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Abstract—Anonymous tokens with private metadata bit
(ATPM) have received increased interest as a method for
anonymous user authentication while also allowing the issuer
to embed trust signals inside the token that are only readable
by the authority who holds the secret key. A drawback of all
existing ATPM constructions is that they require interaction
between the client and the issuer during the issuance process.
In this work, we build the first non-interactive anonymous
tokens (NIAT) with private metadata bit, inspired by the recent
work of Hanzlik (EUROCRYPT ’23) on non-interactive blind
signatures. We discuss how the property of non-interactivity
during issuance allows for more efficient protocols that avoid
the need for online signing. We construct an efficient NIAT
scheme based on Structure-preserving Signatures on Equiva-
lence Classes (SPS-EQ) and experimentally evaluate its perfor-
mance. We also present an extension to our NIAT construction
that allows the identification of clients who attempt to double-
spend a token (i.e., present the same token twice) and argue
that non-interactive schemes are uniquely positioned to offer
this essential feature.

1. Introduction

Anonymous tokens are a powerful primitive that allow
users to access services or resources securely while main-
taining their privacy. Typically, an anonymous token system
involves three types of parties: a client, an issuer, and a
redemptee (or verifier). The client engages in an issuance
protocol with the issuer who first verifies the trustworthiness
of the client and then issues them a token. Later, the client
can present the token to a redemptee, who verifies its au-
thenticity to grant the client access to a service or resource,
and additionally checks that the token was not redeemed
before (double-spending detection). The basic properties sat-
isfied by an anonymous token system include unforgeability,
which ensures that a client cannot issue tokens on its own,
and anonymity which prevents issuers and redemptees to
link issued tokens to any token later redeemed.

Anonymous tokens have numerous applications, includ-
ing controlled access to content delivery networks (CDNs)
without CAPTCHA solving [1], private web-browsing [2],
private contact tracing [3], fraud detection [3] and private
click measurement [4] just to name a few. Their importance
is further highlighted by the fact that they have recently
received significant attention from the industry with notable
projects including Google’s Private State Tokens [5] and
Cloudflare’s Privacy Pass [6]. Concurrently, there has also
been a standardization effort through IETF [7] supported by
large industry stakeholders such as Google, Apple, Cloud-
flare, and Fastly.

Given the increased interest in anonymous tokens, a
number of protocols have been proposed in the literature [1],
[8], [9], [3], [10], [11] satisfying a variety of properties and
offering interesting tradeoffs. An important distinction be-
tween these is whether the scheme supports private or public
token verification. In short, private verification simplifies
double-spending detection but is limited to scenarios with
a single issuer and redemptee, whereas public verification
allows broader application, such as in blockchain, but relies
on centralized mechanisms for double-spending detection.
A second distinction is whether the scheme uses public
or private metadata. Public metadata enables applications
like geographical tags, while private metadata (typically a
single bit) allows issuers to secretly flag malicious users.
The idea is that the issuer can encode a hidden bit within
the token, in a way that the user cannot distinguish which
of the two bits their token encodes, and only someone with
a secret extraction key (typically the issuer) can extract the
embedded bit on later receiving a token.

An anonymous token scheme with public verifiability
and private metadata bit, is suitable for applications where
there is a single, central issuing authority that has enough
context to derive trust signals for users, but at the same
time there exist many possible redemptees1. The redemptees
can run the public verification algorithm and then submit

1. The setting of private and public metadata, in addition to public
verifiability is also considered in the IETF standardization process [7].
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the already verified tokens to the central authority that will
check for double-spending. Having a secret metadata bit
embedded in the token, can enable more efficient double-
spending detection by potentially only checking the flagged
tokens. As another example, one can consider applications
running on a blockchain where public verification ensures
transparency and accessibility, while private metadata allows
for the inclusion of sensitive information or trust signals that
can be detected by designated parties (the issuer) without
exposing them to the public.

The problem with existing solutions. A common drawback
among all existing schemes for anonymous tokens is the
requirement for an interactive issuance protocol. Under this
paradigm, the client initiates the protocol by preparing the
first message which they then submit to the issuer. When the
client receives the issuer’s response, they use it to locally
construct the final token. However, the interactive nature
of this protocol can lead to various practical challenges
including latency issues, especially in real-time applications,
and scalability concerns, particularly when the issuer must
handle a large volume of requests simultaneously where a
relatively expensive computational task needs to be executed
(i.e., a cryptographic signature operation). This leads us to
the following natural question:

Can we design a non-interactive anonymous token
scheme that avoids the need for performing the ex-
pensive signature operation in an online fashion?

Our approach. We affirmatively answer this ques-
tion by proposing the first anonymous token proto-
col with non-interactive issuance. Our main observa-
tion is that at the core of many of the proposed pro-
tocols is a blind signature scheme on a randomly selected
message [1], [8], [3], [10]. By definition, blind signatures
require at least one round (i.e., two moves) of interaction
between the signer/issuer and the client [12], [13], [14].
However, recent works [15], [16], [17] have demonstrated
the feasibility of constructing non-interactive blind signa-
tures (NIBS) as long as the message is random and does not
come from a specific distribution or has a specific structure.

The core idea behind non-interactive blind signatures is
that each client is associated with a public-secret key pair
(pkC , skC) such that the signer can asynchronously create
partial signatures psig, called presignatures, given only the
client’s public key pkC . The client, using their secret key
skC , can extract the final pair of a blinded signature σ and
message m from the presignature. The resulting σ is a valid
signature for message m, and can be verified given only
the signer’s verification key vk. The message m will be an
unpredictable message for both the receiver and the signer
derived from psig and skC .

In anonymous tokens, the signed message is effectively
a random identifier, thus the NIBS constructions of [15],
[16] could give rise to an anonymous token scheme with
public verifiability. The constructions of [15], [16] could
also be turned into partially blind signatures and thus also

support the embedding of public metadata. However, ex-
tending this framework to support private metadata such
as the embedding of a hidden bit—a crucial property for
multiple applications—presents additional challenges, as ev-
idenced by prior work on anonymous tokens with private
metadata bit from interactive blind signatures [18]. Addi-
tionally, adding protection against double-spending in the
offline setting has been an open problem (both for NIBS
and anonymous tokens).

Our Contributions. We summarize our contributions as
follows:

1 Defining non-interactive anonymous tokens. We pro-
pose a formal framework for Non-interactive Anonymous
Tokens with Private Metadata Bit (NIAT). Our definitions
are inspired by existing ATPM definitions [8], [10] and
NIBS definitions [15], [16]. In particular, we translate the
interactive ATPM token generation algorithm into a issuance
algorithm and a token generation algorithm. At a high level,
the issuer now runs the issuance algorithm to create a
presignature (with an embedded bit) on a random message
that it sends over to the client who, in turn, is able to locally
run its token generation algorithm with the presignature
as input to obtain the final token. To facilitate this type
of non-interactive issuance, we need to introduce a key
generation algorithm for the client. We also extend the stan-
dard security ATPM properties of one-more unforgeability,
unlinkability and metadata bit privacy to the non-interactive
setting. Respectively, these require that a NIAT attacker (i)
with oracle access to the issuer’s algorithm should not be
able to create more valid tokens than the ones received
through oracle queries; (ii) with oracle access to the client’s
algorithm should not be able to link any specific token to
the corresponding presignature; and (iii) with oracle access
to the issuer should not be able to distinguish a presignature
under the bit 0 from that under the bit 1. Finally, we also
propose the notion of reusability of a NIAT scheme that
characterizes the requirement that an issuer is able to issue
multiple tokens under the same client public key.

2 NIAT from SPS-EQ. In Section 4, we give our main
NIAT construction from Structure-preserving Signatures on
Equivalence Classes (SPS-EQ) [19]. Our SPS-EQ construc-
tion builds upon the SPS-EQ NIBS construction of [15]2

to also support metadata bit hiding and extraction, and
is secure under the inverse and strong decisional Diffie-
Hellman assumptions as well as the unforgeability of the
underlying SPS-EQ scheme. In our evaluations, we leverage
the fact that verification of the SPS-EQ signature requires
computation of pairing operations, some of which can be
aggregated.

2. At the moment, the NIBS of [15] seems to be the best starting point
for the most efficient NIAT constructions. The lattice-based design of [16]
provides post-quantum security but suffers from much larger parameters,
while the concurrent RSA-based construction of [17] is less efficient
computationally and size-wise and targets a specific setting where the
client’s public key is taken from a standard PKI infrastructure. In our case,
we allow clients to register custom keys and, therefore, can use the more
efficient construction from [15] as a starting point.
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3 NIAT with double-spend identification. Our Section 4
construction requires an “online” check during verification
in order to avoid double-spending (that the same token
was not previously presented). While this is in line with
previous works on anonymous tokens with private metadata
bit, the requirement for an “online” check during verification
can turn out to be pretty cumbersome. For instance, in
application scenarios where verification happens by multiple
distinct verifiers, it is not easy to keep a synchronized record
of all spent tokens across all verifiers.

We define and present the first anonymous token scheme
with a private metadata bit that supports double-spend (DS)
identification. This feature allows for “offline” verification—
meaning tokens can be presented without immediate veri-
fication of their uniqueness. If a token is double-spent, it
can be identified post-event, enabling detection and potential
penalties. In Section 5 we provide an extension of our
main NIAT scheme to also support public double-spending
identification support.

4 Evaluation. In Section 6, we experimentally evaluate our
main SPS-EQ based construction using a proof-of-concept
implementation. In our implementation, token issuance takes
about 0.9 ms, token generation takes 1.4 ms (amortized) and
token redemption takes 1.2 ms (amortized). The amortized
costs are due to the aforementioned ability to aggregate
some pairing operations. Thus, the cost of verification can
be amortized over the number of presignatures issued (for
token generation) and the number of clients serviced (for
token redemption). Lastly, for completeness we provide an
asymptotic comparison of our scheme with existing ATPM
schemes, although we note that a direct comparison is
difficult given that most existing schemes either do not
support public verification or private metadata bit hiding
and all schemes are interactive.

1.1. Application: Improved CDN Access

A major advantage of our main construction is the
fact that it does not require any client–issuer interaction
during the issuance protocol. This can allow for offline pre-
computations leading to significant savings in the issuance
process, especially if an issuance server is responsible for a
large number of requests.

Let us consider one of the most popular applications
of anonymous tokens—that of privacy preserving access to
CDNs, which were also the inspiration for the Privacy Pass
protocol [1]. Currently, in a CDN system, there exists an
attesting server which, on a client request, examines the
request and presents some kind of challenge puzzle, such
as a CAPTCHA, if the server believes the incoming request
is from an unstruthworthy origin. The client will solve the
puzzle and respond with the solution to prove that they
are a real human user. The attesting server will check for
correctness of the solution and respond accordingly. It may
forward the client’s request to the web server that the client
is wishing to access, in order to fetch dynamic content, or it
may serve the client with a cached version of the static web

page. This is a reasonable approach for CDNs to prevent
bot requests and DDoS attacks, and has been deployed in
practice for a long time. However, it does not offer privacy
for users and their history of web browsing can be traced
back to the clients. Privacy Pass anonymous tokens were
deployed to address such privacy issues [1].

In the setting of Privacy Pass, when a client sends the
CAPTCHA solution to the attesting server, they also include
a number of blinded tokens for the issuer to sign. If the
issuer determines that the client is an honest human user,
by checking CAPTCHA solutions, it signs the received
blinded tokens on-the-fly and sends them back to the client
alongside the content in the response. Later, when the client
wants to access some web servers that are protected by the
same infrastructure, they can redeem the tokens to bypass
CAPTCHAs while maintaining their anonymity due to the
tokens’ unlinkability properties. To avoid token hoarding,
where the clients may be able to request a large number
of tokens and redistribute them for future attacks; [1] rec-
ommended issuing 30 tokens during an issuance session
as the number is considered to offer a reasonable trade-
off between usability, performance, and the token hoarding
issue. However, it is well known that online signing is a
costly operation which, if possible, should be avoided in
network protocols where a server serves a large number
of clients simultaneously. This concern was pivotal in the
development of protocols like DNSSEC.

