatim from [AKY24a]. The definition considers Turing machines with two tapes, input tape and

working tape.

Definition 3.1 (Turing Machine). A (deterministic) Turing machine (TM) M is represented by the tuple M =
(Q,δ,F), where Q is the number of states (we use [Q] as the set of states and 1 is the initial state), F ⊂ [Q] is the

set of accepting states and

δ : [Q]× {0,1}× {0,1} → [Q]× {0,1}× {0,±1}× {0,±1}

(q,b1,b2) 7→ (q ′,b′
2,∆i ,∆ j)

is the state transition function, which given the current state q , the symbol b1 under scan on the input tape,

and the symbol b2 under scan on the work tape, specifies the new state q ′, the symbol b′
2 overwriting b2, the

direction∆i to which the input tape pointer moves, and the direction∆ j to which the work tape pointer moves.

The machine is required to hand (instead of halting) once it reaches an accepting state, i.e., for all q ∈ [Q] such

that q ∈ F and b1,b2 ∈ zo, it holds that δ(q,b1,b2) = (q,b2,0,0).

For input length n ≥ 1 and space complexity bound s > 1, the set of internal configurations of M is

QM ,n,s = [n]× [s]× {0,1}s × [Q],

where (i , j ,W, q) ∈ QM ,n,s specifies the input tape pointer i ∈ [n], the work tape pointer j ∈ [s], the content

of the work tape W ∈ {0,1}s and the machine state q ∈ [Q]. For any bit string x ∈ {0,1}n such that n ≥ 1 and

time/space complexity bounds t , s > 1, the machine M accepts x within time t and space s if there exists a

sequence of internal configurations (computation path of t steps) c0, . . . ,ct ∈QM ,n,s with ck = (ik , jk ,Wk , qk)

such that (i0, j0,W0, q0) = (1,1,0s ,1) (initial configuration), and

for all 0 ≤ k < t :

δ(qk , x[ik],Wk [jk]) = (qk+1,Wk+1[jk], ik+1 − ik , jk+1 − jk)

Wk+1[j] =Wk [j] for all j ̸= jk (valid transitions);

where x[i] is the i -th bit of the string x and Wk [j] is the j -th bit of the string Wk and qt ∈ F (accepting). We

also say M accepts within time t (without space bound) if M accepts x within time t and space s = t .

Next, we define time/space bounded computation with non-deterministic Turing machines. The definition is

the same as Section 3.2, except for the following changes:

• The transition criterion δ can be any relation between (i.e., any subset of the Cartesian product of) [Q]×
{0,1}2 and [Q]× {0,1}× {0,±q}2, where ((q,b1,b2), (q ′,b′

2,∆i ,∆ j)) ∈ δ means that if the current state is q ,

the input tape symbol under scan is b1 and the work tape symbol under scan is b2, then it is valid to

transit into state q ′, overwrite b2 with b′
2, and move the input and work tape pointer by offset∆i and∆ j ,

respectively.

• The definition of hanging in accepting state is that for all q ∈ [Q] such that q ∈ F and for all b1,b2 ∈ {0,1},

δ∩ (
{(q,b1,b2)}× ([Q]× {0,1}× {0,±1}2)

)= {(q,b1,b2), (q,b2,0,0)}.

27

• In the definition of acceptance

δ(qk , x[ik],Wk [jk]) = (qk+1,Wk+1[jk], ik+1 − ik , jk+1 − jk)

is changed to

((qk , x[ik],Wk [jk]), (qk+1,Wk+1[jk], ik+1 − ik , jk+1 − jk)) ∈ δ.

The following lemma can be obtained by a simple argument on emulating Turing machine on Boolean circuits.

Lemma 3.2 (Emulating a Turing Machine on Circuit). Consider a circuit that takes as input a description of a

(deterministic) Turing machine M = (Q,δ,F), input x to M, a configuration (i , j ,W, q) ∈QM ,|x|,|W | and outputs

the next configuration (i ′, j ′,W ′, q ′). We can implement such a circuit with depth poly(log|x|, log|W |, log|M |)
and size poly(|x|, |W |, |M |).

We also consider the following lemma, which can be obtained by a simple observation.

Lemma 3.3 (Checking Transition for Non-deterministic Turing Machine). Consider a circuit that takes as input

a description of a non-deterministic Turing machine M = (Q,δ,F), input x to M, two configurations (i , j ,W, q) ∈
QM ,|x|,|W | and (i ′, j ′,W ′, q ′) ∈QM ,|x|,|W |, and outputs ((i , j ,W, q), (i ′, j ′,W ′, q ′)) ∈ δ or not. We can implement

such a circuit with depth poly(log|x|, log|W |, log|M |) and size poly(|x|, |W |, |M |).

3.3 Lattice Preliminaries

We recall some facts about lattices that we use in the rest of the sections. Let n,m and q be integers such that

n = poly(λ) and m ≥ n⌈log q⌉. In the following, let SampZ(σ) be a sampling algorithm for the discrete Gaussian

distribution over Zwith parameter σ> 0 whose support is restricted to z ∈Z such that |z| ≤p
nσ.

Let g = (1,2, . . . ,2⌊log q⌋)⊤ be the gadget vector and G = In ⊗g⊤ be the gadget matrix. For a vector v ∈Zn
q , we

write G−1(v) for the m-bit vector (bits(v[1]), . . . ,bits(v[n]))⊤, where bits(v[i]) are m/n bits for each i ∈ [n]. The

notation extends column-wise to matrices, and it holds that GG−1(V) = V.

Next, we recall some useful lemmata.

Lemma 3.4 (Leftover Hash Lemma [DRS04, AKY24a]). Let n,m, q be lattice parameters where q > 2 is prime.

If m ≥ 2n log q, then for A $←Zn×m
q , x $← {0,1}m and y $←Zn

q , the statistical difference between (A,Ax) and (A,y) is

negligible. More concretely, it is bounded by qn
p

21−m .

Lemma 3.5 (Gaussian Tail Bound). For any λ ∈N and σ> 0, there exists B ∈Θ(
p
λ) such that

Pr
[|x| >σB : x ←DZ,σ

]≤ 2−λ.

Lemma 3.6 (Smudging Lemma [WWW22]). Let λ be a security parameter. Take any a ∈ Z such that |a| ≤ B.

If σ ≥ B ·λω(1), then the statistical distance between the distributions {z : z ← DZ,σ} and {z + a : z ← DZ,σ} is

negligible in λ.

Hardness Assumptions. We recall the hardness assumptions that we use in our paper.

Assumption 3.7 (LWE). Let n = n(λ), m = m(λ) and q = q(λ) > 2 be integers and χ = χ(λ) be a distribution

over Z. We say that the LWE(n,m, q,χ) hardness assumption holds if for any PPT adversary A we have∣∣Pr
[
A(A,s⊤A+e⊤) → 1

]−Pr
[
A(A,v⊤) → 1

]∣∣≤ negl(λ),

where the probability is taken over the choice of the random coins by the adversary A and A $←Zn×m
q ,s $←Zn

q ,

e $← χm , and v $←Zm
q . We also say that LWE(n,m, q,χ) problem is (non-uniformly and) subexponentially hard

if there exists some constant 0 < δ< 1 such that the above distinguishing advantage is bounded by 2−nδ for all

adversaries A whose running time (resp. size) is 2nδ .

28

As shown in [Reg09, BLP+13], if we set χ= SampZ(σ), the LWE(n,m, q,χ) problem is as hard as solving worst-

case lattice problems such as GapSVP or SIVP with approximation factor poly(n)·(q/σ) for some poly(n). Since

the best known algorithms for 2k -approximation of GapSVP and SIVP run in time 2Õ(n/k), it follows that the

above LWE(n,m, q,χ) with noise-to-modulus ratio 2−nϵ is likely to be (subexponentially) hard for some con-

stant ϵ.

3.4 GSW Homomorphic Encryption and Evaluation

We recall the (leveled) GSW fully homomorphic encryption scheme [GSW13] with syntax adapted from [HLL23].

Lemma 3.8 (GSW Scheme). The leveled GSW scheme works as follows:

• The keys are

(public) Afhe =

 Āfhe

s̄⊤Āfhe+e⊤
fhe

 ∈Zn×m
q , (secret) s⊤ = (s̄⊤,−1),

where s̄ ∈Zn−1, Āfhe ∈Z(n−1)×m
q and e⊤

fhe
∈Zm .

• A ciphertext of x ∈ {0,1} is X = AfheR− xG ∈ Zn×m
q , where R ∈ Zm×m is the encryption randomness. The

decryption equation is

s⊤X =−e⊤fheR− xs⊤G ∈Zm
q ,

which can be used to extract x via multiplication by G−1(⌊q/2⌋ιn), where ιn is the n-th unit vector.

Lemma 3.9 (Homomorphic Evaluation for Vector-Valued Functions [HLL23]). There is an efficient algorithm

MakeVEvalCkt(1n ,1m , q,C) =VEvalC

that takes as input (unary encoded) n,m, the modulus q and a vector-valued circuit C : {0,1}ℓin → Z
1×ℓout
q , and

outputs a circuit

VEvalC (X1, . . . ,Xℓin) = C,

taking ℓin ciphertexts as input and outputting a new ciphertext C of different format.

• The depth of VEvalC is d ·O(logm loglog q)+O(log2 log q) for C of depth d.

• Suppose Xℓ = AfheRℓ−x[ℓ]G for ℓ ∈ [ℓin] with x ∈ {0,1}ℓin , then

C = AfheRC −

0(n−1)×ℓout

C (x)

 ∈Zn×ℓout
q ,

where ∥R⊤
C ∥ ≤ (m +2)d ⌈log q⌉maxℓ∈[ℓin]∥R⊤

ℓ
∥. The new decryption equation is

s⊤C =−e⊤fheRC +C (x) ∈Z1×ℓout
q .

3.5 Homomorphic Evaluation Procedures

We describe the properties of attribute encoding and its homomorphic evaluation, along with the dual-use

technique [BTVW17].

29

Lemma 3.10 (Homomorphic Evaluation for Matrix-Valued Functions [BTVW17]). For ℓin-bit input x ∈ {0,1}ℓin ,

the public parameter is Aatt ∈Zn×(ℓin+1)m
q and the encoding is

s⊤(Aatt− (1,x⊤)⊗G)+e⊤att,

where s⊤ = (s̄⊤,−1) with s̄ ∈Zn−1
q and e⊤att ∈Z(ℓin+1)m . There are efficient deterministic algorithms

MEvalC(Aatt,C) = HC and MEvalCX(Aatt,C ,x) = HC ,x

that take as input Aatt, a matrix-valued circuit C : {0,1}ℓin → Z
n×ℓout
q (and some x ∈ {0,1}ℓin for MEvalCX), and

output some matrix in Z(ℓin+1)m×ℓout .

• Suppose C is of depth d, then ∥H⊤
C ∥,∥H⊤∥ ≤ (m +2)d ⌈log q⌉.

• The matrix encoding homomorphism is (Aatt− (1,x⊤)⊗G)HC ,x = AattHC −C (x).

Dual-Use Technique Extension. In [BTVW17], the attribute encoded with secret s⊤ is FHE ciphertext under

key s⊤ (hence the name “dual-use”), and the circuit passed to MEvalCX is some VEvalC . This in turn leads

to automatic decryption. Concretely, let C be a vector-valued circuit with codomain Z1×ℓout
q , then VEvalC is

Z
n×ℓout
q -valued and we have that

(s⊤(Aatt− (1,bits(X))⊗G)+e⊤att) ·HVEvalC ,X

= s⊤AattVEvalC −s⊤VEvalC (X)+ (e′)⊤ (MEvalCX)

= s⊤AattVEvalC −C (x)+ (e′′)⊤ (VEval decryption).

3.6 Pseudorandom Functions

Definition 3.11 (Pseudorandom Function). A pseudorandom function (PRF) is a family of functions{
PRF(sd, ·) : {0,1}ℓin(λ) → {0,1}ℓout(λ)}

λ∈N,sd∈{0,1}λ

with the following properties:

• efficiency: one can compute PRF(sd, x) in poly(λ)-time given x and sd,

• security: for any PPT adversary A, there exists a negligible function negl(·), such that∣∣∣Pr
[
APRF(sd,·)(1λ) = 1

]
−Pr

[
AR(·)(1λ) = 1

]∣∣∣≤ negl(λ),

where sd $← {0,1}λ and R $←F
(
{0,1}ℓin(λ) → {0,1}ℓout(λ)

)
, with F

(
{0,1}ℓin(λ) → {0,1}ℓout(λ)

)
denoting the set

of all functions mapping ℓin(λ) bits to ℓout(λ) bits.

3.7 Blind Garbled Circuit

We provide the definition of a blind garbling scheme [BLSV18, AKY24b].

Definition 3.12 (Garbling Scheme). A garbling scheme for circuit class C = {C : {0,1}ℓin → {0,1}ℓout } consists of

the following algorithms:

Garble(1λ,1ℓin ,1ℓout ,C) → (lab,C̃): On input a (unary encoded) security parameter λ, an input length ℓin and

an output length ℓout for circuit C , and a description of the circuit C , it outputs the labels for input wires

of garbled circuit lab= {lab j ,b} j∈[ℓin],b∈{0,1}, where each lab j ,b ∈ {0,1}λ, and the garbled circuit C̃ .

Eval(C̃ , labx) → y: On input a garbled circuit C̃ and the labels labx = {labi ,xi }i∈[ℓin] corresponding to an input

x ∈ {0,1}ℓin , where xi denotes the i -th bit of x, it outputs y ∈ {0,1}ℓout .

30

Sim(1λ,1|C |,1ℓin ,y) → (l̃ab,C̃): PPT algorithm that on input a (unary encoded) security parameter λ, a descrip-

tion length of the circuit C , an input length ℓin and a string y ∈ {0,1}ℓout , outputs simulated labels lab and

a garbled circuit C̃ .

We require a (blind) garbling scheme to satisfy the following properties.

Definition 3.13 (Correctness). A garbling scheme is correct if for any circuit C ∈ C and any input x ∈ {0,1}ℓin ,

the following holds

Pr
[

y =C (x) : (lab,C̃) ←Garble(1λ,1ℓin ,1ℓout ,C),y :=Eval(C̃ , labx)
]
= 1.

Definition 3.14 (Simulation Security). A garbling scheme satisfies simulation security if for any circuit C ∈ C
and any input x ∈ {0,1}ℓin , the following holds{

(C̃ , labx) : (lab,C̃) ←Garble(1λ,1ℓin ,1ℓout ,C)
}
≈c

{
(C̃ , labx) : (C̃ , labx) ← Sim(1λ,1|C |,1ℓin ,C (x))

}
,

where lab= {lab j ,b} j∈[ℓin],b∈{0,1} and labx = {labi ,xi }i∈[ℓin].

Definition 3.15 (Blindness). A garbling scheme is called blind if the distribution Sim(1λ,1|C |,1ℓin ,y) for y $←
{0,1}ℓout , representing the output of the simulator on a uniformly random output, is indistinguishable from a

completely uniform bit string. (Note that the distinguisher must not know the random output value that was

used for the simulation.)

Definition 3.16 (Decomposability). The algorithm Garble(1λ,1ℓin ,1ℓout ,C) can be decomposed, using shared

randomness st, as follows: (i) Garblek (1λ,Ck ;st) for k ∈ [|C |], where Garblek (1λ,Ck) outputs the garbling of k-th

gate of the circuit C (denoted by Ck), and (ii) Garbleinp,k (1λ;st) = (labk,0, labk,1), for k ∈ [ℓin], which outputs the

labels corresponding to the k-th input bit.

Fact 3.17 ([BLSV18]). Assume that one-way function exists. Then, there exists a blind garbled circuit scheme.

3.8 (Unbounded) Blind Batch Encryption

We provide here a definition of a blind batch encryption adapted from [BLSV18, AKY24b].

Definition 3.18 ((Unbounded) Blind Batch Encryption). A blind batch encryption scheme with message space

M= {Mλ = {0,1}λ}λ consists of the following algorithms:

Setup(1λ,1N) → crs: On input the (unary encoded) security parameter λ and key length N , it outputs a com-

mon reference string crs.

Gen(crs, x) → h: On input the common reference string crs and a secret key x ∈ {0,1}λN , it outputs a public key

h.

SingleEnc(crs,h, i , (m0,m1)) → ct: On input the common reference string crs, a public key h, an index i ∈ [N]

and a message pair (m0,m1) ∈M2
λ

, it outputs a (single) ciphertext ct.

SingleDec(crs, x, i ,ct) → m: On input the common reference string crs, a secret key x ∈ {0,1}λN , an index i ∈ [N]

and a (single) ciphertext ct, it outputs a message m ∈Mλ or ⊥.

We say a blind batch encryption scheme is unbounded, if the length of the secret keys are not bounded by N ,

i.e., x ∈ {0,1}∗, and the Setup algorithm does not take the additional input 1N .

Additionally, we consider batch encryption and decryption algorithms that not only operate on a single index

i ∈ [N], but instead on all i ∈ [N] at the same time.

Enc(crs,h,M): On input the common reference string crs, a public key h, and a message M ∈MN×2
λ

, it puts a

ciphertext ct.

31

Dec(crs, x,ct): On input the common reference string crs, a secret key x ∈ {0,1}λN and a ciphertext ct, it outputs

a message vector m ∈MN
λ

or ⊥.

We simply require that Enc(crs,h,M) = (cti)i∈[N] for cti ← SingleEnc(crs,h, i ,mi), where mi denotes the i -th

row of M. Similarly, we require that for ct= (cti)i∈[n], Dec(crs, x,ct) computes mi ← SingleDec(crs, x, i ,cti) for

all i ∈ [n], and outputs their concatenation.

Next, we recall the correctness and succinctness definitions.

Definition 3.19 (Correctness). A blind batch encryption scheme is said to be correct if for any λ, N ∈ N, x ∈
{0,1}λN , i ∈ [N], (m0,m1) ∈M2

λ
, crs← Setup(1λ) and h :=Gen(crs, x), it holds that

Pr
[
m = mx[(i−1)λ+1:iλ] | m = SingleDec(crs, x, i ,SingleEnc(crs,h, i , (m0,m1)))

]= 1.

Definition 3.20 (Succinctness). A blind batch encryption scheme is α-succinct if letting crs← Setup(1λ,1N),

h := Gen(crs, x), for some x ∈ {0,1}λN , it holds that |h| ≤ αN . It is fully succinct if |h| ≤ p(λ) for some fixed

polynomial p(λ).

We require a blind batch encryption to satisfy the following adaptive security, which is stronger than the one

defined in [BLSV18].

Definition 3.21 (Adaptive Security). A blind batch encryption scheme is said to be adaptively secure if for any

PPT adversary A and any N ∈N, there exists a negligible function negl(·), such that the following holds

Pr

b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

crs← Setup(1λ,1N)(
x ∈ {0,1}λN , i ∈ [N],m(0) = (m(0)

0 ,m(0)
1),m(1) = (m(1)

0 ,m(1)
1)

)
←A(crs)

b $← {0,1},h :=Gen(crs, x)

ctb ← SingleEnc(crs,h, i ,m(b))

b′ ←A(ctb)

≤ 1

2
+negl(λ),

where we require that m(0),m(1) ∈M2
λ

and m(0)
x[i] = m(1)

x[i].

We consider in this work the following adaptive blindness definition, which is stronger than the blindness

definition given in [AKY24b].

Definition 3.22 (Adaptive Blindness). A blind batch encryption scheme is said to be adaptively blind if for any

PPT adversary A and any N ∈N, there exists a negligible function negl(·), such that the following holds

Pr

b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

crs← Setup(1λ,1N)

(x ∈ {0,1}λN , i ∈ [N]) ←A(crs)

h :=Gen(crs, x)

m $←M2,b $← {0,1}

ct0 ← SingleEnc(crs,h, i ,m),ct1
$← CT

b′ ←A(ctb)

≤ 1

2
+negl(λ),

where CT is the ciphertext space of the scheme.

Remark 3.23 (Unbounded BBE Security and Blindness). We note that if the underlying BBE scheme is un-

bounded, then the Setup algorithm does not take 1N as input and A can output a secret key x of arbitrary

length in Definitions 3.21 and 3.22.

32

3.9 Symmetric Key Encryption

We recall the definition of a symmetric key encryption scheme.

Definition 3.24 (Syntax of SKE). A Symmetric Key Encryption (SKE) scheme for message space M= {Mλ}λ∈N
consists of three efficient algorithms:

Setup(1λ) → sk. On input the security parameter 1λ, this algorithm outputs a secret key sk.

Enc(sk,µ) → ct. On input the secret key sk and a message µ ∈Mλ, this algorithm outputs a ciphertext ct.

Dec(sk,ct) →µ. On input the secret key sk and a ciphertext ct, this algorithm outputs a message µ ∈Mλ.

For notational convenience, we may pass a second argument 1ℓ(λ) to Setup indicating that the message space

of the scheme is M= {Mλ = {0,1}ℓ(λ)}λ∈N.

Correctness. A SKE scheme is correct if for all λ,ℓ ∈N and µ ∈Mλ, we have that

Pr

[
µ=Dec(sk,ct)

∣∣∣∣∣ sk← Setup(1λ)

ct←Enc(sk,µ)

]
= 1 ,

where the probability is taken over the random coins of Setup and Enc.

Security. We define security with pseudorandom ciphertexts.

Definition 3.25 (INDr Security for SKE). An SKE scheme SKE with ciphertext space CT = {CT }λ∈N satisfies

INDr security if there exists a negligible function negl(·) such that for all PPT adversaries A, we have that

Pr

[
b′ = b

∣∣∣∣∣ b $← {0,1}; sk← Setup(1λ)

b′ ←AQEnc(sk,·),QEncb (sk,·)(1λ)

]
≤ 1

2
+negl(λ),

where the oracles are defined as follows:

• QEnc(sk, ·). On input µ ∈Mλ, return ct←Enc(sk,µ).

• QEncb(sk, ·). On input µ ∈Mλ, return ctb , where ct0 ←Enc(sk,µ) and ct1
$← CTλ.

3.10 Functional Encryption

We recall the definition of functional encryption with pseudorandom ciphertext security. Let X = {Xλ =
Xλ,pub ×Xλ,pri}λ∈N, Y = {Yλ}λ∈N and F = {Fλ}λ∈N be sequences of input, output and function spaces, re-

spectively, where Fλ : Xλ → Yλ for all λ ∈ N. Here, we assume that each input space Xλ consists of a public

component Xλ,pub and a private component Xλ,pri.

Definition 3.26 (Syntax of FE). A FE scheme FE for F consists of four efficient algorithms:

Setup(1λ,param) → (mpk,msk). On input the security parameter 1λ and parameters param specifying F , this

algorithm outputs a master public key mpk and a master secret key msk.

KeyGen(msk, f) → sk f . On input the master secret key msk and a function f ∈ Fλ, this algorithm outputs a

secret key sk f .

Enc(mpk, xpub, xpri) → ct. The encryption algorithm proceeds in two steps.

EncOff(mpk) → (ctoff ,st). On input the master public key mpk, this algorithm outputs an offline cipher-

text ctoff and a state st.

EncOn(st, xpub, xpri) → cton. On input the state st and an input (xpub, xpri) ∈ Xλ,pub ×Xλ,pri, this algo-

rithm outputs an online ciphertext cton.

33

The final output of Enc(mpk, x) is ct := (ctoff ,cton).

Dec(sk f , f ,ct, xpub) → y ∨⊥. On input a secret key sk f , the corresponding function f ∈Fλ, a ciphertext ct and

the corresponding public input xpub ∈Xλ,pub, this algorithm outputs an element y ∈Yλ or ⊥ indicating

failure of decryption.

We say that FE has a trivial offline encryption if EncOff(mpk) outputs (ctoff := ⊥,st :=mpk). In this case, we

may simplify the syntax by completely ignoring EncOff and letting Enc :=EncOn and ct := cton.

Correctness. A FE scheme is correct if for all λ ∈N, (xpub, xpri) ∈Xλ,pub×Xλ,pri and f ∈Fλ, we have

Pr

y ′ = f (xpub, xpri)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(mpk,msk) ← Setup(1λ,param)

sk f ←KeyGen(msk, f)

(ctoff ,st) ←EncOff(mpk)

cton ←EncOn(st, xpub, xpri)

y ′ :=Dec(sk f , f ,ct= (ctoff ,cton), xpub)

≥ 1−negl(λ) ,

where the probability is taken over the random coins of Setup, KeyGen and Enc.

Security. We define reusable pseudorandom ciphertext security as in [AKY24b].

Definition 3.27 (Reusable VerSel-prCT Security for FE). For a FE scheme FE supporting a function class F =
{Fλ : Xλ→Yλ}, we let Samp be a PPT algorithm that on input 1λ outputs(

aux ∈ {0,1}∗, { f i }i∈[Qkey] ⊆Fλ, {x j = (x j
pub

, x j
pri

)} j∈[Qmsg] ⊆Xλ

)
.

We define the following advantage functions:

Advpre
Samp,Apre

(λ) =
∣∣∣Pr

[
Apre

(
aux, { f i }i∈[Qkey], {x j

pub
} j∈[Qmsg], {δ∗i , j := f i (x j)}(i , j)∈[Qkey]×[Qmsg]

)→ 1
]

−Pr
[
Apre

(
aux, { f i }i∈[Qkey], {x j

pub
} j∈[Qmsg], {δ$

i , j
$←Yλ}(i , j)∈[Qkey]×[Qmsg]

)→ 1
]∣∣∣ ,

Advpost
Samp,Apost

(λ) =
∣∣∣Pr

[
Apost

(
aux,mpk,ctoff , { f i ,sk f i }i∈[Qkey], {x j

pub
,∆∗

j := ct
j
on} j∈[Qmsg]

)→ 1
]

−Pr
[
Apre

(
aux,mpk,ctoff , { f i ,sk f i }i∈[Qkey], {x j

pub
,∆$

j
$← CTon} j∈[Qmsg]

)→ 1
]∣∣∣ ,

where CTon denotes the online part of the ciphertext space and(
aux ∈ {0,1}∗, { f i }i∈[Qkey] ⊆Fλ, {x j = (x j

pub
, x j

pri
)} j∈[Qmsg] ⊆Xλ

)← Samp(1λ) ,

(mpk,msk) ← Setup(1λ,param) , {sk f i ←KeyGen(msk, f i)}i∈[Qkey] ,

(ctoff ,st) ←EncOff(mpk) , {ct j
on ←EncOn(st, x j)} j∈[Qmsg] .

We say that FE satisfies reusable VerSel-prCT security if for all PPT samplers Samp and PPT adversaries Apost,

there exists another PPT adversary Apre such that

Advpre
Samp,Apre

(λ) ≥ Advpost
Samp,Apost

(λ)/poly(λ)−negl(λ)

and Time(Apre) ≤Apost ·poly(λ).

We note that Definition 3.27 is a hybrid between single-challenge and multi-challenge security in the sense

that only a single offline part but multiple online parts of the challenge ciphertext are provided to the adver-

sary. Nevertheless, this hybrid notion is essentially equivalent to full-fledged multi-challenge security if the FE

scheme has trivial offline encryption.

34

Fact 3.28 (Adapted from [AKY24b, Theorem 3.5 and Theorem 5.12]). Assuming LWE and (private-coin) eva-

sive LWE, there exist a FE scheme for bounded depth circuits satisfying trivial offline encryption and reusable

VerSel-prCT security with the following parameters:

|mpk| = ℓpri ·poly(ℓdep,λ) , |sk|C = ℓout ·poly(ℓdep,λ) , |ct| = ℓpri ·poly(ℓdep,λ) ,

where ℓpri, ℓout and ℓdep denote the private input length, the output length and the maximum depth, respec-

tively. (We refer to this primitive as “prFE” in the rest of the paper).

Furthermore, assuming LWE and prFE, there exists a FE scheme for unbounded depth circuits satisfying

reusable VerSel-prCT security with the following parameters:

|mpk| = poly(λ) , |sk|C = poly(λ) , |mpk| = poly(λ)+ℓpri .

3.11 Attribute-Based and Predicate Encryption

The definitions for ABE and Predicate Encryption (PE) are nearly identical. We therefore give the formal def-

initions only for the case of ABE and mention differences compared to PE along the way. Let M = {Mλ}λ∈N,

X = {Xλ}λ∈N and Y = {Yλ}λ∈N be sequences of message, ciphertext attribute and key attribute spaces, respec-

tively. Furthermore, let R = {Rλ}λ∈N be a sequence of relations, where Rλ : Xλ×Yλ→ {0,1} for all λ ∈N.

Definition 3.29 (Syntax of ABE). An Attribute-Based Encryption (ABE) scheme for M and R consists of four

efficient algorithms:

Setup(1λ,param) → (mpk,msk). On input the security parameter 1λ and parameters param specifying R, this

algorithm outputs a master public key mpk and a master secret key msk. We assume that msk implicitly

contains mpk.

KeyGen(msk, y) → sky . On input the master secret key msk and a key attribute y ∈Yλ, this algorithm outputs

a secret key sky .

Enc(mpk, x,µ) → ctx . The encryption algorithm proceeds in two steps.

EncOff(mpk) → (st,ctoff). On input the master public key mpk, this algorithm outputs a state st and an

offline ciphertext ctoff .

EncOn(st, x,µ) → cton. On input the state st, a ciphertext attribute x ∈ Xλ and a message µ ∈Mλ, this

algorithm outputs an online ciphertext cton.

The final output of Enc(mpk, x,µ) is ct := (ctoff ,cton).

Dec(sky , y,ct, x) →µ′ or ⊥. On input a secret key sky , key attribute y ∈ Yλ, a ciphertext ct and ciphertext at-

tribute x ∈ Xλ, this algorithm outputs a message µ′ ∈Mλ or ⊥ indicating failure of decryption. In the

case of PE, the algorithm does not take x as input.

Correctness. An ABE scheme is correct if for all λ ∈N, µ ∈Mλ, x ∈Xλ and y ∈Yλ such that Rλ(x, y) = 0, we

have that

Pr

µ=Dec(sky , y,ctx , x)

∣∣∣∣∣∣∣∣∣
(mpk,msk) ← Setup(1λ,param)

sky ←KeyGen(msk, y)

ctx ←Enc(mpk, x,µ)

≥ 1−negl(λ) ,

where the probability is taken over the random coins of Setup, KeyGen and Enc.

35

Security. We start by defining traditional VerSel-IND security.

Definition 3.30 (VerSel-IND Security for ABE). An ABE scheme ABE for a relation R = {Rλ : Xλ×Yλ → {0,1}}

satisfies VerSel-IND security if there exists a negligible function negl(·) such that for all PPT adversaries, we

have

Pr

b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b $← {0,1}; ({y i }i∈[Qkey], x∗,µ∗
0 ,µ∗

1) ←A(λ)

(mpk,msk) ← Setup(1λ)

{sky i ←KeyGen(msk, y i)}i∈[Qkey]

ct←Enc(mpk, x∗,µ∗
b)

b′ ←A(coinsA,mpk, {sky i }i∈[Qkey],ct)

≤ 1

2
+negl(λ) ,

where we require that R(x∗, y i) = 1 for all i ∈ [Qkey].

In the case of PE, the adversary A outputs two challenge attributes (x∗
0 , x∗

1) and the challenger computes ct←
Enc(mpk, x∗

b ,µ∗
b). Furthermore, we consider the notion of reusable VerSel-INDr security [AKY24b].

Definition 3.31 (Reusable VerSel-INDr Security for ABE). An ABE scheme ABE with two-stage encryption for

a relation R = {Rλ : Xλ ×Yλ → {0,1}} satisfies reusable VerSel-INDr security if there exists a negligible func-

tion negl(·) such that for all PPT adversaries, we have

Pr

b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b $← {0,1}; (coinsA, {y i }i∈[Qkey], {x j } j∈[Qatt],µ) ←A(λ)

(mpk,msk) ← Setup(1λ)

{sky i ←KeyGen(msk, y i)}i∈[Qkey]

(ctoff ,st) ←EncOff(mpk)

{ct j
on,0 ←EncOn(st, x j ,µ); ct j

on,1
$← CTon} j∈[Qatt]

b′ ←A(coinsA,mpk, {sky i }i∈[Qkey],ctoff , {ct j
on,b} j∈[Qatt])

≤ 1

2
+negl(λ) ,

where CTλ,on denotes the ciphertext space of EncOn. We require R(x j , y i) = 1 for i ∈ [Qkey] and j ∈ [Qatt].

We note that reusable VerSel-INDr security implies VerSel-IND security.

Policy Classes. In this work, we consider ABE with respect to the following relations. Recall that Cℓ (resp. T)

denotes the class of all unbounded depth circuits C : {0,1}ℓ→ {0,1} (resp. Turing machines).

• Key-Policy ABE for Circuits. KP-ABE for circuits is described by Xλ = {0,1}ℓ(λ), Yλ = Cℓ(λ) and the rela-

tion Rλ : Xλ×Yλ→ {0,1}, where Rλ(x,C) =C (x).

• Ciphertext-Policy ABE for Circuits. CP-ABE for circuits is described by Xλ = Cℓ(λ), Yλ = {0,1}ℓ(λ) and the

relation Rλ : Xλ×Yλ→ {0,1}, where Rλ(C ,x) =C (x).

• Key-Policy ABE for Turing Machines. KP-ABE for Turing machines is described by Xλ = {0,1}∗, Yλ = T
and the relation Rλ : Xλ×Yλ→ {0,1}, where

Rλ((1t ,x), M) =
0 if M accepts x in t steps ,

1 otherwise .

• Ciphertext-Policy ABE for Circuits. CP-ABE for Turing machines is described by Xλ = T , Yλ = {0,1}∗ and

the relation Rλ : Xλ×Yλ→ {0,1}, where

Rλ(M , (1t ,x)) =
0 if M accepts x in t steps ,

1 otherwise .

Fact 3.32 ([AKY24b]). Assuming LWE, pPRIO and FE with reusable VerSel-prCT security for bounded depth

circuits, there exist KP-ABE and CP-ABE schemes supporting unbounded depth circuits with master public keys,

secret keys and ciphertexts all of size poly(λ).

36

3.12 Registered Attribute-Based and Predicate Encryption

The definitions for RABE and RPE are nearly identical. We therefore give the formal definitions only for the

case of RABE and mention differences compared to RPE along the way.

Let M = {Mλ}λ∈N, X = {Xλ}λ∈N and Y = {Yλ}λ∈N be sequences of message, ciphertext attribute and key

attribute spaces, respectively. Furthermore, let R = {Rλ}λ∈N be a sequence of relations, where Rλ : Xλ×Yλ →
{0,1} for all λ ∈N.

Definition 3.33 (Syntax of RABE). A RABE scheme for message space M and relation R consists consists of six

efficient algorithms:

Setup(1λ) → crs: On input the security parameter 1λ and the maximum number of users 1L , this algorithm

outputs a common reference string crs.

Gen(crs,aux) → (pki ,ski): On input the crs and a state aux, this algorithm outputs a pair of a public and a secret

key (pki ,ski).

Reg(crs,aux,pk, y) → (mpk,aux′): On input the crs, a state aux, a public key pk and an attribute y ∈Yλ, this al-

gorithm outputs a master public key mpk and an updated state aux′. We require Reg to be deterministic.

Enc(mpk, x,µ) → ct: On input the master public key mpk, a public input x ∈ Xλ and a message µ ∈Mλ, this

algorithm outputs a ciphertext ct.

Update(crs,aux,pk) → hsk: On input the crs, a state aux and a public key pk, this algorithm outputs a helper

secret key hsk. We require Update to be deterministic.

Dec(sk,hsk, y,ct, x) →µ′∨⊥∨GetUpdate: On input a secret key sk, a helper secret key hsk, a registered at-

tribute y ∈ Yλ and a ciphertext ct with corresponding attribute x, this algorithm either outputs a mes-

sage µ ∈Mλ, or a special symbol ⊥ indicating decryption failure, or a special message GetUpdate indi-

cating an updated helper secret key is needed to decrypt the ciphertext. We require Dec to be determin-

istic. In the case of RPE, the algorithm does not take x as input.

We recall the definitions of correctness, compactness and update efficiency.

Definition 3.34 (Correctness, Compactness and Update Efficiency of RABE). Given a RABE scheme RABE and

a PPT adversary A, we define the experiment ExpRABE,A as follows:

• Setup. Run crs← Setup(1λ) and send crs to A. Initialize the auxiliary input aux :=⊥, two empty dictio-

naries E ,R and counters ireg, i∗reg, ienc := 1 to keep track of QRegNT, QRegT and QEnc queries. Let b = 0

and y∗,pk∗,sk∗,hsk∗ :=⊥.

• Query. Repeat the following for arbitrarily many rounds determined by A. The oracle QRegT can be

queried exactly once. In each round, A has four options.

– QRegNT(pk, y): upon A submitting a public key pk and an attribute y ∈ Yλ, run (mpk,aux′) ←
Reg(crs,aux,pk, y) and return (ireg,mpk,aux′) to A. Update R[ireg] := (mpk,aux′), aux := aux′ and

ireg := ireg+1.

– QRegT(y): uponA submitting a function y ∈Yλ, run (pk,sk) ←Gen(crs,aux), (mpk,aux′) ←Reg(crs,

aux,pk, y), hsk :=Update(crs,aux′,pk) and return (ireg,mpk,aux′,pk,sk,hsk) to A. Update R[ireg] :=
(mpk,aux′), aux := aux′, ireg := ireg+1 and i∗reg := ireg. Furthermore, set y∗ := y , pk := pk∗, sk := sk∗

and hsk := hsk∗,

– QEnc(j , x,µ): uponA submitting an index j ∈ [i∗reg; ireg], an attribute x ∈Xλ and a messageµ ∈Mλ,

retrieve (mpk,⋆) :=R[j], run ct← Enc(mpk, x,µ) and return (ienc,ct) to A. Set E[ienc] := (x,µ,ct)

and ienc := ienc+1.

37

– QDec(j): upon A submitting an index j ∈ [ienc], check if sk∗ =⊥ and return ⊥ in this case. Other-

wise, retrieve the tuple (x,µ,ct) := E[j] and run µ′ ←Dec(sk∗,hsk∗, y∗,ct, x). If µ′ =GetUpdate, run

hsk∗ ←Update(crs,aux,pk∗) and recompute µ′ ←Dec(sk∗,hsk∗, y∗,ct, x). Set b = 1 if µ ̸=µ′.

We say that RABE is

• correct if Pr[ExpRABE,A(1λ) → 0] = 1 for all PPT adversaries A,

• compact if |mpk|, |hsk| = poly(λ, logL) and |ct| = poly(λ, logL)+|µ| for RABE, |ct| = poly(λ, logL)+|µ|+|x|
for RPE at any stage during the execution of the experiment ExpRABE,A(1λ), and

• update efficient if the oracle QDec invokes Update at most O(log|R|) times and each invocation runs in

time poly(log|R|).

Security. We define selective IND-CPA security.

Definition 3.35 (Selective IND-Security of RABE). A RABE scheme RABE is said to be selectively IND-secure if

Exprabe-0
RABE,A(1λ) ≈c Exprabe-1

RABE,A(1λ) for all PPT adversariesA, where Exprabe-b
RABE,A for b ∈ {0,1} proceeds as follows.