Leveraging our NIAT primitive, we propose an alterna-
tive system for token issuance that eliminates the need for
online interaction between clients and issuers and circum-
vents the necessity for online signing. We describe the idea
in Figure 1. This system includes two distinct phases: a
one-time registration phase, and a request phase. During the
registration phase, clients interact with the issuer to prove
their legitimacy by solving some CAPTCHA puzzles. When
responding to a challenge, a client will include their public
key pkC alongside the puzzle solution. After verifying a
client’s solution, the issuer will register the public key pkC ,
and is then able to proactively create a batch of presignatures
for the newly registered client offline. We emphasize that
this step is only required once per-user. Notably, an issuer
only requires one short message from the client to process
a large batch of presignatures. Once a client has registered
with the issuer and has been deemed trustworthy, they may
start requesting tokens. Since the issuer has the presignatures
readily at-hand, the client does not need to wait for online
signing processes to occur. This results in a significantly
faster turnaround during the request phase. On the issuer’s
side, they can create new presignatures offline and as long as
they always have a new batch of presignatures prepared for
all registered clients, the amortized cost for the issuance pro-
tocol no longer depends on the number of tokens requested.
Rather, only client authentication and network delays incur
the more significant costs during the request phase.

Public verifiability and embedding a private metadata bit
are directly supported by instantiating the above described
system with our NIAT protocol. This can allow clients to
verify their tokens with multiple servers while also carrying
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Figure 1. NIAT issuance for CDNs with offline signing.

trust signals that can be extracted by the attesting server.

1.2. Related Work

Privacy Pass [1] introduced the idea of one-time use
anonymous tokens as a method to prevent DDoS attacks
while enhancing privacy and ensuring a seamless user ex-
perience for those who access web servers protected by
Cloudflare infrastructure. In the simplest setting, Privacy
Pass is an interactive, two-move, client-initiated protocol
which relies on Verifiable Oblivious Pseudorandom Func-
tions (VOPRFs), and is secure in the random oracle model.
The recent partially oblivious PRFs [20] may be used in
place of VOPRFs for a more efficient and flexible instanti-
ation of Privacy Pass. One disadvantage of the Privacy Pass
protocol is that if a client is deemed malicious, they will
not be issued tokens and the request would be dropped.
This kind of feedback may inform malicious actors of their
detection, which could be leveraged to refine their methods
to circumvent bot-detection mechanisms.

To address this problem, Kreuter et al. proposed the
idea of anonymous tokens with private metadata bit [8]
in order to propagate trust signal from the issuers to the
verifiers in a private way. They formalized the security
properties of this primitive, and proposed a construction
called PMBTokens which are essentially an extension of the
Privacy Pass protocol to support the private metadata bit.
Like Privacy Pass, PMBTokens are also based on VOPRFs
and are secure in the random oracle model. Also like Privacy
Pass, PMBTokens do not allow any parties other than the
the authoritative parties holding the secret issuing keys
to verify the validity of tokens or to extract the private
metadata bits in the case of PMBTokens. On the other hand,
publicly verifiable anonymous tokens with private metadata
bit [9] allow for public token verification under the issuer’s
public key, while the private metadata bit remains hidden
from users and is only extractable with the issuer’s secret

key. Publicly verifiable anonymous tokens have also been
instantiated from RSA blind signatures [18], however they
do not support private metadata.

Chase et al. [10], proposed ATHM which is an anony-
mous token protocol for the setting where the issuer and
verifier are the same entity. ATHM is based on a symmetric
key primitive, namely algebraic MACs, and is secure in the
generic group model. In addition, they also revisited the
definition of anonymous tokens and merged the two notions
of token validity in [8]. Specifically, in the new definition,
only tokens from which we can extract the embedded meta-
data bit successfully are considered valid tokens, and the
private verification algorithm AT.Verify was removed for
redundancy. ATHM can also be extended to support public
metadata in tokens.

Anonymous Counting Tokens (ACTs) [21] are another
variant of anonymous tokens where clients are not able to
redeem more than one token per message with the same
verifier. This security property can be achieved through two
different approaches: either by allowing the issuer to detect
repeated token issuance requests for the same message from
the same client during issuance, or by allowing the verifier,
during redemption, to detect that two different tokens for
the same message were issued to the same client.

2. Preliminaries

Notation. We use λ to denote the security parameter. We
use ←$ to denote the output of a randomized algorithm,
← to denote output of a deterministic algorithm, and := for
assignment. In all that follows, Z is the ring of integers, and
Zp denotes the set of integers modulo p. G is a multiplicative
group of prime order p. Lastly, for a vector x, we write xi

as its ith element.

2.1. Bilinear Pairings

Definition 2.1 (Bilinear pairings). Given a security param-
eter λ, a bilinear group generator BG(1λ) returns a tuple
(G1,G2,GT , e, p, g1, g2), where (G1,G2 are groups of the
same prime order p with the generators g1, g2 respectively.
Also, let Zp be the field of order p. A bilinear pairing is an
efficiently computable map, e : G1 ×G2 → GT , satisfying
the following properties:

• Bilinearity: ∀P ∈ G1, Q ∈ G2, a, b ∈ Zp,

e(P a, Q)b = e(P,Qb)a = e(P,Q)ab .

• Non-degeneracy: e(g1, g2) ̸= 1GT .

Bilinear pairings can be of a few types depending on
whether there is an efficient isomorphism from G1 to G2

in both directions (Type 1), only one direction (Type 2), or
in neither direction (Type 3) [22]. Type 3 pairings are the
most efficient setting for a relevant security parameter and
they are commonly deployed.
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2.2. Hardness Assumptions

Definition 2.2 (Inverse decisional Diffie-Hellman). For all
PPT adversaries A given tuple (G, g, gα, gβ), it is hard to
decide whether β = α−1 mod p or β ←$ Zp.

Definition 2.3 (k-decisional Diffie-Hellman). For all PPT
adversaries A given tuple (G, g, gα, gα

2

, . . . , gα
k

, gβ), it is
hard to decide whether β = α−1 mod p or β ←$ Zp.

2.3. Structure-preserving Signatures on Equiva-
lence Classes

Structure-preserving Signatures on Equivalence Classes
(SPS-EQ) [19] are used to sign equivalence classes [M ]
of message vectors M ∈ (G∗

i )
ℓ for ℓ > 1, having the

equivalence relation M,N ∈ Gℓ
i : M ∼R N ⇔ ∃s ∈ Zp :

M = Ns. Let us now recall the definition for SPS-EQ [19],
adapting the notation for multiplicative groups as in [15].

Definition 2.4 (SPS-EQ). An SPS-EQ scheme consists of
the following PPT algorithms:

• Setup(1λ, ℓ) → ppEQ. On input the security pa-
rameter 1λ, and the length of message vectors ℓ, it
outputs the public parameters ppEQ.

• KeyGen(pp)→ (pkEQ, skEQ). On input the public
parameters pp, it outputs a key pair (pkEQ, skEQ).

• VerKey(skEQ, pkEQ) → b ∈ {0, 1}. On input a
public-secret key pair (pkEQ, skEQ), it deterministi-
cally returns a bit b ∈ {0, 1}.

• Sign(skEQ,M) → σEQ. On input the secret key
skEQ and a representative M ∈ (G∗

i )
ℓ, it outputs a

signature σEQ for the equivalence class [M ].
• ChRep(M,σEQ, µ) → σ′

EQ. On input a represen-
tative M , a signature σEQ and a scalar µ, it returns
an updated message-signature pair (M ′, σ′

EQ) where
the new representative is M ′ = Mµ and σ′

EQ is the
corresponding updated signature.

• Verify(pkEQ,M, σEQ) → b ∈ {0, 1}. On input a
public key pkEQ, a representative M , and a signature
σEQ, it deterministically outputs a bit b ∈ {0, 1}.

An SPS-EQ scheme satisfies correctness, existen-
tially unforgeable under adaptive chosen-message attacks
(EUnf-CMA), and perfect signature adaptation under ma-
licious keys. We recall the definitions from [19].

Definition 2.5 (Correctness). An SPS-EQ scheme over G∗
i is

correct if for all security parameters λ ∈ N, ℓ > 1, ppEQ ←$

EQ.Setup(1λ, ℓ), (pkEQ, skEQ)←$ EQ.KeyGen(ppEQ), M ∈
(G∗

i )
ℓ, such that σEQ ←$ EQ.Sign(skEQ,M) and for all

scalars µ ∈ Zp we have

EQ.VerKey(skEQ, pkEQ) = 1 ∧
Pr[EQ.Verify(pkEQ,M, σEQ) = 1] = 1 ∧

Pr
[
EQ.Verify

(
pkEQ,M

µ,EQ.ChRep(σEQ, µ)
)
= 1
]
= 1

Definition 2.6 (Existential unforgeability under
chosen message attack). Let AdvEUnf-CMA

A,ℓ =

Game EUnf-CMAA,ℓ(λ)

1 : Q := ∅
2 : ppEQ ← EQ.Setup(1λ, ℓ)

3 : (pkEQ, skEQ)←$ EQ.KeyGen(ppEQ)

4 : (M∗, σ∗
EQ)← A

OSign(pkEQ)

5 : return [M∗] ̸= [M ] ∀M ∈ Q ∧
EQ.Verify(pkEQ,M

∗, σ∗
EQ) = 1

Oracle OSign(M)

1 : σEQ ←$ EQ.Sign(skEQ,M)

2 : Q := Q ∪ {M}
3 : return σEQ

Figure 2. The existential unforgeability (under chosen message attack)
experiment for SPS-EQ.

Pr [EUnf-CMAA,ℓ(λ) = accept] be the advantage of
an PPT adversary A in the EUnf-CMA experiment defined
in Figure 2. An SPS-EQ scheme over (G∗

i )
ℓ is existentially

unforgeable under adaptive chosen-message attacks if for
all ℓ > 1, the advantage AdvEUnf-CMA

A = negl(λ).

Definition 2.7 (Perfect signature adaptation under malicious
keys). For ℓ > 1, an SPS-EQ scheme on (G∗

i )
ℓ perfectly

adapts signatures under malicious keys if for all tuples
(pkEQ,M, σEQ, µ) satisfying

M ∈ G∗
i ∧ EQ.Verify(pkEQ,M, σEQ) = 1 ∧ µ ∈ Zp

we have that the output of EQ.ChRep(σEQ, µ) is a uniformly
random element in the space of signatures, conditioned on
EQ.Verify(pkEQ,M

µ, σ′
EQ) = 1.

In this work, we will use the pairing-based construction
of SPS-EQ due to [19]. For completeness, we recall their
construction in Appendix D.

3. Non-interactive Anonymous Tokens

Formally, a non-interactive anonymous tokens (NIAT)
scheme consists of the following polynomial time algo-
rithms (values in light gray are required only for NIAT with
double-spend protection):

• Setup(1λ)→ (pp, aux). The setup algorithm takes
a security parameter λ as input and outputs a set of
common public parameters pp (and some auxiliary
data aux). All of the remaining algorithms take pp as
an input, but for notational clarity, we usually omit
it as an explicit input.

• KeyGenI(pp) → (pkI , skI , ekI). The issuer’s key
generation algorithm takes public parameters pp as
input, and outputs a public key pkI , a secret signing
key skI , and an extraction key ekI .