• Setup. Run crs ← Setup(1λ,1L) and send crs to A. Initialize the auxiliary input aux := ⊥, the master

public key mpk :=⊥, a counter ireg := 0 to keep track of QRegHK queries, an empty set C :=∅ and empty

dictionaries D,R.

• Query. Repeat the following for arbitrarily many rounds determined by A. In each round, A has three

options.

– QRegCK(pk, y): upon A submitting a public key pk and an attribute y ∈ Yλ, run (mpk′,aux′) ←
Reg(crs,aux,pk, y) and return (mpk′,aux′) to A. Set mpk :=mpk′, aux := aux′, D[pk] :=D[pk]∪ {y}

and add pk to C.

– QRegHK(y): upon A submitting an attribute y ∈ Yλ, run (pk,sk) ← Gen(crs,aux), (mpk′,aux′) ←
Reg(crs,aux,pk, y) and return (ireg,mpk′,aux′,pk) to A. Set mpk := mpk′, aux := aux′, D[pk] :=
D[pk]∪ {y}, R[ireg] := (pk,sk) and ireg := ireg+1.

– QCorHK(j): upon A submitting an index j ∈ [ireg], retrieve (pk,sk) := R[j] and return sk to A.

Add pk to C.

• Challenge. The adversary submits a pair of attribute-messages (x0,µ0), (x1,µ1) ∈ Xλ×Mλ. Run ct∗ ←
Enc(mpk, xb ,µb) and return ct∗ to A. In the case of RABE, we have x0 = x1 = x∗.

• Guess. The adversary outputs a bit b′ ∈ {0,1}. The outcome of the experiment is b′ if R(x0, y) = R(x1, y) = 1

for all y ∈⋃
pk∈CD[pk]. Otherwise, the outcome is set to ⊥.

Hohenberger et al. [HLWW23] showed that the simpler slotted RABE primitive (Definition 5.1) can be generi-

cally upgraded to full-fledged RABE.

Fact 3.36. If there exists a Sel-IND-secure sRABE (sRPE) scheme for a message space Mλ and a relation R, then

there exists a Sel-IND-secure RABE (RPE) scheme for the same message space and the same relation.

3.13 Poly-Domain Obfuscation for Pseudorandom Functionalities

We recall the definition of poly-domain obfuscation for pseudorandom functionalities (pPRIO) as defined

in [AKY24c].

Definition 3.37. A pPRIO scheme supporting any poly-size circuit consists of the following algorithms:

Obf(1λ,C) → Ĉ : On input a (unary encoded) security parameter λ and a circuit C : [N] → [M] with size |C | ≤ S

for some arbitrary polynomial S = S(λ), it outputs an obfuscated circuit Ĉ . We consider that the Obf

algorithm can be decomposed into offline and online phases.

38

ObfOff(1λ,1S) → (Ĉoff ,st): On input a (unary encoded) security parameter λ and circuit size bound S, it

outputs Ĉoff and a state st.

ObfOn(st,C) → Ĉon: On input a state st and a circuit C , it outputs Ĉon.

With the above decomposition, the obfuscation algorithm outputs Ĉ := (Ĉoff ,Ĉon).

Eval(Ĉ , x) → y : On input an obfuscated circuit Ĉ and an input x ∈ [N], it outputs y ∈ [M].

We require a pPRIO scheme to satisfy the following correctness and security properites.

Definition 3.38 (Correctness). A pPRIO scheme is correct, if for all λ, N , M ∈N, for any C : [N] → [M], S = S(λ)

such that |C | ≤ S and every input x ∈ [N], we have

Pr
[
Eval(Ĉ , x) =C (x) | Ĉ := (Ĉoff ,Ĉon), (Ĉoff ,st) ←ObfOff(1λ,1S),Ĉon ←ObfOn(st,C)

]
= 1,

where the probability is taken over the random coins of the obfuscator Obf.

Definition 3.39 (Security). Let Samp be a PPT algorithm that on input 1λ, it outputs(
aux,1N1+···+NQ ,1S ,C1, . . . ,CQ

)
, where Ci : [Ni] → [Mi], |Ci | ≤ S, for all i ∈ [Q],

where we enforce Samp to output 1N1+···+NQ to make sure that all Ni are bounded by poly(λ). We then require

that

if
(
aux, {C1(i)}i∈[N1], . . . , {CQ (i)}i∈[NQ]

)≈c
(
aux, {∆1,i }i∈[N1], . . . , {∆Q,i }i∈[NQ]

)
then

(
aux,Ĉoff ,Ĉon,1, . . . ,Ĉon,Q

)≈c
(
aux,Ĉoff ,δ1

$← CT1, . . . ,δQ
$← CTQ

)
,

where

∆k,i
$← [Mk], for k ∈ [Q], i ∈ [Nk],

(Ĉoff ,st) ←ObfOff(1λ,1S),

Ĉon,k ←ObfOn(digk ,Ck) for k ∈ [Q],

and CTk denotes the set of binary strings of the same length as the output of ObfOn(st,Ck) algorithm.

Fact 3.40 ([AKY24c]). Assuming LWE and prFE, there exists a secure pPRIO scheme satisfying

|Ĉoff | = poly(S,λ), |Ĉon| = poly(S,λ),

where Ĉ := (Ĉoff ,Ĉon) ←Obf(1λ,C) for a circuit C : [N] → [M], whose size is bounded by S = S(λ).

3.14 Laconic Poly-Domain Obfuscation for Pseudorandom Functionalities

Below, we give our definition of laconic poly-domain pseudorandom obfuscation (laconic pPRIO) with global

setup. The definition of (plain) laconic pPRIO (as per [AKY24b]) can be obtained by dropping the setup algo-

rithm and replacing all occurrences of the CRS with 1λ.

Definition 3.41 (Laconic pPRIO (with Global Setup)). A laconic pPRIO scheme with global setup supporting

any poly-size circuit consists of the following algorithms:

Setup(1λ) → crs: On input a security parameter 1λ, it outputs a common reference string crs.

Digest(crs, X = {Xi }i∈[N]) → dig: On input a common reference string crs and an input space X of the form

X = {Xi ∈ {0,1}ℓin }i∈[N] for some ℓin = ℓin(λ) and N ∈ N (we assume that X encodes the information on

ℓin and N and one can retrieve them efficiently), it outputs a digest string dig.

39

Obf(crs,dig,C) → Ĉ : On input a common reference string crs, a digest string dig and a circuit C : {0,1}ℓin →
{0,1}ℓout of size |C | = S, it outputs an obfuscated circuit Ĉ . We decompose this algorithm into an offline

and an online phase.

ObfOff(crs,1S) → (Ĉoff ,st): On input a common reference string crs and circuit size S, it outputs Ĉoff

and a state st.

ObfOn(crs,st,dig,C) → Ĉon: On input a common reference string crs, a state st, a digest string dig and a

circuit C , it outputs Ĉon.

With the above decomposition, the obfuscation algorithm outputs Ĉ := (Ĉoff ,Ĉon).

Eval(crs, X ,Ĉ) → Y : On input a common reference string crs, input X = {Xi ∈ {0,1}ℓin }i∈[N] and obfuscated

circuit Ĉ , it outputs Y = {Yi ∈ {0,1}ℓout }i∈[N].

We require a laconic pPRIO with global to satisfy the following correctness, compactness and security proper-

ties.

Definition 3.42 (Correctness). A laconic pPRIO scheme with global setup is correct, if for all ℓin, N ∈N, for any

X = {Xi ∈ {0,1}ℓin }i∈[N] and C : {0,1}ℓin → {0,1}ℓout , such that |C | ≤ S, for an arbitrary polynomial S = S(λ), we

have

Pr

Eval(crs, X , (Ĉoff ,Ĉon)) = {C (Xi)}i∈[N]

∣∣∣∣∣∣∣∣∣∣∣∣

crs← Setup(1λ)

dig←Digest(crs, X = {Xi }i∈[N])

(Ĉoff ,st) ←ObfOff(crs,1S)

Ĉon ←ObfOn(crs,st,dig,C)

= 1

Definition 3.43 (Compactness). A laconic pPRIO with global setup scheme is compact, if for all ℓin, N ∈N, for

any X = {Xi ∈ {0,1}ℓin }i∈[N], crs ← Setup(1λ) and dig ← Digest(crs, X), it holds that |crs| = poly(λ) and |dig| =
poly(λ), i.e., the size of crs and dig are independent of N .

Definition 3.44 (Security). Let Samp be a PPT algorithm that on input (1λ,crs), it outputs(
aux,1S , X1 = {X1,i }i∈[N1], . . . , XQ = {XQ,i }i∈[NQ],C1, . . . ,CQ

)
,

where for all k ∈ [Q], i ∈ [Nk], Xk,i ∈ {0,1}ℓin,k , Ck : {0,1}ℓin,k → {0,1}ℓout,k and |Ck | ≤ S. We require that

if
(
aux,1S , {Xk }k∈[Q], {Ck (Xk,i)}k∈[Q],i∈[Nk]

)≈c
(
aux,1S , {Xk }k∈[Q], {∆k,i }k∈[Q],i∈[Nk]

)
then

(
aux,crs, {Xk }k∈[Q],Ĉoff , {Ĉon,k }k∈[Q]

)≈c
(
aux,crs, {Xk }k∈[Q],Ĉoff , {δk }k∈[Q]

)
,

where

• ∆k,i
$← {0,1}ℓout,k , for k ∈ [Q] and i ∈ [Nk],

• crs← Setup(1λ) and (Ĉoff ,st) ←ObfOff(crs,1S),

• digk ←Digest(crs, Xk) and Ĉon,k ←ObfOn(crs,digk ,Ck) for k ∈ [Q], and

• δk
$←Oon for k ∈ [Q], where Oon is the co-domain of ObfOn algorithm.

We recall the following about plain laconic pPRIO.

Fact 3.45 ([AKY24b]). Assuming LWE and prFE, there exists a secure laconic pPRIO scheme satisfying

|dig| =O(λ), |Ĉoff | = poly(S,λ), |Ĉon| = poly(S,λ),

where dig ← Digest(1λ, X = {Xi ∈ {0,1}ℓin }i∈[N]), Ĉ := (Ĉoff ,Ĉon) ← Obf(1λ,dig,C) for a circuit C : {0,1}ℓin →
{0,1}ℓout , whose size is bounded by S = S(λ).

40

In Section B, we give a construction of a laconic pPRIO scheme with global setup providing similar properties.

We will make use of the following lemma in our security proofs. Intuitively, the lemma states that if a

part of the auxiliary information is pseudorandom in the pre-condition, then it is also pseudorandom in the

corresponding post-condition. We give the statement in two variants, for plain laconic pPRIO and laconic

pPRIO with global setup .

Lemma 3.46. Let LprIO= (Setup ,Digest,Obf,Eval) be a plain laconic pPRIO scheme with global setup and

Samp be a PPT algorithm that takes as input (1λ, crs← Setup(1λ)) and outputs

(
aux= (aux1,aux2) ∈ {0,1}∗×S ,1S , X1 = {X1,i }i∈[N1], . . . , XQ = {XQ,i }i∈[NQ],C1, . . . ,CQ

)
for some set S , where for all k ∈ [Q], i ∈ [Nk], Xk,i ∈ {0,1}ℓin,k , Ck : {0,1}ℓin,k → {0,1}ℓout,k and |Ck | ≤ S. Let us

assume that (
(aux1,aux2),1S , {Xk }k∈[Q], {Ck (Xk,i)}k∈[Q],i∈[Nk]

)
≈c

(
(aux1, s),1S , {Xk }k∈[Q], {∆k,i }k∈[Q],i∈[Nk]

)
,

where s $← S , crs ← Setup(1λ) and ∆k,i
$← {0,1}ℓout,k for k ∈ [Q] and i ∈ [Nk]. Then the security of LprIO with

respect to Samp implies that(
(aux1,aux2), crs , {Xk }k∈[Q],Ĉoff , {Ĉon,k }k∈[Q]

)≈c
(
(aux1, s), crs , {Xk }k∈[Q],Ĉoff , {δk }k∈[Q]

)
,

where (Ĉoff ,st) ←ObfOff(crs ,1S), digk ←Digest(crs , Xk), Ĉon,k ←ObfOn(crs ,digk ,Ck) and δk
$←Oon for k ∈

[Q].

The statement for plain laconic pPRIO was proven in [AKY24b]. The proof for laconic pPRIO with global setup

can be obtained analogously and is therefore omitted.

4 prCT-Secure sRFE for Unbounded Depth Circuits and Turing Machines

4.1 Definition

Let {Xλ,pub}λ∈N, {Xλ,pri}λ∈N and {Yλ}λ∈N be sequences of public input spaces, private input spaces and output

spaces, respectively. We consider a functionality F = {Fλ}λ∈N where each Fλ contains functions fλ : Xλ,pub×
Xλ,pri →Yλ.

Definition 4.1 (Syntax of Slotted RFE (sRFE)). A sRFE scheme for the functionality F consists of five efficient

algorithms:

Setup(1λ,param) → crs. On input the security parameter 1λ and some parameter param specifying F , this al-

gorithm outputs a common reference string crs.

Gen(crs) → (pk,sk). On input the crs, this algorithm outputs a pair of a public and a secret key (pk,sk).

Agg(crs, (pki , fi)i∈[L]) → (mpk, {hski }i∈[L]). On input the crs and L pairs of the form (pki , fi) with fi ∈ Fλ, this

algorithm outputs a master public key mpk and L helper secret keys {hski }i∈[L]. We require Agg to be

deterministic.

Enc(mpk, xpub, xpri) → ct. On input the master public key mpk, a public input xpub ∈Xλ,pub and a private in-

put xpri ∈Xλ,pri, this algorithm outputs a ciphertext ct.

Dec(ski ,hski , fi ,ct, xpub) → y ∨⊥. On input a secret key ski with corresponding helper secret key hski and reg-

istered function fi as well as a ciphertext ctwith corresponding public input xpub, this algorithm outputs

a value y ∈Yλ or a special symbol ⊥ indicating failure. We require Dec to be deterministic.

41

Correctness. A sRFE scheme is correct if for all λ,L ∈N, i∗ ∈ [L], (xpri, xpub) ∈Xλ,pri×Xλ,pub and all { fi }i∈[L] ⊆
Fλ, it holds that

Pr

yi∗ = fi∗ (xpub, xpri)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

crs← Setup(1λ,param)

{(pki ,ski) ←Gen(crs)}i∈[L]

(mpk, {hski }i∈[L]) :=Agg(crs, {(pki , fi)}i∈[L])

ct←Enc(mpk, xpub, xpri)

yi∗ :=Dec(ski∗ ,hski∗ , fi∗ ,ct, xpub)

≥ 1−negl(λ),

where the probability is taken over the random coins of the algorithms Setup, Gen and Enc.

Compactness. A sRFE scheme is compact if for all λ,L ∈N and i ∈ [L], it holds that

|mpk| = poly(λ, logL) and |hski | = poly(λ, logL) .

Security. We define our security notion. At a high level, we require ciphertexts to be pseudorandom so long

as the output of the functionality itself is pseudorandom.

Definition 4.2 (Sel-prCT Security for sRFE). Given a sRFE scheme sRFE with ciphertext space CT = {CTλ}λ∈N,

an interactive PPT algorithm Samp and a PPT adversary A, we define Expxxx-yyy
sRFE,Samp,A, for xxx ∈ { pre , post }

and yyy ∈ {real,rand}, as follows.

• Setup. Launch Samp(1λ) and receive from it a challenge message (x∗
pub

, x∗
pri) ∈Xλ,pub×Xλ,pri. Run crs←

Setup(1λ,param) and send crs to Samp. Initialize an empty set C := ∅, an empty dictionary D and a

transcript recpre := x∗
pub recpost := (x∗

pub
,crs) .

• Query. Repeat the following for arbitrarily many rounds determined by Samp. In each round, Samp has

two options.

– QGen(): run (pk,sk) ←Gen(crs) and return pk to Samp. Set D[pk] := sk and recpost := recpost ∥ pk .

– QCor(pk): upon Samp submitting a public key pk, return D[pk] to Samp. Furthermore, add pk to C
and set recpost := recpost ∥ (pk,sk) .

• Challenge. Samp submits aux ∈ {0,1}∗ and L pairs {(pk∗i , fi)}i∈[L] with { fi }i∈[L] ⊆ Fλ and L ∈ N being

determined by Samp. Let Icor = {i ∈ [L] : pk∗i ∈ C} and Imal = {i ∈ [L] :D[pk∗i] =⊥}. Compute{
δ∗i := fi (x∗

pub, x∗
pri)

}
i∈Icor∪Imal

,
{
δ$

i
$←Yλ

}
i∈Icor∪Imal

,

(mpk, {hski }i∈[L]) ←Agg(crs, (pk∗i , fi)i∈[L]) ,

ct∗ ←Enc(mpk, x∗
pub, x∗

pri) , ct$ $← CTλ ,

in Exppre-real
sRFE,Samp,A: recpre := recpre ∥

(
aux, { fi }i∈[L], {δ∗i }i∈Icor∪Imal

)
,

in Exppre-rand
sRFE,Samp,A: recpre := recpre ∥

(
aux, { fi }i∈[L], {δ$

i }i∈Icor∪Imal

)
,

in Exppost-real
sRFE,Samp,A: recpost := recpost ∥

(
aux, {(pk∗i , fi)}i∈[L],ct

∗)
,

in Exppost-rand
sRFE,Samp,A: recpost := recpost ∥

(
aux, {(pk∗i , fi)}i∈[L],ct

$) .

• Guess. Run the adversary A on input (1λ, recpre recpost) whose output b ∈ {0,1} is also the outcome of

the experiment.

42

For xxx ∈ {pre,post}, we define the advantage function

AdvxxxsRFE,Samp,A(λ) :=
∣∣∣Pr

[
Expxxx-real

sRFE,Samp,A(1λ) → 1
]
−Pr

[
Expxxx-rand

sRFE,Samp,A(1λ) → 1
]∣∣∣ .

The sRFE scheme sRFE is said to be Sel-prCT secure if for every PPT adversary Apost, there exists another PPT

adversary Apre such that

Advpre
sRFE,Samp,Apre

(λ) ≥ Advpost
sRFE,Samp,Apost

(λ)/poly(λ)−negl(λ)

and Time(Apre) ≤Time(Apost) ·poly(λ).

Two-Stage Encryption. For some of our constructions, we are not able to prove full Sel-prCT security as per

Definition 4.2. We therefore introduce a slightly weaker security notion that applies to sRFE schemes with

a special syntax and is still strong enough for our applications. A sRFE scheme is said to have two-stage en-

cryption if the algorithm Enc(mpk, xpub, xpri) → ct can be decomposed into two efficient algorithms with the

following syntax

EncOff(mpk) → (ctoff ,st)

EncOn(st, xpub, xpri) → cton

such that ct = (ctoff ,cton). We define a relaxed security for sRFE schemes with two-stage encryption algo-

rithms, where we only require the online part of ciphertexts to be pseudorandom. Intuitively, this is enough

because the offline part is generated without knowledge of (xpub, xpri), thus it cannot leak any secret even if it

is not pseudorandom.

Definition 4.3 (Two-Stage Sel-prCT Security for sRFE). Given a sRFE scheme sRFE, we let {CTλ,off }λ∈N and

{CTλ,on}λ∈N denote the offline and online parts of sRFE’s ciphertext space {CTλ}λ∈N, i.e., CTλ = CTλ,off ×CTλ,on

for all λ ∈ N. We say that sRFE is two-stage Sel-prCT secure if it satisfies Sel-prCT security as per Defi-

nition 4.2 except for the following modification in the challenge phase Exppost-rand
sRFE,Samp,A: instead of directly

sampling ct$ $← CTλ, the challenger in the two-stage variant of the game runs (ctoff ,st) ← EncOff(mpk), sam-

ples ct$
on

$← CTλ,on and sets ct$:= (ctoff ,ct$
on).

We note that (full-fledged) Sel-prCT security implies two-stage Sel-prCT security with a trivial EncOff algo-

rithm that outputs ctoff =⊥.

4.2 Construction for Bounded Depth Circuits

We construct a Sel-prCT secure sRFE scheme for the class Cℓpri,ℓdep,ℓout = {C : Xpub×Xpri → Y} containing all

circuits with public input space Xpub = {0,1}0 = {ε} (i.e., ℓpub = 0), private input space Xpri = {0,1}ℓpri , output

space Y = {0,1}ℓout and depth at most ℓdep. For notational convenience, we will view a circuit C ∈ Cℓpri,ℓdep,ℓout

as a function C : Xpri → Y and omit the public input xpub to the algorithms Enc and Dec. We denote the

parameters representing the supported class of circuits by param= (1ℓpri ,1ℓout ,1ℓdep).

Looking ahead, this basic construction will serve as the main building block for our Sel-prCT secure sRFE

schemes supporting unbounded depth circuits and Turing machines (Constructions 4.8 and 4.11).

Construction 4.4 (Sel-prCT secure sRFE for Bounded Depth Circuits). The construction uses the following

building blocks:

• A pPRIO scheme pPRIO= pPRIO.(Obf,Eval) for polynomial-size circuits. We can build pPRIO assuming

prFE and LWE (Fact 3.40).

• Two pseudorandom functions

PRFcoins : {0,1}λ× [2λ] → {0,1}λ

PRFnoise : {0,1}λ× [2λ] → [−q/4+B ; q/4−B]ℓout

43

that can both be evaluated by a circuit of depth at most ℓdep(λ) = poly(λ). PRFs can be constructed from

one-way functions.

The details of the sRFE scheme for Cℓpri,ℓdep,ℓout are as follows.

Setup(1λ,param): Let ℓX = (ℓpri +λ)mn⌈log q⌉. Sample Aatt
$← Z

n×(ℓX+1)m
q , Auser,B0,B1,D $← Zn×m

q and out-

put crs := (Aatt,Auser,B0,B1,D).

Gen(crs): Sample K $← {0,1}m×ℓout , compute U = AuserK and output the key pair (pk := U,sk := K).

Agg(crs, {(pki ,Ci)}i∈[L]): We assume that L = 2ℓ for some integer ℓ ∈N.9 For i ∈ [L], define the encoding circuit

E [i ,Ci] : {0,1}ℓpri × {0,1}λ→Z
ℓout
q as

E [i ,Ci](x,sdnoise) =Ci (x) · ⌊q/2⌉+PRFnoise(sdnoise, i) .

Then run

VEvalE [i ,Ci] ←MakeVEvalCkt(n,m, q,E [i ,Ci]) , HE [i ,Ci]
Aatt

←MEvalC(Aatt,VEvalE [i ,Ci]) ,

and compute Ybits(i) = AE [i ,Ci] + DG−1(Ui), where bits(i) ∈ {0,1}ℓ denotes the bit decomposition of i

and AE [i ,Ci] = Aatt ·HE [i ,Ci]
Aatt

. Given a string str ∈ {0,1}ℓ, we denote the prefix of length j ∈ [0;ℓ] by str1: j . In

particular, str1:0 denotes the empty string ε. For j = ℓ−1, . . . ,0 and str ∈ {0,1} j , compute

Ystr = B0G−1(Ystr∥0)+B1G−1(Ystr∥1) .

Output mpk := (crs,Yε,ℓ) and hski := {Ybits(i)1: j−1∥b} j∈[ℓ],b∈{0,1} for all i ∈ [L].

Enc(mpk, xpri = x ∈ {0,1}ℓpri): Sample sdcoins,sdnoise
$← {0,1}λ, then compute and output ct := Ĉenc as

Ĉenc ← pPRIO.Obf(1λ,Cenc[mpk,x,sdcoins,sdnoise]) ,

where the circuit Cenc[mpk,x,sdcoins,sdnoise] is defined in Figure 3.

Dec(ski∗ ,hski∗ ,Ci∗ ,ct): Parse ski∗ = Ki∗ , hski∗ = {Ybits(i∗)1: j−1∥b} j∈[ℓ],b∈{0,1} and ct= Ĉenc. Run(
{c j } j∈[0;ℓ],catt,cuser,X

)← pPRIO.Eval(Ĉenc, i∗) , HE [i∗,Ci∗]
Aatt,X ←MEvalCX(Aatt,VEvalE [i∗,Ci∗],X) ,

where E [i∗,Ci∗] is defined as in Agg. Compute

z = c0 +
∑

j∈[ℓ]
c⊤j

G−1(Ybits(i∗)1: j−1∥0)

G−1(Ybits(i∗)1: j−1∥1)

+c⊤att

HE [i∗,Ci∗]
Aatt,X

G−1(Ui∗)

+c⊤userKi∗ .

For j ∈ [ℓout], set y j = 0 if z[j] ∈ [−q/4; q/4−1], and y j = 1 otherwise. Output y = (y1, . . . , yℓout).

Parameters. We set the parameters of the construction as follows.

β= ℓpri ·ℓout ·2O(ℓdep log q) , q = 28λβ , n = poly(λ,ℓdep) , m =O(n log q) ,

B = 26λβ , σ0 = 24λβ , σ1 = 22λ .

Proposition 4.5 (Correctness and Compactness). The sRFE scheme for the circuit class Cℓpri,ℓdep,ℓout in Construc-

tion 4.4 is correct and compact. Specifically, it has the following parameters:

|crs| = ℓpri ·poly(ℓdep,λ) , |mpk| = loglogL+ (ℓpri+ℓout) ·poly(ℓdep,λ) ,

|hski | = logL ·ℓout ·poly(ℓdep,λ) , |ct| = (logL+ℓpri+ℓout) ·poly(ℓdep,λ) .

Proposition 4.6 (Security). Let pPRIO (Definition 3.39),PRFcoins andPRFnoise be secure. Then the sRFE scheme

in Construction 4.4 is Sel-prCT secure assuming LWE.

The proofs of Propositions 4.5 and 4.6 are provided in Sections 4.3 and 4.4.

9This assumption is without loss of generality as we can always “pad” the remaining slots to the next power of 2 with dummy users.

Specifically, for all i ∈ [L +1;2⌈logL⌉] we can set pki = Ui := 0n×ℓout and let Ci (x) be a pseudorandom function PRFdummy(sd ∈ {0,1}λ, i ∈
[2λ]) → {0,1}ℓout . During the security proof, we can treat these dummy slots as part of the malicious slots, i.e., [L+1;2⌈logL⌉] ⊆Imal.

44

Input: a slot index i ∈ [L]

Output: a ciphertext ct= ({c j } j∈[0;ℓ],catt,cuser,X)

Hardwired Values: • a master public key mpk= (crs= (Aatt,Auser,B0,B1,D),Yε,ℓ)

• an input vector x ∈ {0,1}ℓpri

• PRF seeds sdcoins,sdnoise ∈ {0,1}λ

• Compute R =PRFcoins(sdcoins, i) ∈ {0,1}λ and run the subroutine Sample(R) defined below. Note

that random coins R of fixed length λ are sufficient since we can use a PRF to derive longer

(pseudo-)random coins if needed. Sample(R) does the following.

– Sample Āfhe
$←Z

(n−1)×m
q and R $← {0,1}m×(ℓpri+λ)m .

– Sample {s j
$←Zn

q } j∈[0;ℓ+1]\{ℓ} and s̄ $←Zn−1
q . Set s⊤

ℓ
= (s̄⊤,−1) ∈Zn

q .

– Sample e0 ←Dℓout
Z,σ0

, {e j ←D2m
Z,σ1

} j∈[ℓ], eatt ←Dm(ℓX+2)
Z,σ1

, euser ←Dm
Z,σ1

and efhe ←Dm
Z,σ1

.

– Output (Āfhe,R, {s j } j∈[0;ℓ+1], {e j } j∈[0;ℓ],eatt,euser,efhe).

• Compute a GSW encryption X of x as

Afhe =

 Āfhe

s̄⊤Āfhe+e⊤
fhe

 , X = AfheR− (x⊤,sd⊤noise)⊗G .

Note. The value ℓX defined in Setup corresponds to the bit length of X.

• Let (β1, . . . ,βℓ) = bits(i) ∈ {0,1}ℓ be the bit representation of i and denote β̄ j = 1−β j for j ∈ [ℓ].

Compute

c⊤0 = s⊤0 Yε+e⊤0{
c⊤j =−s⊤j−1(B0 ∥ B1)+s⊤j

(
β̄ j ·G ∥β j ·G

)+e⊤j
}

j∈[ℓ]

c⊤att =−s⊤ℓ (Aatt−bits(1,X)⊗G ∥ D)+s⊤ℓ+1(0n×(ℓX+1)m ∥ G)+e⊤att
c⊤user =−s⊤ℓ+1Auser+e⊤user .

• Output (X, {c j } j∈[0;ℓ],catt,cuser).

Figure 3: Definition of the circuit Cenc[mpk,x,sdcoins,sdnoise] in Construction 4.4

4.3 Proof of Correctness and Compactness

Proof of Proposition 4.5. We argue that Construction 4.4 is correct and compact.

Correctness. Let λ,L ∈N, i∗ ∈ [L], {Ci }i∈[L] ⊆ Cℓpri,ℓdep,ℓout and x ∈ {0,1}ℓpri . Then we have

crs := (Aatt,Auser,B0,B1,D) ← Setup(1λ,param){
(pki := Ui ,ski := Ki) ←Gen(crs)

}
i∈[L](

mpk := (crs,Yε,ℓ),{
hski := {Ybits(i)1: j−1∥b} j∈[ℓ],b∈{0,1}

}
i∈[L]

)
←Agg(crs, (pki ,Ci)i∈[L])

ct= Ĉenc ← pPRIO.Obf(1λ,Cenc[mpk,x,sdcoins,sdnoise]) .

Here, Yε is derived as follows. First, define E [i ,Ci](x,sdnoise) =Ci (x) · ⌊q/2⌉+PRFnoise(sdnoise, i), run

VEvalE [i ,Ci] ←MakeVEvalCkt(n,m, q,E [i ,Ci]) , HE [i ,Ci]
Aatt

←MEvalC(Aatt,VEvalE [i ,Ci]) ,

45

and set AE [i ,Ci] = Aatt ·HE [i ,Ci]
Aatt

and Ybits(i) = AE [i ,Ci] +DG−1(Ui). Then, for j = ℓ− 1, . . . ,0 and str ∈ {0,1} j , re-

cursively compute Ystr = B0G−1(Ystr∥0)+B1G−1(Ystr∥1). Decryption starts by computing pPRIO.Eval(Ĉenc, i∗)

which, according to the definition of the circuit Cenc[mpk,x,sdcoins,sdnoise] and by the correctness of pPRIO,

yields ({c j } j∈[0;ℓ],catt,cuser,X) as follows:

X =

 Afhe

s⊤
ℓ

Afhe+e⊤
fhe

R− (x⊤,sd⊤noise)⊗G

c⊤0 = s⊤0 Yε+e⊤0{
c⊤j =−s⊤j−1(B0 ∥ B1)+s⊤j

(
β̄ j ·G ∥β j ·G

)+e⊤j
}

j∈[ℓ]

c⊤att =−s⊤ℓ (Aatt−bits(1,X)⊗G ∥ D)+s⊤ℓ+1(0n×(ℓX+1)m ∥ G)+e⊤att
c⊤user =−s⊤ℓ+1Auser+e⊤user ,

where

• Āfhe
$←Z

(n−1)×m
q and R $← {0,1}m×(ℓpri+λ)m ,

• {s j
$←Zn

q } j∈[0;ℓ+1]\{ℓ}, s̄ $←Zn−1
q and s⊤

ℓ
= (s̄⊤,−1) ∈Zn

q ,

• e0 ←Dℓout
Z,σ0

, {e j ←D2m
Z,σ1

} j∈[ℓ], eatt ←Dm(ℓX+2)
Z,σ1

, euser ←Dm
Z,σ1

and efhe ←Dm
Z,σ1

.

Let (β1, . . . ,βℓ) = bits(i∗) ∈ {0,1}1×ℓ. Decryption computes

z = c0 +
∑

j∈[ℓ]
c⊤j

G−1(Ybits(i∗)1: j−1∥0)

G−1(Ybits(i∗)1: j−1∥1)

︸ ︷︷ ︸

z j

+c⊤att

HE [i∗,Ci∗]
Aatt,X

G−1(Ui∗)

︸ ︷︷ ︸

zatt

+c⊤userKi∗︸ ︷︷ ︸
zuser

.

Analyzing the terms, we can observe for j ∈ [ℓ] that

z j =
(−s⊤j−1(B0 ∥ B1)+s⊤j

(
β̄ j ·G ∥β j ·G

)+e⊤j
)G−1(Ybits(i∗)1: j−1∥0)

G−1(Ybits(i∗)1: j−1∥1)

=−s⊤j−1Ybits(i∗)1: j−1
+s⊤j Ybits(i∗)1: j−1∥β j

+e⊤j

G−1(Ybits(i∗)1: j−1∥0)

G−1(Ybits(i∗)1: j−1∥1)

︸ ︷︷ ︸

ê⊤j

,

where we use the fact that β̄ j Ybits(i∗)1: j−1∥0 +β j Ybits(i∗)1: j−1∥1 = Ybits(i∗)1: j−1∥β j
. Furthermore, we have that

zatt =
(−s⊤ℓ (Aatt−bits(1,X)⊗G ∥ D)+s⊤ℓ+1(0n×(ℓX+1)m ∥ G)+e⊤att

)HE [i∗,Ci∗]
Aatt,X

G−1(Ui∗)

=−s⊤ℓ
(
(Aatt−bits(1,X)⊗G)HE [i∗,Ci∗]

Aatt,X +DG−1(Ui∗)
)+s⊤ℓ+1Ui∗ +e⊤att

HE [i∗,Ci∗]
Aatt,X

G−1(Ui∗)

︸ ︷︷ ︸

ê⊤att

=−s⊤ℓ
(
AattHE [i∗,Ci∗]

Aatt︸ ︷︷ ︸
AE [i∗ ,Ci∗]

− VEvalE [i∗,Ci∗](bits(X))︸ ︷︷ ︸
=AfheRE [i∗ ,Ci∗]−

[
0(n−1)×ℓout

E [i∗,Ci∗](x,sdnoise)

]+DG−1(Ui∗)
)+s⊤ℓ+1Ui∗ + ê⊤att

=−s⊤ℓ AE [i∗,Ci∗] +E [i∗,Ci∗](x,sdnoise)+e⊤fheRE [i∗,Ci∗] −s⊤ℓ DG−1(Ui∗)+s⊤ℓ+1Ui∗ + ê⊤att

46

=−s⊤ℓ Ybits(i∗) +Ci∗ (x)⌊q/2⌉+PRFnoise(sdnoise, i∗)+s⊤ℓ+1Ui∗ +e⊤fheRE [i∗,Ci∗] + ê⊤att .

Finally, it is straightforward to see that

zuser = (−s⊤ℓ+1Auser+e⊤user)Ki∗ =−s⊤ℓ+1Ui∗ +e⊤userKi∗︸ ︷︷ ︸
ê⊤user

.

Putting all together, we obtain that

z =Ci∗ (x)⌊q/2⌉+PRFnoise(sdnoise, i∗)+e⊤0 + ∑
j∈[ℓ]

ê⊤j +e⊤fheRE [i∗,Ci∗] + ê⊤att+ ê⊤user︸ ︷︷ ︸
e⊤

.

We note that if ∥e∥ ≤ B , then ∥PRFnoise(sdnoise, i∗)∥+∥e∥ < (q/4−B)+B = q/4 and Dec would output Ci∗ (x)

correctly. Hence, it suffices to show that ∥e∥ ≤ B with probability at least 1−negl(λ). To do so, we first bound

the norms of RE [i∗,Ci∗] and HE [i∗,Ci∗]
Aatt,X . By Lemma 3.9, we have that∥∥RE [i∗,Ci∗]

∥∥≤ (m +2)ℓdep⌈log q⌉ ·m ≤ (m +2)ℓdepO(log q) ≤β . (11)

To bound the norm of HE [i∗,Ci∗]
Aatt,X , we recall again from Lemma 3.9 that the depth of VEvalE [i∗,Ci∗] is bounded by

d ≤ ℓdep ·O(logm loglog q)+O(log2 log q). Plugging this into the norm bound of Lemma 3.10 gives∥∥HE [i∗,Ci∗]
Aatt,X

∥∥≤ (m +2)d ⌈log q⌉ ≤ 2ℓdep·O(logλ) ≤β . (12)

Then a standard calculation using the Gaussian tail bound (Lemma 3.5) shows that with probability at least

1−negl(λ), we have

∥ê1∥, . . . ,∥êℓ∥,∥êuser∥,∥eatt∥,∥efhe∥ ≤σ1β= 22λβ and ∥ê0∥ ≤σ0β= 24λβ . (13)

This implies that ∥e∥ < 26λβ= B as desired.

Compactness. From our parameter setting, we have n,m = poly(ℓdep,λ) and ℓX = ℓpri ·poly(ℓdep,λ). Ana-

lyzing the dimensions of the components of crs, we can immediately observe that |crs| = ℓpri ·poly(ℓdep,λ).

Since mpk = (crs,Yε,ℓ) additionally contains Yε ∈ Zn×ℓout
q and ℓ = logL, we have that |mpk| = (ℓpri + ℓout) ·

poly(ℓdep,λ)+ logℓ. Similarly, the size of hski = {Ybits(i)1: j−1∥b ∈ Zn×ℓout
q } j∈ℓ,b∈{0,1} is ℓ ·ℓout ·poly(ℓdep,λ). Fi-

nally, our instantiation of pPRIO (see Fact 3.40) guarantees that |ct| = poly(S,λ), where S is a bound on the size

of the circuit Cenc[mpk,x,sdcoins,sdnoise] which is obfuscated during encryption. Analyzing the computations

performed by this circuit, we can observe that S = (ℓ+ℓpri+ℓout) ·poly(ℓdep,λ), where

• the factor ℓ ·poly(ℓdep,λ) is induced by the ℓ ciphertexts {c j } j∈[ℓ] of size poly(ℓdep,λ) each,

• the factor ℓpri ·poly(ℓdep,λ) stems from the computation of catt ∈Zm(ℓX+2)
q (to see this, we recall that ℓX =

ℓpri ·poly(ℓdep,λ)), and

• the factor ℓout ·poly(ℓdep,λ) appears during the computation of c0 ∈Zℓoutq .

4.4 Proof of Security

Proof of Proposition 4.6. Let sRFE denote the sRFE scheme in Construction 4.4. Consider a PPT sampler Samp

in the security game Exppost-real
sRFE,Samp,Apost

. We recall this game to fix notations.

• Setup. Launch Samp(1λ) and receive from it a challenge message (x∗
pub

= ⊥, x∗
pri = x). Sample Aatt

$←
Z

n×(ℓX+1)m
q , Auser,B0,B1,D $← Zn×m

q and send crs = (Aatt,Auser,B0,B1,D) to Samp. Initialize an empty

set C :=∅, an empty dictionary D and a transcript recpost := crs.

47

• Query. Repeat the following for arbitrarily many rounds determined by Samp. In each round, Samp has

two options.

– QGen(): sample K $← {0,1}m×ℓout , compute U = AuserK and return pk := U to Samp. Set D[pk] = sk :=
K and recpost := recpost ∥ pk.

– QCor(pk): upon Samp submitting a public key pk, return D[pk] to Samp. Furthermore, add pk to C
and set recpost := recpost ∥ (pk,sk).

• Challenge. Samp submits aux ∈ {0,1}∗ and {(pk∗i ,Ci)}i∈[L]. Parse pk∗i = Ui . For i ∈ [L], define the encoding

circuit E [i ,Ci] : {0,1}ℓpri × {0,1}λ→Z
ℓout
q as

E [i ,Ci](x,sdnoise) =Ci (x) · ⌊q/2⌉+PRFnoise(sdnoise, i) .

Then run

VEvalE [i ,Ci] ←MakeVEvalCkt(n,m, q,E [i ,Ci])

HE [i ,Ci]
Aatt

←MEvalC(Aatt,VEvalE [i ,Ci])

and compute Ybits(i) = Aatt ·HE [i ,Ci]
Aatt

+DG−1(Ui). For j = ℓ−1, . . . ,0 and str ∈ {0,1} j , let

Ystr = B0G−1(Ystr∥0)+B1G−1(Ystr∥1) .

Define mpk := (crs,Yε,ℓ), sample sdcoins,sdnoise
$← {0,1}λ and compute ct∗ := Ĉenc as follows

Ĉenc ← pPRIO.Obf(1λ,Cenc[mpk,x,sdcoins,sdnoise]) ,

where Cenc[mpk,x,sdcoins,sdnoise] is defined in Figure 3. Set recpost := recpost ∥ (aux, {(pk∗i ,Ci)}i∈[L],ct∗).

• Guess. Run the adversary Apost on input (1λ,recpost) whose output b ∈ {0,1} is also the outcome of the

experiment.

Let Icor = {i ∈ [L] : pk∗i ∈ C} and Imal = {i ∈ [L] :D[pk∗i] =⊥}. We need to show that if(
aux, {Ci }i∈[L], {δ∗i :=Ci (x)}i∈Icor∪Imal

)≈c
(
aux, {Ci }i∈[L], {δ$

i
$← {0,1}ℓout }i∈Icor∪Imal

)
, (14)

then Exppost-real
sRFE,Samp,Apost

≈c Exppost-rand
sRFE,Samp,Apost

, where Exppost-rand
sRFE,Samp,Apost

proceeds in the same fashion as the

experiment Exppost-real
sRFE,Samp,Apost

recalled above except that it replaces ct∗ with a random element ct$ $←O. Here,

O denotes the set of all binary strings having the same length as the output of the algorithm pPRIO.Obf(1λ,

Cenc[mpk,x,sdcoins,sdnoise]).

We invoke the security of pPRIO with respect to a sampler SamppPRIO(1λ) which works as follows. First, it

simulates the setup, query and challenge phase of Exppost-real
sRFE,Samp,Apost

. Upon Samp submitting aux and tuples

{(pk∗i ,Ci)}i∈[L], SamppPRIO outputs(
1L ,1S ,auxpPRIO := (aux,rec′post),Cenc[mpk,x,sdcoins,sdnoise]

)
where 1S is an upper bound on the size of Cenc[mpk,x,sdcoins,sdnoise] and rec′post is the same as recpost except

that it does not contain the last component ct∗. Under the security of pPRIO, it suffices to show that(
auxpPRIO, {∆∗

i :=Cenc[mpk,x,sdcoins,sdnoise](i)}i∈[L]
)≈c

(
auxpPRIO, {∆$

i
$← CT }i∈[L]

)
, (15)

where CT = Z
n×(ℓpri+λ)m
q ×Z1×ℓout

q × (Z1×2m
q)ℓ ×Z1×m(ℓX+2)

q ×Z1×m
q denotes the output space of the encryp-

tion circuit Cenc[mpk,x,sdcoins,sdnoise]. More specifically, we parse the image Cenc[mpk,x,sdcoins,sdnoise](i) as

48

(Xi ,ci ,0, {ci , j } j∈[ℓ],ci ,att,ci ,user), where

Xi = Ai ,fheRi − (x⊤,sd⊤noise)⊗G ∈Zn×(ℓpri+λ)m
q

c⊤i ,0 = s⊤i ,0Yε+e⊤i ,0 ∈Z1×ℓout
q{

c⊤i , j =−s⊤i , j−1(B0 ∥ B1)+s⊤i , j

(
β̄i , j ·G ∥βi , j ·G

)+e⊤i , j ∈Z1×2m
q

}
j∈[ℓ]

c⊤i ,att =−s⊤i ,ℓ(Aatt−bits(1,Xi)⊗G ∥ D)+s⊤i ,ℓ+1(0n×(ℓX+1)m ∥ G)+e⊤i ,att ∈Z1×m(ℓX+2)
q

c⊤i ,user =−s⊤i ,ℓ+1Auser+e⊤i ,user ∈Z1×m
q .

Here, we parse the output ofSample(Ri) as (Āi ,fhe,Ri , {si , j } j∈[0;ℓ+1], {ei , j } j∈[0;ℓ],ei ,att,ei ,user,ei ,fhe) ← Sample(Ri)

when run on input Ri =PRF(sdcoins, i), and Ai ,fhe is computed as

Ai ,fhe =

 Āi ,fhe

s̄⊤i Āi ,fhe+e⊤
i ,fhe

 ,

where s⊤i ,ℓ = (s̄⊤i ,−1). We show Equality (15) via the following sequence of hybrids.

Game G0: This is the L.H.S. distribution of Equation (15). Note that this distribution is the result of an inter-

active game between SamppPRIO and Samp.

Game G1: This is the same as G0 except that we sample R1, . . . ,RL
$← {0,1}λ. Since sdcoins is not used anywhere

else, it follows from the security of PRFcoins that G0 ≈c G1.

Game G2: This is the same as G1 except that, for all i ∈ [L], we compute c⊤i ,0 as follows

c⊤i ,0 =− ∑
j∈[ℓ]

c⊤i , j Vi , j −c⊤i ,attVi ,att+s⊤i ,ℓ+1Ui +Ci (x)⌊q/2⌉+PRFnoise(sdnoise, i)+e⊤i ,0 ,

where

Vi , j =

G−1(Ybits(i)1: j−1∥0)

G−1(Ybits(i)1: j−1∥1)

 , Vi ,att =

 HE [i ,Ci]
Aatt,X

G−1(Ui)

 .

We have G1 ≈s G2. First, let us recall from the proof of correctness (Proposition 4.5) that the overall noise

term in −∑
j∈[ℓ] c⊤i , j Vi , j −c⊤i ,attVi ,att is

(e′)⊤ :=− ∑
j∈[ℓ]

e⊤i , j Vi , j −e⊤i ,attVi ,att−e⊤i ,fheRE [i ,Ci] .

Using the same analysis as in Equations (11), (12) and (13) from the correctness proof, we conclude

that with probability at least 1−negl(λ), we have that ∥e′∥ ≤ σ1β = 22λβ. Then G1 ≈s G2 follows from

the smudging lemma (Lemma 3.6) and the fact that e0 is sampled from a distribution with Gaussian

parameter σ0 = 24λβ.

Game G3: This is the same as G2 except that we sample c⊤i , j
$←Z1×2m

q for all i ∈ [L] and j ∈ [ℓ]. To argue G2 ≈c

G3, we define a sequence of intermediate hybrids G2, j for j ∈ [0;ℓ], where G2, j is the same as G2 except

that we sample c⊤i , j ′
$← Z1×2m

q for (i , j ′) ∈ [L]× [j]. It is not hard to see that G2,0 ≡ G1 and G2,ℓ ≡ G2.

Furthermore, it holds that G2, j−1 ≈c G2, j for j ∈ [ℓ]. This immediately follows from the LWE assumption

which implies that

c⊤i , j =−s⊤i , j−1(B0 ∥ B1)+e⊤i , j

is pseudorandom.

49

Game G4: This is the same as G3 except that we sample Ai ,fhe
$← Zn×m

q and ci ,att
$← Z

m(ℓX+2)
q for all i ∈ [L].

To prove G3 ≈c G4, we define a sequence of intermediate hybrids G3,i for i ∈ [0;L], where G3,i is the

same as G3 except that for i ′ ∈ [i], we sample Ai ′,fhe
$← Zn×m

q and ci ′,att
$← Z

m(ℓX+2)
q . It is not hard to see

that G3,0 ≡G3 and G3,L ≡G4. Below, we prove the following claim for all i ∈ [L].

Claim 4.7. Assuming the hardness of LWE, we have that G3,i−1 ≈c G3,i .

Game G5: This is the same as G4 except that we sample Xi
$← Z

n×(ℓpri+λ)m
q for all i ∈ [L]. We have G4 ≈s G5

which can be seen as follows. From the leftover hash lemma (Lemma 3.4), it follows for all i ∈ [L] that the

statistical distance between Ai ,fheRi and a uniform matrix Mi
$← Z

n×(ℓpri+λ)m
q is negligible. This implies

that the statistical distance between Ai ,fheRi −(x⊤,sd⊤noise)⊗G and Mi is negligible as adding independent

terms does not make the task of distinguishing the two distributions any easier.

Game G6: Recall that for all i ∈ Ihon := [L] \ (Icor∪Imal), we have Ki =D[Ui] ̸= ⊥ satisfying AuserKi = Ui . The

game G6 is the same as G5 except that we compute

c⊤i ,0 =− ∑
j∈[ℓ]

c⊤i , j Vi , j −c⊤i ,attVi ,att− c⊤i ,userKi +Ci (x)⌊q/2⌉+PRFnoise(sdnoise, i)+e⊤i ,0

for all i ∈ Ihon. Using the Gaussian tail bound (Lemma 3.5), we note that the noise term in c⊤i ,userKi

is bounded by ∥e⊤i ,userKi∥ ≤ σ0β = 22λβ with probability at least 1− negl(λ). Then it follows from an

application of the smudging lemma (Lemma 3.6) that G5 ≈s G6, where we recall that e0 is sampled from

a distribution with Gaussian parameter σ0 = 24λβ.

Game G7: This is the same as G6 except that we sample ci ,user
$←Zm

q for all i ∈ Ihon. We have G6 ≈c G7 assum-

ing the hardness of LWE.

Game G8: This is the same as G7 except that we sample ci ,0
$← Z

ℓout
q for all i ∈ Ihon. An application of the

leftover hash lemma (Lemma 3.4) yields Auser

c⊤i ,user

 ·Ki ≈s

Ui

u⊤
i

 ,

where Ui
$←Z

n×ℓout
q and ui

$←Z
ℓout
q . Thus, we have that G7 ≈s G8.

Game G9: This is the same as G8 except that for i ∈ Icor∪Imal, we compute

c⊤i ,0 =− ∑
j∈[ℓ]

c⊤i , j Vi , j −c⊤i ,attVi ,att+s⊤i ,ℓ+1Ui +Ci (x)⌊q/2⌉+ R ′
i +e⊤i ,0 ,

where R ′
i

$← [−q/4+B ; q/4−B]1×ℓout instead of R ′
i = PRFnoise(sdnoise, i). Since sdnoise is not used any-

where else, it follows from the security of PRFnoise that G8 ≈c G9.

Game G10: This is the same as G9 except that we sample R ′
i

$← [−q/4; q/4]1×ℓout instead of R ′
i

$← [−q/4 +
B ; q/4−B]1×ℓout for i ∈ Icor ∪Imal. We claim that G9 ≈s G10. To see this, we note that the statistical

distance between the uniform distributions on [−q/4+B ; q/4−B] and [−q/4; q/4] is

1

2

(
(q/2−2B) ·

∣∣∣∣ 1

q/2
− 1

q/2−2B

∣∣∣∣+2B ·
∣∣∣∣ 1

q/2

∣∣∣∣)= 4B

q
≤ poly(λ)

2λ

which is negligible in λ since B is chosen to be exponentially smaller than q/4 by our parameter setting.

Then the indistinguishability G9 ≈s G10 follows by a hybrid argument where we change the distribution

of the vector (R ′
i1
∥ · · · ∥ R ′

iK
) in a coordinate-wise manner. Here, we parse Icor∪Imal = {i j } j∈[K].

Game G11: This is the same as G10 except that we sample ci ,0
$←Z

ℓout
q for all i ∈ Icor∪Imal. We claim that this

change is only conceptual. First, recall that the pre-condition (see Equation (14)) guarantees that(
aux, {Ci }i∈[L], {δ∗i :=Ci (x)}i∈Icor∪Imal

)≈c
(
aux, {Ci }i∈[L], {δ$

i
$← {0,1}ℓout }i∈Icor∪Imal

)
,

50

which implies that(
aux, {Ci }i∈[L], {∆∗

i :=Ci (x)⌊q/2⌉+R ′
i }i∈Icor∪Imal

)≈c
(
aux, {Ci }i∈[L], {∆$

i
$←Z

ℓout
q }i∈Icor∪Imal

)
,

where R ′
i

$← [−q/4; q/4]1×ℓout . Since adding independent random terms does not make the task of dis-

tinguishing the two distributions any easier, we obtain that G10 ≡G11.

Game G12: This is the same asG11 except that we sample ci ,user
$←Zm

q for all i ∈ Icor∪Imal. We haveG11 ≈c G12

assuming the hardness of LWE. Finally, we observe that G12 corresponds to the R.H.S. distribution of

Equation (15) which concludes the proof.

We now turn to the proof of the claim.

Proof of Claim 4.7. We show that if there exists an adversary A who can distinguish between G3.i−1 and G3,i ,

then there exists a reduction B that breaks the security of LWE with non-negligible advantage. The reduction

works as follows:

• Setup. Initially, the LWE challenger sends an LWE challenge (ALWE,bLWE) to B, where

ALWE = (
Āfhe ∈Z(n−1)×m

q , Āatt ∈Z(n−1)×(ℓX+1)m
q ,D̄ ∈Z(n−1)×m

q

)
bLWE = (

b⊤
fhe ∈Z1×m

q ,b⊤
att ∈Z1×(ℓX+1)m

q ,b⊤
D ∈Z1×m

q

)
.

B launches Samp(1λ) and receives x ∈ Zℓpriq in return. It samples Auser,B0,B1
$← Zn×m

q along with R $←
{0,1}m×(ℓpri+λ)m , aatt

$←Z
(ℓX+1)m
q , d $←Zm

q and sdnoise
$← {0,1}λ. Then B computes

Ai ,fhe =

Āfhe

b⊤
fhe

 , Xi = Ai ,fheR− (x⊤,sd⊤noise)⊗G ,

Aatt =

Āatt

a⊤
att

+bits(1,Xi)⊗G , D =

 D̄

d⊤

 ,

and returns crs= (Aatt,Auser,B0,B1,D) to Samp.

Note. The embedding of x into Aatt is the reason why we require Samp to output the challenge upfront,

thus we achieve only selective security.

• Query. B simulates the query phase as in G3,i−1.

• Challenge. Upon Samp submitting some auxiliary information aux ∈ {0,1}∗ and {(pk∗i ,Ci)}i∈[L], B com-

putes auxpPRIO and {(Xi ′ , {ci ′, j } j∈[0;ℓ],ci ′,att,ci ′,user)}i ′∈[L] as inG3,i−1 except for the components (Xi ,ci ,att).

While Xi was already generated during the setup phase, B now also computes

c⊤i ,att =−(b⊤
att−a⊤

att ∥ b⊤
D −d⊤)+s⊤ℓ+1(0n×(ℓX+1)m ∥ G) .

• Guess. B sends (auxpPRIO, {(Xi ′ , {ci ′, j } j∈[0;ℓ],ci ′,att,ci ′,user)}i ′∈[L]) to the adversary A and forwards the re-

sponse b ∈ {0,1} to the LWE challenger.

We note that if the LWE challenger sends b⊤
LWE = s̄ALWE + e⊤

LWE
(resp. bLWE

$← Z
m+(ℓX+1)m+m
q), then B sim-

ulates G3,i−1 (resp. G3,i). To see the former, we note that if b⊤
LWE = s̄ALWE + e⊤

LWE
, then b⊤

fhe = s̄⊤Āfhe + e⊤
fhe

51

and (b⊤
att ∥ b⊤

D) = s̄⊤(Āatt ∥ D̄)−e⊤att. Thus, we have

Ai ,fhe =

Āfhe

b⊤
fhe

=

 Āfhe

s̄⊤Āfhe+e⊤
fhe

c⊤i ,att =−(b⊤

att−a⊤
att ∥ b⊤

D −d⊤)+s⊤ℓ+1(0n×(ℓX+1)m ∥ G)

=−(
s̄⊤(Āatt ∥ D̄)−e⊤att− (a⊤

att ∥ d⊤)
)+s⊤ℓ+1(0n×(ℓX+1)m ∥ G)

=−(s̄⊤,−1)

Āatt ∥ D̄

a⊤
att ∥ d⊤

+e⊤att+s⊤ℓ+1(0n×(ℓX+1)m ∥ G)

=−(s̄⊤,−1)(Aatt−bits(1,Xi)⊗G ∥ D)+s⊤ℓ+1(0n×(ℓX+1)m ∥ G)+e⊤att .

For the latter case, we note that if bfhe
$←Z

(ℓpri+λ)m
q , batt

$←Z
(ℓX+1)m
q and bD

$←Zm
q , then

• the randomness of bfhe implies the randomness of Afhe
$←Zn×m

q , and

• the randomness of (b⊤
att ∥ b⊤

D) implies the randomness of ci ,att
$←Z

(ℓX+2)m
q .

4.5 Construction for Unbounded Depth Circuits

In this section, we construct a two-stageSel-prCT secure sRFE scheme for the class Cℓpub,ℓpri = {C :Xpub×Xpri →
{0,1}} containing all circuits with public input space Xpub = {0,1}ℓpub , private input space Xpri = {0,1}ℓpri and

unbounded depth. This generalizes Construction 4.4 which does not consider public inputs and only supports

circuits whose depth is bounded by some fixed parameter ℓdep.

Construction 4.8 (Two-Stage Sel-prCT Secure sRFE for Unbounded Depth Circuits). The construction uses

the following building blocks:

• A blind garbling scheme bGC = bGC.(Garble,Eval,Sim) with decomposability (Definition 3.16). We as-

sume that the labels and the random coins used by {bGC.Garblek }k and {bGC.Garbleinp,k }k are in {0,1}λ.

The former is guaranteed by Definition 3.12 and the latter can be achieved without loss of generality by

using a PRF to derive longer (pseudo-)random coins if needed. We can instantiate bGC with the required

properties assuming one-way functions (Fact 3.17).

• A pseudorandom function PRF : {0,1}λ× {0,1}λ → {0,1}λ with key space, input space and output space

being {0,1}λ. PRF can be instantiated assuming one-way functions.

• A laconic pPRIO scheme LprIO = LprIO.(Setup,Digest,ObfOff,ObfOn,Eval) with global setup and a de-

terministic LprIO.Digest algorithm. Without loss of generality, the state output by LprIO.ObfOff and the

random coins of LprIO.ObfOn are in {0,1}λ. To achieve the former, we let the state be the random coins

used by LprIO.ObfOff which can in turn be replaced with a string in {0,1}λ using a PRF. For the latter,

we can also use a PRF. We note that Definition 3.43 guarantees that the length of digests is bounded by

a fixed polynomial ℓdig = ℓdig(λ) in the security parameter. We can instantiate LprIO with the desired

properties assuming prFE and LWE (Construction B.1, Theorem B.4).

• A Sel-prCT secure sRFE scheme sRFE = sRFE.(Setup,Gen,Agg,Enc,Dec) for the class Cℓ′
pri

,ℓ′
dep

,ℓ′out con-

sisting of circuits with public input length ℓ′
pub

= 0, private input length ℓ′pri = ℓpri + ℓdig + 4λ, max-

imum depth ℓ′
dep

and output length ℓ′out, where we set ℓ′
dep

and ℓ′out so that the circuit class con-

tains Creg[i ,LprIO.crs,digCi
] defined in Figure 4. We denote the information specifying the circuit class

by param′ = (1ℓ
′
pri ,1

ℓ′dep ,1ℓ
′
out). We can construct sRFE with the desired properties assuming prFE and

LWE (Construction 4.4).

52

The details of the two-stage Sel-prCT secure sRFE scheme for the circuit class Cℓpub,ℓpri are as follows.

Setup(1λ,1ℓpub ,1ℓpri): Run

LprIO.crs← LprIO.Setup(1λ) , sRFE.crs← sRFE.Setup(1λ,param′) ,

and output crs := (LprIO.crs,sRFE.crs).

Gen(crs): Parse crs= (LprIO.crs,sRFE.crs), run

sRFE.(pk,sk) ← sRFE.Gen(sRFE.crs) ,

and output the key pair (pk := sRFE.pk,sk := sRFE.sk).

Agg(crs, {pki ,Ci }i∈[L]): Parse crs= (LprIO.crs,sRFE.crs) and {pki = sRFE.pki }i∈[L], then run{
digCi

← LprIO.Digest
(
LprIO.crs, {(k,C (k)

i)}k∈[|Ci |]
)}

i∈[L](
sRFE.mpk, {sRFE.hski }i∈[L]

)← sRFE.Agg
(
sRFE.crs, {(sRFE.pki ,Creg[i ,LprIO.crs,digCi

])}i∈[L]
)

,

where Creg[i ,LprIO.crs,digCi
] is defined in Figure 4. Then output mpk := (LprIO.crs,sRFE.mpk) and

hski := (LprIO.crs,sRFE.hski) for all i ∈ [L].

Input: • a LprIO digest digxpub and a LprIO state st

• a private input vector xpri ∈ {0,1}ℓpri

• PRF seeds sdcir,sdpub,sdbgc ∈ {0,1}λ

Output: • a set of labels {labk,xpri[k−ℓpub]}k∈[ℓpub+1;ℓpub+ℓpri]
• LprIO online obfuscations Ĉon,cir and Ĉon,pub

Hardwired Values: • a slot index i ∈ [L]

• a CRS LprIO.crs and a LprIO digest digCi

• Compute Rstr =PRF(sdstr, i) for str ∈ {cir,pub,bgc}.

• Run {
(labk,0, labk,1) ← bGC.Garbleinp,k (1λ;Rbgc)

}
k∈[ℓpub+1;ℓpub+ℓpri]

Ĉon,cir ← LprIO.ObfOn(LprIO.crs,LprIO.st,digCi
,Ecir[Rbgc];Rcir)

Ĉon,pub ← LprIO.ObfOn(LprIO.crs,LprIO.st,digxpub ,Epub[Rbgc];Rpub) ,

where Epub and Ecir are defined in Figure 5 and 6.

• Output
(
{labk,xpri[k−ℓpub]}k∈[ℓpub+1;ℓpub+ℓpri],Ĉon,cir,Ĉon,pub

)
.

Figure 4: Definition of the circuit Creg[i ,LprIO.crs,digCi
]

Enc(mpk,xpub,xpri): The encryption algorithm proceeds in two steps.

EncOff(mpk): Parse mpk= (LprIO.crs,sRFE.mpk) and run

(Ĉoff ,LprIO.st) ← LprIO.ObfOff(LprIO.crs,1λ,1S) ,

where S is the maximum size of the circuits Ecir[Rbgc] and Epub[Rbgc] defined in Figure 5 and 6.

Output ctoff := Ĉoff and st= (LprIO.st,LprIO.crs,sRFE.mpk).

53

Input: a tuple (k,G) ∈ [|C |]× {0,1}4λ encoding the information of a gate G in a circuit C

Output: a garbled gate G̃

Hardwired Values: random coins Rbgc

• Compute G̃ ← bGC.Garblek (1λ,G ;Rbgc)

• Output G̃ .

Figure 5: Definition of the circuit Ecir[Rbgc]

Input: a tuple (k,b) ∈ [ℓpub]× {0,1} encoding an input

Output: a label labk,b

Hardwired Values: random coins Rbgc

1. Compute (labk,0, labk,1) ← bGC.Garbleinp,k (1λ;Rbgc)

2. Output labk,b .

Figure 6: Definition of the circuit Epub[Rbgc]

EncOn(st,xpub,xpri): Parse st = (LprIO.st,LprIO.crs,sRFE.mpk), sample PRF seeds sdcir,sdpub,sdbgc
$←

{0,1}λ and run

digxpub ← LprIO.Digest
(
LprIO.crs, {(k,xpub[k])}k∈[ℓpub]

)
sRFE.ct← sRFE.Enc

(
sRFE.mpk,x′pri

)
,

where x′pri = (digxpub ,xpri,LprIO.st,sdcir,sdpub,sdbgc) ∈ {0,1}ℓ
′
pri . Output cton := sRFE.ct.

The final output of Enc(mpk,xpub,xpri) is ct= (ctoff ,cton).

Dec(ski∗ ,hski∗ ,Ci∗ ,ct,xpub): Parse ski∗ = sRFE.ski∗ , hsk∗i = (LprIO.crs,sRFE.hski∗) and ct = (Ĉoff ,sRFE.ct).

Run{labk }k∈[ℓpub+1;ℓpub+ℓpri],

Ĉon,cir,Ĉon,pub

← sRFE.Dec
(
sRFE.ski∗ ,sRFE.hski∗ ,Creg[i∗,LprIO.crs,digCi∗],sRFE.ct

)
C̃i∗ = {C̃ (k)

i∗ }k∈[|Ci∗ |] ← LprIO.Eval
(
LprIO.crs, {(k,C (k)

i∗)}k∈[| fi∗ |],Ĉcir = (Ĉoff ,Ĉon,cir)
)

{labk }k∈[ℓpub] ← LprIO.Eval
(
LprIO.crs, {(k,xpub[k])}k∈[ℓpub],Ĉpub = (Ĉoff ,Ĉon,pub)

)
,

where Creg[i∗,LprIO.crs,digCi∗] is defined in Figure 4. Output z ← bGC.Eval(C̃i∗ , {labk }k∈[ℓpub+ℓpri]).

Proposition 4.9 (Correctness and Compactness). The sRFE scheme for the circuit class Cℓpub,ℓpri in Construc-

tion 4.8 is correct and compact. Specifically, it has the following parameters:

|crs| = poly(ℓpri,λ) |mpk| = loglogL+poly(ℓpri,λ)

|hski | = logL ·poly(ℓpri,λ) |ct| = logL ·poly(ℓpri,λ) .

Proposition 4.10 (Security). If bGC is simulation secure (Definition 3.14) and blind (Definition 3.15), PRF is

secure, LprIO is secure (Definiton 3.44) and sRFE is Sel-prCT secure (Definition 4.2), then the sRFE scheme in

Construction 4.8 satisfies two-stage Sel-prCT security.

The proofs of Propositions 4.9 and 4.10 can be found in Sections 4.6 and 4.7, respectively.

54

4.6 Proof of Correctness and Compactness

Proof of Proposition 4.9. We argue that Construction 4.8 is correct and compact.

Correctness. Let λ,L ∈N, i∗ ∈ [L], {Ci }i∈[L] ⊆ Cℓpub,ℓpri and (xpub,xpri) ∈ {0,1}ℓpub × {0,1}ℓpri . Then we have

crs := (LprIO.crs,sRFE.crs) ← Setup(1λ,param){
(pki := sRFE.pki ,ski := sRFE.ski) ←Gen(crs)

}
i∈[L](

mpk := (LprIO.crs,sRFE.mpk),{
hski := (LprIO.crs,sRFE.hski)

}
i∈[L]

)
←Agg(crs, (pki ,Ci)i∈[L]) ,

where Agg registers the public key sRFE.pki with respect to Creg[i ,LprIO.crs,digCi
] as defined in Figure 4

for digCi
← LprIO.Digest(LprIO.crs, {(k,C (k)

i)}k∈[|Ci |]). The encryption algorithm Enc(mpk,xpub,xpri) samples

PRF seeds sdcir,sdpub,sdbgc
$← {0,1}λ and runs

(Ĉoff ,LprIO.st) ← LprIO.ObfOff(LprIO.crs,1λ,1S)

digxpub ← LprIO.Digest
(
LprIO.crs, {(k,xpub[k])}k∈[ℓpub]

)
sRFE.ct← sRFE.Enc

(
sRFE.mpk, (digxpub ,xpri,LprIO.st,sdcir,sdpub,sdbgc)

)
,

where S is the maximum size of the circuits Ecir[Rbgc] and Epub[Rbgc] defined in Figure 5 and 6. Decryption

starts by running sRFE.Dec. From the correctness of sRFE and the definition of Creg[i∗,LprIO.crs,digCi∗], we

obtain that

sRFE.Dec
(
sRFE.ski∗ ,sRFE.hski∗ ,Creg[i∗,LprIO.crs,digCi∗],sRFE.ct

)
=Creg[i∗,LprIO.crs,digCi∗](digxpub ,xpri,LprIO.st,sdcir,sdpub,sdbgc)

= (
{labk }k∈[ℓpub+1;ℓpub+ℓpri],Ĉon,cir,Ĉon,pub

)
,

where {
(labk,0, labk,1) ← bGC.Garbleinp,k (1λ;Rbgc)

}
k∈[ℓpub+1;ℓpub+ℓpri]

Ĉon,cir ← LprIO.ObfOn(LprIO.crs,LprIO.st,digCi∗ ,Ecir[Rbgc];Rcir)

Ĉon,pub ← LprIO.ObfOn(LprIO.crs,LprIO.st,digxpub ,Epub[Rbgc];Rpub) .

Subsequently, decryption evaluates

C̃i∗ = {C̃ (k)
i∗ }k∈[|Ci∗ |] ← LprIO.Eval

(
LprIO.crs, {(k,C (k)

i∗)}k∈[| fi∗ |],Ĉcir = (Ĉoff ,Ĉon,cir)
)

{labk }k∈[ℓpub] ← LprIO.Eval
(
LprIO.crs, {(k,xpub[k])}k∈[ℓpub],Ĉpub = (Ĉoff ,Ĉon,pub)

)
.

From the correctness of LprIO it follows that

C̃ (k)
i∗ = Ecir[Rbgc](k,C (k)

i∗) ← bGC.Garblek (1λ,C (k)
i∗ ;Rbgc)

labk = Epub[Rbgc](k,xpub[k]) = labk,xpub[k] ,

where (labk,0, labk,1) ← bGC.Garblek (1λ;Rbgc). Finally, decryption computes

z ← bGC.Eval(C̃i∗ , {labk }k∈[ℓpub+ℓpri])

and we conclude from the correctness of bGC that z =Ci∗ (xpub,xpri).

55

Compactness. We start by analyzing the size of the circuit Creg[i∗,LprIO.crs,digCi
].

• The evaluations of PRF can be performed by circuits of size poly(λ).

• The ℓpri computations of bGC.Garbleinp,k can each be implemented by a circuit of size poly(λ), so the

overall computation can be performed in size poly(λ,ℓpri).

• To bound the size of the first execution of LprIO.ObfOn, let us first bound the size of Ecir[Rbgc]. This

circuit receives as input an index k ∈ [|C |] (in binary) and the encoding of a gate G ∈ {0,1}4λ and runs the

(poly-time) algorithm Garblek . Thus, it can be implemented by a circuit of size poly(log |C |,λ) ≤ poly(λ),

where the inequality follows from the fact that |C | ≤ 2λ. Coming back to the evaluation of LprIO.ObfOn,

we now observe that the overall input length is a fixed polynomial in λ since |LprIO.crs| = poly(λ),

|LprIO.st| = λ and |digCi
| = poly(λ) (guaranteed by Definition 3.43 and Theorem B.4). Therefore, the

overall size can be bounded by poly(λ).

• The size of a circuit performing the second execution of LprIO.ObfOn can be bounded similarly to the

first one. First, on input i ∈ [ℓpub] (in binary), Epub[Rbgc] performs the computation of Garbleinp,k which

can be implemented by a circuit of size poly(logℓpub,λ) ≤ poly(λ), where the inequality follows from the

fact that ℓpub ≤ 2λ. Then the overall input length of LprIO.ObfOn is a fixed polynomial in λ, and the size

of the circuit is poly(λ).

Relying on this analysis, we can derive the size of the parameters.

• We have |crs| = |LprIO.crs| + |sRFE.crs| = poly(ℓpri,λ). This follows from our instantiations of LprIO

(Construction B.1) and sRFE (Construction 4.4) which guarantee |LprIO.crs| = poly(λ) and |sRFE.crs| =
ℓ′pri ·poly(ℓ′

dep
,λ) = poly(ℓpri,λ). To see the last equality, we recall that ℓ′pri = ℓpri+ℓdig+4λ= poly(ℓpri,λ)

(by construction) and ℓ′
dep

= poly(ℓpri,λ) (by the above analysis of Creg[i∗,LprIO.crs,digCi
]).

• We have |mpk| = |LprIO.crs| + |sRFE.mpk|. Plugging in the parameters of our instantiations and using

again our size bound on Creg[i∗,LprIO.crs,digCi
], we obtain that |LprIO.crs| = poly(λ) and |sRFE.mpk| =

loglogL+ (ℓ′pri+ℓ′out) ·poly(ℓ′
dep

,λ) = loglogL+poly(ℓpri,λ).

• We have |hski | = |LprIO.crs| + |sRFE.hski | = logL ·poly(ℓpri,λ) which can be obtained in a similar man-

ner as before. In particular, we recall that our instantiation of sRFE gives |sRFE.hski | = logL · ℓ′out ·
poly(ℓ′

dep
,λ) = logL ·poly(ℓpri,λ).

• Finally, we have |ct| = |Ĉoff | + |sRFE.ct| = logL · poly(ℓpri,λ). For this, we recall that our instantiation

of LprIO satisfies |Ĉoff | = poly(S,λ), where S is a size bound on Ecir[Rbgc] and Epub[Rbgc]. By our above

analysis, we have S = poly(λ). Furthermore, our instantiation of sRFE satisfies |sRFE.ct| = (logL +ℓ′pri+
ℓ′out) ·poly(ℓ′

dep
,λ) = logL ·poly(ℓpri,λ).

4.7 Proof of Security

Proof of Proposition 4.10. To avoid a clash of variables, we will use the following convention throughout this

proof. The sRFE scheme for unbounded depth circuits which is built in Construction 4.8 is denoted by sRFE.

On the other hand, the sRFE scheme for bounded depth circuits which serves as a building block and which

was previously denoted by sRFE is now denoted by sRFE′. All variables (e.g., keys, inputs, etc.) belonging

either to sRFE or sRFE′ will be distinguished in the same way. Consider a PPT sampler Samp in the security

game Exppost-real
sRFE,Samp,Apost

. We recall this game to fix notations.

• Setup. Launch Samp(1λ) and receive from it a challenge message (xpub,xpri) ∈ {0,1}ℓpub × {0,1}ℓpri . Run

LprIO.crs← LprIO.Setup(1λ) , sRFE′.crs← sRFE′.Setup(1λ,param′) ,

56

and send crs := (LprIO.crs,sRFE′.crs) to Samp. Initialize an empty set C :=∅, an empty dictionary D and

a transcript recpost := (xpub,crs).

• Query. Repeat the following for arbitrarily many rounds determined by Samp. In each round, Samp has

two options.

– QGen(): run sRFE′.(pk,sk) ← sRFE′.Gen(sRFE′.crs) and return pk := sRFE′.pk to Samp. Set D[pk] =
sk := sRFE′.sk and recpost := recpost ∥ pk.

– QCor(pk): upon Samp submitting a public key pk, return D[pk] to Samp. Furthermore, add pk to C
and set recpost := recpost ∥ (pk,sk).

• Challenge. Samp submits aux and {(pk∗i ,Ci)}i∈[L]. Sample PRF seeds sdcir,sdpub,sdbgc
$← {0,1}λ and run{

digCi
← LprIO.Digest

(
LprIO.crs, {(k,C (k)

i)}k∈[|Ci |]
)}

i∈[L](
sRFE′.mpk, {sRFE′.hski }i∈[L]

)← sRFE′.Agg
(
sRFE′.crs, {(sRFE′.pki ,Creg[i ,LprIO.crs,digCi

])}i∈[L]
)

(Ĉoff ,LprIO.st) ← LprIO.ObfOff(LprIO.crs,1λ,1S)

digxpub ← LprIO.Digest
(
LprIO.crs, {(k,xpub[k])}k∈[ℓpub]

)
sRFE′.ct← sRFE′.Enc

(
sRFE′.mpk, (digxpub ,xpri,LprIO.st,sdcir,sdpub,sdbgc)

)
.

Let ct∗ = (ctoff := Ĉoff ,ct∗on := sRFE′.ct) and recpost := recpost ∥ (aux, {(pk∗i ,Ci)}i∈[L],ct∗).

• Guess. Run the adversary Apost on input (1λ,recpost) whose output b ∈ {0,1} is also the outcome of the

experiment.

We need to show that if(
aux,xpub, {Ci }i∈[L], {δ∗i :=Ci (xpub,xpri)}i∈Icor∪Imal

)≈c
(
aux,xpub, {Ci }i∈[L], {δ$

i
$← {0,1}}i∈Icor∪Imal

)
, (16)

then Exppost-real
sRFE,Samp,Apost

≈c Exppost-rand
sRFE,Samp,Apost

, where Exppost-rand
sRFE,Samp,Apost

proceeds in the same fashion as the

experiment Exppost-real
sRFE,Samp,Apost

recalled above except that it replaces ct∗ = (ctoff ,ct∗on := sRFE′.ct) with ct$ =
(ctoff ,ct$

on
$← sRFE′.CTon). Here, sRFE′.CTon denotes the online part of the ciphertext space of sRFE′.

We invoke the Sel-prCT security of sRFE′ with respect to a sampler SampsRFE′ (1λ) which works as follows.

• Setup. Launch Samp(1λ) and receive from it a challenge message (xpub,xpri). Run

LprIO.crs← LprIO.Setup(1λ)

(Ĉoff ,LprIO.st) ← LprIO.ObfOff(LprIO.crs,1λ,1S)

digxpub ← LprIO.Digest
(
LprIO.crs, {(k,xpub[k])}k∈[ℓpub]

)
,

sample sdcir,sdpub,sdbgc
$← {0,1}λ and send x′pri := (digxpub ,xpri,LprIO.st,sdcir,sdpub,sdbgc) ∈ {0,1}ℓ

′
pri to

the challenger of sRFE′ to obtain sRFE′.crs in return. Send crs= (LprIO.crs,sRFE′.crs) to Samp.

• Query. Upon receiving a query fromSamp, SampsRFE′ makes the same query to the corresponding oracle

of the sRFE challenger and forwards the response to Samp.

• Challenge. Upon Samp outputting aux and {(pk∗i ,Ci)}i∈[L], SampsRFE′ runs{
digCi

← LprIO.Digest
(
LprIO.crs, {(k,C (k)

i)}k∈[|Ci |]
)}

i∈[L] .

Then it outputs auxsRFE′ = (aux,xpub, {Ci }i∈[L],Ĉoff) and {(pk∗i ,Creg[i ,LprIO.crs,digCi
])}i∈[L].