• KeyGenC(pp) → (pkC , skC). The client’s key
generation algorithm takes pp as input, and outputs
a public-secret key pair (pkC , skC).

• Issue(skI , ekI , pkC , b, τ , aux) → (psig, nonce, aux).
The issuer runs the probabilistic algorithm Issue
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which takes as input the issuer’s secret signing key
skI , the extraction key ekI , the client’s public key
pkC , a private metadata bit b ∈ {0, 1}, and public
metadata τ (and some auxiliary data aux). It then
outputs a pre-signature psig, and a random nonce
(and an updated aux).

• Obtain(skC , pkI , psig, nonce, τ , id) → (t, σ) or ⊥.
The probabilistic Obtain algorithm is run by the
client to obtain the final token. It takes as input
the client’s secret key skC , the issuer’s public key
pkI , a pre-signature psig, and nonce (and a verifier
identifier id). It outputs a token (t, σ) if the algorithm
runs successfully, or ⊥ otherwise.

• Verify(pkI , t, σ, τ)→ b ∈ {0, 1}. The deterministic
public verification algorithm takes as input the is-
suer’s public key pkI , the token (t, σ) and the public
metadata τ , and outputs a bit b ∈ {0, 1}.

• ReadBit(ekI , t) → b ∈ {0, 1} or ⊥. On input the
issuer’s extraction key and a tag t, the deterministic
ReadBit algorithm outputs a bit b ∈ {0, 1} or ⊥3.

Furthermore, for a NIAT with double-spend protection, we
additionally define:

• DSIden(pkI , t, σ, σ
′, aux) → (pkC ,Π) or (⊥,⊥).

The double-spend identification algorithm takes as
input the issuer’s public key pkI , a tag t, two dif-
ferent presentations4 (σ, σ′) with respect to t, and
some auxiliary data aux, and outputs the embedded
client public key and a proof of guilt (pkC ,Π) or
(⊥,⊥).

• DSVer(pkC ,Π, aux) → b ∈ {0, 1}. The double-
spend verification algorithm takes a client public key
pkC , a proof of guilt Π and the auxiliary data aux,
and outputs a bit b ∈ {0, 1}.

3.1. Security Definitions

The reader will observe that our interface has two al-
gorithms that could signal whether or not a token is valid.
Namely, the Verify and ReadBit algorithms. However, as
pointed out by [10], having two different notions of valid-
ity can potentially open up new attack vectors against an
anonymous token protocol. For instance, a malicious client
could forge tokens that yield a valid bit, but fail verification
or vice-versa. This can be concerning in situations where
distinct parties are performing ReadBit and Verify. To ad-
dress this problem, we will insist that the correctness of
the scheme hold only when the outcomes of ReadBit and
Verify are consistent. In practice, this means that the ReadBit
algorithm should only be run on tags whose corresponding
tokens pass Verify. This unifies our two notions of validity
and facilitates public verification, which is necessary for

3. Note that ReadBit is a deterministic function of the issuer’s secret
key and the tag.

4. We consider schemes where the tag t is unique during the execu-
tion of the Obtain algorithm (i.e. each tag t is uniquely determined by
(psig, nonce)), while the σ part can be prepared during presentation and
differ for every possible verifier.

applications where token verification is outsourced to a
standalone server.

Definition 3.1 (Correctness). A non-interactive anonymous
tokens scheme is correct if for every security parameter
λ ∈ N such that pp ←$ Setup(1λ), (pkI , skI , ekI) ←$

KeyGenI(pp), (pkC , skC) ←$ KeyGenC(pp), and for ev-
ery b ∈ {0, 1} and public metadata τ , such that
(psig, nonce) ←$ Issue(skI , ekI , pkC , b, τ) and (t, σ) ←$

Obtain(skC , pkI , psig, nonce, τ), we have

Pr [Verify(pkI , t, σ, τ) = 1 ∧ ReadBit(ekI , t) = b] = 1

We also formalize the notion of reusability for NIAT
based on a similar notion from the NIBS literature [16].
This property is not needed in the ATPM definition given by
Chase et al. [10] because their scheme is interactive. More
precisely, in an ATPM scheme, whenever a client initiates
a token issuance session, the client sends to the issuer a
query which suffices to uniquely identify that session. This
is not possible in the non-interactive setting, as the only
information that the issuer knows about a client is its public
key pkC . Reusability allows us to capture the meaningful
property that an issuer should be able to issue multiple
tokens to the same client’s public key pkC . In other words,
an issuer can reuse a client’s public key pkC to issue tokens
non-interactively.

Definition 3.2 (Reusability). A non-interactive anonymous
token scheme is reusable if for every security parameter
λ ∈ N, metadata bit b ∈ {0, 1} and public metadata τ ∈M
the following probability is negligible

Pr



nonce0 = nonce1 ∨ t0 = t1 :

pp←$ Setup(1λ)
(pkI , skI , ekI)←$ KeyGenI(pp)

(pkC , skC)←$ KeyGenC(pp)

∀i ∈ {0, 1} : (psigi, noncei)←$ Issue

(
skI , ekI ,
pkC , b, τ

)
∀i ∈ {0, 1} : (ti, σi)←$ Obtain

(
skC , pkI ,
psigi, noncei, τ

)


We now define one-more unforgeability for NIAT. A

minor, but necessary, point of distinction from the one-more
unforgeability definition of Chase et al. [10] is that the
Issue oracle OIssue (corresponding to their OSign) accepts
client public keys in place of the client’s query message.
More notably, in our setting, a forgery is considered valid
if the public verification algorithm (and not the private
bit extraction algorithm) accepts. This is to better align
with applications of public verifiability, where it would be
significantly more problematic for the Verify to pass and
ReadBit to fail, than the other way around since, if Verify
fails, ReadBit can trivially be forced to fail by requiring that
ReadBit only be run if Verify passes.

As a result of this change in definition, we obtain a
stronger security guarantee than the one considered in pre-
vious work [10] where the forgeries are fixed to the same bit
that must, in turn, be extractable from said forgeries in order
for the verifier to win. In particular, the previous definition
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does not prevent against adversaries that are able to construct
forgeries by manipulating the underlying bit. This is not a
significant issue in schemes without public verifiability as
the privacy of the bit ensures that (barring any side-channels)
the adversary does not benefit from mauling the underlying
bit. However, in the case of public verifiability, the ability
to maul the underlying bit is still a risk as the adversary
may still be able to pass verification.

Definition 3.3 (One-more unforgeability). Let AdvOM-Unf
A =

Pr [OM-UnfA(λ) = accept] be the advantage of an adver-
sary A in the experiment defined in Figure 3. We say a
NIAT scheme NIAT is one-more unforgeable if for any PPT
adversary A this advantage is negligible.

Game OM-UnfA(λ)

1 : pp, aux←$ Setup(1λ)

2 : (pkI , skI , ekI)←$ KeyGenI(pp)

3 : τ∗, {(ti, σi)}i∈[N ] ← A
OIssue,ORead(pp, pkI)

4 : if #{ti}i∈[N ] ≤ ℓ then reject

5 : if
∨
i∈[N ]

Verify(pkI , ti, σi, τ
∗) ̸= 1 then reject

6 : accept

Oracle OIssue(pkC , b, τ)

1 : if ℓ is uninitialized then ℓ := 0

2 : (psig, nonce, aux)←$ Issue(skI , ekI , pkC , b, τ , aux)

3 : ℓ := ℓ+ 1

4 : return (psig, nonce)

Oracle ORead(t, σ, τ)

1 : return ReadBit(ekI , t)

Figure 3. The one-more unforgeability experiment for NIAT.

Next, we formalize NIAT unlinkability. The overall in-
tuition here remains the same as in [10], except that the
adversary is now equipped with a GenUser oracle OGenUser

that issues new public keys, and an Obtain oracle OObtain

that returns the tokens on chosen (psig, nonce, τ) triples.

Definition 3.4 (κ-unlinkability). Let AdvUNLINKA,n =
Pr [UNLINKA,n(λ) = accept] be the advantage of an ad-
versary A = (A1,A2,A3) for parameter n ∈ N in the
experiment defined in Figure 4. We say a NIAT scheme NIAT
is κ-unlinkable if for any PPT adversary A and n ∈ N, this
advantage at most κ/n+ negl(λ)5.

Concretely, the parameter n is the number of pairwise
distinct (pkC , psig, nonce) triples in the challenge set Q∗.

5. Intuitively, the probability κ/n quantifies the best strategy for an
honest issuer that has κ choices for each private metadata bi. In the case
that the private metadata is a bit, ATPM (and thus also NIAT) schemes
generally focus on the case where κ = 2.

Game UNLINKA,n(λ)

1 : pp, aux←$ Setup(1λ)

2 : (pkI , state1)← A1(pp, aux)

3 : (Q∗, τ , id, state2)← A
OGenUser,OObtain
2 (state1)

4 : foreach (pkC , psig, nonce) ∈ Q
∗

5 : if (pkC , ·) ̸∈ Qusr

∨ (pkC , ·, nonce) ∈ Qobt then reject

6 : if |Q∗| ̸= n then reject

7 : foreach i ∈ [n] do

8 : outi ←$ Obtain(skCi , pkI , psigi, noncei, τ , id)

9 : if outi = ⊥ then reject

10 : î←$ [n]

11 : Pick a random permutation φ : [n]→ [n]

12 : i∗ ← A3

(
state2, outî,

(
outφ(i)

)
i∈[n]\{φ−1 (̂i)}

)
13 : if i∗ = î then accept

Oracle OGenUser(pp)

1 : if Qusr is uninitialized then Qusr := ∅
2 : (pkC , skC)←$ KeyGenC(pp)

3 : Qusr := Qusr ∪ {(pkC , skC)}
4 : return pkC

Oracle OObtain(pkC , psig, nonce, τ , id)

1 : if Qobt is uninitialized then Qobt := ∅
2 : if (pkC , ·) /∈ Qusr then return ⊥
3 : Retrieve skC from Qusr

4 : out←$ Obtain(skC , pkI , psig, nonce, τ , id)

5 : if out ̸= ⊥ then

6 : Qobt := Qobt ∪ {(pkC , psig, nonce)}
7 : return out

Figure 4. The unlinkability experiment for NIAT.

Notice that we do not enforce any other constraints on
the values inside Q∗. This allows for cases where some
public keys can repeat. In particular, when n = 2, κ = 1,
and pkC1

̸= pkC2
(resp. pkC1

= pkC2
), we can view this

experiment as being analogous to the stronger versions of
(T)NIBS receiver (resp. nonce) blindness [16]. Thus we
view our unlinkability definition as a generalization of the
(T)NIBS blindness definitions.

Remark 3.5. An important requirement for unlinkability is
that all (psig, nonce) pairs in Q∗ must be under the same
public metadata, otherwise the property is trivially broken.
This also holds for the definition given in [10].

We then define the equivalent notion of privacy for the
metadata bit in a NIAT.

Definition 3.6 (Privacy of metadata bit). Let AdvPMB
A =

|Pr [PMBA,1(λ) = accept]− Pr [PMBA,0(λ) = accept]|
be the advantage of an adversary A in the experiment
defined in Figure 5. We say a NIAT scheme NIAT preserves
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Game PMB
A,b̂(λ)

1 : pp, aux←$ Setup(1λ)

2 : (pkI , skI , ekI)←$ KeyGenI(pp)

3 : flag := False

4 : b∗ ← A
OIssue,ORead,OChallenge(pp, pkI)

5 : if b∗ = b̂ then accept

Oracle OIssue(pkC , b, τ)

1 : (psig, nonce, aux)←$ Issue(skI , ekI , pkC , b, τ , aux)

2 : return (s)

Oracle ORead(t, σ, τ)

1 : if flag ∧ (τ = τ̂) then return ⊥
2 : if Verify(pkI , t, σ, τ) = 1 then

3 : return ReadBit(ekI , t)

4 : return ⊥

Oracle OValid(t, σ, τ)

1 : b← ReadBit(ekI , t)

2 : return (b ̸= ⊥ ∧ Verify(pkI , t, σ, τ) = 1)

Oracle OChallenge(pkC , τ)

1 : if flag then return ⊥
2 : flag := True, τ̂ := τ

3 : (psig, nonce, aux)←$ Issue(skI , ekI , pkC , b̂, τ̂ , aux)

4 : return (psig, nonce)

Figure 5. The privacy of metadata bit experiment for NIAT.

privacy of the metadata bit if for any PPT adversary A,
this advantage is negligible.

NIAT with double-spending identification security. For a
NIAT scheme with double-spending identification security
we define two additional properties: double-spending iden-
tification and exculpability. Double-spending identification
guarantees that no adversary is able to present the same
token twice without having their public key revealed. For-
mally, for oracles defined as above,

Definition 3.7 (Double-spending identification). Let
AdvIdenA = Pr [IdenA(λ) = accept] be the advantage of
an adversary A in the experiment defined in Figure 6.
We say a NIAT scheme NIAT achieves double-spending
identification if for any PPT adversary A, this advantage
is negligible.

We finally define exculpability which guarantees that an
issuer cannot wrongly accuse an honest client of double-
spending. Formally,

Definition 3.8 (Double-spending exculpability). Let
AdvExculA = Pr [ExculA(λ) = accept] be the advantage of
an adversary A = (A1,A2) in the experiment defined in

Game IdenA(λ)

1 : (pp, aux)←$ Setup(1λ)

2 : (pkI , skI , ekI)←$ KeyGenI(pp)

3 : (t, σ, σ′)← A
OIssue,ORead(pp, pkI)

4 : if σ = σ′ ∨ Verify(pkI , t, σ, τ) ̸= 1

∨ Verify(pkI , t, σ
′, τ) ̸= 1 then reject

5 : (pkC , ·)← DSIden
(
pkI , t, σ, σ

′, aux
)

6 : if pkC ∈ Q \ {⊥} then reject

7 : accept

Figure 6. The double-spending identification experiment for NIAT. Oracles
OIssue and ORead are as defined in Figure 3, except OIssue stores all pkC
queried by the adversary in a list Q.

Figure 7. We say a NIAT scheme NIAT achieves double-
spending exculpability if for any PPT adversary A, this
advantage is negligible.

Game ExculA(λ)

1 : (pp, aux)←$ Setup(1λ)

2 : (pkI , state1)← A1(pp)

3 : (pkC ,Π)← A
OGenUser,OObtain
2 (state1)

4 : if (pkC , ·) ∈ Qusr ∧ DSVer(pkC ,Π, aux) = 1

then accept

Figure 7. The double-spend exculpability experiment for NIAT. Oracles
OGenUser and OObtain are as defined in Figure 4, except OObtain behaves
as an honest user that accepts a given (psig, nonce) pair exactly once.

4. NIAT from Equivalence Class Signatures

We now present our NIAT construction from structure-
preserving signatures on equivalence classes. At a high level,
we extend the NIBS construction of [15] to additionally
embed the private metadata bit into the issuer’s presigna-
ture. This is a non-trivial exercise as the bit must also be
extractable from the final token, under the issuer’s secret key.
We resolve this by hiding the bit inside the exponent of a
random group element and sending the result as part of the
presignature. Thus, when a client sends the re-randomized
signature, the part corresponding to the hiddent bit can be
checked in the exponent using the issuer’s secret key.

In all that follows, we will ignore the public metadata
τ for simplicity, instead noting that (and as we show in
Appendix F) all our constructions are extendable to include
τ in a manner similar to [15].

4.1. Construction

Tools required. Our construction requires a hash function
H : {0, 1}λ → G1 modeled as a random oracle, an
SPS-EQ scheme EQ = (EQ.Setup,EQ.KeyGen,EQ.Sign,
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Issuer(b) Client

x = (x1, x2) ∈ (Z∗
p)

2︸ ︷︷ ︸
ekI

,y = (y1, y2, y3) ∈ (Z∗
p)

3︸ ︷︷ ︸
skI

, α ∈ Z∗
p︸ ︷︷ ︸

skC

, gα1 ∈ G1︸ ︷︷ ︸
pkC

gx1 = (gx11 , gx21 ) ∈ G2
1, g

y
2 = (gy12 , gy22 , gy32 ) ∈ G3

2︸ ︷︷ ︸
pkI

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r ←$ {0, 1}λ, R := H(r), S := R(1−b)x1+bx2

σ ←$ EQ.Sign ((y1, y2, y3), (pkC , R, S))

π ←$ NIZK.Prove

(
crs, x := (pkI , R, S)
w := (ekI , skI , b)

)
psig := (σ, S, π), nonce := r

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Obtain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R := H(r), m := (pkC , R, S)

if NIZK.Verify(crs, x := (pkI , R, S), π) ̸= 1

∨ EQ.Verify
(
(pk

(3)
I , pk

(4)
I , pk

(5)
I ),m,σ

)
̸= 1

then return ⊥

t :=
(
Rα

−1

, Sα
−1
)

σ ←$ EQ.ChRep(m,σ, α−1)

Figure 8. SPS-EQ construction for NIAT presignature issuance and token generation.

EQ.ChRep,EQ.Verify,EQ.VerKey), and a NIZK NIZK =
(NIZK.Setup,NIZK.Prove,NIZK.Verify) for the following
language:

Language Liss

Instance: Each instance x is interpreted as a collection of group
elements pkI and elements R,S.
Witness: Witness w consists of an integer vectors ekI := (x1, x2),
skI := (y1, y2, y3) and a bit b.
Membership: w is a valid witness for x if the following are satisfied:

b ∈ {0, 1} ∧ S = R(1−b)x1+bx2 ∧
pkI = (gx11 , gx21 , gy12 , gy22 , gy3 )

System setup. This algorithm sets up the generators for the
bilinear groups G1 and G2 of prime order p. It also runs
the NIZK setup to generate the crs for the language Liss.

Setup(1λ)

1 : ppEQ ←$ EQ.Setup(1λ, 3)

2 : crs←$ NIZK.Setup(1λ)

3 : return pp := (ppEQ, crs)

Key generation. The issuer’s key generation algorithm sam-
ples a random integer vector x and runs the SPS-EQ setup
algorithm. The client’s key generation algorithm samples a
random value as the secret signing and extraction keys, and
sets the public key with respect to this secret.

KeyGenI(pp)

1 : x←$
(
Z∗
p

)2
2 : gy2 ,y←$ EQ.KeyGen(ppEQ)

3 : return
pkI := (gx1 , g

y
2 ),

skI := y, ekI := x

KeyGenC(pp)

1 : α←$ Z∗
p

2 : return
pkC := gα1 ,
skC := α

Presignature issuance and token generation. We show the
presignature issuance and token generation protocols in de-
tail in Figure 8. To issue a presignature, the issuer creates an
equivalence class signature on (pkC ,H(r), S), where group
element S ∈ G1 embeds the metadata bit b. The presignature
psig includes the signature σ and the bit embedding S,
and the nonce is the uniformly chosen hash input r. We
must additionally include a NIZK proof π in psig, proving
b ∈ {0, 1}, the the knowledge of secret keys corresponding
to the public keys and the correct computation of the bit
embedding. In order to obtain a redeemable token, the
client first verifies the NIZK proof and the equivalence class
signature. It can then transform the representation of σ to
the equivalence class signature on (g1,H(r)

α−1

, Sα−1

). The
final token is the tag t =

(
H(r)α

−1

, Sα−1
)

along with
the transformed signature σ. We discuss the protocol for
validation of this token next.

Public verification (token redemption). The public ver-
ification algorithm simply verifies the equivalence class
signature σ.

Verify(pkI , t,σ)

1 : return EQ.Verify((pk
(3)
I , pk

(4)
I , pk

(5)
I ), (g1, t1, t2),σ)

Bit extraction. The bit extraction proceeds by first calling
the public verification algorithm. Then, the issuer simply
checks which b ∈ {0, 1} satisfies t

x1+b

1 = t2 and returns
that bit if one is found, otherwise it returns an error.

ReadBit(ekI , t)

1 : foreach b ∈ {0, 1} do

2 : if t
ek

(1+b)
I

1 = t2 then

3 : return b

4 : return ⊥
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Correctness. Correctness of Issue follows from correctness
of the SPS-EQ scheme EQ, and that of the NIZK scheme
NIZK. Thus, σ is a valid signature on (pkC ,H(r), S), and
π is a valid NIZK for b ∈ {0, 1} and the well-formedness
of psig. Furthermore, correctness of EQ also guarantees the
correctness of Obtain. Consequently, σ is a valid signature
on (g1,H(r)

α−1

, Sα−1

). Lastly, we have that

t
x1+b

1 = H(r)
x1+b
α = S

1
α = t2

where α =: skC . Therefore, NIAT Construction 4 satis-
fies correctness.

Reusability. Let ti be the tag created by the client in session
i for i ∈ {0, 1}, and similarly let (σi, Si, πi) =: psigi and
ri =: noncei be the corresponding presignature and nonce.
Then,

Pr [r0 = r1 ∨ t0 = t1]

= Pr [r0 = r1] + Pr [t0 = t1]

− Pr [t0 = t1 | r0 = r1] · Pr [r0 = r1]

Since, according to the definition of reusability, the
metadata b is the same for both issuances, this probability
is

=Pr [r0 = r1] + Pr [t0 = t1]− 1 · Pr [r0 = r1]

= Pr
[
H(r0)

α−1

= H(r1)
α−1

∧ Sα−1

0 = Sα−1

1

]
= Pr [H(r0) = H(r1)] .

Since each ri is chosen uniformly from {0, 1}λ, we have
by collision resistance of H that the above probability is
negligible. So, Construction 4 satisfies reusability.

Security. Below, we present our main theorems for NIAT
security of Construction 4. Due to space constraints, we
provide the proofs in Appendix C.

Theorem 4.1 (One-more unforgeability). Construction 4 is
one-more unforgeable (in the random oracle model) assum-
ing NIZK satisfies zero knowledge and EQ is existentially
unforgeable under adaptively chosen-message attacks.

Remark 4.2 (Knowledge of secret keys). For the proof
of κ-unlinkability of our construction, we will leverage the
knowledge of secret keys (KOSK) model [23], [24] (also
called the honest key model [15]). At a high level, this
model requires the attacker to also specify the secret key
skI corresponding to the public verification key pkI in the
κ-unlinkability experiment (Figure 4). A NIAT scheme that
is secure in the KOSK can be transformed into a fully mali-
ciously secure scheme simply by having the issuer provide
a NIZK argument of knowledge (NIZKAoK) of the secret
key skI as part of pkI . Intuitively, in the security proof, the
reduction can extract the secret key from the adversary’s
argument of knowledge, and then run the reduction for κ-
unlinkability in the KOSK model.

Theorem 4.3 (κ-unlinkability). Construction 4 is κ-
unlinkable (in the random oracle and KOSK models) for
κ = 2, assuming NIZK is an argument of knowledge, that
inverse DDH assumption holds in G1 and EQ perfectly
adapts signatures under a malicious signer.

Theorem 4.4 (Privacy of metadata bit). Construction 4 has
private metadata bit (in the random oracle model) assuming
NIZK satisfies zero-knowledge, that DDH assumption holds
and EQ is existentially unforgeable under adaptively chosen-
message attacks.