Under the security of sRFE′, it suffices to show that(
auxsRFE′ , {Creg[i ,LprIO.crs,digCi

]}i∈[L], {∆∗
i :=Creg[i ,LprIO.crs,digCi

](x′pri)}i∈Icor∪Imal

)
≈c

(
auxsRFE′ , {Creg[i ,LprIO.crs,digCi

]}i∈[L], {∆$
i

$← {0,1}ℓreg }i∈Icor∪Imal

)
,

(17)

57

where ℓreg denotes the output length of Creg[i ,LprIO.crs,digCi
]. When unfolding the definition of the circuit

Creg[i ,LprIO.crs,digCi
], we can note that

Creg[i ,LprIO.crs,digCi
](x′pri) =

(
{labi ,k,xpri[k−ℓpub]}k∈[ℓpub+1;ℓpub+ℓpri],Ĉi ,on,cir,Ĉi ,on,pub

)
,

where {
(labi ,k,0, labi ,k,1) ← bGC.Garbleinp,k (1λ;Ri ,bgc)

}
k∈[ℓpub+1;ℓpub+ℓpri]

Ĉi ,on,cir ← LprIO.ObfOn(LprIO.crs,LprIO.st,digCi
,Ecir[Ri ,bgc];Ri ,cir)

Ĉi ,on,pub ← LprIO.ObfOn(LprIO.crs,LprIO.st,digxpub ,Epub[Ri ,bgc];Ri ,pub)

and Ri ,bgc = PRF(sdbgc, i), Ri ,cir = PRF(sdcir, i), Ri ,pub = PRF(sdpub, i). As the PRF seeds sdcir,sdpub,sdbgc do

not appear anywhere else, we can replace these PRF outputs by truly random strings under the security ofPRF.

Hence, it suffices to prove a variant of Equation (17), where Ri ,bgc, Ri ,cir and Ri ,pub for i ∈ [L] are all replaced

by independent uniformly random strings over {0,1}λ. To show this variant of Equation (17) with truly random

coins, we rely on the security ofLprIOwith respect to a samplerSampLprIO(LprIO.crs) which does the following.

• Setup. On input LprIO.crs, SampLprIO launches Samp(1λ) to receive a challenge message (xpub,xpri) in

return. Run

sRFE′.crs← sRFE′.Setup(1λ,param′) ,

and send crs= (LprIO.crs,sRFE′.crs) to Samp.

• Query. Upon receiving a QGen or QCor query from Samp, SampLprIO simulates the oracles by running

the real sRFE′.Gen algorithm.

• Challenge. Upon Samp outputting aux and {(pk∗i ,Ci)}i∈[L], SampLprIO outputs(
auxLprIO = (auxLprIO,1,auxLprIO,2),1S , {Xi ,cir, Xi ,pub}i∈Icor∪Imal

, {Ei ,cir,Ei ,pub}i∈Icor∪Imal

)
,

where S = max
{|Ecir[Ri ,bgc]|, |Epub[Ri ,bgc]|}i∈[L] and

auxLprIO,1 = {labi ,k,xpri[k−ℓpub]}i∈Icor∪Imal,k∈[ℓpub+1;ℓpub+ℓpri] , auxLprIO,2 =
(
aux,xpub, {Ci }i∈[L]

)
,

Xi ,cir = {Xi ,k,cir = (k,C (k)
i)}k∈[|Ci |] , Ei ,cir = Ecir[Ri ,bgc] ,

Xi ,pub = {Xi ,k,pub = (k,xpub[k])}k∈[ℓpub] , Ei ,pub = Epub[Ri ,bgc] .

Let us consider the following equality. auxLprIO,1,auxLprIO,2,1S , {Xi ,cir, Xi ,pub}i∈Icor∪Imal
,

{Ei ,cir(Xi ,k,cir)}i∈Icor∪Imal,k∈[|Ci |] ∪ {Ei ,pub(Xi ,k,pub)}i∈Icor∪Imal,k∈[ℓpub]

≈c

{Γi ,k,pri}i∈Icor∪Imal,k∈[ℓpri],auxLprIO,2,1S , {Xi ,cir, Xi ,pub}i∈Icor∪Imal
,

{Γi ,k,cir}i∈Icor∪Imal,k∈[|Ci |] ∪ {Γi ,k,pub}i∈Icor∪Imal,k∈[ℓpub]

 ,

(18)

where Γi ,k,cir
$← {0,1}ℓcir for (i ,k) ∈ (Icor ∪Imal)× [|Ci |], Γi ,k,pub

$← {0,1}λ for (i ,k) ∈ (Icor ∪Imal)× [ℓpub] and

Γi ,k,pri
$← {0,1}λ for (i ,k) ∈ (Icor ∪ Imal)× [ℓpri]. Here, ℓcir denotes the output length of Ecir[R] for any R ∈

{0,1}λ (note that the choice of R is irrelevant for the output length). We can observe that Equation (18) implies

Equation (17) under the security of LprIO with respect to SampLprIO and Lemma 3.46.

The rest of the proof is dedicated to proving Equation (18). Unrolling the definitions and applying the

decomposability property of bGC (Definition 3.16), we observe that Equation (18) is equivalent to the following({
({labi ,k,x[k]}k∈[ℓpub+ℓpri],C̃i)

}
i∈Icor∪Imal

,aux,xpub, {Ci }i∈[L]

)
≈c

({
({Γi ,k,pub}k∈[ℓpub] ∪ {Γi ,k,pri}k∈[ℓpri], {Γi ,k,cir}k∈[|Ci |])

}
i∈Icor∪Imal

,aux,xpub, {Ci }i∈[L]

)
,

(19)

58

where x⊤ = (x⊤
pub

,x⊤pri) ∈ {0,1}ℓpub+ℓpri and ({labi ,k,b}k∈[ℓpub+ℓpri],b∈{0,1},C̃i) ← bGC.Garble(1λ,Ci ;Ri ,bgc) for all i ∈
Icor∪Imal.

G0: This is the L.H.S. distribution of Equation (19).

G1: This is the same asG0 except that the garbling algorithm is replaced with the simulator, i.e., the adversary’s

view is ({
({labi ,k }k∈[ℓpub+ℓpri],C̃i)

}
i∈Icor∪Imal

,aux,xpub, {Ci }i∈[L]

)
where ({labi ,k }k∈[ℓpub+ℓpri],C̃i) ← bGC.Sim(1λ,1ℓpub+ℓpri ,δ∗i =Ci (x)) for all i ∈ Icor∪Imal. We haveG0 ≈c G1

from the simulation security of bGC (Definition 3.14).

G2: This is the same as G1 except that bGC.Sim is run on random inputs, i.e.,(
{labi ,k }k∈[ℓpub+ℓpri],C̃i

)← bGC.Sim
(
1λ,1ℓpub+ℓpri ,δ$

i

)
,

where δ$
i

$← {0,1} for all i ∈ Icor∪Imal. We have G1 ≈c G2 which is implied by Equation (16) and the fact

that adding independent terms does not make the task of distinguishing the two distributions any easier.

G3: This is the R.H.S. distribution of Equation (19). We have G2 ≈c G3 which follows from the blindness of bGC

(Definition 3.15).

4.8 Construction for TMs with Bounded-Length Private Inputs

In this section, we construct a Sel-prCT secure sRFE scheme for the class Tℓpri of Turing machines with public

input space Xpub = {0,1}∗ and private input space Xpri = {0,1}ℓpri .

Construction 4.11 (Two-Stage Sel-prCT Secure sRFE for TMs). The construction uses the following building

blocks:

• A blind garbling scheme bGC = bGC.(Garble,Eval,Sim) with decomposability (Definition 3.16). We as-

sume that the labels and the random coins used by {bGC.Garblek }k and {bGC.Garbleinp,k }k are in {0,1}λ.

The former is guaranteed by Definition 3.12 and the latter can be achieved without loss of generality by

using a PRF to derive longer (pseudo-)random coins if needed. We can instantiate bGC with the required

properties assuming one-way functions (Fact 3.17).

• A pseudorandom function PRF : {0,1}λ× {0,1}λ → {0,1}λ with key space, input space and output space

being {0,1}λ. PRF can be instantiated assuming one-way functions.

• A laconic pPRIO scheme LprIO = LprIO.(Setup,Digest,ObfOff,ObfOn,Eval) with global setup and a de-

terministic LprIO.Digest algorithm. Without loss of generality, the state output by LprIO.ObfOff and the

random coins of LprIO.ObfOn are in {0,1}λ. To achieve the former, we let the state be the random coins

used by LprIO.ObfOff which can in turn be replaced with a string in {0,1}λ using a PRF. For the latter,

we can also use a PRF. We note that Definition 3.43 guarantees that the length of digests is bounded by

a fixed polynomial ℓdig = ℓdig(λ) in the security parameter. We can instantiate LprIO with the desired

properties assuming prFE and LWE (Construction B.1, Theorem B.4).

• A Sel-prCT secure sRFE scheme sRFE = sRFE.(Setup,Gen,Agg,Enc,Dec) for the class Cℓ′
pri

,ℓ′
dep

,ℓ′out con-

sisting of circuits with public input length ℓ′
pub

= 0, private input length ℓ′pri = ℓpri + ℓdig + 9λ, max-

imum depth ℓ′
dep

and output length ℓ′out, where we set ℓ′
dep

and ℓ′out so that the circuit class con-

tains Creg[i ,LprIO.crs,digMi
] defined in Figure 9. We denote the information specifying the circuit class

by param′ = (1ℓ
′
pri ,1

ℓ′dep ,1ℓ
′
out). We can construct sRFE with the desired properties assuming prFE and

LWE (Construction 4.4).

59

The details of the Sel-prCT secure sRFE scheme for the class Tℓpri are as follows.

Setup(1λ,1ℓpri): Run

LprIO.crs← LprIO.Setup(1λ) , sRFE.crs← sRFE.Setup(1λ,param′) ,

and output crs := (LprIO.crs,sRFE.crs).

Gen(crs): Parse crs= (LprIO.crs,sRFE.crs), run

sRFE.(pk,sk) ← sRFE.Gen(sRFE.crs) ,

and output the key pair (pk := sRFE.pk,sk := sRFE.sk).

Agg(crs, {pki , Mi }i∈[L]): Parse crs= (LprIO.crs,sRFE.crs) and {pki = sRFE.pki }i∈[L]. Run{
digMi

← LprIO.Digest
(
{(k,C (k)

tm,i)}k∈[|Ctm,i |]
)}

i∈[L](
sRFE.mpk, {sRFE.hski }i∈[L]

)← sRFE.Agg
(
sRFE.crs, {(sRFE.pki ,Creg,i)}i∈[L]

)
,

where Ctm,i = Ctm[LprIO.crs, Mi] and Creg,i = Creg[i ,LprIO.crs,digMi
] are defined in Figure 7 and Fig-

ure 9, respectively. Output mpk := (LprIO.crs,sRFE.mpk) and hski := (LprIO.crs,sRFE.hski) for all i ∈ [L].

Input: • two (fixed-length) bit strings bits(ℓ),bits(t) ∈ {0,1}λ

• a LprIO state LprIO.st

• random coins Rdig,Rbgc,Rcir ∈ {0,1}λ

Output: an LprIO online obfuscation Ĉon,cir

Hardwired Values: a Turing machine M

• Run

digT ← LprIO.Digest(LprIO.crs, {(k,T (k))}k∈[|T |];Rdig)

Ĉon,cir ← LprIO.ObfOn(LprIO.crs,LprIO.st,digT ,Ecir[Rbgc];Rcir) ,

where T = Tℓ[M , t] and Ecir are defined in Figure 8 and 5, respectively.

• Output Ĉon,cir.

Figure 7: Definition of the circuit Ctm[LprIO.crs, M]

Input: a vector x ∈ {0,1}ℓ

Output: a bit b ∈ {0,1}

Hardwired Values: a Turing machine M and a runtime t = poly(λ)

• Run M on input x for t steps.

• Output 1 if M is in an accepting state and 0 otherwise.

Figure 8: Definition of the circuit Tℓ[M , t] : {0,1}ℓ→ {0,1}

Enc(mpk, xpub, xpri): The encryption algorithm proceeds in two steps.

60

Input: • a bit string bits(t) ∈ {0,1}λ

• a LprIO digest digxpub ; we implicitly assume that digxpub contains the length ℓpub :=
|xpub|

• a private input vector xpri ∈ {0,1}ℓpri

• two LprIO states LprIO.st and LprIO.st′

• PRF seeds sddig,sdpub,sdcir,sd
′
cir,sdbgc,sd′bgc ∈ {0,1}λ

Output: • two sets of labels {lab′k,y[k]}k∈[6λ] and {labk,xpri[k−ℓpub]}k∈[ℓpub+1;ℓ]

• LprIO online obfuscations Ĉ ′
on,cir and Ĉon,pub

Hardwired Values: • a slot index i ∈ [L]

• a CRS LprIO.crs

• a LprIO digest digMi

• Compute Rstr = PRF(sdstr, i) and R ′
str′ = PRF(sd′str′ , i) for str ∈ {dig,pub,cir,bgc} and str′ ∈

{cir,bgc}.

• Define y = (
bits(ℓ) ∈ {0,1}λ,bits(t),LprIO.st,Rdig,Rbgc,Rcir

) ∈ {0,1}6λ, where ℓ= ℓpub+ℓpri.
• Run

(lab′k,0, lab′k,1) ← bGC.Garbleinp,k (1λ;R ′
bgc) for k ∈ [6λ]

(labk,0, labk,1) ← bGC.Garbleinp,k (1λ;Rbgc) for k ∈ [ℓpub+1;ℓ] .

• Run

Ĉ ′
on,cir ← LprIO.ObfOn(LprIO.crs,LprIO.st′,digMi

,Ecir[R
′
bgc];R ′

cir)

Ĉon,pub ← LprIO.ObfOn(LprIO.crs,LprIO.st,digxpub ,Epub[Rbgc];Rpub) ,

where Ecir and Epub are defined in Figure 5 and 6.

• Output ({lab′k,y[k]}k∈[6λ], {labk,xpri[k−ℓpub]}k∈[ℓpub+1;ℓ],Ĉ ′
on,cir,Ĉon,pub).

Figure 9: Definition of the circuit Creg[i ,LprIO.crs,digMi
]

EncOff(mpk): Parse mpk= (LprIO.crs,sRFE.mpk) and run

(Ĉoff ,LprIO.st) ← LprIO.ObfOff(LprIO.crs,1λ,1S)

(Ĉ ′
off ,LprIO.st′) ← LprIO.ObfOff(LprIO.crs,1λ,1S) ,

where S is the maximum size of the circuits Ecir[Rbgc] and Epub[Rbgc] defined in Figure 5 and 6.

Output ctoff := (Ĉoff ,Ĉ ′
off

) and st= (LprIO.st,LprIO.st′,LprIO.crs,sRFE.mpk).

EncOn(st, xpub, xpri): Parse st= (LprIO.st,LprIO.crs,sRFE.mpk), xpub = (1t ,xpub) ∈ {0,1}∗ and xpri = xpri ∈
{0,1}ℓpri . Sample PRF seeds sddig,sdpub,sdcir,sd

′
cir,sdbgc,sd′bgc

$← {0,1}λ and run

digxpub ← LprIO.Digest
(
LprIO.crs, {(k,xpub[k])}k∈[ℓpub]

)
sRFE.ct← sRFE.Enc(sRFE.mpk,x′pri) ,

where

x′pri =
(
bits(t),digxpub ,xpri,LprIO.st,LprIO.st′,sddig,sdpub,sdcir,sd

′
cir,sdbgc,sd′bgc

) ∈ {0,1}ℓ
′
pri .

Output cton := sRFE.ct.

61

The final output of Enc(mpk, xpub, xpri) is ct= (ctoff ,cton).

Dec(ski∗ ,hski∗ , Mi∗ ,ct,xpub): Parse ski∗ = sRFE.ski∗ , hsk∗i = (LprIO.crs,sRFE.hski∗), ct = (Ĉ ′
off

,Ĉoff ,sRFE.ct)

and xpub = (1t ,xpub). Let ℓpub = |xpub| and ℓ= ℓpub+ℓpri. Run

digMi∗ ← LprIO.Digest
(
LprIO.crs, {(k,C (k)

tm,i∗)}k∈[|Ctm,i∗ |]
)

(
{lab′k }k∈[6λ], {labk }k∈[ℓpub+1;ℓ],Ĉ ′

on,cir,Ĉon,pub
)← sRFE.Dec

(
sRFE.ski∗ ,sRFE.hski∗ ,Creg,i∗ ,sRFE.ct

)
,

where Ctm,i∗ =Ctm[LprIO.crs, Mi∗] and Creg,i∗ =Creg[i∗,LprIO.crs,digMi∗] are defined in Figures 7 and 9.

Compute

C̃tm,i∗ = {C̃ (k)
tm,i∗ }k∈[|Ctm,i∗ |] ← LprIO.Eval

(
LprIO.crs, {(k,C (k)

tm,i∗)}k∈[|Ctm,i∗ |],Ĉ ′
cir = (Ĉ ′

off ,Ĉ ′
on,cir)

)
Ĉon,cir ← bGC.Eval

(
C̃tm,i∗ , {lab′k }k∈[6λ]

)
T̃i∗ = {T̃ (k)

i∗ }k∈[|Ti∗ |] ← LprIO.Eval
(
LprIO.crs, {(k,T (k)

i∗)}k∈[|Ti∗ |],Ĉcir = (Ĉoff ,Ĉon,cir)
)

{labk }k∈[ℓpub] ← LprIO.Eval
(
LprIO.crs, {(k,xpub[k])}k∈[ℓpub],Ĉpub = (Ĉoff ,Ĉon,pub)

)
,

where the circuit Ti∗ = Tℓ[Mi∗ , t] is defined in Figure 8. Output z ← bGC.Eval(T̃i∗ , {labk }k∈[ℓ]).

Proposition 4.12 (Correctness and Compactness). The sRFE scheme for the class Tℓpri in Construction 4.11 is

correct and compact. Specifically, it has the following parameters:

|crs| = poly(ℓpri,λ) |mpk| = loglogL+poly(ℓpri,λ)

|hski | = logL ·poly(ℓpri,λ) |ct| = logL ·poly(ℓpri,λ) .

Proposition 4.13 (Security). If bGC is simulation secure (Definition 3.14) and blind (Definition 3.15), PRF is

secure, LprIO is secure (Definition 3.44) and sRFE is Sel-prCT secure (Definition 4.2), then the sRFE scheme in

Construction 4.11 satisfies two-stage Sel-prCT security.

The proofs of Propositions 4.12 and 4.13 can be found in Sections 4.9 and 4.10, respectively.

4.9 Proof of Correctness and Compactness

Proof of Proposition 4.12. We argue that Construction 4.11 is correct and compact.

Correctness. Let λ,L ∈N, i∗ ∈ [L], {Mi }i∈[L] ⊆ Tℓpri and (xpub, xpri) ∈Xpub×Xpri. Then we have

crs := (LprIO.crs,sRFE.crs) ← Setup(1λ,param){
(pki := sRFE.pki ,ski := sRFE.ski) ←Gen(crs)

}
i∈[L](

mpk := (LprIO.crs,sRFE.mpk),{
hski := (LprIO.crs,sRFE.hski)

}
i∈[L]

)
←Agg(crs, (pki , Mi)i∈[L]) ,

where Agg registers the public key sRFE.pki with respect to the circuit Creg[i ,LprIO.crs,digMi
] which in turn

hardwires the digest digMi
← LprIO.Digest(LprIO.crs, {(k,C (k)

tm,i)}k∈[|Ctm,i |]) for Ctm,i = Ctm[LprIO.crs, Mi]. Sub-

sequently, Enc(mpk, xpub, xpri) parses xpub = (1t ,xpub) and xpri = xpri, defines ℓpub := |xpub|, samples PRF seeds

sddig,sdpub,sdcir,sd
′
cir,sdbgc,sd′bgc

$← {0,1}λ and runs

(Ĉoff ,LprIO.st) ← LprIO.ObfOff(LprIO.crs,1λ,1S)

(Ĉ ′
off ,LprIO.st′) ← LprIO.ObfOff(LprIO.crs,1λ,1S)

digxpub ← LprIO.Digest
(
LprIO.crs, {(k,xpub[k])}k∈[ℓpub]

)
sRFE.ct← sRFE.Enc

(
sRFE.mpk,x′pri

)
,

62

where S is the maximum size of the circuits Ecir[Rbgc] and Epub[Rbgc], and

x′pri =
(
bits(t),digxpub ,xpri,LprIO.st,LprIO.st′,sddig,sdpub,sdcir,sd

′
cir,sdbgc,sd′bgc

) ∈ {0,1}ℓ
′
pri .

Decryption starts by running sRFE.Dec. To do so, it first reconstructs digMi∗ by running

digMi∗ ← LprIO.Digest
(
LprIO.crs, {(k,C (k)

tm,i∗)}k∈[|Ctm,i∗ |]
)

.

Note that the hardwired values LprIO.crs and Mi∗ are given as input to the decryption algorithm and that

LprIO.Digest is a deterministic algorithm, so the obtained digest is the same as during aggregation. Subse-

quently, digMi∗ is used to reconstruct Creg,i∗ =Creg[i∗,LprIO.crs,digMi∗], and we can observe that

sRFE.Dec
(
sRFE.ski∗ ,sRFE.hski∗ ,Creg,i∗ ,sRFE.ct

)
=Creg,i∗ (bits(t),digxpub ,xpri,LprIO.st,LprIO.st′,sddig,sdpub,sdcir,sd

′
cir,sdbgc,sd′bgc)

= (
{lab′k,y[k]}k∈[6λ], {labk,xpri[k−ℓpub]}k∈[ℓpub+1;ℓ],Ĉ ′

on,cir,Ĉon,pub
)

,

where {
(lab′k,0, lab′k,1) ← bGC.Garbleinp,k (1λ;R ′

bgc)
}

k∈[6λ]{
(labk,0, labk,1) ← bGC.Garbleinp,k (1λ;Rbgc)

}
k∈[ℓpub+1;ℓ]

Ĉ ′
on,cir ← LprIO.ObfOn(LprIO.crs,LprIO.st′,digMi

,Ecir[R
′
bgc];R ′

cir)

Ĉon,pub ← LprIO.ObfOn(LprIO.crs,LprIO.st,digxpub ,Epub[Rbgc];Rpub) .

Next, the decryption algorithm evaluates the LprIO obfuscations. In the first step, we have

C̃tm,i∗ = {C̃ (k)
tm,i∗ }k∈[|Ctm,i∗ |] ← LprIO.Eval

(
LprIO.crs, {(k,C (k)

tm,i∗)}k∈[|Ctm,i∗ |],Ĉ ′
cir = (Ĉ ′

off ,Ĉ ′
on,cir)

)
.

From the correctness of LprIO, it follows that

C̃ (k)
tm,i∗ = Ecir[R

′
bgc](k,C (k)

tm,i∗) ← bGC.Garblek (1λ,C (k)
tm,i∗ ;R ′

bgc) .

A joint evaluation of C̃tm,i∗ with {lab′k }k∈[6λ] obtained from the sRFE decryption gives

Ĉon,cir =Ctm,i∗ (y) ← bGC.Eval
(
C̃tm,i∗ , {lab′k }k∈[6λ]

)
,

where y = (bits(ℓ) ∈ {0,1}λ,bits(t),LprIO.st,Rdig,Rbgc,Rcir). By the definition of Ctm,i∗ , we have

digT ∗
i
← LprIO.Digest(LprIO.crs, {(k,T (k)

i∗)}k∈[|Ti∗ |];Rdig)

Ĉon,cir ← LprIO.ObfOn(LprIO.crs,LprIO.st,digTi∗ ,Ecir[Rbgc];Rcir) ,

where Ti∗ = Tℓ[Mi∗ , t] is a circuit that evaluates the Turing machine Mi∗ for t steps on input a vector of

length ℓ = ℓpub + ℓpri. At this point, we have (Ĉoff ,Ĉon,cir,Ĉon,pub) and the remaining part of decryption is

basically the same as in our sRFE scheme for unbounded depth circuits (Construction 4.8). The only differ-

ence is that Ĉon,cir does no longer obfuscate the circuit Ci∗ with fixed input length but the circuit Tℓ[Mi∗ , t]

which is dynamically adapted to the varying length ℓpub of xpub and the desired number t of evaluation steps

of Mi∗ . Please see the proof of Proposition 4.9 for further details about the last part of the decryption.

Compactness. We start by analyzing the size of the circuit Creg[i∗,LprIO.crs,digMi
].

• The evaluations of PRF can be performed by circuits of size poly(λ).

• The (6λ+ℓpri) computations of bGC.Garbleinp,k can each be implemented by a circuit of size poly(λ), so

the overall computation can be performed in size poly(λ,ℓpri).

63

• To bound the size of the first execution of LprIO.ObfOn, we observe that the overall input length is a

fixed polynomial in λ since |LprIO.crs| = poly(λ), |LprIO.st′| = λ and |digMi
| = poly(λ) (guaranteed by

Definition 3.43 and Theorem B.4) as well as |Ecir[R
′
bgc

]| = poly(λ) (argued in the proof of Proposition 4.9).

Since LprIO.ObfOn is a poly-time algorithm, this implies that the overall size can be bounded by poly(λ).

• The size of a circuit performing the second execution of LprIO.ObfOn can be bounded similarly. First,

we observe that the overall input length of LprIO.ObfOn is a fixed polynomial in λ. In particular, we

recall from the proof of Proposition 4.9 that |Epub[Rbgc]| = poly(λ). Thus, the size of the circuit comput-

ing LprIO.ObfOn is also poly(λ).

Plugging this size bound into the parameters of our sRFE instantiation (Construction 4.4) will give the param-

eters as stated. For a detailed analysis, please see the proof of Proposition 4.9.

4.10 Proof of Security

Proof of Proposition 4.13. To avoid a clash of variables, we will use the following convention throughout this

proof. The sRFE scheme for Turing machines which is built in Construction 4.11 is denoted by sRFE. On

the other hand, the sRFE scheme for bounded depth circuits which serves as a building block and which was

previously denoted by sRFE is now denoted by sRFE′. All variables (e.g., keys, inputs, etc.) belonging ei-

ther to sRFE or sRFE′ will be distinguished in the same way. Consider a PPT sampler Samp in the security

game Exppost-real
sRFE,Samp,Apost

. We recall this game to fix notations.

• Setup. Launch Samp(1λ) and receive from it the challenge xpub = (1t ,xpub) ∈ {0,1}∗, xpri = xpri ∈ {0,1}ℓpri .

Define ℓpub = |xpub| and ℓ= ℓpub+ℓpri Run

LprIO.crs← LprIO.Setup(1λ) , sRFE′.crs← sRFE′.Setup(1λ,param′) ,

and send crs := (LprIO.crs,sRFE′.crs) to Samp. Initialize an empty set C :=∅, an empty dictionary D and

a transcript recpost := (xpub,crs).

• Query. Repeat the following for arbitrarily many rounds determined by Samp. In each round, Samp has

two options.

– QGen(): run sRFE′.(pk,sk) ← sRFE′.Gen(sRFE′.crs) and return pk := sRFE′.pk to Samp. Set D[pk] =
sk := sRFE′.sk and recpost := recpost ∥ pk.

– QCor(pk): upon Samp submitting a public key pk, return D[pk] to Samp. Furthermore, add pk to C
and set recpost := recpost ∥ (pk,sk).

• Challenge. Upon Samp submitting aux and {(pk∗i , Mi)}i∈[L] aggregate the public keys as follows{
digMi

← LprIO.Digest
(
{(k,C (k)

tm,i)}k∈[|Ctm,i |]
)}

i∈[L](
sRFE.mpk, {sRFE.hski }i∈[L]

)← sRFE.Agg
(
sRFE.crs, {(sRFE.pki ,Creg,i)}i∈[L]

)
,

where we denote Ctm,i = Ctm[LprIO.crs, Mi] and Creg,i = Creg[i ,LprIO.crs,digMi
]. Then sample PRF

seeds sddig,sdpub,sdcir,sd
′
cir,sdbgc,sd′bgc

$← {0,1}λ and compute the challenge ciphertext

(Ĉoff ,LprIO.st) ← LprIO.ObfOff(LprIO.crs,1λ,1S)

(Ĉ ′
off ,LprIO.st′) ← LprIO.ObfOff(LprIO.crs,1λ,1S)

digxpub ← LprIO.Digest
(
LprIO.crs, {(k,xpub[k])}k∈[ℓpub]

)
sRFE.ct← sRFE.Enc

(
sRFE.mpk,x′pri

)
,

where x′pri = (bits(t),digxpub ,xpri,LprIO.st,LprIO.st′,sddig,sdpub,sdcir,sd
′
cir,sdbgc,sd′bgc) ∈ {0,1}ℓ

′
pri . Let ct∗ =

(ctoff := (Ĉoff ,Ĉ ′
off

),ct∗on := sRFE′.ct) and recpost := recpost ∥ (aux, {(pk∗i , Mi)}i∈[L],ct∗).

64

• Guess. Run the adversary Apost on input (1λ,recpost) whose output b ∈ {0,1} is also the outcome of the

experiment.

We need to show that if(
aux, xpub, {Mi }i∈[L], {δ∗i := Mi (xpub, xpri)}i∈Icor∪Imal

)≈c
(
aux, xpub, {Mi }i∈[L], {δ$

i
$← {0,1}}i∈Icor∪Imal

)
, (20)

then Exppost-real
sRFE,Samp,Apost

≈c Exppost-rand
sRFE,Samp,Apost

, where Exppost-rand
sRFE,Samp,Apost

proceeds in the same fashion as the

experiment Exppost-real
sRFE,Samp,Apost

recalled above except that it replaces ct∗ = (ctoff ,ct∗on := sRFE′.ct) with ct$ =
(ctoff ,ct$

on
$← sRFE′.CTon). Here, sRFE′.CTon denotes the online part of the ciphertext space of sRFE′.

We invoke the Sel-prCT security of sRFE′ with respect to a sampler SampsRFE′ (1λ) which works as follows.

• Setup. Launch Samp(1λ) and receive from it a challenge message xpub = (1t ,xpub) ∈ {0,1}∗, xpri = xpri ∈
{0,1}ℓpri . Run

LprIO.crs← LprIO.Setup(1λ)

(Ĉoff ,LprIO.st) ← LprIO.ObfOff(LprIO.crs,1λ,1S)

(Ĉ ′
off ,LprIO.st′) ← LprIO.ObfOff(LprIO.crs,1λ,1S)

digxpub ← LprIO.Digest
(
LprIO.crs, {(k,xpub[k])}k∈[ℓpub]

)
,

sample PRF seeds sddig,sdpub,sdcir,sd
′
cir,sdbgc,sd′bgc

$← {0,1}λ and send the challenge message x′pri =
(bits(t),digxpub ,xpri,LprIO.st,LprIO.st′,sddig,sdpub,sdcir,sd

′
cir,sdbgc,sd′bgc) ∈ {0,1}ℓ

′
pri to the challenger of

sRFE′ to obtain sRFE′.crs in return. Send crs= (LprIO.crs,sRFE′.crs) to Samp.

• Query. Upon receiving a query fromSamp, SampsRFE′ makes the same query to the corresponding oracle

of the sRFE challenger and forwards the response to Samp.

• Challenge. Upon Samp outputting aux and {(pk∗i , Mi)}i∈[L], SampsRFE′ runs{
digMi

← LprIO.Digest
(
{(k,C (k)

tm,i)}k∈[|Ctm,i |]
)}

i∈[L] .

Then it outputs auxsRFE′ = (aux, xpub, {Mi }i∈[L],Ĉoff ,Ĉ ′
off

) and {(pk∗i ,Creg[i ,LprIO.crs,digMi
])}i∈[L].

Under the security of sRFE′, it suffices to show that(
auxsRFE′ , {Creg[i ,LprIO.crs,digMi

]}i∈[L], {∆∗
i :=Creg[i ,LprIO.crs,digMi

](x′pri)}i∈Icor∪Imal

)
≈c

(
auxsRFE′ , {Creg[i ,LprIO.crs,digMi

]}i∈[L], {∆$
i

$← {0,1}ℓ
′
out }i∈Icor∪Imal

)
,

(21)

where we recall that ℓ′out denotes the output length of the circuit Creg[i ,LprIO.crs,digMi
]. Unfolding the defi-

nition of Creg[i ,LprIO.crs,digMi
], we can note that

Creg[i ,LprIO.crs,digMi
](x′pri) = ({lab′i ,k,yi [k]}k∈[6λ], {labi ,k,xpri[k−ℓpub]}k∈[ℓpub+1;ℓ],Ĉ ′

i ,on,cir,Ĉi ,on,pub) ,

where Ri ,str = PRF(sdstr, i) and R ′
i ,str′ = PRF(sd′str′ , i) for i ∈ [L], str ∈ {dig,pub,cir,bgc} and str′ ∈ {cir,bgc};

yi =
(
bits(ℓ) ∈ {0,1}λ,bits(t),LprIO.st,Ri ,dig,Ri ,bgc,Ri ,cir

)
; and{

(lab′i ,k,0, lab′i ,k,1) ← bGC.Garbleinp,k (1λ;R ′
i ,bgc)

}
k∈[6λ]{

(labi ,k,0, labi ,k,1) ← bGC.Garbleinp,k (1λ;Ri ,bgc)
}

k∈[ℓpub+1;ℓ]

Ĉ ′
i ,on,cir ← LprIO.ObfOn(LprIO.crs,LprIO.st′,digMi

,Ecir[R
′
i ,bgc];R ′

i ,cir)

Ĉi ,on,pub ← LprIO.ObfOn(LprIO.crs,LprIO.st,digxpub ,Epub[Ri ,bgc];Ri ,pub) .

As neither of the PRF seeds appear anywhere else in the scheme, we can rely on the security of PRF to replace

{Ri ,str}i∈[L],str∈{dig,pub,cir,bgc} and {R ′
i ,str′ }i∈[L],str′∈{cir,bgc} by truly random strings. Hence, it suffices to prove a

65

variant of Equation (21), where all Ri ,str and R ′
i ,str′ are replaced by strings chosen independently and uni-

formly at random over {0,1}λ. To show this variant of Equation (21) with truly random coins, we rely on the

security of LprIO. In the first step, we deal with online obfuscations {C̃ ′
i ,∈,cir}i∈Icor∪Imal

. For this, we consider a

sampler Samp′LprIO(LprIO.crs) which does the following.

• Setup. On input LprIO.crs, Samp′LprIO launches Samp(1λ) to receive challenge messages xpub = (1t ,xpub),

xpri = xpri in return. Run

sRFE′.crs← sRFE′.Setup(1λ,param′) ,

and send crs= (LprIO.crs,sRFE′.crs) to Samp.

• Query. Upon receiving a QGen or QCor query from Samp, Samp′LprIO simulates the oracles by running

the real sRFE′.Gen algorithm.

• Challenge. Upon Samp outputting aux and {(pk∗i , Mi)}i∈[L], Samp′LprIO outputs

(
aux′LprIO = (aux′LprIO,1,aux′LprIO,2),1S , {X ′

i }i∈Icor∪Imal
, {E ′

i }i∈Icor∪Imal

)
,

where

aux′LprIO,1 =
{(

{lab′i ,k,yi [k]}k∈[6λ], {labi ,k,xpri[k−ℓpub]}k∈[ℓpub+1;ℓ],Ĉi ,on,pub
)}

i∈Icor∪Imal

aux′LprIO,2 =
(
aux, xpub, {Mi }i∈[L],LprIO.crs,Ĉoff

)
S = max

{|Ecir[R
′
i ,bgc]|}i∈[L]

X ′
i = {X ′

i ,k = (k,C (k)
tm,i)}k∈[|Ctm,i |]

E ′
i = Ecir[R

′
i ,bgc] .

Let ℓi ,on,pub := |Ĉi ,on,pub| for i ∈ Icor ∪Imal and let ℓcir denote the output length of Ecir[R] for any R ∈ {0,1}λ

(note that the concrete choice of R is irrelevant for the output length). Then we consider the following equation(
aux′LprIO,1,aux′LprIO,2,1S , {X ′

i }i∈Icor∪Imal
, {E ′

i (X ′
i ,k)}i∈Icor∪Imal,k∈[|Ctm,i |]

)
≈c

{(

{Γ′
i ,k,pri

$← {0,1}λ}k∈[6λ], {Γi ,k,pri
$← {0,1}λ}k∈[ℓpri],Oi ,pub

$← {0,1}ℓi ,on,pub
)}

i∈Icor∪Imal
,

auxLprIO,2,1S , {X ′
i }i∈Icor∪Imal

, {Γ′
i ,k,cir

$← {0,1}ℓcir }i∈Icor∪Imal,k∈[|Ctm,i |]

 ,
(22)

where we note that the part in the gray box has the same distribution as Γ′aux
$← {0,1}ℓ

′
aux for ℓ′aux := |aux′

LprIO,1
|.

We can observe that Equation (22) implies Equation (21) under the security of LprIO with respect to Samp′LprIO
and Lemma 3.46, so it suffices to prove Equation (22). Unrolling the definitions and applying the decompos-

ability property of bGC (Definition 3.16), we observe that Equation (22) is equivalent to the following({(
{labi ,k,xpri[k−ℓpub]}k∈[ℓpub+1;ℓ],Ĉi ,on,pub

)}
i∈Icor∪Imal

,aux′LprIO,2,
{
({lab′i ,k,yi [k]}k∈[6λ],C̃tm,i)

}
i∈Icor∪Imal

)
≈c

({(
{Γi ,k,pri}k∈[ℓpri],Oi ,pub

)}
i∈Icor∪Imal

,aux′LprIO,2,
{
({Γ′i ,k,pri}k∈[6λ], {Γ′i ,k,cir}k∈[|Ctm,i |])

}
i∈Icor∪Imal

)
,

(23)

where ({lab′i ,k,b}k∈[6λ],b∈{0,1},C̃tm,i) ← bGC.Garble(1λ,Ctm,i ;R ′
i ,bgc

) for all i ∈ Icor ∪ Imal. We note that un-

der the simulation security of bGC (Definition 3.14), it suffices to prove a variant of Equation 23, where the

output of the real garbling algorithm is replaced with the output of the simulator ({lab′i ,k }k∈[6λ],C̃tm,i) ←
bGC.Sim(1λ,16λ,Ctm,i (yi)) for all i ∈ [L]. Unrolling the definition of Ctm,i , we have that Ctm,i (yi) = Ĉi ,on,cir,

where Ti = Tℓ[Mi , t] and

digTi
← LprIO.Digest(LprIO.crs, {(k,T (k)

i)}k∈[|Ti |];Ri ,dig)

Ĉi ,on,cir ← LprIO.ObfOn(LprIO.crs,LprIO.st,digTi
,Ecir[Ri ,bgc];Ri ,cir) .

66

Using the blindness of bGC (Definition 3.15), we observe that in order to show Equation 23, it is sufficient to

prove the following({(
{labi ,k,xpri[k−ℓpub]}k∈[ℓpub+1;ℓ],Ĉi ,on,pub

)}
i∈Icor∪Imal

,aux′LprIO,2,
{
Ĉi ,on,cir

}
i∈Icor∪Imal

)
≈c

({(
{Γi ,k,pri}k∈[ℓpri],Oi ,pub

)}
i∈Icor∪Imal

,aux′LprIO,2,
{
Oi ,cir

}
i∈Icor∪Imal

)
,

(24)

where Oi ,cir
$← {0,1}ℓi ,on,cir for ℓi ,on,cir := |Ĉi ,on,cir|. For this, we invoke again the security of LprIO with respect

to the following sampler SampLprIO(LprIO.crs).