4.2. Instantiation

We use the SPS-EQ scheme given by [19] to instanti-
ate our protocol from Figure 8. We provide the expanded
token issuance and generation protocol in Figure 14 of the
Appendix.

Issuer’s ZK proof. An essential part of the issuing protocol
is the disjunctive OR-proof for consistency of the secret
values x1 and x2 used in S = R(1−b)x1+bx2 against the
public key pkI . Specifically, the OR-proof proves that S =
Rx1 (when b = 0), or Rx2 (when b = 1). Disjunctive proofs
of two statements can be constructed by proving knowledge
for one statement and simulating knowledge for the other,
without revealing which of the two is actually proved and
which is simulated [25]. We detail the full ZK protocol for
the language Liss in Appendix D.

A note on batch verification. The main computational
bottleneck in our protocol is due to the pairing operations
required for signature verification during, both, token gen-
eration and redemption (verification). However, we observe
that this cost can actually be amortized over the number
of presignatures issued (resp., tokens redeemed) as some
of the pairing operations are jointly verifiable. We will
take advantage of this fact when we discuss our concrete
implementation in Section 6. The precise verification check
is explained with the concrete instantiation in Appendix D.

5. Double-spend Protection

While one-more unforgeability prevents a client from
creating more than one tokens from a single presignature
issuance, a NIAT system by itself does not preclude a client
from attempting to redeem the same token twice. More
importantly, even if an issuer were able to detect such a
double-spending attempt by keeping track of all redeemed
tokens, unlinkability seems to suggest that it may be hard
to identify the offending client. However, we note that
this is not the case—unlinkability with respect to a fixed
client is defined for distinct nonces, and it turns out that
a NIAT scheme that allows the public identification of a
client attempting to redeem the same token more than once
is perfectly within the bounds of Definition 3.4.
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Issuer(b, aux ) Client
(id)

x = (x1, x2) ∈ (Z∗
p)

2︸ ︷︷ ︸
ekI

,y = (y1, y2, y3, y4 ) ∈ (Z∗
p)

4︸ ︷︷ ︸
skI

, α ∈ Z∗
p︸ ︷︷ ︸

skC

, gα1 ∈ G1︸ ︷︷ ︸
pkC

gx1 = (gx11 , gx21 ) ∈ G2
1, g

y
2 = (gy12 , gy22 , gy32 , gy42 ) ∈ G4

2︸ ︷︷ ︸
pkI

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r ←$ {0, 1}λ, R := HG(r), r̂ := HZ(r)

S := R(1−b)x1+bx2 , aux := aux ∪ {(pkC , r)}

σ ←$ EQ.Sign

(
(y1, y2, y3, y4 ), ( g1 , pkC ·g

r̂
1 , R, S)

)
πi ←$ NIZKiss.Prove

(
crsiss, x := (pkI , R, S)

w := (ekI , skI , b)

)
psig := (σ, S, π), nonce := r

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R := HG(r), r̂ := HZ(r) , m := ( g1 , pkC ·g
r̂
1 , R, S)

if NIZKiss.Verify(crsiss, x := (pkI , R, S), πi) ̸= 1

∨ EQ.Verify

(
(pk

(3)
I , pk

(4)
I , pk

(5)
I pk

(6)
I ),m,σ

)
̸= 1

then return ⊥

s←$ EQ.ChRep

(
m,σ,

(
α +r̂

)−1
)

ϕ1 := HG→G

(
g
(α+r̂)−1

1

)
, ϕ2 := g

id·(α+r̂)
1 · ϕα+r̂1

πo ←$ NIZKobt.Prove

(
crsobt, x :=

(
g
(α+r̂)−1

1 ,ϕ, id
)

w := (skC , r̂)

)

t :=

(
g
(α+r̂)−1

1 , R

(
α +r̂

)−1

, S

(
α +r̂

)−1
)
, σ :=

(
s, ϕ, πo, id

)
Figure 9. Modified SPS-EQ construction for NIAT presignature issuance and token generation.

5.1. Construction

We give a modification of Construction 4 that facilitates
protection against double-spending by allowing a verifier to
identify the offending client’s public key. We utilize the fact
that the presignature already embeds the client’s public key
pkC (a unique property of our NIAT construction compared
to interactive constructions). Due to space constraints, we
omit algorithms which are identical to (or trivially extend-
able from) their counterparts in Construction 4.

Tools required. Our modified construction requires hash
functions HG : {0, 1}λ → G1, HZ : {0, 1}λ → Zp,
HG→G : G1 → G1, an SPS-EQ scheme
EQ = (EQ.Setup,EQ.Sign,EQ.ChRep,EQ.Verify,
EQ.VerKey), NIZKiss = (NIZKiss.Setup,NIZKiss.Prove,
NIZKiss.Verify) and NIZKobt = (NIZKobt.Setup,
NIZKobt.Prove,NIZKobt.Verify) where the former is a
NIZK for Liss defined previously, and the latter is a NIZK
for the following language:

Language Lobt

Instance: Each instance x is interpreted as group elements t1, ϕ1
and ϕ2 and an integer id.
Witness: Witness w consists of integers skC and r̂.
Membership: w is a valid witness for x if the following are satisfied:

ϕ2 = g
id·(skC+r̂)
1 · ϕskC+r̂

1 ∧ t1 = g
(skC+r̂)−1

1

Presignature issuance and token generation. In Figure 9,
we show the presignature issuance and token generation
protocols in detail, and highlight the differences from the

previous construction. The main distinction in issuance is the
inclusion of the integer r̂ computed as HZ(r) and the signa-
ture, which is now computed over m := (g1, pkC ·gr̂1, R, S).
As we will see, this is the key to our double-spend identi-
fication mechanism.

To obtain a token, a client performs the same steps as
before, except that instead of mα−1

, it now computes the
transformed signature over m(α+r̂)−1

with the correspond-
ing tag t :=

(
g
(α+r̂)−1

1 , R(α+r̂)−1

, S(α+r̂)−1
)

.

Now, if a client intends to redeem its token with some
verifier with public identifier id, as we show in Figure 9,
the client’s Obtain algorithm must additionally compute an
ElGamal ciphertext ϕ over id along with a proof πo of
the well-formedness of the ciphertext (see language Lobt).
Therefore, the final signature is the equivalence class signa-
ture s, the ciphertext ϕ and the proof πo.

Public verification. The public verification algorithm veri-
fies the equivalence class signature s and the ZK proof πo.

DSIden(pkI , t,σ,σ
′, aux)

1 : if Verify(pkI , t,σ) ̸= 1 ∨ Verify(pkI , t,σ
′) ̸= 1

∨ σ = σ′ then return (⊥,⊥)
2 : σ =: (s,ϕ, πo, id) , σ′ =:

(
s′,ϕ′, π′

o, id
′)

3 : h :=
(
ϕ2

−1 · ϕ′
2

)(id′−id)−1

4 : foreach (pkC , nonce) ∈ aux do

5 : if h = pkC · g
HZ(nonce)
1 then

6 : return pkC ,Π := (t,σ,σ′, nonce)

7 : return (⊥,⊥)
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Double-spend identification. Suppose that a client attempts
to double-spend a token (i.e., one created under the same
presignature and nonce pair) with another verifier with
public identifier id′. In order to do so, it must create a
fresh encryption ϕ′ over id′ and the corresponding proof
π′
o with the same s and t. When a system detects that

a double-spend of (t, s) has occurred, it can compute(
ϕ2

−1 · ϕ′
2

)(id′−id)−1

= gα+r̂
1 and then obtain the offending

client’s public key by checking against the available nonces.
Note that we have assumed distinct id’s for ease of expo-
sition, however, this is just as easily accomplished for the
same verifier by hashing a timestamp into the identifier.

Notably, this step can be performed publicly by anyone
and leads to a strong incentive against double-spending6.
A simple optimization that offers significant asymptotic
advantage over the linear search on aux is to instead store the
value pkC · g

HZ(nonce)
1 value itself, which allows the verifier

running DSIden to perform efficient lookup over aux.

Double-spend verification. The double-spend verification
algorithm must essentially check the identification algo-
rithm’s work. It ensures that the accused pkC and the
corresponding nonce are a valid pair in the auxiliary data,
and confirms that the DS identification equation holds.

DSVer(pkC ,Π, aux)

1 : if Verify(pkI , t,σ) ∧ Verify(pkI , t,σ
′) ̸= 1 then

2 : return 0

3 : σ =: (s,ϕ, πo, id) , σ′ =:
(
s′,ϕ′, π′

o, id
′)

4 : return
(
ϕ2

−1 · ϕ′
2

)(id−id′)−1

= pkC · g
HZ(nonce)
1

∧ (pkC , nonce) ∈ aux

Security. Below, we present our main theorems for NIAT
security of Construction 5. Due to space constraints, we
provide the proofs in Appendix E.

Theorem 5.1 (One-more unforgeability). Construction 5
is one-more unforgeable (in the random oracle model) as-
suming NIZKiss satisfies zero knowledge, EQ is existentially
unforgeable under adaptively chosen-message attacks and
NIZKobt is sound.

Theorem 5.2 (κ-unlinkability). Construction 5 is κ-
unlinkable (in the random oracle and KOSK models) for
κ = 2, assuming NIZKiss is an argument of knowledge, that
DDH, k-DDH assumption holds in G1 and EQ perfectly
adapts signatures under a malicious signer NIZKobt satisfies
zero knowledge.

Theorem 5.3 (Privacy of metadata bit). Construction 5 has
private metadata bit (in the random oracle model) assuming
NIZK satisfies zero-knowledge, that DDH assumption holds
and EQ is existentially unforgeable under adaptively chosen-
message attacks.

6. One could potentially alter the protocol to instead reveal the skC , but
we consider this to be an extremely punitive measure given that DSIden
is a public algorithm.

Theorem 5.4 (Double-spend identification). Construction 5
satisfies double-spend identification (in the random oracle
model) assuming NIZKobt is sound.

Theorem 5.5 (Double-spend exculpability). Construction 5
satisfies double-spend exculpability assuming NIZKobt is
sound and the discrete log assumption holds in G1.

6. Implementation and Evaluation

We implemented our main NIAT Construction 4 in C++
using the mcl library [26] 7. For our implementation, we
chose the pairing-friendly BLS12-381 curve [27], [28]. All
our experiments were done on a laptop equipped with an
Apple M3 Pro chip and the reported numbers are the average
of 1000 executions.

Storage and communication costs. An element in G1

occupies 48 bytes in its compressed representation, and
similarly, an element in G2 occupies 96 bytes. The message
from the issuer to the client consists of 3 elements in G1,
1 element in G2, 6 integers for the proof, and a nonce
r ∈ {0, 1}λ; and a token consists of 4 elements in G1

and 1 element in G2, we followed the minSig approach
(signatures in G1 and signing verification keys in G2) to
minimize the token size. With this, we estimate that in
terms of communication costs, a presignature issuance (to
the client) needs around 464 bytes to be transferred over
the wire, and the final token size is around 288 bytes.
Therefore, in order to design a system that incorporates
the offline signing protocol shown in Figure 1 where the
server supports m clients, and each client will be issued n
presignatures in a batch, the required total server storage
would be calculated as m · (48 + 464n) bytes. We provide
an estimation of storage needs for up to 108 clients in
Figure 10 (left) for batch size n = 30, 60 and 100. We
further note that in order to prevent double spending, the
system must anyway keep track of all redeemed tokens,
which will require an additional storage capacity comparable
to our initial storage estimation.
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Figure 10. Storage estimates for an offline signing server storing batches
of 30, 60 and 100 presignatures per client (left); and Issuer’s amortized
redemption cost per token (right). Roughly, our protocol requires 13.6 KB
to store 30 tokens per client.

Computational cost. Due to the non-interactive nature of
our protocol, we are able to cut down the first message
from a client to the issuer. Consequently, the issuer does

7. Anonymized source code available at: https://anonymous.4open.
science/r/NIAT-94D7.
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# Moves Public Private Issue Obtain Readbit Token size
Verification Metadata Bit |t|+ |σ|

Const. 4∗ 1 ✓ ✓ 16× 1e+ 19× 3e+ 1× 5G
[9] 3 ✓ ✓ 7× 11× 6× 3G+ 4Z
[10] 2 ✗ ✓ 11× 17× 1× 2G+ 1Z
[8] 2 ✗ ✓ 12× 15× 4× 2G+ 1Z
[1] 2 ✗ ✗ 7× 2× 1× 1G
[3] 2 ✓ ✗ 3× 2e+ 1× 2e 1G+ 1Z

TABLE 1. COMPARISON OF ANONYMOUS TOKEN SCHEMES. × REPRESENTS GROUP EXPONENTIATION AND e REPRESENTS PAIRING OPERATION. G
AND Z STAND FOR GROUP ELEMENTS AND INTEGERS RESPECTIVELY. ∗ INDICATES THE VERIFICATION COST IS AMORTIZED.

not need to maintain an open connection with a client
for token issuance. To issue a token, the issuer performs
16 exponentiations (1 for bit embedding, 6 for signature
generation and 9 for the proof computation) which can
be done in an offline manner as part of a precomputation.
After receiving the issuer’s message, the client at the other
end computes 5 pairing operations (plus one precomputed
pairing of e(pkC , pk

(3)
I )) to verify the SPS-EQ signature,

performs 14 exponentiations to verify the proof, and 5
more to obtain the final token. Finally, at redemption, the
verifier performs 5 pairing operations (plus one precomputed
pairing of e(g1, pk

(3)
I )) to verify the SPS-EQ signature, and

then extracts the embedded bit with 1 exponentiation. We
summarize our results (after amortization) in Table 1 and
present them as part of a comparison with related works.

Experimental benchmarks. From our experiments we
found that an exponentiation in G1 took approximately
0.047 ms, an exponentiation in G2 took 0.088 ms, and a
pairing operation took 0.445 ms on average. We further
found that (i) the issuer took 0.84 ms to issue a token, (ii) the
client verified the psig in 1.73 ms and the disjunctive NIZK
proof in 0.69 ms, and finalized the token in another 0.34
ms, and (iii) during bit extraction, the issuer took 1.64 ms to
verify a token and additional 0.06 ms to extract the bit. It is
worth noting that since our scheme is non-interactive, there
is, as such, no issuance “session” and these costs may incur
asynchronously. Our results are summarized in Table 2. We
remark that although the σ verification step is a required
check before bit extraction during token redemption, these
costs are reported separately because our verification algo-
rithm can be done publicly and independently of the bit
extraction computation.

Operation Time (in ms)
Issue 0.94

Issuer Read bit (σ verification) 1.98
Read bit (extraction) 0.06
Obtain (σ verification) 2.07

Client Obtain (proof verification) 0.83
Obtain (finalization) 0.34

TABLE 2. BENCHMARKS FOR OUR IMPLEMENTATION OF
CONSTRUCTION 4.

Batched verification. We also ran benchmark tests for a
batched version of signature verification as explained in
Appendix D. In this batched version the client (resp. the
issuer) is able to perform n + 4 (resp. 2n + 2) pairings
instead of 4n, for a batch of n presignatures (resp. tokens).

As shown in Table 1, we calculated the amortized cost of
our token generation to be approximately equivalent to 1
pairing (and 17 exponentiations).

Batch size 1 30 60 100
Time (in ms) 2.07 0.28 0.25 0.24

TABLE 3. CLIENT’S AMORTIZED RUNTIMES FOR BATCH VERIFICATION.

In Table 3 we show that actual costs amortized over
30, 60 and 100 presignatures8 based on experimental evalu-
ations averaged over 1000 runs. A similar calculation gives
the amortized cost of our token redemption (verification) to
be approximately equivalent to 2 pairings, (plus 1 exponen-
tiation for bit extraction). In Figure 10 (right) we show the
actual amortized costs over up to 212 token redemptions.

Estimates for double-spending protection. Although we
did not implement the NIAT with double-spend protection,
we do provide the estimates of the various additional costs
incurred by the resulting extension over the base scheme.
In particular, we estimate the cost of token issuance to be
about 0.15 ms over the base scheme as it requires 2 extra
exponentiations (1 more for the equivalence class signature
and 1 more for the proof), and the overall presignature size
should require about 2 additional integers in the proof. For
amortized token generation, we estimate the additional cost
to be about 0.6 ms over the base scheme as it requires 8
extra exponentiations (2 more for proof verification, 1 more
for the tag, 2 for the proof and 3 for the encryption), and the
overall token size to be about 3 additional G1 (1 more in
the tag and 2 for the ciphertext) elements and 4 additional
integers (3 for the client’s proof and 1 for the verifier’s
identifier). For amortized redemption, we estimate the ad-
ditional cost to be about 0.4 ms over the base scheme as
it requires about 1 additional pairing and 4 exponentiations
for the proof verification. Aside from the additional cost of
verification, the cost of bit extraction stays the same. Finally,
double-spend identification requires 5 pairings and the cost
of a lookup over aux.
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∑

-protocols,” https://www.cs.au.dk/ ivan/Sigma.pdf,
2010, accessed: 2025-03-20.

[26] S. Mitsunari, “MCL,” https://github.com/herumi/mcl, 2024.
[27] P. S. L. M. Barreto, B. Lynn, and M. Scott, “Constructing elliptic

curves with prescribed embedding degrees,” in SCN 02: 3rd Inter-
national Conference on Security in Communication Networks, ser.
Lecture Notes in Computer Science, S. Cimato, C. Galdi, and G. Per-
siano, Eds., vol. 2576. Amalfi, Italy: Springer Berlin Heidelberg,
Germany, Sep. 12–13, 2003, pp. 257–267.

[28] S. Bowe, “Bls12-381: New zk-snark elliptic curve construction,”
https://electriccoin.co/blog/new-snark-curve/, 2017, accessed: 2024-
04-17.

[29] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Advances in Cryptology –
CRYPTO’86, ser. Lecture Notes in Computer Science, A. M. Odlyzko,
Ed., vol. 263. Santa Barbara, CA, USA: Springer Berlin Heidelberg,
Germany, Aug. 1987, pp. 186–194.

[30] L. Hanzlik and D. Slamanig, “With a little help from my friends:
Constructing practical anonymous credentials,” in ACM CCS 2021:
28th Conference on Computer and Communications Security, G. Vi-
gna and E. Shi, Eds. Virtual Event, Republic of Korea: ACM Press,
Nov. 15–19, 2021, pp. 2004–2023.

[31] Y. Dodis and A. Yampolskiy, “A verifiable random function with
short proofs and keys,” in PKC 2005: 8th International Workshop on
Theory and Practice in Public Key Cryptography, ser. Lecture Notes
in Computer Science, S. Vaudenay, Ed., vol. 3386. Les Diablerets,
Switzerland: Springer Berlin Heidelberg, Germany, Jan. 23–26, 2005,
pp. 416–431.

14

https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://webkit.org/blog/11529/introducing-private-click-measurement-pcm/
https://webkit.org/blog/11529/introducing-private-click-measurement-pcm/
https://developers.google.com/privacy-sandbox/protections/private-state-tokens
https://developers.google.com/privacy-sandbox/protections/private-state-tokens
https://blog.cloudflare.com/privacy-pass-standard
https://blog.cloudflare.com/privacy-pass-standard
https://datatracker.ietf.org/wg/privacypass/about/
https://datatracker.ietf.org/wg/privacypass/about/
https://eprint.iacr.org/2022/004
https://doi.org/10.1007/978-3-031-91124-8_13
https://eprint.iacr.org/2023/1199
https://eprint.iacr.org/2006/165
https://github.com/herumi/mcl
https://electriccoin.co/blog/new-snark-curve/


[32] D. Boneh, H. W. Montgomery, and A. Raghunathan, “Algebraic
pseudorandom functions with improved efficiency from the aug-
mented cascade,” in ACM CCS 2010: 17th Conference on Computer
and Communications Security, E. Al-Shaer, A. D. Keromytis, and
V. Shmatikov, Eds. Chicago, Illinois, USA: ACM Press, Oct. 4–8,
2010, pp. 131–140.

Appendix

1. More Preliminaries

In this section we provide some additional preliminaries
essential to this work.

1.1. Zero-knowledge Proofs. We recall the standard def-
inition of a Zero-knowledge (ZK) proof as an interactive
protocol between a Prover P and a Verifier V. The Prover P
must convince the verifier V that she knows a private witness
w for a public instance x ∈L such that R(x,w) = 1, and V
gains no additional information. A ZK proof system consists
of the following polynomial time algorithms:

• Setup(1λ) → crs. The setup algorithm takes as
input the security parameter λ, and outputs a crs.

• Prove(crs, x, w)→ π. The prover algorithm takes
as input a crs, an instance x ∈L, and a witness w.
It outputs a proof π.

• Verify(crs, x, π) → {0, 1}. The verification algo-
rithm takes as input a crs, an instance x, and a proof
π. It outputs 0 or 1.

Definition A.1 (Zero-knowledge proof). A zero-knowledge
proof between P and V for an NP relation R must satisfy
the following properties:

• Completeness: If R(x,w) = 1 and both players are
honest, V always accepts.

• Soundness: For every malicious and computation-
ally unbounded P∗, there is a negligible func-
tion ϵ(·) such that if x is a false statement (i.e.,
∀w : R(x,w) = 0), after P∗ interacts with V,
Pr[V accepts] ≤ ϵ(|x|).
Moreover, a proof system is an argument of knowl-
edge (AoK) if there exists a PPT extractor E such
that for every stateful PPT attacker A, the following
probability is negligible

Pr

[
Verify(crs, x, π) = 1
∧ R(x,E(crs, x, π)) = 0

:
crs←$ Setup(1λ)

(x, π)←A(1λ, crs)

]
• Zero-knowledge: For every malicious PPT adversary

V∗, there exists a PPT simulator S and a negligible
function ϵ(·) such that for every distinguisher D and
(x,w) ∈ R, the following is negligible in |x|

|Pr[D(ViewV∗(x,w)) = 1]− Pr[D(S) = 1]|

Composed statements. ZK proofs can be composed as
follows: (1) AND composition π1 ∧ π2 can be constructed
by sequential or parallel proving of underlying assertions,
and (2) OR composition π1 ∨ π2 can be constructed
by proving knowledge for one statement and simulating

knowledge for the other, without revealing which of the
two is actually proved and which is simulated [25].

Mixed statements. Let f and g be non-algebraic
and algebraic relations with public instances y and z
respectively. A ZK proof on a mixed statement has the
generic form {(w) : f(y, w) = 1 ∧ g(z, w) = 1}(y, z).

Non-interactive zero-knowledge. Public-coin interactive
ZK proofs can be made non-interactive in the random oracle
model using the Fiat-Shamir heuristic [29].

2. Anonymous Tokens with Private Metadata Bit

We recall the anonymous tokens (AT) interface defined
by Chase et al. [10]. Formally, it is comprised of three
polynomial time algorithms Setup, KeyGenI and ReadBit,
and a probabilistic polynomial time (PPT) interactive token
issuance protocol between Client and Issuer.

• Setup(1λ) → pp. The setup algorithm takes as
input the security parameter λ and outputs the pro-
tocol’s pubic parameters pp.

• KeyGenI(pp)→ (pkI , skI). The issuer’s key gen-
eration algorithm the public parameters pp as input
and generates the public key pkI and secret key skI
of the issuer.