• Setup. On input LprIO.crs, SampLprIO launches Samp(1λ) to receive challenge messages xpub = (1t ,xpub),

xpri = xpri in return. Run

sRFE′.crs← sRFE′.Setup(1λ,param′) ,

and send crs= (LprIO.crs,sRFE′.crs) to Samp.

• Query. Upon receiving a QGen or QCor query from Samp, SampLprIO simulates the oracles by running

the real sRFE′.Gen algorithm.

• Challenge. Upon Samp outputting aux and {(pk∗i , Mi)}i∈[L], SampLprIO outputs(
auxLprIO = (auxLprIO,1,auxLprIO,2),1S , {Xi ,cir, Xi ,pub}i∈Icor∪Imal

, {Ei ,cir,Ei ,pub}i∈Icor∪Imal

)
,

where S = max
{|Ecir[Ri ,bgc]|, |Epub[Ri ,bgc]|}i∈[L] and

auxLprIO,1 = {labi ,k,xpri[k−ℓpub]}i∈Icor∪Imal,k∈[ℓpub+1;ℓpub+ℓpri] , auxLprIO,2 =
(
aux,xpub, {Mi }i∈[L]

)
,

Xi ,cir = {Xi ,k,cir = (k,T (k)
i)}k∈[|Ti |] , Ei ,cir = Ecir[Ri ,bgc] ,

Xi ,pub = {Xi ,k,pub = (k, xpub[k])}k∈[ℓpub] , Ei ,pub = Epub[Ri ,bgc] .

Applying Lemma 3.46 and the security of LprIO with respect to SampLprIO, we observe that Equation (24) is

implied by the following auxLprIO,1,auxLprIO,2,1S , {Xi ,cir, Xi ,pub}i∈Icor∪Imal
,

{Ei ,cir(Xi ,k,cir)}i∈Icor∪Imal,k∈[|Ti |] ∪ {Ei ,pub(Xi ,k,pub)}i∈Icor∪Imal,k∈[ℓpub]

≈c

{Γi ,k,pri}i∈Icor∪Imal,k∈[ℓpri],auxLprIO,2,1S , {Xi ,cir, Xi ,pub}i∈Icor∪Imal
,

{Γi ,k,cir}i∈Icor∪Imal,k∈[|Ti |] ∪ {Γi ,k,pub}i∈Icor∪Imal,k∈[ℓpub]

 ,

(25)

where Γi ,k,cir
$← {0,1}ℓcir for (i ,k) ∈ (Icor ∪Imal)× [|Ti |] and Γi ,k,pub

$← {0,1}λ for (i ,k) ∈ (Icor ∪Imal)× [ℓpub].

Unrolling the definitions and applying the decomposability property of bGC, we observe that Equation (25) is

equivalent to the following({
({labi ,k,x[k]}k∈[ℓpub+ℓpri], T̃i)

}
i∈Icor∪Imal

,aux, xpub, {Mi }i∈[L]

)
≈c

({
({Γi ,k,pub}k∈[ℓpub] ∪ {Γi ,k,pri}k∈[ℓpri], {Γi ,k,cir}k∈[|Ti |])

}
i∈Icor∪Imal

,aux, xpub, {Mi }i∈[L]

)
,

(26)

where x⊤ = (x⊤
pub

,x⊤pri) ∈ {0,1}ℓpub+ℓpri and ({labi ,k,b}k∈[ℓpub+ℓpri],b∈{0,1}, T̃i) ← bGC.Garble(1λ,Ti ;Ri ,bgc) for all i ∈
Icor∪Imal. To prove Equation 26, we consider the following sequence of hybrids.

G0: This is the L.H.S. distribution of Equation (26).

G1: This is the same asG0 except that the garbling algorithm is replaced with the simulator, i.e., the adversary’s

view is ({
({labi ,k }k∈[ℓpub+ℓpri], T̃i)

}
i∈Icor∪Imal

,aux, xpub, {Mi }i∈[L]

)
where ({labi ,k }k∈[ℓpub+ℓpri], T̃i) ← bGC.Sim(1λ,1ℓpub+ℓpri ,δ∗i = Mi (xpub, xpri)) for all i ∈ Icor ∪ Imal. We

have G0 ≈c G1 from the simulation security of bGC (Definition 3.14).

67

G2: This is the same as G1 except that bGC.Sim is run on random inputs, i.e.,

({labi ,k }k∈[ℓpub+ℓpri], T̃i) ← bGC.Sim(1λ,1ℓpub+ℓpri ,δ$
i) ,

where δ$
i

$← {0,1} for all i ∈ Icor∪Imal. We have G1 ≈c G2 which is implied by Equation (20).

G3: This is the R.H.S. distribution of Equation (26). We have G2 ≈c G3 by the blindness of bGC.

4.11 Improving Asymptotic Parameters and Achieving Unbounded-Length Private In-

puts

The sizes of the crs, the master public key, helper secret keys and ciphertexts in the sRFE schemes for un-

bounded depth circuits (Construction 4.8) and Turing machines (Construction 4.11) are already independent

of public input lengths and function sizes/depths. However, they still depend on the lengths of private inputs.

In this section, we provide a simple generic compiler that (1) completely removes this dependency from the

sizes of the CRS, the master public key and the helper secret keys, and (2) reduces the ciphertext size to an ad-

ditive dependency on the private input length. For the case of Turing machines, we also enable private inputs

of unbounded length. Moreover, we generalize the previous constructions to functionalities outputting more

than one bit. That is, we build sRFE schemes for

• the class Cℓpub,ℓpri,ℓout of all (unbounded depth) circuits with public input space Xpub = {0,1}ℓpub , private

input space Xpub = {0,1}ℓpri and output space Y = {0,1}ℓout , and

• the class Tℓout of all Turing machine with public/private input space Xpub = Xpri = {0,1}∗ and output

space Y = {0,1}ℓout .

Construction 4.14 (Two-Stage Sel-prCT Secure sRFE With Nearly Optimal Parameters). The construction uses

the following ingredients:

• An INDr secure SKE scheme SKE = SKE.(Setup,Enc,Dec) with message space SKE.M = {0,1}ℓpri , key

space SKE.K = {0,1}λ and ciphertext space SKE.CT = {0,1}ℓpri+λ. We can construct a SKE scheme with

these properties assuming one-way functions.

• A Sel-prCT secure sRFE scheme sRFE = sRFE.(Setup,Gen,Agg,Enc,Dec) for the class Cℓ′
pub

,ℓ′
pri

Tℓ′
pri

,

where ℓ′
pub

= ℓpub+ℓpri+λ and ℓ′pri =λ. We can construct such sRFE schemes assuming prFE and LWE

(see Construction 4.8 4.11).

The details of the sRFE schemes for Cℓpub,ℓpri,ℓout Tℓout are as follows. Throughout the description, we use the

letter F to generically refer to a function of the considered function class, i.e., F denotes either a circuit or a

Turing machine .

Setup(1λ, 1ℓpub ,1ℓpri ,1ℓout): Run

sRFE.crs← sRFE.Setup(1λ, 1
ℓ′pub ,1ℓpri

′
) ,

and output crs := sRFE.crs.

Gen(crs): Parse crs= sRFE.crs, run

sRFE.(pk,sk) ← sRFE.Gen(sRFE.crs) ,

and output the key pair (pk := sRFE.pk,sk := sRFE.sk).

68

Public Input: a public input xpub and a SKE ciphertext SKE.ct

Private Input: a SKE secret key SKE.sk

Output: a bit b ∈ {0,1}

Hardwired Values: a circuit/Turing machine F

• Compute xpri ← SKE.Dec(SKE.sk,SKE.ct).

• Output F (xpub, xpri).

Figure 10: Definition of the circuit/Turing machine Freg[F]

Agg(crs, {pki ,Fi }i∈[L]): Parse crs= sRFE.crs, {pki = sRFE.pki }i∈[L] and Fi = (Fi ,1, . . . ,Fi ,ℓout). Run(
sRFE.mpk, {sRFE.hski }i∈[L]

)← sRFE.Agg
(
sRFE.crs, {(sRFE.pki ,Freg[Fi , j])}(i , j)∈[L]×[ℓout]

)
,

where Freg[Fi , j] is defined in Figure 10. Then output mpk := sRFE.mpk and hski := {sRFE.hski , j } j∈[ℓout]

for all i ∈ [L].

Enc(mpk, xpub, xpri): The encryption algorithm proceeds in two steps.

EncOff(mpk): Parse mpk= sRFE.mpk, run

(sRFE.ctoff ,sRFE.st) ← sRFE.EncOff(sRFE.mpk)

and output ctoff := sRFE.ctoff and st= sRFE.st.

EncOn(st, xpub, xpri): Parse st= sRFE.st and xpri = xpri, define ℓpri := |xpri| and run

SKE.sk← SKE.Setup(1λ,1ℓpri) , SKE.ct← SKE.Enc(SKE.sk,xpri) .

Then set x ′
pub

:= (xpub,SKE.ct) and x ′
pri = SKE.sk, compute

sRFE.cton ← sRFE.EncOn(sRFE.st, x ′
pub, x ′

pri) ,

and output cton = (SKE.ct,sRFE.cton).

The final output of Enc(mpk, xpub, xpri) is ct= (ctoff ,cton).

Dec(ski∗ ,hski∗ ,Fi∗ ,ct, xpub): Parse ski∗ = sRFE.ski∗ , hsk∗i = sRFE.hski∗ , Fi∗ = (Fi∗,1, . . . ,Fi∗,ℓout) as well as ct=
(ctoff = sRFE.ctoff ,cton = (SKE.ct,sRFE.cton)). Set sRFE.ct := (sRFE.ctoff ,sRFE.cton) and define x ′

pub
:=

(xpub,SKE.ct). Compute{
z j ← sRFE.Dec(sRFE.ski∗ ,sRFE.hski∗ ,Freg[Fi , j],sRFE.ct, x ′

pub)
}

j∈[ℓout] ,

where Freg[Fi , j] is defined in Figure 10, and output z = (z1, . . . , zℓout).

Proposition 4.15 (Correctness and Compactness). The sRFE scheme in Construction 4.14 is correct and com-

pact. Specifically, it has the following parameters:

|crs| = poly(λ) |mpk| = loglogL+poly(λ)

|hski | = logL ·ℓout ·poly(λ) |ct| = logL ·poly(λ)+ℓpri .

Proposition 4.16 (Security). If SKE is INDr secure (Definition 3.25) and sRFE is two-stage Sel-prCT secure

(Definition 4.3), then the sRFE scheme in Construction 4.14 also satisfies two-stage Sel-prCT security.

69

The proofs of Propositions 4.15 and 4.16 can be found in Sections 4.12 and 4.13, respectively. We summarize

the results of Section 4 in the following theorem.

Theorem 4.17. Assuming LWE and prFE, there exist Sel-prCT secure sRFE schemes supporting the function

classes Cℓpub,ℓpri,ℓout and Tℓout with the following parameters:

|crs| = poly(λ) |mpk| = loglogL+poly(λ)

|hski | = logL ·ℓout ·poly(λ) |ct| = logL ·poly(λ)+ℓpri ,

where ℓpri denotes the length of the private message encrypted in ct. (Note that this length is not bounded at

the time of setup in the case of Turing machines which is the reason why ℓpri does not appear as an index of the

function class Tℓout).

4.12 Proof of Correctness and Compactness

Proof of Proposition 4.15. We argue that Construction 4.14 is correct and compact.

Correctness. Pick λ,L ∈N, i∗ ∈ [L], {Fi }i∈[L] and (xpub, xpri) ∈Xpub×Xpri. Then we have

crs := sRFE.crs← Setup(1λ,param){
(pki := sRFE.pki ,ski := sRFE.ski) ←Gen(crs)

}
i∈[L](

mpk := sRFE.mpk,
{
hski := {sRFE.hski , j } j∈[ℓout]

}
i∈[L]

)←Agg(crs, {(pki ,Fi)}i∈[L]) ,

where Agg registers the public key sRFE.pki with respect to Freg[Fi]. Encryption first computes

(sRFE.ctoff ,sRFE.st) ← sRFE.EncOff(sRFE.mpk) .

Then it parses xpri = xpri, defines ℓpri := |xpri|, generates

SKE.sk← SKE.Setup(1λ,1ℓpri)

SKE.ct← SKE.Enc(SKE.sk,xpri)

sRFE.cton ← sRFE.EncOn
(
sRFE.st, x ′

pub = (xpub,SKE.ct), x ′
pri = SKE.sk

)
and outputs the ciphertext ct= (ctoff = sRFE.ctoff ,cton = (SKE.ct,sRFE.cton)). Decryption reconstructs x ′

pub
,

sets sRFE.ct= (sRFE.ctoff ,sRFE.cton) and runs{
z j ← sRFE.Dec(sRFE.ski∗ ,sRFE.hski∗ ,Freg[Fi , j],sRFE.ct, x ′

pub)
}

j∈[ℓout] .

By the definition of Freg[Fi , j], we conclude that z j = Fi∗, j (xpub, xpri).

Compactness. The parameters follow immediately by plugging the values ℓ′
pub

= ℓpub+ℓpri+λ and ℓ′pri = λ
into the parameters of sRFE (as stated in Propositions 4.9 and 4.12) and the fact that SKE.CT = {0,1}ℓpri+λ.

4.13 Proof of Security

Proof of Proposition 4.16. To avoid a clash of variables, we will use the following convention throughout this

proof. The sRFE scheme which is built in Construction 4.14 is denoted by sRFE. On the other hand, the sRFE

scheme which serves as a building block and which was previously denoted by sRFE is now denoted by sRFE′.
All variables (e.g., keys, inputs, etc.) belonging either to sRFE or sRFE′ will be distinguished in the same way.

Consider a PPT sampler Samp in the security game Exppost-real
sRFE,Samp,Apost

. We briefly recall this game.

70

• Setup. Launch Samp(1λ) and receive from it the challenge (xpub, xpri). Parse xpri = xpri and define ℓpri =
|xpri|. Run

sRFE.crs← sRFE.Setup(1λ, 1
ℓ′pub ,1ℓpri

′
) ,

and send crs := sRFE′.crs to Samp. Initialize an empty set C := ∅, an empty dictionary D and a tran-

script recpost := (xpub,crs).

• Query. Repeat the following for arbitrarily many rounds determined by Samp. In each round, Samp has

two options.

– QGen(): run sRFE′.(pk,sk) ← sRFE′.Gen(sRFE′.crs) and return pk := sRFE′.pk to Samp. Set D[pk] =
sk := sRFE′.sk and recpost := recpost ∥ pk.

– QCor(pk): upon Samp submitting a public key pk, return D[pk] to Samp. Furthermore, add pk to C
and set recpost := recpost ∥ (pk,sk).

• Challenge. Upon Samp submitting aux and {(pk∗i ,Fi = {Fi , j } j∈[ℓout])}i∈[L] aggregate the public keys by

running(
sRFE.mpk, {sRFE.hski }i∈[L]

)← sRFE.Agg
(
sRFE.crs, {(sRFE.pki ,Freg[Fi , j])}(i , j)∈[L]×[ℓout]

)
.

Then compute the challenge ciphertext ct∗ = (ctoff = sRFE.ctoff ,ct∗on = (SKE.ct,sRFE.cton)) as follows

(sRFE.ctoff ,sRFE.st) ← sRFE.EncOff(sRFE.mpk)

SKE.sk← SKE.Setup(1λ,1ℓpri)

SKE.ct← SKE.Enc(SKE.sk,xpri)

sRFE.cton ← sRFE.EncOn
(
sRFE.st, x ′

pub = (xpub,SKE.ct), x ′
pri = SKE.sk

)
.

Set recpost := recpost ∥ (aux, {(pk∗i ,Fi)}i∈[L],ct∗).

• Guess. Run the adversary Apost on input (1λ,recpost) whose output b ∈ {0,1} is also the outcome of the

experiment.

We need to show that if(
aux, xpub, {Fi }i∈[L], {δ∗i := Fi (xpub, xpri)}i∈Icor∪Imal

)≈c
(
aux, xpub, {Fi }i∈[L], {δ$

i
$← {0,1}ℓout }i∈Icor∪Imal

)
, (27)

then Exppost-real
sRFE,Samp,Apost

≈c Exppost-rand
sRFE,Samp,Apost

, where Exppost-rand
sRFE,Samp,Apost

proceeds in the same fashion as the

experiment Exppost-real
sRFE,Samp,Apost

recalled above except that it replaces ct∗ = (ctoff ,ct∗on := (SKE.ct,sRFE′.cton))

with

ct$ = (
ctoff ,ct$

on
$← (SKE.CT × sRFE′.CTon)

)
.

Here, SKE.CT denotes the ciphertext space of SKE and sRFE′.CTon denotes the online part of the cipher-

text space of sRFE′. We first deal with sRFE′.cton. To prove its pseudorandomness, we invoke the two-stage

Sel-prCT security of sRFE′ with respect to a sampler SampsRFE′ (1λ) which works as follows.

• Setup. Launch Samp(1λ) and receive from it a challenge message xpub, xpri. Run

SKE.sk← SKE.Setup(1λ,1ℓpri) and SKE.ct← SKE.Enc(SKE.sk,xpri) .

Then send the challenge message (x ′
pub

:= (xpub,SKE.ct), x ′
pri

:= SKE.sk) to the challenger of sRFE′ to

obtain sRFE′.crs in return. Forward crs := sRFE′.crs to Samp.

• Query. Upon receiving a query fromSamp, SampsRFE′ makes the same query to the corresponding oracle

of the sRFE challenger and forwards the response to Samp.

71

• Challenge. Upon Samp outputting aux and {(pk∗i ,Fi = {Fi , j } j∈[ℓout])}i∈[L], SampsRFE′ outputs aux′ = (aux,

xpub,SKE.ct, {Fi }i∈[L]) and {(pk∗i ,Freg[Fi , j])}i∈[L], j∈[ℓout].

Under the security of sRFE′, it suffices to show that(
auxsRFE′ , {Freg[Fi , j]}i∈[L], j∈[ℓout], {∆∗

i , j := Freg[Fi , j](x ′
pub, x ′

pri)}i∈Icor∪Imal, j∈[ℓout]
)

≈c
(
auxsRFE′ , {Freg[Fi , j]}i∈[L], j∈[ℓout], {∆$

i , j
$← {0,1}}i∈Icor∪Imal, j∈[ℓout]

)
.

(28)

Unrolling the definitions, we observe that Equation (28) is equivalent to the following(
aux, xpub,SKE.ct, {Fi }i∈[L], {∆∗

i := Fi (xpub, xpri)}i∈Icor∪Imal

)
≈c

(
aux, xpub,SKE.ct, {Fi }i∈[L], {∆$

i
$← {0,1}ℓout }i∈Icor∪Imal

)
.

(29)

But this follows immediately from Equation (27) and the INDr security of SKE. Specifically, we have(
aux, xpub,SKE.ct, {Fi }i∈[L], {∆∗

i := Fi (xpub, xpri)}i∈Icor∪Imal

)
≈c

(
aux, xpub,Γ $← SKE.CT , {Fi }i∈[L], {∆∗

i := Fi (xpub, xpri)}i∈Icor∪Imal

)
≈c

(
aux, xpub,Γ $← SKE.CT , {Fi }i∈[L], {∆$

i
$← {0,1}ℓout }i∈Icor∪Imal

)
≈c

(
aux, xpub,SKE.ct, {Fi }i∈[L], {∆$

i
$← {0,1}ℓout }i∈Icor∪Imal

)
,

where

• the first and the third indistinguishability follows from the INDr security of SKE and the fact that the

secret key sk is freshly sampled and not used anywhere else, and

• the second indistinguishability follows from Equation (27) and the observation that adding a string Γ

chosen independently at random does not simplify the task of distinguishing the two distributions.

Finally, using the pseudorandomness of sRFE′.cton, the pseudorandomness of SKE.ct is immediate. Indeed,

we can observe that at this point the secret key SKE.sk does not appear anywhere in the scheme anymore, thus

we conclude from the INDr security of SKE that SKE.ct≈c Γ
$← SKE.CT .

5 Applications to sRABE and sRPE with (Nearly) Optimal Parameters

In this section, we demonstrate how Sel-prCT secure sRABE can be used to build slotted Registered ABE

(sRABE) and slotted Registered Predicate Encryption (sRPE).

5.1 Definition

The definitions for sRABE and sRPE are nearly identical. We therefore give the formal definitions only for the

case of sRABE and mention differences compared to sRPE along the way.

Let M = {Mλ}λ∈N, X = {Xλ}λ∈N and Y = {Yλ}λ∈N be sequences of message, ciphertext attribute and key

attribute spaces, respectively. Furthermore, let R = {Rλ}λ∈N be a sequence of relations, where Rλ : Xλ×Yλ →
{0,1} for all λ ∈N.

Definition 5.1 (Syntax of sRABE). A sRABE scheme for message space M and relation R consists of five effi-

cient algorithms:

Setup(1λ,param) → crs. On input the security parameter 1λ and some parameter param specifying R, this al-

gorithm outputs a common reference string crs.

Gen(crs) → (pk,sk). On input the crs, this algorithm outputs a pair of a public and a secret key (pk,sk).

Agg(crs, (pki , yi)i∈[L]) → (mpk, {hski }i∈[L]). On input the crs and L pairs (pki , yi) with key attributes yi ∈Yλ, this

algorithm outputs a master public key mpk and L helper secret keys {hski }i∈[L]. We require Agg to be

deterministic.

72

Enc(mpk, x,µ) → ct. The encryption algorithm proceeds in two steps.

EncOff(mpk) → (ctoff ,st). On input the master public key mpk, this algorithm outputs an offline cipher-

text ctoff and a state st.

EncOn(st, x,µ) → cton. On input a state st, a ciphertext attribute x ∈ Xλ and a message µ ∈ Mλ, this

algorithm outputs an online ciphertext ct.

The final output of Enc(mpk, x,µ) is ct= (ctoff ,cton).

Dec(ski ,hski , yi ,ct, x) →µ′∨⊥. On input a secret key ski with corresponding helper secret key hski and reg-

istered attribute yi as well as a ciphertext ct with corresponding attribute x, this algorithm outputs a

message µ′ ∈Mλ or a special symbol ⊥ indicating failure. We require Dec to be deterministic. In the

case of sRPE, the algorithm does not take x as input.

Correctness. A sRABE scheme is correct if for all λ,L ∈ N, i∗ ∈ [L], µ ∈ Mλ, x ∈ Xλ and {yi }i∈[L] ⊆ Yλ such

that R(x, yi∗) = 0, it holds that

Pr

µ′ =µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

crs← Setup(1λ,param)

{(pki ,ski) ←Gen(crs)}i∈[L]

(mpk, {hski }i∈[L]) :=Agg(crs, {(pki , yi)}i∈[L])

ct←Enc(mpk, x,µ)

µ′ :=Dec(ski∗ ,hski∗ , yi∗ ,ct, x)

≥ 1−negl(λ),

where the probability is taken over the random coins of the algorithms Setup, Gen and Enc.

Compactness. A sRABE scheme is compact if for all λ,L ∈N and i ∈ [L], it holds that

|mpk| = poly(λ, logL) and |hski | = poly(λ, logL) .

Security. We define the notion of Sel-INDr security for schemes with two-stage encryption algorithms.

Definition 5.2 (Two-Stage Sel-INDr Security for sRABE). A sRABE scheme sRABE is two-stage Sel-INDr se-

cure if Expsrabe-real
sRABE,A (1λ) ≈c Expsrabe-rand

sRABE,A (1λ) for all PPT adversaries A, where Expsrabe-str
sRABE,A for str ∈ {real,rand}

proceeds as follows.

• Setup. Launch A(1λ) and receive from it the challenge (x∗,µ∗) ∈Xλ×Mλ. Run crs← Setup(1λ,param)

and send crs to A. Initialize an empty set C :=∅ and an empty dictionary D.

• Query. Repeat the following for arbitrarily many rounds determined by A. In each round, A has two

options.

– QGen(): run (pk,sk) ←Gen(crs, i) and return pk to A. Set D[pk] := sk.

– QCor(pk): upon A submitting a public key pk, return D[pk] to A. Add pk to C.

• Challenge. The adversary submits L tuples {(pk∗i , yi)}i∈[L] with y1, . . . , yL ∈Yλ for some L ∈N determined

by A. Run (
mpk, {hski }i∈[L]

)←Agg(crs, (pk∗i , yi)i∈[L]) , (ctoff ,st) ←EncOff(mpk) ,

in Expsrabe-real
sRABE,A : ct∗on ←EncOn(st, x∗,µ∗) , ct := (ctoff ,ct∗on)

in Expsrabe-rand
sRABE,A : ct$

on
$← CTλ,on , ct := (ctoff ,ct$

on)

and return ct to A.

73

• Guess. The adversary outputs a guess str′ ∈ {real,rand}. The outcome of the experiment is str′ if R(x∗, yi) =
1 for all i ∈ [L] such that pk∗i ∈ C or Di [pk∗i] =⊥. Otherwise, the outcome is set to ⊥.

We note that our notion of two-stage Sel-INDr security implies the traditional notion of selective IND-CPA se-

curity (defined below) for both sRABE and sRPE since the pseudorandom ciphertext component ct$
on erases

all information about the challenge (x∗,µ∗). Therefore, the only difference between our sRABE and sRPE def-

inition is the efficiency requirement. For sRABE, we give the attribute x to the Dec algorithm and require that

the ciphertext size is independent of the length of the attribute. On the other hand, for sRPE we require cipher-

texts to hide their attribute x, so we cannot give x (in the clear) to the decryption algorithm. In this case, the

ciphertext size necessarily grows linearly with the size of the attribute.

For completeness, we also recall the notion of classical Sel-IND security.

Definition 5.3 (Sel-IND Security for sRABE). A sRABE scheme sRABE is Sel-IND secure if Expsrabe-0
sRABE,A(1λ) ≈c

Expsrabe-1
sRABE,A(1λ) for all PPT adversaries A, where Expsrabe-b

sRABE,A for b ∈ {0,1} proceeds as follows.

• Setup. Launch A(1λ) and receive from it the challenge input (x∗,µ∗
0 ,µ∗

1) ∈ Xλ×Mλ×Mλ. Run crs←
Setup(1λ,param) and send crs to A. Initialize an empty set C :=∅ and an empty dictionary D.

• Query. This is identical to the query phase in Definition 5.2.

• Challenge. The adversary submits L tuples {(pk∗i , yi)}i∈[L] with y1, . . . , yL ∈Yλ for some L ∈N determined

by A. Compute the challenge ciphertext ct as follows and return it to A:(
mpk, {hski }i∈[L]

)←Agg(crs, (pk∗i , yi)i∈[L]) , ct←Enc(st, x∗,µ∗
b) .

• Guess. The adversary outputs a guess b′ ∈ {0,1}. The outcome of the experiment is b′ if R(x∗, yi) = 1 for

all i ∈ [L] such that pk∗i ∈ C or Di [pk∗i] =⊥. Otherwise, the outcome is set to ⊥.

Policy Classes. We consider sRABE for the same policy classes as plain ABE (see paragraph Policy Classes in

Section 3.11).

5.2 Construction of KP-sRABE and sRPE for Unbounded Depth Circuits and TMs

We build KP-sRABE and sRPE schemes for the class Cℓ of all (unbounded depth) circuits C : {0,1}ℓ→ {0,1} and

the class T of all Turing machines. As all constructions are very similar, we prefer to present them at once.

We use solid (resp. dashed) boxes to indicate that a component appears only in the case of Cℓ (resp. T).

Similarly, we use gray (resp. blue) to indicate that a component is only used in the case of KP-sRABE (resp.

sRPE).

For notational simplicity, we describe all constructions for the fixed message space M = {0,1}λ. We note

that this restriction is without loss of generality. Indeed, using the hybrid encryption framework we can up-

grade these schemes to support arbitrary message spaces while preserving our asymptotic efficiency parame-

ters.

Construction 5.4 (KP-sRABE and sRPE for Cℓ and T). The construction uses the following ingredients:

• A Sel-prCT secure sRFE scheme sRFE = sRFE.(Setup,Gen,Agg,EncOff,EncOn,Dec) for the following

function class F , where

KP-sRABE for Cℓ : F = Cℓpub,ℓpri,ℓout with ℓpub = ℓ, ℓpri = 2λ and ℓout =λ,

KP-sRABE for T : F = Tℓpri,ℓout with ℓpri = 2λ and ℓout =λ,

sRPE for Cℓ : F = Cℓpub,ℓpri,ℓout with ℓpub = 0, ℓpri = ℓ+2λ and ℓout =λ,

sRPE for T : F = Tℓout with ℓout =λ.

Such sRFE schemes exist assuming prFE and LWE (see Construction 4.14, Theorem 4.17).

74

• A pseudorandom function PRF : {0,1}λ× {0,1}λ → {0,1}λ with key space, input space and output space

being {0,1}λ. PRF can be instantiated assuming one-way functions.

The details of the construction are as follows.

Setup(1λ, 1ℓ). Run

sRFE.crs← sRFE.Setup(1λ, 1ℓpub ,1ℓpri ,1ℓout) ,

and output crs := sRFE.crs.

Gen(crs). Parse crs= sRFE.crs, run

sRFE.(pk,sk) ← sRFE.Gen(sRFE.crs) ,

and output the key pair (pk := sRFE.pk,sk := sRFE.sk).

Agg(crs, {pki , fi }i∈[L]). Parse crs= sRFE.crs and pki = sRFE.pki for i ∈ [L]. Run(
sRFE.mpk, {sRFE.hski }i∈[L]

)← sRFE.Agg
(
sRFE.crs, {(sRFE.pki ,Freg[i , fi])}i∈[L]

)
,

where Freg[i , fi] is defined in Figure 11. Then output mpk := sRFE.mpk and hski := sRFE.hski for all i ∈
[L].

Public Input: an attribute x ∈X
Private Input: • an attribute x ∈X

• a message µ ∈M
• a PRF seed sd

Output: a bit string in {0,1}λ

Hardwired Values: • a slot index i ∈ [L]

• a policy fi

• Compute b = fi (x).

• Output µ if b = 0 and PRF(sd, i) if b = 1.

Figure 11: Definition of the function Freg[i , fi]

Enc(mpk, x,µ). The encryption algorithm proceeds in two steps.

EncOff(mpk). Parse mpk= sRFE.mpk, run

sRFE.(ctoff ,st) ← sRFE.EncOff(sRFE.mpk)

and return (ctoff := sRFE.ctoff ,st= sRFE.st)

EncOn(st, x,µ). Parse st= sRFE.st, sample a PRF seed sd $← {0,1}λ and set xpub := x, xpri = (µ,sd) (resp.

xpub := ε, xpri = (x,µ,sd)). Then run

sRFE.ct← sRFE.Enc(sRFE.mpk, xpub, xpri) ,

and output cton = sRFE.cton.

The final output of Enc(mpk, x,µ) is ct= (ctoff ,cton).

75

Dec(ski∗ ,hski∗ , fi∗ ,ct, x). Parse ski∗ = sRFE.ski∗ , hski∗ = sRFE.hski∗ and ct = sRFE.ct. Set xpub := x (resp.

xpub := ε), run

z ← sRFE.Dec(sRFE.ski∗ ,sRFE.hski∗ ,Freg[i∗, fi∗],sRFE.ct, xpub) ,

and output z, where Freg[i∗, fi∗] is defined in Figure 11.

Proposition 5.5 (Correctness and Compactness). The KP-sRABE and sRPE schemes described in Construc-

tion 5.4 are correct and compact. Specifically, they have the following parameters:

|crs| = poly(λ) |mpk| = loglogL+poly(λ)

|hski | = logL ·poly(λ) |ct| = logL ·poly(λ)+ ℓ .

Proposition 5.6 (Security). If sRFE is two-stage Sel-prCT secure and PRF is secure, then the Construction 5.4 is

two-stage Sel-INDr secure.

The proofs of Propositions 5.5 and 5.6 can be found in Sections 5.3 and 5.4, respectively. Summarizing our

results we obtain the following theorem. Specifically, we consider a ciphertext ct encrypting a message µ of

length ℓin (using the hybrid encryption framework) with respect to an attribute x of length ℓatt = ℓ.

Theorem 5.7. Assuming LWE and prFE, there exist Sel-INDr secure KP-sRABE and sRPE schemes supporting

the policy classes Cℓ and T with the following parameters:

|crs| = poly(λ) |mpk| = loglogL+poly(λ)

|hski | = logL ·poly(λ) |ct| = logL ·poly(λ)+ℓin+ ℓatt .

5.3 Proof of Correctness and Compactness

Proof of Proposition 5.5. We argue that Construction 5.4 is correct and compact.

Correctness. The correctness readily follows from the correctness of sRFE and the definition of Freg[i∗, fi∗].

Specifically, for ski∗ = sRFE.ski∗ , hski∗ = sRFE.hski∗ , ct= sRFE.ct and xpub := x (resp. xpub := ε), we have

z := sRFE.Dec
(
sRFE.ski∗ ,sRFE.hski∗ ,Freg[i∗, fi∗],sRFE.ct, xpub

)
= Freg[i∗, fi∗](x,µ,sd)

=
µ if fi (x) = 0

PRF(sd, i∗) if fi (x) = 1 .

Compactness. The parameters can be obtained by plugging the values of ℓpub, ℓpri and ℓout into the param-

eters of sRFE (Construction 4.14, Theorem 4.17).

5.4 Proof of Security

Proof of Proposition 5.6. We first give the proof for the case of KP-sRABE and briefly mention the case of sRPE

at the end. Let sRABE denote the KP-sRABE (resp. sRPE) scheme in Construction 5.4 and A a PPT adversary.

We recall the experiments Expsrabe-real
sRABE,A and Expsrabe-rand

sRABE,A .

• Setup. Upon launching A(1λ;coinsA), the adversary outputs the challenge input (x∗,µ∗). The challenger

sends crs := sRFE.crs← sRFE.Setup(1λ, 1ℓpub ,1ℓpri ,1ℓout) to A and initializes an empty set C :=∅ and an

empty dictionary D.

• Query. A has access to the following two oracles.

76

– QGen(): run sRFE.(pk,sk) ← sRFEGen(sRFE.crs) and send pk := sRFE.pk toA. SetD[pk] := sRFE.sk.

– QCor(pk): return D[pk] to A. Add pk to C.

• Challenge. UponA submitting {(pk∗i , fi)}i∈[L], the challenger parses pk∗i = sRFE.pk∗i , samples sd $← {0,1}λ

and returns ct to A as follows:(
sRFE.mpk, {sRFE.hski }i∈[L]

)← sRFE.Agg
(
sRFE.crs, {(sRFE.pk∗i ,Freg[i , fi])}i∈[L]

)
sRFE.(ctoff ,st) ← sRFE.EncOff(sRFE.mpk)

in Expsrabe-real
sRABE,A : sRFE.ct∗on ← sRFE.EncOn(sRFE.st, x∗,µ∗) , ct := (sRFE.ctoff ,sRFE.ct∗on)

in Expsrabe-rand
sRABE,A : sRFE.ct$

on
$← sRFE.CTλ,on , ct := (sRFE.ctoff ,sRFE.ct$

on) ,

where sRFE.CTon denotes the ciphertext space of sRFE.EncOn.

• Guess. A outputs a guess str′ ∈ {real,rand}. The outcome of the experiment is str′ if fi (x∗) = 1 for all i ∈
Icor∪Imal, where Icor = {i ∈ [L] : pk∗i ∈ C} and Imal = {i ∈ [L] :D[pk∗i] =⊥}. Otherwise, the outcome is set

to ⊥.

To prove Expsrabe-real
sRABE,A ≈c Expsrabe-rand

sRABE,A , we invoke the security of sRFE with respect to the following sam-

pler SampsRFE(1λ).

• Setup. Sample sd,coinsA
$← {0,1}λ and launch A(1λ;coinsA) to obtain (x∗,µ∗). Output xpub = x∗, xpri =

(µ∗,sd) and receive crs := sRFE.crs in return. Forward sRFE.crs to A.

• Query. Upon A submitting a query QGen() or QCor(pk), SampsRFE makes the same query to its own

challenger and forwards the response to A.

• Challenge. Upon A submitting {(pk∗i , fi)}i∈[L], SampsRFE outputs auxsRFE = (coinsA, { fi }i∈[L]) and L tu-

ples {(pk∗i ,Freg[i , fi])}i∈[L].

From the security of sRFE with SampsRFE, we obtain that Expsrabe-real
sRABE,A ≈c Expsrabe-rand

sRABE,A if rec∗pre ≈c rec$
pre,

where

rec∗pre := (
auxsRFE, xpub, {Freg[i , fi]}i∈[L], {δ∗i := Freg[i , fi](xpub, xpri)}i∈Icor∪Imal

)
rec$

pre := (
auxsRFE, xpub, {Freg[i , fi]}i∈[L], {δ$

i
$← {0,1}λ}i∈Icor∪Imal

)
.

To see this, we recall that

Freg[i , fi]
(
xpub = x∗, xpri = (µ∗,sd)

)=
µ if fi (x∗) = 0 ,

PRF(sd, i) if fi (x∗) = 1 .

From the admissibility of the adversary in Expsrabe-real
sRABE,A and Expsrabe-rand

sRABE,A , we have that fi (x∗) = 1 for all i ∈
Icor∪Imal in which case the security of PRF implies that

δ∗i := Freg[i , fi]
(
xpub = x∗, xpri = (µ∗,sd)

)=PRF(sd, i) ≈c δ
$
i .

The argument for the case of sRPE is almost identical. In particular, SampsRFE defines xpub = ε and xpri =
(x∗,µ∗,sd). Then replacing the ciphertext by a random string hides the information of both x and µ and, thus,

satisfies the security requirement for a sRPE scheme.

5.5 Construction of CP-sRABE for Unbounded Depth Circuits and TMs

We build CP-sRABE schemes for the class Cℓ of all (unbounded depth) circuits C : {0,1}ℓ→ {0,1} and the class T
of all Turing machines. As in the case of KP-sRABE, we use solid (resp. dashed) boxes to indicate that a

component appears only in the case of Cℓ (resp. T). Also, we describe the construction for the fixed message

space M = {0,1}λ which can be generically upgraded to support arbitrary message spaces using the hybrid

encryption framework.

77

Construction 5.8 (CP-sRABE for Cℓ and T). The construction uses the following building blocks:

• A KP-ABE scheme kpABE = kpABE.(Setup,KeyGen,Enc = (EncOff,EncOn),Dec) for policy class Cℓ T
satisfying reusableVerSel-INDr security. We denote the output space of kpABE.EncOn by kpABE.CTon =
{0,1}ℓon and require its size to be some fixed polynomial ℓon = ℓon(λ) in λ. Without loss of generality, we

assume that the state output by kpABE.EncOff and the random coins of kpABE.EncOn be in {0,1}λ.

To achieve the former, we let the state be the random coins used by kpABE.EncOff which can in turn be

replaced with a string in {0,1}λ using a PRF. For the latter, we can also use a PRF to derive longer (pseudo-

)random coins if needed. KP-ABE schemes with the desired properties exist assuming LWE, pPRIO and

reusable VerSel-prCT secure FE for bounded depth circuits (Fact 3.32, Construction 7.5, Theorem 7.12).

• A two-stage Sel-prCT secure sRFE scheme sRFE = sRFE.(Setup,Gen,Agg,EncOff,EncOn,Dec) for the

circuit class Cℓpub,ℓpri,ℓout , where ℓpub = 0, ℓpri = 3λ and ℓout = ℓon. We can construct such an sRFE

scheme assuming prFE and LWE (see Construction 5.8, Theorem 4.17).

• A pseudorandom function PRF : {0,1}λ× {0,1}λ → {0,1}λ with key space, input space and output space

being {0,1}λ. PRF can be instantiated assuming one-way functions.

The details of the CP-sRABE scheme are as follows.

Setup(1λ, 1ℓ): Run

sRFE.crs← sRFE.Setup(1λ,1ℓpub ,1ℓpri ,1ℓout) ,

and output crs := sRFE.crs.

Gen(crs): Parse crs= sRFE.crs, run

sRFE.(pk,sk) ← sRFE.Gen(sRFE.crs) ,

and output the key pair (pk := sRFE.pk,sk := sRFE.sk).

Agg(crs, {(pki , xi)}i∈[L]): Parse crs= sRFE.crs and pki = sRFE.pki for i ∈ [L]. Run(
sRFE.mpk, {sRFE.hski }i∈[L]

)← sRFE.Agg
(
sRFE.crs, {(sRFE.pki ,Creg[i , xi])}i∈[L]

)
,

where Creg[i , xi] is defined in Figure 12. Output mpk := sRFE.mpk and hski := sRFE.hski for all i ∈ [L].

(Private) Input: • a message µ ∈M
• a kpABE state kpABE.st

• a PRF seed sd
Output: a kpABE online ciphertext kpABE.cton ∈ kpABE.CTon
Hardwired Values: • a slot index i ∈ [L]

• an attribute xi ∈X
• Compute Ri =PRF(sd, i).

• Output kpABE.cton ← kpABE.EncOn(kpABE.st, xi ,µ;Ri).

Figure 12: Definition of the circuit Creg[i , xi] in Construction 5.8

Enc(mpk, f ,µ): Parse mpk= sRFE.mpk, sample sd $← {0,1}λ and run

kpABE.(mpk,msk) ← kpABE.Setup(1λ, 1ℓ)

kpABE.(ctoff ,st) ← kpABE.EncOff(kpABE.mpk)

kpABE.sk f ← kpABE.KeyGen(kpABE.msk, f)

sRFE.ct← sRFE.Enc
(
sRFE.mpk, xpub = ε, xpri = (µ,kpABE.st,sd)

)
.

78

Output ct := (kpABE.ctoff ,kpABE.sk f ,sRFE.ct).

Dec(ski∗ ,hski∗ , xi∗ ,ct, f): Parse ski∗ = sRFE.ski∗ , hski∗ = sRFE.hski∗ , ct = (kpABE.ctoff ,kpABE.sk f ,sRFE.ct).

Run

kpABE.cton ← sRFE.Dec
(
sRFE.ski∗ ,sRFE.hski∗ ,Creg[i∗, xi∗],sRFE.ct,ε

)
z ← kpABE.Dec

(
kpABE.msk,kpABE.sk f , f ,kpABE.(ctoff ,cton), xi∗

)
,

and output z, where Creg[i∗, xi∗] is defined in Figure 12.

Proposition 5.9 (Correctness and Compactness). The CP-sRABE scheme in Construction 5.8 is correct and com-

pact. More specifically, it has the following parameters:

|crs| = poly(λ) |mpk| = loglogL+poly(λ)

|hski | = logL ·poly(λ) |ct| = logL ·poly(λ) .

Proposition 5.10 (Security). If kpABE satisfies reusableVerSel-INDr security, sRFE is two-stage Sel-prCT secure

and PRF is secure, then the CP-sRABE scheme in Construction 5.8 is Sel-IND secure.

The proofs of Propositions 5.9 and 5.10 can be found in Sections 5.6 and 5.7, respectively. We summarize our

results in the following theorem. Specifically, we consider a ciphertext ct encrypting a message µ of length ℓin
(using the hybrid encryption framework).

Theorem 5.11. Assuming LWE and prFE, there exist Sel-IND secure CP-sRABE schemes supporting the policy

classes Cℓ and T with the following parameters:

|crs| = poly(λ) |mpk| = loglogL+poly(λ)

|hski | = logL ·poly(λ) |ct| = logL ·poly(λ)+ℓin .

5.6 Proof of Correctness and Compactness

Proof of Proposition 5.9. We argue that Construction 5.8 is correct and compact.

Correctness. Correctness readily follows from the correctness of the building blocks and the definition of

Creg[i∗, xi∗]. Specifically, for ski∗ = sRFE.ski∗ , hski∗ = sRFE.hski∗ and ct= (kpABE.ctoff ,kpABE.sk f ,sRFE.ct),

we have

sRFE.Dec
(
sRFE.ski∗ ,sRFE.hski∗ ,Creg[i∗, xi∗],sRFE.ct,ε

)
=Creg[i∗, xi∗](µ,kpABE.st,sd)

= kpABE.EncOn(µ,kpABE.st, xi∗ ;PRF(sd, i∗)) =: kpABE.cton

Plugging this online ciphertext into the kpABE decryption algorithm yields

kpABE.Dec
(
kpABE.msk,kpABE.sk f , f ,kpABE.(ctoff .cton), xi∗

)=µ if f (x∗
i) = 0 .

Compactness. First, when instating kpABE as proposed (Fact 3.32, Theorem 7.12), we have

|kpABE.mpk| = poly(λ) , |kpABE.ctoff | = poly(λ) , |kpABE.cton| = poly(λ) , |kpABE.sk f | = poly(λ) .

Then, plugging the values of ℓpub = 0, ℓpri = 3λ and ℓout = ℓon into the parameters of sRFE (Construction 4.14,

Theorem 4.17) gives

|crs| = |sRFE.crs| = poly(λ)

|mpk| = |sRFE.mpk| = loglogL+poly(λ)

|hski | = |sRFE.hski | = logL ·ℓout ·poly(λ) = logL ·poly(λ)

|ct| = |kpABE.ctoff |+ |kpABE.sk f |+ |sRFE.ct|︸ ︷︷ ︸
logL·poly(λ)+ℓpri

= logL ·poly(λ) ,

79

where we recall that ℓon(λ) = poly(λ).

5.7 Proof of Security

Proof of Proposition 5.10. Let sRABE denote the CP-sRABE scheme in Construction 5.8 andA a PPT adversary.

We recall the experiments Expsrabe-b
sRABE,A for b ∈ {0,1}.

• Setup. Launch A(1λ) to obtain the challenge input (f ∗,µ∗
0 ,µ∗

1). The challenger sends crs := sRFE.crs←
sRFE.Setup(1λ,1ℓpub ,1ℓpri ,1ℓout), for ℓpub = 0, ℓpri = 3λ and ℓout = ℓon, to A and initializes an empty

set C :=∅ and an empty dictionary D.

• Query. A has access to the following two oracles.

– QGen(): run sRFE.(pk,sk) ← sRFEGen(sRFE.crs) and send pk := sRFE.pk toA. SetD[pk] := sRFE.sk.

– QCor(pk): return D[pk] to A. Add pk to C.

• Challenge. Upon A and {(pk∗i , xi)}i∈[L], the challenger parses pk∗i = sRFE.pk∗i , samples sd $← {0,1}λ and

returns ct := (kpABE.ctoff ,kpABE.sk f ∗ ,sRFE.ct) to A as follows:(
sRFE.mpk, {sRFE.hski }i∈[L]

)← sRFE.Agg
(
sRFE.crs, {(sRFE.pk∗i ,Creg[i , xi])}i∈[L]

)
kpABE.(mpk,msk) ← kpABE.Setup(1λ, 1ℓ)

kpABE.(ctoff ,st) ← kpABE.EncOff(kpABE.mpk)

kpABE.sk f ∗ ← kpABE.KeyGen(kpABE.msk, f ∗)

sRFE.ct← sRFE.Enc
(
sRFE.mpk, xpub = ε, xpri = (µ∗

b ,kpABE.st,sd)
)

.

• Guess. A outputs a guess b′ ∈ {0,1}. The outcome of the experiment is b′ if f ∗(xi) = 1 for all i ∈ Icor∪Imal,

where Icor = {i ∈ [L] : pk∗i ∈ C} and Imal = {i ∈ [L] :D[pk∗i] =⊥}. Otherwise, the outcome is set to ⊥.

We recall that sRFE is a sRFE scheme with two-stage encryption, i.e., sRFE.ct is consits of two components

sRFE.ctoff and sRFE.cton. Note that ∆∗ := sRFE.cton is the only component of the challenge ciphertext ct

which depends on the challenge bit b. Hence, it suffices to argue that∆∗ ≈c ∆
$ $← sRFE.CTon, where sRFE.CTon

denotes the ciphertext space of sRFE.EncOn. We do so by relying on the two-stage Sel-prCT security of sRFE

with respect to the following sampler SampsRFE(1λ).

• Setup. Sample sd,coinsA
$← {0,1}λ and launch A(1λ;coinsA) to obtain (f ∗,µ∗

0 ,µ∗
1). Run

kpABE.(mpk,msk) ← kpABE.Setup(1λ, 1ℓ)

kpABE.(ctoff ,st) ← kpABE.EncOff(kpABE.mpk) .

Output (x∗
pub

= ε, x∗
pri = (kpABE.st,sd,µ∗

b)) and receive sRFE.crs in return. Forward sRFE.crs to A.

• Query. Upon A submitting a query QGen() or QCor(pk), SampsRFE makes the same query to its own

challenger and forwards the response to A.

• Challenge. Upon A submitting {(pk∗i , xi)}i∈[L], SampsRFE runs

kpABE.sk f ∗ ← kpABE.KeyGen(kpABE.msk, f ∗)

and outputs auxsRFE = (coinsA, {xi }i∈[L],kpABE.ctoff ,kpABE.sk f ∗) and {(pk∗i ,Creg[i , xi])}i∈[L].

Invoking the security of sRFE with SampsRFE, we obtain that ∆∗ ≈c ∆
$ if

Exppre-real
sRFE,SampsRFE,Apre

≈c Exppre-rand
sRFE,SampsRFE,Apre

for every PPT adversary Apre. To show this, we consider the following sequence of hybrids (G0,G1,G2).

80

Game G0: This is Exppre-real
sRFE,SampsRFE,A. Specifically, when unrolling SampsRFE, this game works as follows:

• Setup. Sample sd,coinsA
$← {0,1}λ and launch A(1λ;coinsA) to obtain (f ∗,µ∗

0 ,µ∗
1). Run

kpABE.(mpk,msk) ← kpABE.Setup(1λ, 1ℓ)

kpABE.(ctoff ,st) ← kpABE.EncOff(kpABE.mpk)

and set (x∗
pub

= ε, x∗
pri = (kpABE.st,sd,µ∗

b)). Send sRFE.crs← sRFE.Setup(1λ) to A.

• Query. Repeat the following for arbitrarily many rounds determined by A. In each round, A has

two options.

– QGen(): run sRFE.(pk,sk) ← sRFE.Gen(sRFE.crs, i) and return pk := sRFE.pk to A. Set D[pk] :=
sRFE.sk.

– QCor(pk): upon A submitting a public key pk, return D[pk] to A. Add pk to C.

• Challenge. Upon A submitting {(pk∗i , xi)}i∈[L], run

kpABE.sk f ∗ ← kpABE.KeyGen(kpABE.msk, f ∗) ,

set auxsRFE = (coinsA, {xi }i∈[L],kpABE.ctoff ,kpABE.sk f ∗) and define

recpre := (
auxsRFE, x∗

pub, {Creg[i , xi]}i∈[L], {δ∗i }i∈Icor∪Imal

)
,

where we recall that

{δ∗i :=Creg[i , xi](x∗
pub, x∗

pri) = kpABE.EncOn(kpABE.st, xi ,µ∗
b ;PRF(sd, i))}i∈Icor∪Imal

.

• Guess. Run the adversary Apre on input (1λ,recpre) whose output b′ ∈ {0,1} is also the outcome of

the experiment.

Game G1: This is the same as G0 except that the challenger computes

{δ∗i :=Creg[i , xi](x∗
pub, x∗

pri) = kpABE.EncOn(kpABE.st, xi ,µ∗
b)}i∈Icor∪Imal

,

i.e., the kpABE.EncOn is run with uniform random coins. As sd is not used anywhere else, we have G0 ≈c

G1 from the security of PRF.

Game G2: This is the same as G1 except that the challenger replaces the set {δ∗i }i∈Icor∪Imal
of function values

with random values {δ$
i

$← sRFE.CTon}i∈Icor∪Imal
. We note that G2 = Exppre-rand

sRFE,SampsRFE,A. To prove G1 ≈c

G2, we argue that an adversary Apre who can distinguish G1 and G2 can be used to break the VerSel-INDr

reusable security of kpABE. The reduction B works as follows:

• Setup. B samples sd,coinsA
$← {0,1}λ, launches A(1λ;coinsA) to obtain the challenge (f ∗,µ∗

0 ,µ∗
1)

and sends sRFE.crs← sRFE.Setup(1λ) to A.

• Query. Repeat the following for arbitrarily many rounds determined by A. In each round, A has

two options.

– QGen(): run sRFE.(pk,sk) ← sRFE.Gen(sRFE.crs, i) and return pk := sRFE.pk to A.

– QCor(pk): upon A submitting a public key pk, return D[pk] to A.

• Challenge. UponA submitting {(pk∗i , xi)}i∈[L],B sends (coinsA, { f ∗}, {xi }i∈Icor∪Imal
,µ∗

b) to the kpABE

challenger which returns(
{kpABE.sk f ∗ },kpABE.ctoff , {kpABE.cton,i }i∈Icor∪Imal

)
.

B constructs the record

recpre :=
auxsRFE = (coinsA, {xi }i∈[L],kpABE.ctoff ,kpABE.sk f ∗),

x∗
pub, {Creg[i , xi]}i∈[L], {kpABE.cton,i }i∈Icor∪Imal

 ,

81

• Guess. B runs b′ ←Apre(1λ,recpre) and forwards b′ to the kpABE challenger.

Note that if the kpABE challenger provides real ciphertexts kpABE.cton,i ← kpABE.EncOn(kpABE.st,

xi ,µ∗
b), then B simulates G1. If the kpABE challenger samples kpABE.cton,i

$← kpABE.CTon, then B
simulates G2. Furthermore, by the admissibility of the adversary A in the game Expsrabe-b

sRABE,A, we have

that f ∗(xi) = 1 for all i ∈ Icor∪Imal. Thus the query sent by B to the kpABE challenger is also admissi-

ble.

6 Results in the Registration-Based Setting

In this section, we state our results in the (non-slotted) RFE and RABE setting. For RABE, we use the same

definitions as previous works (see Section 3.12). For RFE, we introduce the new notion of pseudorandom

ciphertext security which we present next.

Definition of RFE. We provide our notion of RFE with Sel-prCT security. Let {Xλ,pub}λ∈N, {Xλ,pri}λ∈N and

{Yλ}λ∈N be sequences of public input spaces, private input spaces and output spaces, respectively. We consider

a functionality F = {Fλ}λ∈N where each Fλ contains functions fλ : Xλ,pub×Xλ,pri →Yλ.

Definition 6.1 (Syntax of RFE). A RFE scheme for the functionality F consists of six efficient algorithms:

Setup(1λ,param) → crs: On input the security parameter 1λ and some parameter param specifying F , this al-

gorithm outputs a common reference string crs.

Gen(crs,aux) → (pki ,ski): On input the crs and a state aux, this algorithm outputs a pair of a public and a secret

key (pki ,ski).

Reg(crs,aux,pk, f) → (mpk,aux′): On input the crs, a state aux, a public key pk and a function f ∈Fλ, this al-

gorithm outputs a master public key mpk and an updated state aux′. We require Reg to be deterministic.

Enc(mpk, xpub, xpri) → ct: On input the master public key mpk, a public input xpub ∈Xλ,pub and a private in-

put xpri ∈Xλ,pri, this algorithm outputs a ciphertext ct.

Update(crs,aux,pk) → hsk: On input the crs, a state aux and a public key pk, this algorithm outputs a helper

secret key hsk. We require Update to be deterministic.

Dec(sk,hsk,ct) → y ∨⊥∨GetUpdate: On input a secret key sk, a helper secret key hsk and a ciphertext ct, this

algorithm either outputs a value y ∈Yλ, or a special symbol ⊥ indicating decryption failure, or a special

message GetUpdate indicating an updated helper secret key is needed to decrypt the ciphertext. We

require Dec to be deterministic.

We recall the definitions of correctness, compactness and update efficiency.

Definition 6.2 (Correctness, Compactness and Update Efficiency of RFE). Given a RFE scheme RFE and an

(unbounded) adversary A, we define the experiment ExpRFE,A as follows:

• Setup. Launch A(1λ) and receive param from it. Run crs← Setup(1λ,param) and send crs to A. Initialize

the auxiliary input aux :=⊥, two empty dictionaries E ,R and counters ireg, i∗reg, ienc := 1 to keep track of

QRegNT, QRegT and QEnc queries. Let b = 0 and f ∗,pk∗,sk∗,hsk∗ :=⊥.

• Query. Repeat the following for arbitrarily many rounds determined by A. The oracle QRegT can be

queried exactly once. In each round, A has four options.

– QRegNT(pk, f): upon A submitting a public key pk and a function f ∈ Fλ, run (mpk,aux′) ←
Reg(crs,aux,pk, f) and return (ireg,mpk,aux′) to A. Update R[ireg] := (mpk,aux′), aux := aux′ and

ireg := ireg+1.

82

– QRegT(f): uponA submitting a function f ∈Fλ, run (pk,sk) ←Gen(crs,aux), (mpk,aux′) ←Reg(crs,

aux,pk, f), hsk :=Update(crs,aux′,pk) and return (ireg,mpk,aux′,pk,sk,hsk) to A. Update R[ireg] :=
(mpk,aux′), aux := aux′, ireg := ireg+1 and i∗reg := ireg. Furthermore, set f ∗ := f , pk := pk∗, sk := sk∗

and hsk := hsk∗,

– QEnc(j , xpub, xpri): upon A submitting an index j ∈ [i∗reg; ireg] and a message (xpub, xpri) ∈Xλ,pub,

retrieve (mpk,⋆) := R[j], run ct ← Enc(mpk, xpub, xpri) and return (ienc,ct) to A. Set E[ienc] :=
(xpub, xpri,ct) and ienc := ienc+1.

– QDec(j): upon A submitting an index j ∈ [ienc], if sk∗ = ⊥ return ⊥. Otherwise, retrieve the

tuple (xpub, xpri,ct) := E[j] and run y ← Dec(sk∗,hsk∗,ct). If y = GetUpdate, then run hsk∗ ←
Update(crs,aux,pk∗) and recompute y ←Dec(sk∗,hsk∗,ct). Set b = 1 if y ̸= f ∗(xpub, xpri).

We say that FE is

• correct if Pr[ExpRFE,A(1λ) → 0] = 1 for all adversaries A,

• compact if |mpk| = poly(λ, logL) and |hsk| = poly(λ, logL) at any stage during the execution of the exper-

iment ExpRFE,A(1λ), and

• update efficient if the oracle QDec invokes Update at most O(log|R|) times and each invocation runs in

time poly(log|R|).

We define our pseudorandom ciphertext security notion. At a high level, we require ciphertexts to be pseudo-

random so long as the output of the functionality itself is pseudorandom.

Definition 6.3 (Sel-prCT Security for RFE). Given a RFE scheme RFE with ciphertext space CT = {CTλ}λ∈N,

an interactive PPT algorithm Samp and a PPT adversary A, we define Expxxx-yyy
RFE,Samp,A, for xxx ∈ { pre , post }

and yyy ∈ {real,rand}, as follows.

• Setup. Launch Samp(1λ) and receive from it param and a challenge message (x∗
pub

, x∗
pri) ∈Xλ,pub×Xλ,pri.

Run crs ← Setup(1λ,param) and send crs to Samp. Initialize the auxiliary input aux := ⊥, the master

public key mpk :=⊥, a counter ireg := 0 to keep track of QRegHK queries, an empty set C :=∅ and empty

dictionaries D,R, and a transcript recpre := x∗
pub recpost := (x∗

pub
,crs) .

• Query. Repeat the following for arbitrarily many rounds determined by Samp. In each round, Samp has

three options.

– QRegCK(pk, f): upon Samp submitting a public key pk and a function f ∈Fλ, run (mpk′,aux′) ←
Reg(crs,aux,pk, f) and return (mpk′,aux′) to Samp. Set mpk :=mpk′, aux := aux′, D[pk] :=D[pk]∪
{ f }. Further, add pk to C, and set recpre := recpre ∥D[pk] , recpost := recpost ∥ (pk,D[pk]) .

– QRegHK(f): upon Samp submitting a function f ∈Fλ, run (pk,sk) ←Gen(crs,aux), (mpk′,aux′) ←
Reg(crs,aux,pk, f) and return (ireg,mpk′,aux′,pk) to Samp. Set mpk :=mpk′, aux := aux′, D[pk] :=
D[pk]∪{ f },R[ireg] := (pk,sk), ireg := ireg+1, recpre := recpre ∥D[pk] , recpost := recpost ∥ (pk,D[pk]) .

– QCorHK(j): upon Samp submitting an index j ∈ [ireg], retrieve (pk,sk) :=R[j] and send sk to Samp.

Further, add pk to C and set recpost := recpost ∥ (pk,sk) .

• Challenge. Compute{
δ∗f := f (x∗

pub, x∗
pri)

}
f ∈⋃

pk∈CD[pk] ,
{
δ$

f
$←Yλ

}
f ∈⋃

pk∈CD[pk] ,

ct∗ ←Enc(mpk, x∗
pub, x∗

pri) , ct$ $← CTλ ,

83

in Exppre-real
RFE,Samp,A: recpre := recpre ∥

(
aux, {δ∗f } f ∈⋃

pk∈CD[pk]
)

,

in Exppre-rand
RFE,Samp,A: recpre := recpre ∥

(
aux, {δ$

f } f ∈⋃
pk∈CD[pk]

)
,

in Exppost-real
RFE,Samp,A: recpost := recpost ∥

(
aux,ct∗

)
,

in Exppost-rand
RFE,Samp,A: recpost := recpost ∥

(
aux,ct$) .

• Guess. Run the adversary A on input (1λ, recpre recpost) whose output b ∈ {0,1} is also the outcome of

the experiment.

For xxx ∈ {pre,post}, we define the advantage function

AdvxxxRFE,Samp,A(λ) :=
∣∣∣Pr

[
Expxxx-real

RFE,Samp,A(1λ) → 1
]
−Pr

[
Expxxx-rand

RFE,Samp,A(1λ) → 1
]∣∣∣ .

The RFE scheme RFE is said to be Sel-prCT secure if for every PPT adversary Apost, there exists another PPT

adversary Apre such that

Advpre
RFE,Samp,Apre

(λ) ≥ Advpost
RFE,Samp,Apost

(λ)/poly(λ)−negl(λ)

and Time(Apre) ≤Time(Apost) ·poly(λ).

We will make use of the following lemma to convert our sRFE schemes to RFE.

Lemma 6.4. If there exists a Sel-prCT-secure sRFE scheme for a functionality F , then there exists a Sel-prCT-

secure RFE scheme for the same functionality F .

As recalled in Fact 3.36, Hohenberger et al. [HLWW23] introduced a transformation from slotted registered

ABE to registered ABE, which is also being used by many subsequent works [FFM+23, DPY24, ZLZ+24] to lift

a slotted RFE to RFE. At a high level, the transformation relies on a simple powers-of-two encoding strategy.

Specifically, to support a system with L = 2ℓ users, we employ (ℓ+ 1) instances of sRFE to construct a RFE

scheme. We can use the same transformation to upgrade Sel-prCT-secure sRFE into a full-fledged Sel-prCT-

secure RFE, hence we ignore the formal proof of the above theorem.

Results in the Registered Setting. We now use Fact 3.36 and Lemma 6.4 to upgrade our slotted schemes to

full-fledged RFE and RABE. First, combining Theorem 4.17 and Lemma 6.4, we get the following theorem.

Theorem 6.5. Assuming LWE and prFE, there exist Sel-prCT secure RFE schemes supporting the function classes

Cℓpub,ℓpri,ℓout and Tℓout with the following parameters:

|crs| = logL ·poly(λ) |mpk| = logL ·poly(λ)

|hski | = (logL)2 ·ℓout ·poly(λ) |ct| = (logL)2 ·poly(λ)+ℓpri ,

where ℓpri denotes the length of the private message encrypted in ct. (Note that this length is not bounded at

the time of setup in the case of Turing machines which is the reason why ℓpri does not appear as an index of the

function class Tℓout).

Furthermore, a combination of Theorem 5.7, Theorem 5.11 and Fact 3.36 yields the following.

Theorem 6.6. Assuming LWE and prFE, there exist Sel-IND secure KP-RABE, CP-RABE and RPE schemes sup-

porting the policy classes Cℓ and T with the following parameters:

|crs| = logL ·poly(λ) |mpk| = logL ·poly(λ)

|hski | = (logL)2 ·poly(λ) |ct| = (logL)2 ·poly(λ)+ℓin +ℓatt

where the message and attributes have lengths ℓin and ℓatt respectively.

84

7 prCT Secure FE for Turing Machines and Applications to ABE

In this section, we constructVerSel-prCT secure FE for Turing machines and demonstrate how it can be used to

build KP-ABE and CP-ABE for Turing machines. Our constructions enjoy optimal asymptotic parameters, i.e.,

master public keys and secret keys are of size poly(λ) and ciphertexts encrypting private inputs of length ℓpri

have size poly(λ)+ℓpri.

7.1 Construction of prCT Secure FE for TMs

In this section, we construct a VerSel-prCT secure FE scheme for the class Tℓpri of Turing machines with public

input space Xpub = {0,1}∗ and private input space Xpri = {0,1}ℓpri .

Construction 7.1 (Reusable VerSel-prCT Secure FE for TMs). The construction uses the following ingredients:

• A blind garbling scheme bGC = bGC.(Garble,Eval,Sim) with decomposability (Definition 3.16). We as-

sume that the labels and the random coins used by {bGC.Garblek }k and {bGC.Garbleinp,k }k are in {0,1}λ.

The former is guaranteed by Definition 3.12 and the latter can be achieved without loss of generality by

using a PRF to derive longer (pseudo-)random coins if needed. We can instantiate bGC with the required

properties assuming one-way functions (Fact 3.17).

• A pseudorandom function PRF : {0,1}λ× {0,1}λ → {0,1}λ with key space, input space and output space

being {0,1}λ. PRF can be instantiated assuming one-way functions.

• A laconic pPRIO schemeLprIO= LprIO.(Digest,ObfOff,ObfOn,Eval). Without loss of generality, the state

output by LprIO.ObfOff and the random coins of LprIO.ObfOn are in {0,1}λ. To achieve the former, we

let the state be the random coins used by LprIO.ObfOff which can in turn be replaced with a string

in {0,1}λ using a PRF. For the latter, we can also use a PRF. We note that Definition 3.43 guarantees that

the length of digests is bounded by a fixed polynomial ℓdig = ℓdig(λ) in the security parameter. We can

instantiate LprIO with the desired properties assuming LWE and pPRIO (Fact 3.45).

• A FE scheme FE = FE.(Setup,Gen,Agg,Enc,Dec) with trivial offline encryption (Definition 3.26) and

reusable VerSel-prCT security (Definition 3.27) for the class Cℓ′
pri

,ℓ′
dep

,ℓ′out consisting of circuits with pub-

lic input length ℓ′
pub

= 0, private input length ℓ′pri = ℓpri+ℓdig +9λ, maximum depth ℓ′
dep

and output

length ℓ′out, where we set ℓ′
dep

and ℓ′out so that the circuit class contains Ckgen[r,digM] defined in Fig-

ure 14. We denote the information specifying the circuit class by param′ = (1ℓ
′
pri ,1

ℓ′dep ,1ℓ
′
out). We can

construct FE with the desired properties assuming LWE and pPRIO (Fact 3.28).

The details of the VerSel-prCT secure FE scheme for Turing machines are as follows.

Setup(1λ,1ℓpri): Run FE.(mpk,msk) ← FE.Setup(1λ,param′) and output (mpk := FE.mpk,msk := FE.msk).

KeyGen(msk, M): Parse msk= FE.msk, sample r $← {0,1}λ and compute

digM ← LprIO.Digest({(k,C (k)
tm)}k∈[|Ctm|])

FE.skM ← FE.KeyGen(FE.msk,Ckgen) ,

where Ctm = Ctm[M] and Ckgen = Ckgen[r,digM] are defined in Figure 13 and Figure 14, respectively.

Output skM := (r,digM ,FE.skM).

Enc(mpk, x): The encryption algorithm proceeds in two steps.

EncOff(mpk): Parse mpk= FE.mpk and run

(Ĉoff ,LprIO.st) ← LprIO.ObfOff(1λ,1S)

(Ĉ ′
off ,LprIO.st′) ← LprIO.ObfOff(1λ,1S) ,

85

Input: • two (fixed-length) bit strings bits(ℓ),bits(t) ∈ {0,1}λ

• a LprIO state LprIO.st

• random coins Rdig,Rbgc,Rcir ∈ {0,1}λ

Output: a LprIO online obfuscation Ĉon,cir

Hardwired Values: a Turing machine M

• Run

digT ← LprIO.Digest({(k,T (k))}k∈[|T |];Rdig)

Ĉon,cir ← LprIO.ObfOn(LprIO.st,digT ,Ecir[Rbgc];Rcir) ,

where T = Tℓ[M , t] and Ecir are defined in Figure 8 and 5, respectively.

• Output Ĉon,cir.

Figure 13: Definition of the circuit Ctm[M]

Input: • a bit string bits(t) ∈ {0,1}λ

• a LprIO digest digxpub ; we implicitly assume that digxpub contains the length ℓpub :=
|xpub|

• a private input vector xpri ∈ {0,1}ℓpri

• two LprIO states LprIO.st and LprIO.st′

• PRF seeds sddig,sdpub,sdcir,sd
′
cir,sdbgc,sd′bgc ∈ {0,1}λ

Output: • two sets of labels {lab′k,y[k]}k∈[6λ] and {labk,xpri[k−ℓpub]}k∈[ℓpub+1;ℓ]

• LprIO online obfuscations Ĉ ′
on,cir and Ĉon,pub

Hardwired Values: • a string r ∈ {0,1}λ

• a LprIO digest digM

• Compute Rstr = PRF(sdstr,r) and R ′
str′ = PRF(sd′str′ ,r) for str ∈ {dig,pub,cir,bgc} and str′ ∈

{cir,bgc}.

• Define y = (
bits(ℓ) ∈ {0,1}λ,bits(t),LprIO.st,Rdig,Rbgc,Rcir

) ∈ {0,1}6λ, where ℓ= ℓpub+ℓpri.
• Run

(lab′k,0, lab′k,1) ← bGC.Garbleinp,k (1λ;R ′
bgc) for k ∈ [6λ]

(labk,0, labk,1) ← bGC.Garbleinp,k (1λ;Rbgc) for k ∈ [ℓpub+1;ℓ] .

• Run

Ĉ ′
on,cir ← LprIO.ObfOn(LprIO.st′,digM ,Ecir[R

′
bgc];R ′

cir)

Ĉon,pub ← LprIO.ObfOn(LprIO.st,digxpub ,Epub[Rbgc];Rpub) ,

where Ecir and Epub are defined in Figure 5 and 6.

• Output ({lab′k,y[k]}k∈[6λ], {labk,xpri[k−ℓpub]}k∈[ℓpub+1;ℓ],Ĉ ′
on,cir,Ĉon,pub).

Figure 14: Definition of the circuit Ckgen[r,digM]

86

where S is the maximum size of the circuits Ecir[Rbgc] and Epub[Rbgc] defined in Figure 5 and 6.

Output ctoff := (Ĉoff ,Ĉ ′
off

) and st= (LprIO.st,LprIO.st′,FE.mpk).

EncOn(st, xpub, xpri): Parse st = (LprIO.st,LprIO.st′,FE.mpk), xpub = (1t ,xpub) ∈ {0,1}∗ and xpri = xpri ∈
{0,1}ℓpri . Sample PRF seeds sddig,sdpub,sdcir,sd

′
cir,sdbgc,sd′bgc

$← {0,1}λ and run

digxpub ← LprIO.Digest
(
1λ, {(k,xpub[k])}k∈[ℓpub]

)
FE.ct← FE.Enc(FE.mpk,x′pri) ,

where

x′pri =
(
bits(t),digxpub ,xpri,LprIO.st,LprIO.st′,sddig,sdpub,sdcir,sd

′
cir,sdbgc,sd′bgc

) ∈ {0,1}ℓ
′
pri .

Output cton := FE.ct.

The final output of Enc(mpk, xpub, xpri) is ct= (ctoff ,cton).

Dec(skM , M ,ct, xpub): Parse skM = (r,digM ,FE.skM), ct= (Ĉoff ,Ĉ ′
off

,FE.ct) and xpub = (1t ,xpub). Run(
{lab′k }k∈[6λ], {labk }k∈[ℓpub+1;ℓ],Ĉ ′

on,cir,Ĉon,pub
)← FE.Dec

(
FE.skM ,Ckgen[r,digM],FE.ct

)
,

where ℓpub = |xpub|, ℓ= ℓpub+ℓpri and Ckgen[r,digM] is defined in Figure 14. Compute

C̃tm = {C̃ (k)
tm}k∈[|Ctm|] ← LprIO.Eval

(
{(k,C (k)

tm)}k∈[|Ctm|],Ĉ ′
cir = (Ĉ ′

off ,Ĉ ′
on,cir)

)
Ĉon,cir ← bGC.Eval

(
C̃tm, {lab′k }k∈[6λ]

)
T̃ = {T̃ (k)}k∈[|T |] ← LprIO.Eval

(
{(k,T (k))}k∈[|T |],Ĉcir = (Ĉoff ,Ĉon,cir)

)
{labk }k∈[ℓpub] ← LprIO.Eval

(
{(k,xpub[k])}k∈[ℓpub],Ĉpub = (Ĉoff ,Ĉon,pub)

)
z ← bGC.Eval(T̃ , {labk }k∈[ℓ]) ,

where the circuits Ctm =Ctm[M] and T = Tℓ[M , t] are defined in Figure 13 and 8. Output z.

Proposition 7.2 (Correctness and Efficiency). The FE scheme for the class Tℓpri in Construction 7.1 is correct and

has the following parameters:

|mpk| = poly(λ,ℓpri) , |skM | = poly(λ,ℓpri) , |ct| = poly(λ,ℓpri) .

Proposition 7.3 (Security). If bGC is simulation secure (Definition 3.14) and blind (Definition 3.15), PRF is

secure, LprIO is secure (Definiton 3.44) and FE satisfies reusable VerSel-prCT security (Definition 3.27), then the

FE scheme in Construction 7.1 also satisfies reusable VerSel-prCT security.

The proofs of Propositions 7.2 and 7.3 can be found in Sections 7.2 and 7.3, respectively. In Construction 4.14,

we describe a generic conversion that upgrades a Sel-prCT secure sRFE scheme for the class Tℓpri (i.e., Turing

machines with bounded-length private inputs and one-bit outputs) to the class Tℓout (i.e., unbounded-length

private inputs and ℓout-bits outputs). In addition, this transformation improves the efficiency parameters by

reducing the dependency on ℓpri to an information-theoretic minimum. The very same idea also works in the

(plain) FE setting and leads us to the following theorem.

Theorem 7.4. Assuming LWE and prFE, there exists a FE scheme for Tℓout satisfying reusable VerSel-prCT secu-

rity with the following efficiency parameters:

|mpk| = poly(λ) , |skM | = ℓout ·poly(λ) , |ct| = poly(λ)+ℓpri ,

where ℓpri denotes the length of the private message encrypted in ct. (But this length is not bounded at the time

of setup which is the reason why ℓpri does not appear as an index of the function class Tℓout). In particular, if ℓout
is a fixed polynomial in λ, then these parameters are asymptotically optimal.

87

7.2 Proof of Correctness and Efficiency

Proof of Proposition 7.2. We argue that Construction 7.1 is correct and has parameters as stated.

Correctness. Letλ ∈N, M ∈ Tℓpri and (xpub, xpri) ∈Xpub×Xpri, where xpub = (1t ,xpub) ∈ {0,1}∗ and xpri = xpri ∈
{0,1}ℓpri . Define ℓpub := |xpub| and ℓ := ℓpub+ℓpri. Furthermore, let

(mpk,msk) ← Setup(1λ,param)

skM ←KeyGen(msk, M)

(ctoff ,st) ←EncOff(mpk)

cton ←EncOn(st, xpub, xpri) .

Dec(skM , M ,ct, xpub) parses skM = (r,digM ,FE.skM), ct= (Ĉoff ,Ĉ ′
off

,FE.ct) and xpub = (1t ,xpub). Then it starts

by running FE decryption(
{lab′k }k∈[6λ], {labk }k∈[ℓpub+1;ℓ],Ĉ ′

on,cir,Ĉon,pub
)← FE.Dec

(
FE.skM ,Ckgen[r,digM],FE.ct

)
,

where by the definition of Ckgen[r,digM], we have{
(lab′k,0, lab′k,1) ← bGC.Garbleinp,k (1λ;R ′

bgc)
}

k∈[6λ]{
(labk,0, labk,1) ← bGC.Garbleinp,k (1λ;Rbgc =PRF(sdbgc,r))

}
k∈[ℓpub+1;ℓ]

Ĉ ′
on,cir ← LprIO.ObfOn

(
LprIO.st,digM ,Ecir[R

′
bgc];R ′

cir

)
Ĉon,pub ← LprIO.ObfOn

(
LprIO.st,digxpub ,Epub[Rbgc];Rpub

)
and obtain the labels {lab′k := lab′k,y[k]}k∈[6λ] and {labk := lab′k,xpri[k−ℓpub]}k∈[ℓpub+1;ℓ] for

y = (
bits(ℓ),bits(t),LprIO.st,Rdig,Rbgc,Rcir

) ∈ {0,1}6λ .

Next, the decryption algorithm evaluates the LprIO obfuscations. In the first step, we have

C̃tm = {C̃tm,(k) }k∈[|Ctm|] ← LprIO.Eval
(
{(k,C (k)

tm)}k∈[|Ctm|],Ĉ ′
cir = (Ĉ ′

off ,Ĉ ′
on,cir)

)
.