• ⟨Client(pkI , τ), Issuer(skI , b, τ)⟩ → (t, σ) or ⊥.
This is the interactive token issuance protocol be-
tween Client and Issuer where the client’s input is
the issuer’s public key pkI and some public metadata
τ ∈ M, and the issuer’s input is its secret key
skI , the hidden metadata bit b ∈ {0, 1} and the
public metadata τ . It can be broken down into three
algorithms.

– ClientQuery(pkI , τ) →
(query, state). Client initiates the protocol
by sending query to the Issuer.

– IssueToken(skI , b, τ, query) → resp. Issuer
replies with resp.

– ClientObtain(state, resp) → (t, σ). Client
locally computes the token from the Issuer’s
response.

• ReadBit(skI , t, σ, τ) → {0, 1} or ⊥. The Issuer’s
ReadBit algorithm takes as input the issuer’s secret
key skI , a token (t, σ), the public metadata τ and
outputs b ∈ {0, 1} or ⊥.

Correctness of an AT scheme holds if for any given
execution of the interactive protocol, the output of the
Issuer’s ReadBit algorithm is the same as the embedded
metadata bit b. In terms of security, an AT scheme must
satisfy one-more unforgeability, unlinkability, and privacy
of the metadata bit. One-more unforgeability ensures that
for an issuer running ℓ times, on some fixed (b,m) pair,
an adversary should not be able to produce more than ℓ
tokens with pairwise distinct tags. Unlinkability ensures that
a malcious issuer can not link tokens to any given client,
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and more generally to the corresponding issuing sessions.
Finally, privacy of the metadata bit ensures that an adversary
can do no better than guess the hidden metadata bit with
trivial probability. We refer the reader to [10] for the formal
security definitions.

2.1. Tag-based Equivalence Class Signatures. We now
recall the definition of Tag-based Equivalence Class Signa-
tures (TB-EQS) [30] that modifies the SPS-EQ definition
additionally support the inclusion of an auxiliary tag τ such
that the tag for a signature on a given message does not
change under changing representations.

Definition A.2 (TB-EQS). A TB-EQS scheme consists of
the following PPT algorithms:

• Setup(1λ, ℓ) → ppTEQ. On input the security
parameter 1λ, and the length of message vectors ℓ,
it outputs the public parameters ppTEQ.

• KeyGen(ppEQ) → (pkTEQ, skTEQ). On input the
public parameters ppTEQ, it outputs a key pair
(pkTEQ, skTEQ).

• VerKey(skTEQ, pkTEQ) → b ∈ {0, 1}. On input a
public-secret key pair (pkTEQ, skEQ), it determinis-
tically returns a bit b ∈ {0, 1}.

• Sign(skEQ,M, τ) → σTEQ. On input the secret
key skEQ a representative M ∈ (G∗

i )
ℓ and a tag

τ ∈ {0, 1}∗, it outputs a signature σEQ for the
equivalence class [M ].

• ChRep(M,σTEQ, µ)→ σ′
TEQ. On input a message

M , signature σTEQ and a scalar µ, it returns an
updated message-signature pair (M ′, σ′

TEQ) where
the new representative is M ′ = Mµ and σ′

TEQ is the
corresponding updated signature.

• Verify(pkTEQ,M, τ, σTEQ)→ b ∈ {0, 1}. On input
a public key pkTEQ, a representative M ∈ (G∗

i )
ℓ, a

tag τ ∈ {0, 1}∗, and a signature σTEQ, it determin-
istically outputs a bit b ∈ {0, 1}.

Definition A.3 (Existential unforgeability under
chosen message attack). Let AdvEUnf-CMA

A,ℓ =
Pr [EUnf-CMAA,ℓ(λ) = accept] be the advantage of
an PPT adversary A in the EUnf-CMA experiment defined
in Figure 11. A TB-EQS scheme over (G∗

i )
ℓ is existentially

unforgeable under adaptive chosen-message attacks if for
all ℓ > 1, the advantage AdvEUnf-CMA

A = negl(λ).

Definition A.4 (Perfect signature adaptation under malicious
keys). For ℓ > 1, an TB-EQS scheme on (G∗

i )
ℓ perfectly

adapts signatures under malicious keys if for all tuples
(pkTEQ,M, σTEQ, µ, τ) satisfying

M ∈ G∗
i ∧ TEQ.Verify(pkTEQ,M, τ, σTEQ) = 1 ∧ µ ∈ Z∗

p

we have that the output of TEQ.ChRep(σTEQ, µ) is a uni-
formly random element in the space of signatures, condi-
tioned on TEQ.Verify(pkTEQ,M

µ, τ, σ′
TEQ) = 1.

Game EUnf-CMAA,ℓ(λ)

1 : Q := ∅
2 : (ppTEQ)←$ TEQ.Setup(1λ, ℓ)

3 : (pkTEQ, skTEQ)←$ TEQ.KeyGen(ppTEQ)

4 : (M∗, σ∗
TEQ, τ

∗)← A
OSign(pkTEQ)

5 : return ([M∗], τ∗) ̸= ([M ], τ) ∀(M, τ) ∈ Q ∧
TEQ.Verify(pkTEQ,M

∗, τ∗, σ∗
TEQ) = 1

Oracle OSign(M, τ)

1 : σTEQ ←$ TEQ.Sign(skEQ,M, τ)

2 : Q := Q ∪ {(M, τ)}
3 : return σTEQ

Figure 11. The existential unforgeability (under chosen message attack)
experiment for TB-EQS.

3. Security Proofs for Section 4

THEOREM 4.1 (ONE-MORE UNFORGEABILITY). Construc-
tion 4 is one-more unforgeable (in the random oracle model)
assuming NIZK satisfies zero knowledge and EQ is existen-
tially unforgeable under adaptively chosen-message attacks.

Pf. We proceed through a series of hybrids.

• Hybrid H0: This is the original NIAT one-more
unforgeability experiment OM-UnfA (see Defini-
tion 3.3) defined with respect to Construction 4.

• Hybrid H1: This is the same as H0 except, when
there is a collision on an adversaries random oracle
query to H, the challenger aborts. For a PPT adver-
sary making qH = poly(λ) random oracle queries, it
can be shown by a simple application of the union
bound that the adversary’s advantage in H0 and that
in H1 differs by at most qH/2λ.

• Hybrid H2: This is the same as H1 except, the
challenger simulates the proof π without a witness.
If NIZK satisfies zero knowledge, then H1 and H2

are indistinguishable to the adversary.

Let AdvjA be the advantage of a PPT adversary A in hybrid
Hj . Then, we claim that Adv2A must be negligible. In order
to do so, we give a reduction B such that if A wins the
game in H2, B can break the existentially unforgeability
(under adaptively chosen-message attack) of the underlying
SPS-EQ scheme EQ. In particular, the reduction does the
following:

• It sets (pk
(3)
I , pk

(4)
I , pk

(4)
I ) := pkEQ given by the

EUnf-CMA challenger C. It additionally samples x1

and x2 from Zp and sets the rest of pkI in the usual
way.

• On receiving a Issue query (pkC , b), it samples r,
and computes S in the usual way. It then queries
C for the signature σ on (pkC ,H(r), S) and returns
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psig := (σ, S, π) and nonce := r, where π is the
simulated NIZK proof.

• On receiving a Read query (t,σ) it first checks if
Verify(pkI , t,σ) = 1 and returns ⊥ if it is not.
Otherwise for each b ∈ {0, 1} it checks whether
t
x1+b

1 = t2. If such a b is found, it outputs it.
Otherwise it outputs ⊥.

• Finally when A outputs its forgery
{(t(i),σ(i))}i∈[N ], B uniformly chooses a pair
(t∗,σ∗) and outputs it as its forgery.

For a successful adversary A, each σ(i) must be a signature
on a unique class represented by (g1, t

(i)
1 , t

(i)
2 ). However,

since B can not determine which of the N forgeries is with
respect to a fresh equivalence class, it uniformly chooses
one in the last step. Therefore, Adv2A = ℓ

N−ℓ ·Adv
EUnf-CMA
B ,

which is negligible for any PPT adversary A.

THEOREM 4.3 (κ-UNLINKABILITY). Construction 4 is κ-
unlinkable (in the random oracle and KOSK models) for κ =
2, assuming NIZK is sound, that inverse DDH assumption
holds in G1 and EQ perfectly adapts signatures under a
malicious signer.

Pf. We proceed through a series of hybrids.

• Hybrid H0: This is the original NIAT unlinkability
experiment UNLINKA,n (see Definition 3.4) defined
with respect to Construction 4.

• Hybrid H1: This is the same as H0 except, we pro-
gram the random oracle such that for any fresh query
r ∈ {0, 1}λ, we set H(r) = gνr1 for νr ←$ Zp. We
must also keep track of each (r, νr) pair and answer
any repeated random oracle queries accordingly.
This clearly affects no change from the adversary’s
point of view, so H0 and H1 are indistinguishable.

• Hybrid H2: This is the same as H1 except,
on every Obtain query (pkC , psig := (σ, S, π),

nonce := r), if EQ.Verify
(
(pk

(3)
I , pk

(4)
I , pk

(5)
I ),

(pkC ,H(r), S)
)
̸= 1 it sets out := (⊥,⊥). Oth-

erwise, it sets t appropriately, and uses skI to com-
pute σ ←$ EQ.Sign

(
(sk

(1)
I , sk

(2)
I , sk

(3)
I , (g1, t1, t2)

)
.

Since EQ perfectly adapts signatures under mali-
cious keys, hybrids H1 and H2 are indistinguishable
to the adversary.

• Hybrid H3: This is the same as H2 except, the
challenger parses each (pk

(i)
C , psig(i), nonce(i))

triple in Q∗ such that for each i ∈ [n],
psig(i) = (σ(i), S(i), π(i)). Then for any i, if
EQ.Verify

(
(pk

(3)
I , pk

(4)
I , pk

(5)
I ), (pk

(i)
C ,H(r(i)),

S(i))
)
̸= 1 it sets outi := (⊥,⊥) for all i;

otherwise, it sets each t(i) appropriately, and uses
skI to compute σ(i) ←$ EQ.Sign

(
(sk

(1)
I , sk

(2)
I

sk
(3)
I ),

(
g1, t

(i)
1 , t

(i)
2

))
. Since EQ perfectly adapts

signatures under malicious keys, hybrids H2 and
H3 are indistinguishable to the adversary.

• Hybrid H4: This is the same as H3 except, on ev-
ery Obtain query (pkC , psig := (σ, S, π), nonce :=

r), if EQ.Verify
(
(pk

(3)
I , pk

(4)
I , pk

(5)
I ), (pkC ,H(r),

S)
)
̸= 1 the challenger sets out := (⊥,⊥). Oth-

erwise, it uses its knowledge of skI to extract b

from S, and then sets t1 := H(r)sk
−1
C as usual,

and t2 := t
(1−b)ek

(1)
I +bek

(2)
I

1 . By soundness of NIZK,
hybrids H3 and H4 are indistinguishable to the
adversary with all but negligible probability.

• Hybrid H5: This is the same as H4 except, the
challenger parses each (pk

(i)
C , psig(i), nonce(i)) triple

in Q∗ such that for each i ∈ [n], psig(i) =

(σ(i), S(i), π(i)). Then, if EQ.Verify
(
(pk

(3)
I , pk

(4)
I ,

pk
(5)
I ), (pk

(i)
C ,H(r(i)), S(i))

)
̸= 1 it sets out(i) :=

(⊥,⊥) for every i; otherwise, it uses its knowl-
edge of skI to extract b(i) from S(i), and then
sets t

(i)
1 := H(r(i))1/sk

(i)
C as usual, and t

(i)
2 :=(

t
(i)
1

)(1−b(i))ek
(1)
I +b(i)ek

(2)
I

. By soundness of NIZK,
hybrids H4 and H5 are indistinguishable to the
adversary with all but negligible probability.