From the correctness of LprIO, it follows that

C̃ (k)
tm = Ecir[R

′
bgc](k,C (k)

tm) ← bGC.Garblek (1λ,C (k)
tm;R ′

bgc) ,

where Ctm =Ctm[M]. A joint evaluation of C̃tm with {lab′k }k∈[6λ] obtained from the FE decryption gives

Ĉon,cir =Ctm(y) ← bGC.Eval
(
C̃tm, {lab′k }k∈[6λ]

)
By the definition of Ctm, we have

digT ← LprIO.Digest({(k,T (k))}k∈[|T |];RdigPRF(sddig,r))

Ĉon,cir ← LprIO.ObfOn(LprIO.st,digT ,Ecir[Rbgc];Rcir) ,

where T = Tℓ[M , t] is a circuit that evaluates the Turing machine M for t steps on input a vector of length ℓ=
ℓpub+ℓpri. At this point, we have (Ĉoff ,Ĉon,cir,Ĉon,pub). Their evaluation gives

T̃ = {T̃ (k)}k∈[|T |] ← LprIO.Eval
(
{(k,T (k))}k∈[|T |],Ĉcir = (Ĉoff ,Ĉon,cir)

)
{labk }k∈[ℓpub] ← LprIO.Eval

(
{(k,xpub[k])}k∈[ℓpub],Ĉpub = (Ĉoff ,Ĉon,pub)

)
and, again by the correctness of LprIO and the definitions of Ecir[Rbgc] and Epub[Rbgc], we conclude that

T̃ (k) ← bGC.Garblek (1λ,T (k);Rbgc) = Ecir[Rbgc](k,T (k))

(labk,0, labk,1) ← bGC.Garbleinp,k (1λ;Rbgc)

such that labk = labxpub[k]. Putting everything together, bGC evaluation yields z ← bGC.Eval(T̃ , {labk }k∈[ℓ]) sat-

isfying z = T (xpub, xpri) = M(1t , xpub, xpri).

88

Efficiency. We start by analyzing the size of the circuit Ckgen[r,digM].

• The evaluations of PRF can be performed by circuits of size poly(λ).

• The (6λ+ℓpri) computations of bGC.Garbleinp,k can each be implemented by a circuit of size poly(λ), so

the overall computation can be performed in size poly(λ,ℓpri).

• To bound the size of the first execution of LprIO.ObfOn, we observe that the overall input length is a

fixed polynomial in λ since |LprIO.st| =λ and |digM | = poly(λ) (guaranteed by Definition 3.43 and Theo-

rem B.4) as well as |Ecir[R
′
bgc

]| = poly(λ) (argued in the proof of Proposition 4.9). Since LprIO.ObfOn is a

poly-time algorithm, this implies that the overall size can be bounded by poly(λ).

• The size of a circuit performing the second execution of LprIO.ObfOn can be bounded similarly. First,

we observe that the overall input length of LprIO.ObfOn is a fixed polynomial in λ. In particular, we

recall from the proof of Proposition 4.9 that |Epub[Rbgc]| = poly(λ). Thus, the size of the circuit comput-

ing LprIO.ObfOn is also poly(λ).

Thus, we can initialize FE with the parameters ℓ′pri = ℓ′
dep

= ℓ′out = poly(λ,ℓpri). Plugging this choice into the

parameters of our instantiation of FE (see Fact 3.28) gives the parameters as stated.

7.3 Proof of Security

Proof of Proposition 7.3. To avoid a clash of variables, we will use the following convention throughout this

proof. The FE scheme for Turing machines which is built in Construction 7.1 is denoted by FE. On the other

hand, the FE scheme for bounded depth circuits which serves as a building block and which was previously

denoted by FE is now denoted by FE′. All variables (e.g., keys, inputs, etc.) belonging either to FE or FE′ will

be distinguished in the same way.

We consider a PPT sampler Samp that on input 1λ outputs(
aux ∈ {0,1}∗, {Mi }i∈[Qkey] ⊆ Tℓpri , {x j = (x j ,pub, x j ,pri)} j∈[Qmsg] ⊆ {0,1}∗× {0,1}ℓpri

)
.

To prove reusable VerSel-prCT security as per Definition 3.27, we need to show that
aux,mpk := FE′.mpk,ctoff := (Ĉoff ,Ĉ ′

off),{
Mi ,skMi := (ri ,digMi

,FE′.skMi)
}

i∈[Qkey],{
x j ,pub := (1t j ,x j ,pub), ∆∗

j := FE′.ct j
}

j∈[Qmsg]

 ≈c

aux,mpk := FE′.mpk,ctoff := (Ĉoff ,Ĉ ′

off),{
Mi ,skMi := (ri ,digMi

,FE′.skMi)
}

i∈[Qkey],{
x j ,pub := (1t j ,x j ,pub), ∆$

j
$← FE′.CT

}
j∈[Qmsg]

 (30)

assuming we haveaux, {Mi }i∈[Qkey], {x j ,pub := (1t j ,x j ,pub)} j∈[Qmsg],

{ δ∗i , j := Mi (x j) }(i , j)∈[Qkey]×[Qmsg]

≈c

aux, {Mi }i∈[Qkey], {x j ,pub := (1t j ,x j ,pub)} j∈[Qmsg],

{ δ$
i , j

$←Yλ }(i , j)∈[Qkey]×[Qmsg]

 (31)

where

• (aux, {Mi }i∈[Qkey], {x j = (x j ,pub, x j ,pri)} j∈[Qmsg]) ← Samp(1λ)

• FE′.(mpk,msk) ← FE′.Setup(1λ,param′)

• (Ĉoff ,LprIO.st) ← LprIO.ObfOff(1λ,1S) and (Ĉ ′
off

,LprIO.st′) ← LprIO.ObfOff(1λ,1S)

• for all i ∈ [Qkey]:

– ri
$← {0,1}λ

– digMi
← LprIO.Digest({(k,C (k)

tm)}k∈[|Ctm|]) for Ci ,tm =C [Mi] defined in Figure 13

– FE.skMi ← FE.KeyGen(FE.msk,Ci ,kgen) for Ckgen[ri ,digMi
] defined in Figure 14

89

• for all j ∈ [Qmsg]:

– sd j ,dig,sd j ,pub,sd j ,cir,sd
′
j ,cir,sd j ,bgc,sd′j ,bgc

$← {0,1}λ

– digxpub ← LprIO.Digest(1λ, {(k,xpub[k])}k∈[ℓpub])

– x′
j ,pri = (bits(t j),digx j ,pub

,x j ,pri,LprIO.st,LprIO.st′,sd j ,dig,sd j ,pub,sd j ,cir,sd
′
j ,cir,sd j ,bgc,sd′j ,bgc)

– FE′.ct← FE′.Enc(FE′.mpk,x′
j ,pri)

• FE′.CT denotes the ciphertext space of FE′.

We note that FE′.ctoff does not appear in the above distributions because FE′ has trivial offline encryption by

assumption. We invoke the VerSel-prCT security of FE′ with respect to a sampler SampFE′ (1λ) which outputs

the following auxFE′ := (
aux,C̃off ,C̃ ′

off , {Mi ,ri }i∈[Qkey], {x j ,pub} j∈[Qmsg]
)
,{

Ckgen[ri ,digMi
]
}

i∈[Qkey],
{

x ′
j := (x ′

j ,pub = ε, x ′
j ,pri = x′j ,pri)

}
j∈[Qmsg]

 .

By the security of FE′ with respect to sampler SampFE′ , Equation (30) holds if

(auxFE′ , {Ckgen[ri ,digMi
]}i∈[Qkey],

{ Γ∗i , j :=Ckgen[ri ,digMi
](x ′

j) }(i , j)∈[Qkey]×[Qmsg]

)
≈c

 auxFE′ , {Ckgen[ri ,digMi
]}i∈[Qkey],

{ Γ$
i , j

$← {0,1}ℓ
′
out }(i , j)∈[Qkey]×[Qmsg]

 (32)

The rest of the proof consists in proving (31) =⇒ (32). Note that neither of the involved distributions contains

anything related to FE′ anymore. Therefore, the proof of this implication is conceptually the same as proving

the analogous implication in the case of sRFE: (20) =⇒ (21) (see Construction 4.11, proof of Proposition 4.10).

We briefly highlight the modifications:

• LprIO in Construction 4.11 is a laconic pPRIO scheme with global setup whereas in Construction 7.1 it

is a plain laconic pPRIO scheme. This simplifies the current proof as we can drop LprIO.crs from all

distributions.

• Besides the difference with LprIO.crs, the circuit Creg[i ,LprIO.crs,digMi
] hardwires a slot index i ∈ [L]

whereas Ckgen[ri ,digMi
] hardwires a random vector ri

$← {0,1}λ. Therefore, the current proof requires an

additional step to argue that collisions between different ri ’s happen only with negligible probability.

• (32) considers Qmsg challenge messages whereas (21) considers only a single one. This is related to the

stronger reusable security notion that we attempt to show in the current proof, but it does not affect the

argument since the security of the underlying LprIO scheme allows to provide many online obfuscations

for a single offline obfuscation anyway (see Definition 3.44).

• Functions in (32) are indexed by i ∈ [Qkey] whereas the index set in (21) is Icor∪Imal (the set of corrupted

or malicious slots). This is only a syntactical difference and does not affect the proof.

7.4 Application to KP-ABE and PE for TMs with Optimal Asymptotic Parameters

We build KP-ABE and PE schemes for the class T of all Turing machines. As both constructions are very similar,

we present them at once. We use gray (resp. blue) to indicate that a component is only used in the case of KP-

ABE (resp. PE). For notational simplicity, we describe the construction for the fixed message space M= {0,1}λ.

We note that this restriction is without loss of generality. Indeed, using the hybrid encryption framework we

can upgrade these schemes to support arbitrary message spaces while preserving our asymptotic efficiency

parameters.

Construction 7.5 (KP-ABE and PE for T). The construction uses the following building blocks:

90

• A FE scheme FE = FE.(Setup,Gen,Agg,EncOff,EncOn,Dec) with reusable VerSel-prCT security for the

following function class F , where

KP-ABE for T : F = Tℓpri,ℓout with ℓpri = 2λ and ℓout =λ,

PE for T : F = Tℓout with ℓout =λ.

Such FE schemes exist assuming LWE, pPRIO and VerSel-prCT secure FE for bounded depth circuits

(Theorem 7.4).

• A pseudorandom function PRF : {0,1}λ× {0,1}λ → {0,1}λ with key space, input space and output space

being {0,1}λ. PRF can be instantiated assuming one-way functions.

The details of the construction are as follows.

Setup(1λ). Run FE.(mpk,msk) ← FE.Setup(1λ, 1ℓpri ,1ℓout) and output (mpk := FE.mpk,msk := FE.msk).

KeyGen(msk, M): Parse msk= FE.msk, sample r $← {0,1}λ and compute

FE.skM ← FE.KeyGen(FE.msk, Mkgen[r, M]) ,

where Mkgen[r, M]is defined in Figure 15. Output skM := (r,FE.skM).

Public Input: an attribute x ∈ {0,1}∗

Private Input: • an attribute x ∈ {0,1}∗

• a message µ ∈ {0,1}λ

• a PRF seed sd
Output: a bit string in {0,1}λ

Hardwired Values: • a vector r ∈ {0,1}λ

• a Turing machine M

• Compute b = M(x).

• Output µ if b = 0 and PRF(sd, i) if b = 1.

Figure 15: Definition of the Turing machine Mkgen[r, M]

Enc(mpk, x,µ). The encryption algorithm proceeds in two steps.

EncOff(mpk). Parse mpk= FE.mpk, run

FE.(ctoff ,st) ← FE.EncOff(FE.mpk)

and return (ctoff := FE.ctoff ,st= FE.st)

EncOn(st, x,µ). Parse st = FE.st, sample a PRF seed sd $← {0,1}λ and set xpub := x, xpri = (µ,sd) (resp.

xpub := ε, xpri = (x,µ,sd)). Then run

FE.ct← FE.Enc(FE.mpk, xpub, xpri) ,

and output cton = FE.cton.

The final output of Enc(mpk, x,µ) is ct= (ctoff ,cton).

Dec(skM , M ,ct, x). Parse skM = (r,FE.skM) and ct= FE.ct. Set xpub := x (resp. xpub := ε), run

z ← FE.Dec(FE.skM , Mkgen[r, M],FE.ct, xpub) ,

and output z, where Mkgen[r, M] is defined in Figure 15.

91

Proposition 7.6 (Correctness and Efficiency). The KP-ABE and PE schemes described in Construction 7.5 are

correct and have the following parameters:

|mpk| = poly(λ) , |skM | = poly(λ) , |ct| = poly(λ)+ |x| .

Proof. The correctness readily follows from the correctness of FE and the definition of Mkgen[r, M]. Specifi-

cally, for skM = (r,FE.skM), ct= FE.ct and xpub := x (resp. xpub := ε), we have

z := FE.Dec
(
FE.skM , Mkgen[r, M],FE.ct, xpub

)= Mkgen[r, M](x,µ,sd) =
µ if M(x) = 0

PRF(sd,r) if M(x) = 1 .

To obtain the parameters, we plug the values of ℓpri and ℓout into the parameters of FE (Theorem 7.4).

Proposition 7.7 (Security). If FE satisfies reusable VerSel-prCT security and PRF is secure, then the Construc-

tion 7.5 satisfies reusable VerSel-INDr security.

Our construction is very similar to the KP-ABE scheme for unbounded depth circuits in [AKY24b, Section 6].

We therefore omit the proof.

Summarizing our results we obtain the following theorem. Specifically, we consider a ciphertext ct en-

crypting a message µ of length ℓin (using the hybrid encryption framework) with respect to an attribute x of

length ℓatt = ℓ.

Theorem 7.8. Assuming LWE, and prFE, there exist KP-ABE and PE for Turing machines satisfying reusable

VerSel-INDr security with the following parameters:

|mpk| = poly(λ) , |skM | = poly(λ) , |ct| = poly(λ)+ℓin+ ℓatt .

These parameters are asymptotically optimal.

7.5 Application to CP-ABE for TMs with Optimal Asymptotic Parameters

We build CP-ABE schemes for the class T of all Turing machines. As in the case of KP-ABE, we describe the

construction for the fixed message space M = {0,1}λ which can be generically upgraded to support arbitrary

message spaces using the hybrid encryption framework.

Construction 7.9 (CP-ABE for T). The construction uses the following building blocks:

• A KP-ABE scheme kpABE = kpABE.(Setup,KeyGen,Enc = (EncOff,EncOn),Dec) for the policy class T
satisfying reusableVerSel-INDr security. We denote the output space of kpABE.EncOn by kpABE.CTon =
{0,1}ℓon and require its size to be some fixed polynomial ℓon = ℓon(λ) in λ. Without loss of generality, we

assume that the state output by kpABE.EncOff and the random coins of kpABE.EncOn be in {0,1}λ.

To achieve the former, we let the state be the random coins used by kpABE.EncOff which can in turn

be replaced with a string in {0,1}λ using a PRF. For the latter, we can also use a PRF to derive longer

(pseudo-)random coins if needed. A KP-ABE scheme with the required properties exist assuming LWE,

pPRIO and VerSel-prCT secure FE for bounded depth circuits (Theorem 7.8).

• A FE schemeFE= FE.(Setup,Gen,Agg,EncOff,EncOn,Dec) withVerSel-prCT security (Definition 3.27)10

for the circuit class Cℓpub,ℓpri,ℓout , where ℓpub = 0, ℓpri = 3λ and ℓout = ℓon. We can construct such an FE

scheme assuming prFE and LWE (Fact 3.28).

• A pseudorandom function PRF : {0,1}λ× {0,1}λ → {0,1}λ with key space, input space and output space

being {0,1}λ. PRF can be instantiated assuming one-way functions.

The details of the CP-ABE scheme are as follows.
10Here, we do not need reusability, i.e., Qmsg = 1 suffices.

92

Setup(1λ). Run FE.(mpk,msk) ← FE.Setup(1λ,1ℓpub ,1ℓpri ,1ℓout) and output (mpk := FE.mpk,msk := FE.msk).

KeyGen(msk, x): Parse msk= FE.msk, sample r $← {0,1}λ and compute

FE.skx ← FE.KeyGen(FE.msk,Ckgen[r, x]) ,

where Ckgen[r, x]is defined in Figure 16. Output skx := (r,FE.skx).

(Private) Input: • a message µ ∈ {0,1}λ

• a kpABE state kpABE.st ∈ {0,1}λ

• a PRF seed sd ∈ {0,1}λ
Output: a kpABE online ciphertext kpABE.cton ∈ kpABE.CTon
Hardwired Values: • a vector r ∈ {0,1}λ

• an attribute x ∈ {0,1}∗

• Compute R =PRF(sd,r).

• Output kpABE.cton ← kpABE.EncOn(kpABE.st, x,µ;R).

Figure 16: Definition of the circuit Ckgen[r, x]

Enc(mpk, M ,µ): Parse mpk= FE.mpk, sample sd $← {0,1}λ and run

kpABE.(mpk,msk) ← kpABE.Setup(1λ)

kpABE.(ctoff ,st) ← kpABE.EncOff(kpABE.mpk)

kpABE.skM ← kpABE.KeyGen(kpABE.msk, M)

FE.ct← FE.Enc
(
FE.mpk, xpub = ε, xpri = (µ,kpABE.st,sd)

)
.

Output ct := (kpABE.ctoff ,kpABE.skM ,FE.ct).

Dec(skx , x,ct, M): Parse skx = (r,FE.skx) and ct= (kpABE.ctoff ,kpABE.skM ,FE.ct). Run

kpABE.cton ← FE.Dec
(
FE.skx ,Ckgen[r, x],FE.ct,ε

)
z ← kpABE.Dec

(
kpABE.msk,kpABE.skM , M ,kpABE.(ctoff ,cton), x

)
,

and output z, where Ckgen[r, x] is defined in Figure 16.

Proposition 7.10 (Correctness and Efficiency). The CP-ABE scheme in Construction 7.9 is correct and has the

following parameters:

|mpk| = poly(λ) , |skx | = poly(λ) , |ct| = poly(λ) .

Proof. Correctness readily follows from the correctness of the building blocks and the definition of Ckgen[r, x].

Specifically, for skx = (r,FE.skx) and ct= (kpABE.ctoff ,kpABE.skM ,FE.ct), we have

FE.Dec
(
FE.skx ,Ckgen[r, x],FE.ct,ε

)
=Ckgen[r, x](µ,kpABE.st,sd)

= kpABE.EncOn(µ,kpABE.st, x;PRF(sd,r)) =: kpABE.cton

Plugging this online ciphertext into the kpABE decryption algorithm yields

kpABE.Dec
(
kpABE.msk,kpABE.skM , M ,kpABE.(ctoff .cton), x

)=µ if M(x) = 0 .

93

For efficiency, when instating kpABE as proposed (Theorem 7.8), we have

|kpABE.mpk| = poly(λ) , |kpABE.ctoff | = poly(λ) , |kpABE.cton| = poly(λ) , |kpABE.skM | = poly(λ) ,

Then, plugging the values of ℓpub = 0, ℓpri = 3λ and ℓout = ℓon into the parameters of FE (Fact 3.28) gives

|mpk| = |FE.mpk| = poly(λ)

|skx | = |r|+ |FE.skx |︸ ︷︷ ︸
ℓout·poly(λ)

= poly(λ)

|ct| = |kpABE.ctoff |+ |kpABE.skM |+ |FE.ct|︸ ︷︷ ︸
poly(λ)+ℓpri

= poly(λ) ,

where we recall that ℓon(λ) = poly(λ).

Proposition 7.11 (Security). If kpABE satisfies reusableVerSel-INDr security, FE isVerSel-prCT secure andPRF

is secure, then the CP-ABE scheme in Construction 7.9 is Sel-IND secure.

Our construction is very similar to the CP-ABE scheme for unbounded depth circuits in [AKY24b, Section 7].

We therefore omit the proof.

Summarizing our results we obtain the following theorem. Specifically, we consider a ciphertext ct en-

crypting a message µ of length ℓin (using the hybrid encryption framework).

Theorem 7.12. Assuming LWE and prFE, there exists a VerSel-INDr secure CP-ABE for Turing machines with

the following parameters:

|mpk| = poly(λ) , |skx | = poly(λ) , |ct| = poly(λ)+ℓin .

These parameters are asymptotically optimal.

Acknowledgments

This work was supported in part by the France 2030 ANR-22-PECY-003 SecureCompute Project.

94

References

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th ACM STOC,

pages 99–108. ACM Press, May 1996.

[AKM+22] Shweta Agrawal, Fuyuki Kitagawa, Anuja Modi, Ryo Nishimaki, Shota Yamada, and Takashi Ya-

makawa. Bounded functional encryption for Turing machines: Adaptive security from general

assumptions. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part I, volume 13747 of

LNCS, pages 618–647. Springer, Cham, November 2022.

[AKY24a] Shweta Agrawal, Simran Kumari, and Shota Yamada. Attribute based encryption for turing ma-

chines from lattices. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part III, volume

14922 of LNCS, pages 352–386. Springer, Cham, August 2024.

[AKY24b] Shweta Agrawal, Simran Kumari, and Shota Yamada. Compact pseudorandom functional encryp-

tion from evasive LWE. Cryptology ePrint Archive, Report 2024/1719, 2024.

[AKY24c] Shweta Agrawal, Simran Kumari, and Shota Yamada. Pseudorandom multi-input functional en-

cryption and applications. Cryptology ePrint Archive, Report 2024/1720, 2024.

[AM18] Shweta Agrawal and Monosij Maitra. FE and iO for Turing machines from minimal assumptions.

In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS, pages

473–512. Springer, Cham, November 2018.

[AMVY21] Shweta Agrawal, Monosij Maitra, Narasimha Sai Vempati, and Shota Yamada. Functional encryp-

tion for Turing machines with dynamic bounded collusion from LWE. In Tal Malkin and Chris

Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 239–269, Virtual Event, Au-

gust 2021. Springer, Cham.

[AMY19a] Shweta Agrawal, Monosij Maitra, and Shota Yamada. Attribute based encryption (and more) for

nondeterministic finite automata from LWE. In Alexandra Boldyreva and Daniele Micciancio, edi-

tors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 765–797. Springer, Cham, August 2019.

[AMY19b] Shweta Agrawal, Monosij Maitra, and Shota Yamada. Attribute based encryption for deterministic

finite automata from DLIN. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume

11892 of LNCS, pages 91–117. Springer, Cham, December 2019.

[AMYY25] Shweta Agrawal, Anuja Modi, Anshu Yadav, and Shota Yamada. Evasive LWE: Attacks, variants &

obfustopia. Cryptology ePrint Archive, Report 2025/375, 2025.

[AS16] Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for Turing machines. In

Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 125–153.

Springer, Berlin, Heidelberg, January 2016.

[AS17] Shweta Agrawal and Ishaan Preet Singh. Reusable garbled deterministic finite automata from

learning with errors. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl,

editors, ICALP 2017, volume 80 of LIPIcs, pages 36:1–36:13. Schloss Dagstuhl, July 2017.

[AT24] Nuttapong Attrapadung and Junichi Tomida. A modular approach to registered ABE for un-

bounded predicates. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part III, volume

14922 of LNCS, pages 280–316. Springer, Cham, August 2024.

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate iO from homomor-

phic encryption schemes. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I,

volume 12105 of LNCS, pages 79–109. Springer, Cham, May 2020.

95

[BDGM22] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and pairings are

not necessary for IO: Circular-secure LWE suffices. In Mikolaj Bojanczyk, Emanuela Merelli, and

David P. Woodruff, editors, ICALP 2022, volume 229 of LIPIcs, pages 28:1–28:20. Schloss Dagstuhl,

July 2022.

[BDJ+24] Pedro Branco, Nico Döttling, Abhishek Jain, Giulio Malavolta, Surya Mathialagan, Spencer Pe-

ters, and Vinod Vaikuntanathan. Pseudorandom obfuscation and applications. Cryptology ePrint

Archive, Report 2024/1742, 2024.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod

Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arith-

metic circuit ABE and compact garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald, ed-

itors, EUROCRYPT 2014, volume 8441 of LNCS, pages 533–556. Springer, Berlin, Heidelberg, May

2014.

[BLM+24] Pedro Branco, Russell W. F. Lai, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Ivy

K. Y. Woo. Traitor tracing without trusted authority from registered functional encryption. In Kai-

Min Chung and Yu Sasaki, editors, ASIACRYPT 2024, Part III, volume 15486 of LNCS, pages 33–66.

Springer, Singapore, December 2024.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical hard-

ness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th

ACM STOC, pages 575–584. ACM Press, June 2013.

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous IBE, leakage

resilience and circular security from new assumptions. In Jesper Buus Nielsen and Vincent Rij-

men, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 535–564. Springer, Cham,

April / May 2018.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In

Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273. Springer, Berlin, Heidelberg,

March 2011.

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private constrained

PRFs (and more) from LWE. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume

10677 of LNCS, pages 264–302. Springer, Cham, November 2017.

[BÜW24] Chris Brzuska, Akin Ünal, and Ivy K. Y. Woo. Evasive LWE assumptions: Definitions, classes, and

counterexamples. In Kai-Min Chung and Yu Sasaki, editors, ASIACRYPT 2024, Part IV, volume

15487 of LNCS, pages 418–449. Springer, Singapore, December 2024.

[CCH+19] Jung Hee Cheon, Wonhee Cho, Minki Hhan, Jiseung Kim, and Changmin Lee. Statistical zeroizing

attack: Cryptanalysis of candidates of BP obfuscation over GGH15 multilinear map. In Alexandra

Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages

253–283. Springer, Cham, August 2019.

[CGH17] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching program obfusca-

tors. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III, volume

10212 of LNCS, pages 278–307. Springer, Cham, April / May 2017.

[CHKL18] Jung Hee Cheon, Minki Hhan, Jiseung Kim, and Changmin Lee. Cryptanalyses of branching pro-

gram obfuscations over GGH13 multilinear map from the NTRU problem. In Hovav Shacham

and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 184–210.

Springer, Cham, August 2018.

96

[CHW25] Jeffrey Champion, Yao-Ching Hsieh, and David J. Wu. Registered ABE and adaptively-secure

broadcast encryption from succinct LWE. Cryptology ePrint Archive, Report 2025/044, 2025.

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation branching

programs: Proofs, attacks, and candidates. In Hovav Shacham and Alexandra Boldyreva, editors,

CRYPTO 2018, Part II, volume 10992 of LNCS, pages 577–607. Springer, Cham, August 2018.

[CW25] Valerio Cini and Hoeteck Wee. Faster ABE for turing machines from circular evasive LWE. In Serge

Fehr and Pierre-Alain Fouque, editors, EUROCRYPT 2025, Part III, volume 15603 of LNCS, pages

94–125. Springer, Cham, May 2025.

[DJM+25] Nico Döttling, Abhishek Jain, Giulio Malavolta, Surya Mathialagan, and Vinod Vaikuntanathan.

Simple and general counterexamples for private-coin evasive LWE. Cryptology ePrint Archive, Re-

port 2025/374, 2025.

[DKL+23] Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, and Ah-

madreza Rahimi. Efficient laconic cryptography from learning with errors. In Carmit Hazay and

Martijn Stam, editors, EUROCRYPT 2023, Part III, volume 14006 of LNCS, pages 417–446. Springer,

Cham, April 2023.

[DPY24] Pratish Datta, Tapas Pal, and Shota Yamada. Registered FE beyond predicates: (attribute-based)

linear functions and more. In Kai-Min Chung and Yu Sasaki, editors, ASIACRYPT 2024, Part I,

volume 15484 of LNCS, pages 65–104. Springer, Singapore, December 2024.

[DQV+21] Lalita Devadas, Willy Quach, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Succinct

LWE sampling, random polynomials, and obfuscation. In Kobbi Nissim and Brent Waters, editors,

TCC 2021, Part II, volume 13043 of LNCS, pages 256–287. Springer, Cham, November 2021.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong keys

from biometrics and other noisy data. In Christian Cachin and Jan Camenisch, editors, EURO-

CRYPT 2004, volume 3027 of LNCS, pages 523–540. Springer, Berlin, Heidelberg, May 2004.

[FFM+23] Danilo Francati, Daniele Friolo, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Daniele

Venturi. Registered (inner-product) functional encryption. In Jian Guo and Ron Steinfeld, editors,

ASIACRYPT 2023, Part V, volume 14442 of LNCS, pages 98–133. Springer, Singapore, December

2023.

[FWW23] Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption: Regis-

tered ABE, flexible broadcast, and more. In Helena Handschuh and Anna Lysyanskaya, editors,

CRYPTO 2023, Part IV, volume 14084 of LNCS, pages 498–531. Springer, Cham, August 2023.

[GGH96] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Collision-free hashing from lattice problems.

Cryptology ePrint Archive, Report 1996/009, 1996.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Can-

didate indistinguishability obfuscation and functional encryption for all circuits. In 54th FOCS,

pages 40–49. IEEE Computer Society Press, October 2013.

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi.

Registration-based encryption: Removing private-key generator from IBE. In Amos Beimel and

Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239 of LNCS, pages 689–718. Springer,

Cham, November 2018.

97

[GKMR23] Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. Efficient

registration-based encryption. In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and

Engin Kirda, editors, ACM CCS 2023, pages 1065–1079. ACM Press, November 2023.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zel-

dovich. How to run Turing machines on encrypted data. In Ran Canetti and Juan A. Garay, editors,

CRYPTO 2013, Part II, volume 8043 of LNCS, pages 536–553. Springer, Berlin, Heidelberg, August

2013.

[GKW16] Rishab Goyal, Venkata Koppula, and Brent Waters. Semi-adaptive security and bundling function-

alities made generic and easy. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II,

volume 9986 of LNCS, pages 361–388. Springer, Berlin, Heidelberg, October / November 2016.

[GLWW24] Rachit Garg, George Lu, Brent Waters, and David J. Wu. Reducing the CRS size in registered ABE

systems. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part III, volume 14922 of

LNCS, pages 143–177. Springer, Cham, August 2024.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. In Samir

Khuller and Virginia Vassilevska Williams, editors, 53rd ACM STOC, pages 736–749. ACM Press,

June 2021.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryp-

tographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages

197–206. ACM Press, May 2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:

Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay,

editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer, Berlin, Heidelberg,

August 2013.

[GV20] Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryption. In Daniele

Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages

621–651. Springer, Cham, August 2020.

[GW20] Junqing Gong and Hoeteck Wee. Adaptively secure ABE for DFA from k-Lin and more. In Anne

Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 278–

308. Springer, Cham, May 2020.

[GWW19] Junqing Gong, Brent Waters, and Hoeteck Wee. ABE for DFA from k-Lin. In Alexandra Boldyreva

and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 732–764.

Springer, Cham, August 2019.

[HJL21] Samuel B. Hopkins, Aayush Jain, and Huijia Lin. Counterexamples to new circular security as-

sumptions underlying iO. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume

12826 of LNCS, pages 673–700, Virtual Event, August 2021. Springer, Cham.

[HJL25] Yao-Ching Hsieh, Aayush Jain, and Huijia Lin. Lattice-based post-quantum iO from circular secu-

rity with random opening assumption (part II: zeroizing attacks against private-coin evasive LWE

assumptions). Cryptology ePrint Archive, Report 2025/390, 2025.

[HLL23] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. Attribute-based encryption for circuits of unbounded

depth from lattices. In 64th FOCS, pages 415–434. IEEE Computer Society Press, November 2023.

98

[HLL24] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. A general framework for lattice-based ABE using evasive

inner-product functional encryption. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024,

Part II, volume 14652 of LNCS, pages 433–464. Springer, Cham, May 2024.

[HLWW23] Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered attribute-based en-

cryption. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III, volume 14006 of

LNCS, pages 511–542. Springer, Cham, April 2023.

[JLL23] Aayush Jain, Huijia Lin, and Ji Luo. On the optimal succinctness and efficiency of functional

encryption and attribute-based encryption. In Carmit Hazay and Martijn Stam, editors, EURO-

CRYPT 2023, Part III, volume 14006 of LNCS, pages 479–510. Springer, Cham, April 2023.

[JLLS23] Aayush Jain, Huijia Lin, Paul Lou, and Amit Sahai. Polynomial-time cryptanalysis of the subspace

flooding assumption for post-quantum iO. In Carmit Hazay and Martijn Stam, editors, EURO-

CRYPT 2023, Part I, volume 14004 of LNCS, pages 205–235. Springer, Cham, April 2023.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded as-

sumptions. In Samir Khuller and Virginia Vassilevska Williams, editors, 53rd ACM STOC, pages

60–73. ACM Press, June 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over Fp , DLIN,

and PRGs in NC 0. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part I,

volume 13275 of LNCS, pages 670–699. Springer, Cham, May / June 2022.

[KNTY19] Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa. Adaptively secure and

succinct functional encryption: Improving security and efficiency, simultaneously. In Alexandra

Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages

521–551. Springer, Cham, August 2019.

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In

Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages

599–629. Springer, Cham, August 2017.

[LL20] Huijia Lin and Ji Luo. Compact adaptively secure ABE from k-Lin: Beyond NC1 and towards NL. In

Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages

247–277. Springer, Cham, May 2020.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and block-

wise local PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume

10401 of LNCS, pages 630–660. Springer, Cham, August 2017.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like assump-

tions on constant-degree graded encodings. In Irit Dinur, editor, 57th FOCS, pages 11–20. IEEE

Computer Society Press, October 2016.

[MPV24] Surya Mathialagan, Spencer Peters, and Vinod Vaikuntanathan. Adaptively sound zero-knowledge

SNARKs for UP. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part X, volume 14929

of LNCS, pages 38–71. Springer, Cham, August 2024.

[MQR22] Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi. Lower bounds for the number of decryp-

tion updates in registration-based encryption. In Eike Kiltz and Vinod Vaikuntanathan, editors,

TCC 2022, Part I, volume 13747 of LNCS, pages 559–587. Springer, Cham, November 2022.

99

[Pel18] Alice Pellet-Mary. Quantum attacks against indistinguishablility obfuscators proved secure in the

weak multilinear map model. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,

Part III, volume 10993 of LNCS, pages 153–183. Springer, Cham, August 2018.

[PS25] Tapas Pal and Robert Schädlich. Registered functional encryption for attribute-weighted sums

with access control. Cryptology ePrint Archive, Paper 2025/836, 2025.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,

56(6), 2009.

[RVV24] Seyoon Ragavan, Neekon Vafa, and Vinod Vaikuntanathan. Indistinguishability obfuscation from

bilinear maps and LPN variants. In Elette Boyle and Mohammad Mahmoody, editors, TCC 2024,

Part IV, volume 15367 of LNCS, pages 3–36. Springer, Cham, December 2024.

[Wat12] Brent Waters. Functional encryption for regular languages. In Reihaneh Safavi-Naini and Ran

Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 218–235. Springer, Berlin, Heidelberg,

August 2012.

[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lattice assumptions. In Orr

Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS,

pages 217–241. Springer, Cham, May / June 2022.

[Wee24] Hoeteck Wee. Circuit ABE with poly(depth,λ)-sized ciphertexts and keys from lattices. In Leonid

Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part III, volume 14922 of LNCS, pages 178–209.

Springer, Cham, August 2024.

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling. In Anne Can-

teaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS,

pages 127–156. Springer, Cham, October 2021.

[WWW22] Brent Waters, Hoeteck Wee, and David J. Wu. Multi-authority ABE from lattices without random

oracles. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part I, volume 13747 of LNCS,

pages 651–679. Springer, Cham, November 2022.

[YZGC25] Xinrui Yang, Yijian Zhang, Ying Gao, and Jie Chen. Registered ABE for circuits from evasive lattice

assumptions. Cryptology ePrint Archive, Paper 2025/807, 2025.

[ZCHZ24] Yijian Zhang, Jie Chen, Debiao He, and Yuqing Zhang. Bounded collusion-resistant registered

functional encryption for circuits. In Kai-Min Chung and Yu Sasaki, editors, ASIACRYPT 2024,

Part I, volume 15484 of LNCS, pages 32–64. Springer, Singapore, December 2024.

[ZLZ+24] Ziqi Zhu, Jiangtao Li, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered functional encryp-

tions from pairings. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part II, volume

14652 of LNCS, pages 373–402. Springer, Cham, May 2024.

[ZZC+25] Ziqi Zhu, Kai Zhang, Zhili Chen, Junqing Gong, and Haifeng Qian. Black-box registered ABE from

lattices. Cryptology ePrint Archive, Report 2025/051, 2025.

[ZZGQ23] Ziqi Zhu, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered ABE via predicate encodings. In

Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part V, volume 14442 of LNCS, pages 66–97.

Springer, Singapore, December 2023.

100

A Unbounded Blind Batch Encryption

A.1 Overview

Existing blind batch encryption (BBE, Section 3.8) schemes consider a Setup algorithm takes as input some

value N , which bounds the length of the secret keys the scheme can support. We call such BBE schemes as

bounded. However, as we detail later in Section B, our laconic pPRIO with global setup construction requires

an unbounded BBE scheme, i.e., the Setup algorithm does not fix the length of the secret keys. Therefore, our

goal in this section is to construct such an unbounded BBE scheme.

In order to do so, we revisit the transformation from [BLSV18], that given a BBE scheme BBE with certain

succinctness properties produces a new BBE scheme BBE′ whose CRS and public key sizes are independent

of the secret key length. The new BBE scheme BBE′ is defined as follows. The setup algorithm generates

d = log(N /λ) many CRSes, where N is the length of the secret key, by running theBBE.Setup(1λ,12λ) algorithm

d times. Hence, the crs′ of the BBE′ scheme is defined as crs′ := (crs0, . . . ,crsd−1). The BBE′.Gen algorithm

hashes the input X ∈ {0,1}N by considering a Merkle tree of depth d , where the leaves of the tree consist of N /λ

nodes and X is evenly split and assigned to the corresponding node. Then, starting from the level of the tree

right above the leaves until to the root, we assign a hash value hv to an internal node v of the tree. For each

level i of the tree, we use the corresponding crsi for hashing, and the final output of the BBE′.Gen algorithm

is the hash value assigned to the root, i.e., hϵ. The transformation from [BLSV18] considered batch encryption

setting, that is we do not encrypt for one specific index i ∈ [N], but instead we encrypt for all i ∈ [N] at once.

To this end, the encryption algorithm for each node v generates a garbled circuit C̃v , where the garbled circuits

associated with the internal nodes are obtained by garbling a circuit that takes as input hv and outputs a BBE

ciphertext that encrypts the labels of the garbled circuits corresponding to its children under the public key

hv . For the leaf nodes, the garbled circuits encrypt the messages instead of the labels. The final ciphertext

is composed of all the garbled circuits, along with the labels labhϵ that correspond to hϵ associated with the

root. To decrypt a ciphertext, for each leaf node v , we traverse the hash tree from the root to v and obtain the

message corresponding to Xv . Concretely, we first evaluate the garbled circuit C̃ϵ on labels labhϵ to recover the

BBE ciphertext ctϵ corresponding to the root node, which encrypts the labels of the garbled circuit of the next

level. This BBE ciphertext can be decrypted using the string concatenation of h0 and h1, which in turn gives

the labels labhv1
corresponding to hv1 , where v1 is the first bit of v . Hence, we traverse down the tree in this

way until we reach the leaf nodes, where we recover the message itself.

We make two important observations about this transformation. The first observation is that since we are

interested in constructing BBE′.SingleEnc and BBE′.SingleDec algorithm to encrypt a message for an index

i ∈ [N], we can just consider the leaf node v corresponding to the index i . Therefore, during the aforedescribed

encryption algorithm we can remove the ciphertext components that are not necessary for traversing down the

tree to the leaf node v . More precisely, we include only labhϵ and C̃bits(i), i.e., the garbled circuits corresponding

to the ancestors of v in the tree, in the ciphertext. These are sufficient to decrypt for some specific leaf node v

using the decryption procedure explained above.

The second observation is that instead of generating d = log(N /λ) many CRSes, we can simply generate λ

many CRSes during BBE′.Setup. This in turn ensures that our |crs′| remains poly(λ), while at the same time

we can support a tree of exponential size, i.e., of size 2λ, which is sufficient to handle any polynomial length

input X . This implies that during BBE′.Setup we no longer need to pass the secret key length as an additional

parameter, and hence, we obtain an unbounded BBE construction.

A.2 Construction

In this section we construct an unbounded BBE scheme by relying on the transformation fromα-succinctness

to full succinctness for BBE given in [BLSV18]. The construction makes use of the following building blocks:

• A (bounded) blind batch encryption scheme BBE = BBE.(Setup,Gen,Enc,Dec) with 1
2 -succinctness,

101

Input: a BBE public key h ∈ {0,1}β

Output: a BBE ciphertexts ctv

Hardwired Values: • a BBE common reference string crs j for index j = |v |
• a matrix A ∈Σλ×2 (for some alphabet Σ= {0,1}poly(λ))

• a BBE randomness r (v)

• Compute ctv ←BBE.Enc(crs j ,h,A;r (v)).

• Output ctv

Figure 17: Definition of the circuit Cv [crs j ,A,r (v)].

message space M= {0,1}λ and ciphertext space BBE.CT = {0,1}ℓct .

• A blind garbling scheme bGC= bGC.(Garble,Eval,Sim) for any circuit. We can instantiate bGC from any

one-way function (Fact 3.17).

We construct an unbounded blind batch encryption schemeBBE′ =BBE′.(Setup′,Gen′,SingleEnc′,SingleDec′),

where the message space is M= {0,1}λ:

Setup′(1λ): Setβ= λ
2 , run crs j ←BBE.Setup(1λ,1λ) for all j ∈ [0,λ−1], set crs′ := (β,crs0, . . . ,crsλ−1), and output

crs′. (Note that each crsi supports key generation from {0,1}λ→ {0,1}β.)

Gen′(crs′, x ∈ {0,1}∗): Parse crs′ = (β,crs0, . . . ,crsλ−1), define N := |x| and break x into blocks of size β as y :=
(y0, . . . , yD−1) ∈ ({0,1}β)D , where D = N

β . Then, set d = log(D) and define a hash tree of depth d in the

following way: each node v ∈ {0,1}≤d is labeled with a string hv ∈ {0,1}β, such that hv = yv for all v ∈
{0,1}d and for all v ∈ {0,1} j such that j < d , we set

hv :=BBE.Gen(crs j ,hv ||0||hv ||1).

Output h := (hϵ,d), where hϵ denotes the hash value assigned to the root node ϵ of the tree.

SingleEnc′(crs′,h, i ,m := (m0,m1) ∈ ({0,1}λ)2): Parse crs′ := (β,crs0, . . . ,crsλ−1) and h := (hϵ,d). If i ̸∈ [2d−1],

then return ⊥. Otherwise, for each v ∈ {0,1}≤d−1 define the circuit Cv [crs j ,A,r (v)] shown in Figure 17.

Then, we compute the following:

• For v ∈ {0,1}d−1 such that v = i , compute (C̃v , lab(v)) ← bGC.Garble(1λ,Cv [crsd−1,M,r (v)]), for fresh

encryption randomness r (v), where M :=
[

m⊤
0 m⊤

1

]
∈ {0,1}λ×2 is concatenation of the input mes-

sages m0,m1.

• For every v ∈ {0,1} j and j < d −1, compute (C̃v , lab(v)) ← bGC.Garble(1λ,Cv [crs j ,A(v),r (v)]), where

A(v) :=

lab(v ||0)

lab(v ||1)

 denotes the λ×2 matrix written as concatenation of the labels lab(v ||0), lab(v ||1).

Finally, the SingleEnc′ algorithm outputs

ct :=
(
C̃i ,

(
C̃v

)
v : v ∈ bits(i)[0:d−2] ,

(
lab(ϵ)

k,hϵ[k]

)
k∈[β]

)
,

where hϵ[k] denotes the k-th bit of hϵ and C̃v denotes the garbled circuits corresponding to the ancestors

(up to the root) of the i -th node in level d −1, i.e., i ∈ {0,1}d−1 and bits(i)[0] = ϵ.

SingleDec′(crs′, x, i ,ct): Parse crs′ := (β,crs0, . . . ,crsλ−1) and ct :=
(
C̃i ,

(
C̃v

)
v : v ∈ bits(i)[0:d−2] , lab(ϵ)

)
, and com-

pute the following:

102

• For each v ∈ {0,1}<d−1 (in order from the shortest to the longest string) such that v ∈ bits(i)[0 :

d −2], i.e., v is an ancestor of the i -th node in level d −1, compute ctv := bGC.Eval(C̃v , lab(v)), and

(lab(v ||0), lab(v ||1)) :=BBE.Dec(crs j ,hv ||0||hv ||1,ctv).

• For v ∈ {0,1}d−1 such that v = i , compute ctv := bGC.Eval(C̃v , lab(v)) and recover the message m :=
BBE.Dec(crsd−1,hv ||0||hv ||1,ctv).

• Output m.

Remark A.1. We remark that if the crsi of the underlying bounded BBE scheme is a uniformly random bit

string, then crs′ from our construction is also a uniformly random bit string. We note that β is just a fixed

system parameter that is independent of the common reference string.

Proposition A.2 (Correctness, Efficiency and Succinctness). The unbounded BBE scheme in Construction A.2

is correct, efficient and succinct. Specifically, it has the following parameters:

|crs| = poly(λ), |h| =O(λ), |ct| = poly(λ, log N),

where N denotes the length of the underlying secret key.

Proposition A.3 (Security). Assume BBE is adaptively secure and adaptively blind (Definitions 3.21 and 3.22),

and bGC is simulation secure and blind (Definitions 3.14 and 3.15). Then, Construction A.2 is adaptively secure

and adaptively blind.

The proofs of Propositions A.2 and A.3 are provided in Sections A.3 and A.4. Instantiating the underlying

BBE scheme with the LWE-based construction given in [AKY24b]11, we obtain the following theorem.

Theorem A.4. Assuming LWE, there exists an adaptively secure and fully succinct unbounded BBE scheme sat-

isfying

|crs| = poly(λ), |h| =O(λ), |ct| = poly(λ, log N),

where crs← Setup′(1λ), h := (hϵ,d) :=Gen′(crs, x), for some x ∈ {0,1}N , and ct← SingleEnc′(crs,h, i ,m) for some

i ∈ [2d−1] and m ∈M2.

A.3 Proof of Correctness, Efficiency and Succinctness

Proof of Proposition A.2. We argue that Construction A.2 is correct, efficient and succinct.

Correctness. We prove correctness by an inductive argument as in [BLSV18]. Let ct← SingleEnc′(crs′,h, i ,M),

for some public key h := (hϵ,d), index i ∈ [2d−1] and message M :=
[

m⊤
0 m⊤

1

]
∈ {0,1}λ×2. For each step of the

decryption process corresponding to v ∈ {0,1}<d−1 such that v ∈ bits(i)[0 : d −2], i.e., v is an ancestor of the

i -th node in level d −1, by the correctness of the blind garbling scheme bGC we obtain

ctv =BBE.Enc

crs|v |,hv ,

lab(v ||0)

lab(v ||1)

 ;r (v)

 .

Then, by correctness of the underlying blind batch encryption scheme BBE, decrypting ctv gives us

lab(v ||0) =
(
lab(v ||0)

k,(hv ||0)[k]

)
k∈[β]

and lab(v ||0) =
(
lab(v ||1)

k,(hv ||1)[k]

)
k∈[β]

.

11Looking ahead, in Section A.4 we prove that our unbounded BBE construction achieves adaptive security and blindness (as in Defini-

tions 3.21 and 3.22) by assuming that the underlying bounded BBE scheme is also adaptive. While [AKY24b] proved that their bounded BBE

achieves selective security and blindness, we observe that their scheme also achieves our adaptive definitions. This is because throughout

the security proof their CRS remains a uniformly random bit string and is never programmed depending on the challenge secret key or

index.

103

Hence, we get that for v ∈ {0,1}d−1 such that v = i ,

ctv =BBE.Enc
(
crsd−1,hv ,M;r (v)) ,

and therefore, we obtain m[k] = M[k, yv [k]] for every k ∈ [λ] (note that yv = yv ||0||yv ||1 ∈ {0,1}λ).

Efficiency. Encryption efficiency follows from the fact that we execute at most D = N
β = 2d operation on

inputs of length poly(λ). This means that the overall encryption operation takes poly(λ,D) = poly(λ, N) time,

which is bounded by poly(λ) for polynomially bounded secret keys i.e., when |x| = poly(λ). Moreover, the

ciphertext size is bounded by poly(λ,d) = poly(λ, log N), because it includes poly(d) number of garbled circuits,

where the circuits have size poly(λ).

Succinctness. Full succinctness follows from the fact that the public key h := (hϵ,d) assigned to the secret key

x under crs′ is composed of a single BBE public key hϵ, which has length λ, and d , which can be represented

with at most λ bits, and hence, the overall size is |h| =O(λ). Additionally, we have that the crs size is bounded

by poly(λ).

A.4 Proof of Security

Proof of Proposition A.3. Our proof is an adaptation of [BLSV18, Lemma 3.2]. We first show adaptive security

and then adaptive blindness.

Adaptive Security. Let G0 = Gϵ,0 denote the original adaptive security game (Definition 3.21). To prove the

proposition, we define the hybrids Gv,1 and Gvnext,0 for all v ∈ {0,1}≤d−1, where vnext ∈ {0,1}≤d is defined to be

vnext := v +1 if v ̸= 1i for some i , and vnext := 0i+1 if v = 1i . In each of these hybrids we modify the challenge

ciphertext as follows.

Game Gv,1 for all v ∈ {0,1}<d−1: This is the same as Gv,0 except that we compute C̃v and lab(v) using the simu-

lator of bGC as follows

ct′v ←BBE.Enc(crs j ,hv ,A(v);r (v))

(C̃v , lab(v)) ← bGC.Sim(1λ,1
∣∣Cv [crs j ,hv ,A(v),r (v)]

∣∣
,1β,ct′v),

where j = |v |. We have that for every v ∈ {0,1}≤d−1, Gv,0 ≈c Gv,1 due to the simulation security of

bGC (Definition 3.14), because by induction we maintain the invariant that only the collection of labels

lab(v) :=
(
lab(v)

k,hv [k]

)
k∈[β]

are used throughout the computations.

Game Gvnext,0 for all v ∈ {0,1}<d−1: This is the same as Gv,1 except that we modify the matrix A(v). Concretely,

instead of defining A(v) :=

lab(v∥0)

lab(v∥1)

 as in Gv,1, we set it as A(v) :=

Ã
(v∥0)

Ã
(v∥1)

, where Ã
(w)

[k,hw [k]] :=

lab(w)
k,hw [k] and Ã

(v)
[k,1−hw [k]] $← {0,1}λ, for all k ∈ [β],b ∈ {0,1}, a ∈ {0,1} such that w = v ∥ a. We have

that for every v ∈ {0,1}<d−1, Gv,1 ≈c Gvnext,0 due to the adaptive security of BBE (Definition 3.21), because

the decryption only outputs A(v)[k,hv∥a[k]] = Ã
(v∥a)

[k,hv∥a[k]] and we have only modified A(v)[k,1−
hv∥a[k]], for each k ∈ [β], a ∈ {0,1}.

Game Gv,1 for v ∈ {0,1}d−1 such that v = i : This is the same as Gv,0 except that we compute C̃v and lab(v) using

the simulator of bGC as follows

ct′v ←BBE.Enc(crsi ,hv ,M(b);r (v))

(C̃v , lab(v)) ← bGC.Sim(1λ,1
∣∣Cv [crsi ,hv ,M(b),r (v)]

∣∣
,1β,ct′v).

104

We have that for v ∈ {0,1}d−1 such that v = i , where i is the challenge index, Gv,0 ≈c Gv,1 due to the

simulation security of bGC (Definition 3.14), because only the collection of labels lab(v) :=
(
lab(v)

k,hv [k]

)
k∈[β]

are used.

Game Gvnext,0 for v ∈ {0,1}d−1 such that v = i : This is the same as Gv,1 except that we replace M(b) by M(c) for

an independent uniformly random bit c $← {0,1}. We have that for v ∈ {0,1}d−1 such that v = i , where i is

the challenge index, Gv,1 ≈c Gvnext,0 due to the adaptive security of BBE (Definition 3.21). This is because

of the fact M(0)[k, x[(i −1)λ+k]] = M(1)[k, x[(i −1)λ+k]] for k ∈ [λ], where M(b) :=
[

(m(b)
0)⊤ (m(b)

1)⊤
]
∈

{0,1}λ×2 for b ∈ {0,1} are the challenge messages and x ∈ {0,1}N is the challenge secret key.

We have proved that Gv,0 ≈c Gv,1 ≈c Gvnext,0 for every v ∈ {0,1}<d−1 and for v ∈ {0,1}d−1 such that v = i , where

i is the challenge index. Finally, we observe that in hybrid G0d ,0 the probability that the adversary wins is 1
2

because the challenge ciphertext received by the adversary is independent of the bit b. This concludes the

adaptive security proof.

Adaptive Blindness. The adaptive blindness proof follows along the lines of the previous adaptive security

proof. That is, we setG0 =Gϵ,0 to be the original adaptive blindness game (Definition 3.22) where the challenge

bit is b = 0, and define the hybridsGv,1,Gvnext,0 for all v ∈ {0,1}<d−1 analogous as in the previous proof, where we

have that Gϵ,0 ≈c Gϵ,1 ≈c · · · ≈c G1d−2,1 ≈c G0d−1,0 using the same arguments. We also define Gv,1 for v ∈ {0,1}d−1

such that v = i as in the previous security proof, and we skip the step that changes the message M (as in the

adaptive blindness game M is already random). Hence, we have here Gv,0 ≈c Gv,1 ≡ Gvnext,0 for v ∈ {0,1}d−1

such that v = i . Next, we consider two additional hybrids Gv,2 and Gv,3 for all v ∈ {0,1}<d−1 and v ∈ {0,1}d−1

such that v = i , and define vprev to be the opposite of vnext. We define the hybrids in the reverse order, where

we have that G1d−1,2 ≡G1d−1,0 by definition.

Game Gv,3 for v ∈ {0,1}d−1 such that v = i : This is the same as Gv,2 except that instead of computing ctv ←
BBE.Enc(crsd−1,hv ,M;r (v)), we pick it uniformly at random from the ciphertext space as ct′v

$←BBE.CT .

We have that for v ∈ {0,1}d−1 such that v = i , where i is the challenge index, Gv,2 ≈c Gv,3. This follows

from the adaptive blindness of BBE (Definition 3.22) via the fact that M is a uniformly random and

independent of the rest of the adaptive blindness experiment of BBE′.

Game Gvprev,2 for v ∈ {0,1}d−1 such that v = i : This game is the same as Gv,3 except that the simulator’s out-

put (C̃v , lab(v)) ← bGC.Sim(1λ,1
∣∣Cv [crs j ,hv ,M,r (v)]

∣∣
,1β,ct′v) is replaced with a uniformly random bit string

(C̃v , lab(v)) $← {0,1}ℓbGC ×({0,1}λ)β, where ℓbGC is the bit length of the garbled circuit C̃v . We have that for

v ∈ {0,1}d−1 such that v = i , where i is the challenge index, Gv,3 ≈c Gvprev,2 due to the blindness of bGC

(Definition 3.15). This holds because the ciphertext ct′v that is input to the simulator bGC.Sim in Gv,3 is

uniformly random.

Game Gv,3 for all v ∈ {0,1}<d−1: This is the same as Gv,2 except that instead of computing ctv ←BBE.Enc(crs j ,

hv ,A(v);r (v)), where j = |v |, we pick it uniformly at random from the ciphertext space as ct′v
$←BBE.CT .

We have that for all v ∈ {0,1}<d−1, Gv,2 ≈c Gv,3. This follows from the adaptive blindness of BBE (Def-

inition 3.22) via the fact that A(v) is a uniformly random and independent of the rest of the adaptive

blindness experiment of BBE′.

Game Gvprev,2 for v ∈ {0,1}<d−1: This game is the same as Gv,3 except that we replace the simulator’s output

(C̃v , lab(v)) ← bGC.Sim(1λ,1
∣∣Cv [crs j ,hv ,A(v),r (v)]

∣∣
,1β,ct′v) with a uniformly random bit string (C̃v , lab(v)) $←

{0,1}ℓbGC × ({0,1}λ)β. We have that for v ∈ {0,1}<d−1, Gv,3 ≈c Gvprev,2 due to the blindness of bGC (Def-

inition 3.15). This holds because the ciphertext ct′v that is input to the simulator bGC.Sim in Gv,3 is

uniformly random.

We started with the adaptive blindness experiment (Definition 3.22) with challenge bit b = 0, and have proven

that Gv,2 ≈c Gv,3 ≈c Gvprev,2 for v ∈ {0,1}d−1 such that v = i and for every v ∈ {0,1}<d−1. Hence, we have that

105

in hybrid Gϵ,3 we have reached the security experiment with challenge bit b = 1. This concludes the proof

of Proposition A.3.

B Laconic pPRIO with Global Setup

B.1 Overview

Our sRFE constructions given in Section 4 require a laconic pPRIO with a deterministic Digest algorithm,

which is not satisfied by the existing laconic pPRIO construction of Agrawal et al. [AKY24b]. Since we are

in the registration-based setting, a natural way to derandomize the Digest algorithm is to introduce a one-

time global setup that produces re-usable randomness in the form of a common reference string (CRS). This

leads to our new primitive called laconic pPRIO with global setup, which extends the definition of (plain) la-

conic pPRIO with an additional Setup algorithm, that on input the security parameter λ outputs a re-usable

crs (see Definition 3.41). Then, the deterministic Digest algorithm on input the crs and a domain X = {Xi }i∈[N]

outputs a digest dig. We can construct such a laconic pPRIO with global setup by modifying the plain laconic

pPRIO construction from [AKY24b] as detailed below.

Agrawal et al. [AKY24b] constructed laconic pPRIO by combining (plain) pPRIO (Section 3.13) with blind

garbled circuit (bGC, Section 3.7) and blind batch encryption (BBE, Section 3.8). Given these primitives, the

laconic pPRIO construction from [AKY24b] is as follows (see Section 3.14 for the syntax). To restrict the circuit

evaluation to the input domain X , they treat X as the secret key of the BBE scheme, and inside the Digest

algorithm they use the BBE.Gen algorithm to compute the hash h of X , which becomes the digest itself. To

obfuscate a circuit E , they provide a pPRIO obfuscation of another circuit E ′, which has both the digest and

circuit E hardcoded. The circuit E ′ garbles the circuit E and generates BBE encryptions of its labels. Then,

during the evaluation procedure, given the input domain X , which acts as the secret key, one can decrypt the

BBE ciphertexts to recover the labels corresponding to X , and finally, evaluate the garbled circuit. In a bit more

detail, the scheme is as follows:

LprIO.Digest(1λ, X): Samples crs← BBE.Setup(1λ,1ℓN), compresses the input domain X = {Xi ∈ {0,1}ℓ}i∈[N]

by hashing it as h :=BBE.Gen(crs, X), and outputs dig := (crs,h).

LprIO.Obf(dig,E): Outputs a pPRIO obfuscation of the circuit E ′[dig,E]. The circuit E ′[dig,E] takes as input

an index i ∈ [N], computes the garbled circuit Ẽi and input labels labi , j ,b for j ∈ [ℓ],b ∈ {0,1}, performs

BBE encryption of the labels (labi , j ,0, labi , j ,1) using the crs and public key h that forms the digest dig, and

outputs the BBE ciphertexts along with the garbled circuit Ẽi .

LprIO.Eval(Ê ′[dig,E], X): It first runs the pPRIO evaluation of Ê ′[dig,E] on index i ∈ [N] to obtain the garbled

circuit Ẽi and BBE ciphertexts cti , j for j ∈ [ℓ], and then, runs BBE decryption using X and index i to

obtain the labels {labi , j } j∈[ℓ] corresponding to Xi . Finally, it runs bGC evaluation on Ẽi and {labi , j } j∈[ℓ]

to obtain E(Xi), for all i ∈ [N].

It is easy to see that the above LprIO.Digest algorithm is randomized because the underlying BBE.Setup

algorithm is randomized. Hence, in order to obtain a deterministic LprIO.Digest algorithm, that can be used

inside the deterministic sRFE.Agg algorithm, we need to move CRS generation outside of LprIO.Digest, and

hence, the need for a global setup. For this reason, we define an additional (randomized) algorithm called

LprIO.Setup, which simply runs BBE.Setup algorithm to obtain crs and uses it as the CRS of the laconic pPRIO

with global setup scheme. To accommodate this change, we also modify all the other algorithms to take the

crs as an input as well.

Unfortunately, at this point we face another issue. The existing BBE schemes, such as from [BLSV18,

AKY24b], are bounded, and require us to fix the length of the secret key during the BBE.Setup algorithm. In

the aforedescribed (plain) laconic pPRIO scheme of [AKY24b] this is not an issue since the secret key X is

passed as an input to the LprIO.Digest algorithm, and hence, we can run BBE.Setup inside LprIO.Digest with

106

a parameter depending on the length of X . However, in our laconic pPRIO with global setup scheme we have

to run BBE.Setup before running LprIO.Digest, and hence, before learning the input domain X or its length.

In order to circumvent this issue, we use the unbounded BBE scheme that we previously developed in Sec-

tion A, which during the BBE.Setup algorithm does not fix the length of the secret keys, and consequently, can

support arbitrary (polynomial) length secret keys.

B.2 Construction

In this section we construct a laconic pPRIO scheme with global setup and a deterministic Digest algorithm by

extending the plain laconic pPRIO scheme given in [AKY24b].

Construction B.1 (Laconic pPRIO with Global Setup). The construction uses the following building blocks:

• A blind garbling scheme bGC= bGC.(Garble,Eval,Sim). We assume that the labels and the random coins

used by bGC.Garble are in {0,1}λ. The former is guaranteed by Definition 3.12 and the latter can be

achieved without loss of generality by using a PRF to derive longer (pseudo-)random coins if needed.

We can instantiate bGC with the required properties assuming one-way functions (Fact 3.17).

• A pseudorandom function PRF : {0,1}λ× {0,1}λ → {0,1}λ with key space, input space and output spaces

being {0,1}λ. The input to the PRF will be of the form (i ∥ j ∥ b), where i ∈ [N], j ∈ [ℓ] and b ∈ {0,1}. As N

and ℓ are polynomials in λ, the input space of the PRF of size 2λ > poly(λ) is large enough to embed such

inputs via an appropriate encoding. PRF can be constructed assuming one-way functions.

• An unbounded blind batch encryption scheme BBE=BBE.(Setup,Gen,SingleEnc,SingleDec) with mes-

sage space M = {0,1}λ and ciphertext space BBE.CT = {0,1}ℓct . Without loss of generality, we assume

that the random coins used by SingleEnc are in {0,1}λ. We also require that BBE.Gen be determinsitc.

We note that our BBE construction from Section A satisfies these properties (see Theorem A.4).

• A pPRIO scheme pPRIO= pPRIO.(Obf,Eval) for polynomial-size circuits. We can build pPRIO assuming

prFE and LWE (Fact 3.40).

The construction is as follows:

Setup(1λ): Run

crs←BBE.Setup(1λ),

and output crs.

Digest(crs, X = {Xi }i∈[N]): Compute

h :=BBE.Gen(crs, (X1 ∥ · · · ∥ XN)⊗11×λ),

where (X1 ∥ · · · ∥ XN) ∈ {0,1}ℓN is the concatenation of the bit strings X1, . . . , XN ∈ {0,1}ℓ and 11×λ denotes

an all 1 vector of length λ, and output dig := (h, N ,ℓ).

Obf(crs,dig,C): We divide the obfuscation algorithm into two steps which do the following.

ObfOff(crs,1S): On input a common reference string crs and a size bound S, run

(Ĉoff ,st) ← pPRIO.ObfOff(1λ,1S′
),

where S′ = poly(S,λ) is the maximum circuit size of the circuit C ′[crs,dig,C ,sd] defined in Figure 18,

where the size of C is bounded by S. Output (Ĉoff ,st).

107

Input: an index i ∈ [N]

Output: • a set of BBE ciphertexts {cti , j } j∈[ℓ]

• a garbled circuit C̃i
Hardwired Values: • a BBE common reference string crs

• a pPRIO digest dig := (h, N ,ℓ)

• a circuit C of size at most S

• a PRF seed sd ∈ {0,1}λ

• Compute Ri :=PRF(sd, (i ∥ 1 ∥ 0)) and Si , j :=PRF(sd, (i ∥ j ∥ 1)) for j ∈ [ℓ].

• Compute(
{labi , j ,b} j∈[ℓ],b∈{0,1},C̃i

)← bGC.Garble(1λ,C ;Ri)

cti , j ←BBE.SingleEnc
(
crs,h, (i −1)ℓ+ j , (labi , j ,0, labi , j ,1);Si , j

)
for j ∈ [ℓ].

• Output ({cti , j } j∈[ℓ],C̃i).

Figure 18: Definition of the circuit C ′[crs,dig,C ,sd].

ObfOn(crs,st,dig,C): Parse dig := (h, N ,ℓ), sample sd $← {0,1}λ, construct the circuit C ′[crs,dig,C ,sd] as

in Figure 18 and compute

Ĉon ← pPRIO.ObfOn(st,C ′[crs,dig,C ,sd]).

Output Ĉon.

The final output of Obf(crs,dig,C) is Ĉ := (Ĉoff ,Ĉon).

Eval(crs, X ,Ĉ): Parse X = {Xi }i∈[N] and run

yi := pPRIO.Eval(Ĉ , i) for i ∈ [N].

Parse yi := (
{cti , j } j∈[ℓ],C̃i

)
for each i ∈ [N] and compute

labi , j :=BBE.SingleDec(crs, X ,ℓ(i −1)+ j ,cti , j) for i ∈ [N], j ∈ [ℓ].

Set labi := {labi , j } and compute

zi := bGC.Eval(labi ,C̃i) for i ∈ [N].

Output {zi }i∈[N].

Proposition B.2 (Correctness and Compactness). The laconic pPRIO scheme with global setup in Construc-

tion B.1 is correct and compact. Specifically, it has the following parameters:

|crs| = poly(λ), |dig| =O(λ), |Ĉoff | = poly(S,λ), |Ĉon| = poly(S,λ).

Proposition B.3 (Security). Assume pPRIO is secure (Definition 3.39), BBE is adaptively secure and adaptively

blind (Definitions 3.21 and 3.22), bGC is simulation secure and blind (Definitions 3.14 and 3.15) and PRF is

secure. Then, Construction B.1 satisfies security as per Definition 3.44.

The proofs of Propositions B.2 and B.3 are provided in Sections B.3 and B.4. We summarize our result in the

following theorem.

108

Theorem B.4. Assuming LWE and prFE, there exists a secure laconic pPRIO scheme with global setup and de-

terministic Digest algorithm satisfying

|crs| = poly(λ), |dig| =O(λ), |Ĉoff | = poly(S,λ), |Ĉon| = poly(S,λ),

where crs ← Setup(1λ), dig ← Digest(crs, X = {Xi }i∈[N]), Ĉ := (Ĉoff ,Ĉon) ← Obf(crs,dig,C) for a given circuit

C : {0,1}ℓ→ {0,1}ℓ
′
, whose size is bounded by S = S(λ).

B.3 Proof of Correctness and Compactness

Proof of Proposition B.3. We argue that Construction B.1 is correct and compact.

Correctness. For crs, X = {Xi }i∈[N] and Ĉ := (Ĉoff ,Ĉon), we have that

crs←BBE.Setup(1λ) , (Ĉoff ,st) ← pPRIO.ObfOff(1λ,1S) , Ĉon ← pPRIO.ObfOn(st,C ′[crs,dig,C ,sd]) .

From the correctness of pPRIO and the definition of the circuit C ′[crs,dig,C ,sd], we have

pPRIO.Eval(Ĉ , i) := yi := (
{cti , j } j∈[ℓ],C̃i

)
for i ∈ [N],

where

cti , j ←BBE.SingleEnc
(
crs,h, (i −1)ℓ+ j , (labi , j ,0, labi , j ,1);Si , j

)(
{labi , j ,b} j∈[ℓ],b∈{0,1},C̃i

)← bGC.Garble
(
1λ,C ;Ri

)
.

By the perfect correctness of BBE we get that

BBE.SingleDec(crs, X ,ℓ(i −1)+ j ,cti , j) := labi , j for i ∈ [N] and j ∈ [ℓ].

Let labi := {labi , j }, which are the labels corresponding to input Xi for i ∈ [N]. Then, from the correctness of

bGC and definition of Ci , we get

bGC.Eval(labi ,C̃i) :=C (Xi),

as expected.

Compactness. We make the following observations:

1. Instantiating BBE as in Theorem A.4, we have that |crs| = poly(λ) and |ct| = poly(λ, log N , logℓ), which

are bounded by a fixed polynomial poly(λ) for any polynomially bounded N and ℓ.

2. Instantiating pPRIO as in Fact 3.40, we have that |Ĉoff | = poly(S,λ) and |Ĉon| = poly(S,λ).

Hence, it follows that our laconic pPRIO with global setup scheme satisfies

|crs| = poly(λ), |dig| =O(λ), |Ĉoff | = poly(S,λ), |Ĉon| = poly(S,λ).

B.4 Proof of Security

Proof of Proposition B.3. Sample crs← Setup(1λ) and invoke the sampler Samp(1λ,crs) that outputs(
aux,1S ,

{
Xk = {Xk,i ∈ {0,1}ℓk }i∈[Nk]

}
k∈[Q], {Ck }k∈[Q]

)
,

109

where Ck : {0,1}ℓk → {0,1}ℓ
′
k . In order to prove the theorem we have to show that(

aux,crs,Ĉoff , {Xk ,Ĉon,k }k∈[Q]
)≈c

(
aux,crs,Ĉoff , {Xk ,δk

$←Oon}k∈[Q]
)

holds assuming (
aux,1S ,

{
Xk , {Ck (Xk,i)}i∈[Nk]

}
k∈[Q]

)
≈c

(
aux,1S ,

{
Xk , {∆k,i }i∈[Nk]

}
k∈[Q]

)
, (33)

where Oon is the co-domain of ObfOn algorithm.

We recall that in our construction Ĉoff and Ĉon are outputs of pPRIO.ObfOff and pPRIO.ObfOn algorithms,

respectively. To prove that {Ĉon,k }k∈[Q] is pseudorandom, we invoke the security of pPRIO scheme with respect

to a sampler SamppPRIO(1λ), which first samples crs←BBE.Setup(1λ), invokes Samp(1λ,crs) to obtain(
aux,1S ,

{
Xk = {Xk,i ∈ {0,1}ℓk }i∈[Nk]

}
k∈[Q], {Ck }k∈[Q]

)
,

and finally outputs(
1N1+···+NQ ,1S ,auxpPRIO := (

aux,crs, {Xk }k∈[Q]
)

, {C ′
k [crs,digk ,Ck ,sdk]}k∈[Q]

)
,

where hk :=BBE.Setup(crs, X1,k ∥ · · · ∥ XNk ,k), digk := (hk , Nk ,ℓk) and sdk
$← {0,1}λ. By the security of pPRIO, it

suffices to prove(
aux,crs, {Xk }k∈[Q], {C ′

k [crs,digk ,Ck ,sdk](i)}k∈[Q],i∈[Nk]
)≈c

(
aux,crs, {Xk }k∈[Q], {γk,i }k∈[Q],i∈[Nk]

)
, (34)

where C ′
k [crs,digk ,Ck ,sdk](i) := ({ctk,i , j } j∈[ℓk],C̃k,i), for i ∈ [Nk],k ∈ [Q] and γk,i

$←BBE.CT ℓk ×{0,1}ℓbGC,k , such

that ℓbGC,k is the bit length of the garbled circuit C̃k,i . To prove Equation (34), we consider the following series

of hybrids.

Game G0: This is the left side distribution from Equation (34), which by expanding the circuit description we

can rewrite as (
aux,crs,

{
Xk ,

{
{ctk,i , j } j∈[ℓk],C̃k,i

}
i∈[Nk]

}
k∈[Q]

)
,

where(
{labk,i , j ,b} j∈[ℓk],b∈{0,1},C̃k,i

)← bGC.Garble
(
1λ,Ck ;Rk,i

)
ctk,i , j ←BBE.SingleEnc

(
crs,hk , (i −1)ℓk + j , (labk,i , j ,0, labk,i , j ,1);Sk,i , j

)
for Rk,i :=PRF(sdk , (i ∥ 1 ∥ 0)) and Sk,i , j :=PRF(sdk , (i ∥ j ∥ 1)).

Game G1: This is the same as G0 except that we sample Rk,i ,Sk,i , j
$← {0,1}λ for all j ∈ [ℓk], i ∈ [Nk] and k ∈ [Q].

We have that G0 ≈c G1 due to the security of PRF (Definition 3.11).

Game G2: This is the same as G1 except that we compute BBE ciphertext ctk,i , j as follows

ctk,i , j ←BBE.SingleEnc
(
crs,hk , (i −1)ℓk + j , (l̃abk,i , j ,0, l̃abk,i , j ,1);Sk,i , j

)
,

where l̃abk,i , j ,b = labk,i , j ,b if b = Xk,i [j], and l̃abk,i , j ,b
$← {0,1}λ otherwise. Here, Xk,i [j] denotes the j -th

bit of Xk,i . We have that G1 ≈c G2 due to the adaptive security of BBE (Definition 3.21), because the

decryption outputs the labels corresponding to the j -th bit of Xk,i and we only substitute l̃abk,i , j ,b
$←

{0,1}λ when b ̸= Xk,i [j].

Game G3: This is the same as G2 except that we compute the garbled circuit C̃k,i and labels l̃abk,i , j as follows(
{labk,i , j ,b} j∈[ℓk],b∈{0,1},C̃k,i

)← bGC.Sim
(
1λ,1|Ck |,1ℓk ,Ck (Xk,i)

)
.

Then, as before, we set l̃abk,i , j ,b = labk,i , j ,b if b = Xk,i [j] and l̃abk,i , j ,b
$← {0,1}λ otherwise. We have that

G2 ≈c G3 due to the simulation security of bGC (Definition 3.14). For this, we note that only the labels

{labk,i , j ,Xk,i [j]}i , j ,k are required for simulating G2 and the labels {labk,i , j ,1−Xk,i [j]}i , j ,k are not necessary.

110

Game G4: This is the same as G3 except that we compute the garbled circuit C̃k,i and labels labk,i , j as follows(
{labk,i , j ,b} j∈[ℓk],b∈{0,1},C̃k,i

)← bGC.Sim
(
1λ,1|Ck |,1ℓk ,∆k,i

)
,

where ∆k,i
$← {0,1}ℓ

′
k is a uniformly random bit string. We have that G3 ≈c G4 by Equation (33), as it

implies {Ck (Xk,i)}i∈[Nk] ≈c {∆k,i }i∈[Nk], for k ∈ [Q], given
(
aux,crs,1S , {Xk }k∈[Q]

)
.

Game G5: This is the same as G4 except that we sample C̃k,i
$← {0,1}ℓbGC,k and labk,i , j

$← {0,1}λ as uniformly

random bit strings. We have that G4 ≈c G5 due to the blindness of bGC (Definition 3.15). Concretely, in

G4 the simulator bGC.Sim takes as input uniformly random bit strings ∆k,i , and hence, by the blindness

property of bGC we can replace the output of bGC.Sim with a completely random bit string.

Game G6: This is the same as G5 except that we sample ctk,i , j
$← BBE.CT for all i ∈ [Nk], j ∈ [ℓk],k ∈ [Q]. We

have that G5 ≈c G6 due to the adaptive blindness of BBE (Definition 3.22), because from G5 we have that

ctk,i , j encrypts random bit strings l̃abk,i , j ,0
$← {0,1}λ and l̃abk,i , j ,1

$← {0,1}λ. The view of the adversary

after G6 is as follows(
aux,crs,

{
Xk ,

{
{ctk,i , j

$←BBE.CT } j∈[ℓk],C̃k,i
$← {0,1}ℓbGC,k

}
i∈[Nk]

}
k∈[Q]

)
.

By rearranging the terms we observe that the distribution in G6 corresponds to the right side distribution

of Equation (34). This concludes the proof of Proposition B.3.

111

	Introduction
	Our Results
	On prFE as an Assumption

	Technical Overview
	Pseudorandom RFE for Bounded Depth Circuits
	Pseudorandom RFE and RABE for Unbounded Depth Circuits
	Pseudorandom RFE and RABE for Turing Machines

	Preliminaries
	Notational Conventions
	Computational Models
	Lattice Preliminaries
	GSW Homomorphic Encryption and Evaluation
	Homomorphic Evaluation Procedures
	Pseudorandom Functions
	Blind Garbled Circuit
	(Unbounded) Blind Batch Encryption
	Symmetric Key Encryption
	Functional Encryption
	Attribute-Based and Predicate Encryption
	Registered Attribute-Based and Predicate Encryption
	Poly-Domain Obfuscation for Pseudorandom Functionalities
	Laconic Poly-Domain Obfuscation for Pseudorandom Functionalities

	prCT-Secure sRFE for Unbounded Depth Circuits and Turing Machines
	Definition
	Construction for Bounded Depth Circuits
	Proof of Correctness and Compactness
	Proof of Security
	Construction for Unbounded Depth Circuits
	Proof of Correctness and Compactness
	Proof of Security
	Construction for TMs with Bounded-Length Private Inputs
	Proof of Correctness and Compactness
	Proof of Security
	Improving Asymptotic Parameters and Achieving Unbounded-Length Private Inputs
	Proof of Correctness and Compactness
	Proof of Security

	Applications to sRABE and sRPE with (Nearly) Optimal Parameters
	Definition
	Construction of KP-sRABE and sRPE for Unbounded Depth Circuits and TMs
	Proof of Correctness and Compactness
	Proof of Security
	Construction of CP-sRABE for Unbounded Depth Circuits and TMs
	Proof of Correctness and Compactness
	Proof of Security

	Results in the Registration-Based Setting
	prCT Secure FE for Turing Machines and Applications to ABE
	Construction of prCT Secure FE for TMs
	Proof of Correctness and Efficiency
	Proof of Security
	Application to KP-ABE and PE for TMs with Optimal Asymptotic Parameters
	Application to CP-ABE for TMs with Optimal Asymptotic Parameters

	Unbounded Blind Batch Encryption
	Overview
	Construction
	Proof of Correctness, Efficiency and Succinctness
	Proof of Security

	Laconic pPRIO with Global Setup
	Overview
	Construction
	Proof of Correctness and Compactness
	Proof of Security