• Hybrid H6: This is the same as H5 except, on every
Obtain query (pkC , psig := (σ, S, π), nonce := r),
instead of setting t1 as H(r)sk

−1
C , it sets it to gρ1

for some ρ ←$ Zp of its choice. The signature
is now computed with respect to this new t1. We
argue that H6 is indistinguishable from H5 if the
inverse DDH assumption holds in G1. In particular,
for each user in Qusr, the reduction algorithm B
instantiates a new inverse DDH challenger over G1

and receives the corresponding challenge (gα1 , g
β
1 ).

It sets pkC := gα1 and skC := ⊥. On any valid
Obtain query, it looks up gβ1 value corresponding to
the pkC , and νr corresponding the nonce r. It then
sets t1 := (gβ1 )

νr . Now observe that if β = α−1,
the reduction simulates H5 to A and otherwise
simulates H6. Thus the adversary’s advantage in H5

and that in H6 differs by at most AdvinvDDH
B .

• Hybrid H7: This is the same as H6 except, after
parsing each (pk

(i)
C , psig(i), nonce(i)) triple in Q∗

such that for each i ∈ [n], psig(i) = (σ(i), S(i), π(i)),
instead of setting t

(i)
1 as H(r(i))sk

(i)
C

−1

for each
i ∈ [n], the challenger sets it to gρ

(i)

1 for ρ(i) ←$ Zp

of its choice. Each signature is now computed with
respect to this new t

(i)
1 . Indistinguishability between

hybrids H6 and H7 follow similarly to the previous
argument.

Finally, observe that the final (t(i),σ(i)) pairs are all in-
dependent of their presignatures and nonces. So the best
adversarial strategy is to create some nb responses with bit
b for each bit (n0 + n1 = n), read the bit bî of out̂i and
output a random value i∗ from the set of all nbî

indices
where the embedded bit was equal to bî. The probability
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that the adversary wins is∑
b∈{0,1}

Pr [bi∗ = bî] · Pr
[
i∗ = î

]
=

∑
b∈{0,1}

nb

n
· 1
nb

=
2

n
.

Let AdvjA be the advantage of a PPT adversary A in
hybrid Hj . Then, Adv7A ≤ 2

n .

THEOREM 4.4 (PRIVACY OF METADATA BIT). Construc-
tion 4 has private metadata bit (in the random oracle
model) assuming NIZK satisfies zero-knowledge, that DDH
assumption holds and EQ is existentially unforgeable under
adaptively chosen-message attacks.

Pf. We proceed through a series of hybrids.

• Hybrid H0: This is the original NIAT metadata bit
privacy experiment PMB

A,b̂ for b̂ ∈ {0, 1} (see Def-
inition 3.6) defined with respect to Construction 4.

• Hybrid H1: This is the same as H0 except, we pro-
gram the random oracle such that for any fresh query
r ∈ {0, 1}λ, we set H(r) = gνr1 for νr ←$ Zp. We
must also keep track of each (r, νr) pair and answer
any repeated random oracle queries accordingly.
This clearly affects no change from the adversary’s
point of view, so H0 and H1 are indistinguishable.

• Hybrid H2: This is the same as H1 except, the
challenger simulates the proof π without a witness.
If NIZK satisfies zero knowledge, then H1 and H2

are indistinguishable to the adversary.
• Hybrid H3: This is the same as H2 except, on

receiving the challenge query, the challenger runs
the issue algorithm with ρ ←$ Zp instead of b̂. In
particular, it computes S := gρ1 . We argue that H3

is indistinguishable from H2 if the DDH assumption
holds in G1. In particular, the reduction algorithm B
instantiates a DDH challenger over G1 and receives
the corresponding challenge (gα1 , g

β
1 , g

γ
1 ). If b̂ = 0, it

sets pk
(1)
I := gα1 and ek

(1)
I := ⊥ otherwise if b̂ = 1

it sets pk
(2)
I := gα1 and ek

(2)
I := ⊥. On any valid

Issue query (pkC , b), it answers as before if b ̸= b̂.
Otherwise, B sets R as before, sets S := (gα1 )

νr and
computes the rest of the presignature using this S.
On receiving a valid Read query, the reduction first
verifies the signature under pkI , and outputs ⊥ if it

fails. Otherwise, it checks if tek
(2−b̂)
I

1 = t2 (note that
B knows ek

(2−b̂)
I ) and outputs 1 − b̂ if the check

passes, and b̂ otherwise. Finally, on receiving the
Challenge query for pkC , B samples the nonce r as
usual, and then programs H(r) := gβ1 , sets S := gγ1
and performs rest of the computation as before. Now,
notice that if an adversary is able to distinguish
the two hybrids, then either B breaks DDH or A
managed to forge a SPS-EQ signature σ on some
tag t such that B answers the Read query incorrectly
on (t,σ). This happens if the underlying “bit” is
invalid, but B answered with b̂. It follows that the

adversary’s advantage in distinguishing hybrids H2

and H3 is equal to AdvDDH
B + AdvEUnf-CMA

B .

Let Advj
A,b̂

be the advantage of a PPT adversary A in

hybrid Hj with respect to b̂. Then,∣∣∣Pr [HA,1
3 (λ) = accept

]
− Pr

[
HA,0

3 (λ) = accept
]∣∣∣

=
∣∣Adv3A,1 − Adv3A,0

∣∣
which is zero. This proves the theorem.

4. Full Instantiation of Construction 4

We begin this section by recalling the SPS-EQ scheme
from [19], which we use to instantiate our NIAT protocol.
We will then give the expanded version, along with the full
zero knowledge proof for the language Liss.

4.1. SPS-EQ Construction. A signature on a message
m = (m1,m2, . . . ,mn) ∈ (G∗

1)
n is a triple (Z, Y1, Y2) ∈

G1 × G1,×G2. The secret key of the signer is a tuple of
n elements in Z∗

p, and the public key is an an n-tuple from
G∗

2. Importantly, the signature can be adapted to another
signature on message mµ without the secret key of the
signer. We explain the full construction in Figure 12.

4.2. The Concrete SPS-EQ Component. In Figure 14,
we expand the token issuance and generation algorithms by
instantiating with the aforementioned SPS-EQ of [19].

4.3. The ZK Proof. Recall that the issuer’s ZK proof
consists of a proof of knowledge of discrete log of the
elements of pkI corresponding to the secret key, along with
the proof that S = R(1−b)x1+bx2 for x1, x2 in the issuer’s
secret key. We detail the full (interactive) ZK proof protocol
for the language Liss in Figure 13. As previously mentioned,
we can apply the Fiat-Shamir heuristic [29] to transform the
proof into a NIZK for our construction.

• Prove. The NIZK prover algorithm takes as input a
common reference string crs, the statement x = (

S, T0, T1, U, V,W ), where T0 = pk
(1)
I = gx1

1 , T1 =

pk
(2)
I = gx2

1 , U = pk
(3)
I = gy1

2 , V = pk
(4)
I = gy2

2

and and W = pk
(5)
I = gy3

2 , and the witness w =
(skI := (x1, x2, y1, y2, y3), b). It does the following
depending on the bit b:

1) If b = 0, the issuer (prover) samples integers
z0, zu, zv, zwc1, a1, and computes commit-
ments S̃0 := Rz0 , S̃1 := Ra1 · S−c1 , T̃0 :=
gz01 , T̃1 := ga1

1 · T
−c1
1 , Ũ := gzu2 , Ṽ :=

gzv2 and W̃ := gzw2 . It then computes the
challenge c := H(g1, g2, pkC , S, T0, T1, U,
V, ,W, S̃0, S̃1, T̃0, T̃1, Ũ , Ṽ , W̃ ), followed by
au := zu + cy1, av := zv + cy2, aw :=
zw + cy3, c0 := c− c1, a0 := z0 + c0x1.
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KeyGen(1λ, ℓ)

1 : x←$ (Z∗
p)
ℓ

2 : return pkEQ := gx2 = (gx12 , gx22 , . . . , g
xℓ
2 ),

skEQ := x = (x1, x2, . . . , xℓ)

ChRep(pkEQ,m, σEQ, µ)

1 : if Verify(pkEQ,m, σEQ) ̸= 1 then

2 : return ⊥
3 : ψ ←$ Z∗

p

4 : return σ′ :=
(
Zψ·µ, Y

1/ψ
1 , Y

1/ψ
2

)
Sign(skEQ,m)

1 : Parse skEQ := (x1, x2, . . . , xℓ)

2 : υ ←$ Zp

3 : Z :=

(
ℓ∏
i=1

mxi
i

)υ
4 : Y1 := g

1/υ
1 , Y2 := g

1/υ
2

5 : return σ := (Z, Y1, Y2)

Verify(pkEQ,m, σEQ)

1 : Parse pkEQ := (gx12 , gx22 , . . . , g
xℓ
2 )

2 : return

ℓ∏
i=1

e(Mi, g
xi
2 ) = e(Z, Y2)

∧ e(Y1, g2) = e(g1, Y2)

Figure 12. SPS-EQ scheme from [19].

Statement:

S = R(1−b)x1+bx2 ∧ T0 = pk
(1)
I = gx1

1 ∧ T1 = pk
(2)
I = gx2

1

∧ U = pk
(3)
I = gy1

2 ∧ V = pk
(4)
I = gy2

2 ∧ W = pk
(5)
I = gy3

2

b = 0, and witness w = (x1, y1, y2, y3) b = 1, and witness w = (x2, y1, y2, y3)

P samples z0, zu, zv, zw, c1, a1 ←$ Z∗
p P samples z1, zu, zv, zw, c0, a0 ←$ Z∗

p

P computes P computes

S̃0 := Rz0 , S̃1 := Ra1 · S−c1 , S̃0 := Ra0 · S−c0 , S̃1 := Rz1 ,

T̃0 := gz01 , T̃1 := ga1
1 · T

−c1
1 , T̃0 := ga0

1 · T
−c0
0 , T̃1 := gz11 ,

Ũ := gzu2 , Ṽ := gzv2 , W̃ := gzw2 Ũ := gzu2 , Ṽ := gzv2 , W̃ := gzw2

and sends (S̃0, S̃1, T̃0, T̃1, Ũ , Ṽ , W̃ ) to V. and sends (S̃0, S̃1, T̃0, T̃1, Ũ , Ṽ , W̃ ) to V.

V samples c←$ Zp and sends c to P.

P computes P computes

au := zu + cy1, av := zv + cy2, au := zu + cy1, av := zv + cy2,

aw := zw + cy3, c0 := c− c1, aw := zw + cy3, c1 := c− c0,

a0 := z0 + c0x1 a1 := z1 + c1x2

and sends (c0, c1, au, av, a0, a1) to V. and sends (c0, c1, au, av, a0, a1) to V.

V verifies

c = c0 + c1 ∧ S̃0 · Sc0 = Ra0 ∧ S̃1 · Sc1 = Ra1 ∧ T̃0 · T c0
0 = ga0

1

∧ T̃1 · T c1
1 = ga1

1 ∧ Ũ · U c = gau2 ∧ Ṽ · V c = gav2 ∧ W̃ ·W c = gaw2

Figure 13. The ZK Proof Protocol for the language Liss.

2) If b = 1, the issuer (prover) samples integers
z1, zu, zv, zw, c0, a0, and computes commit-
ments S̃0 := Ra0 · S−c0 , S̃1 := Rz1 , T̃0 :=
ga0
1 · T

−c0
0 , T̃1 := gz11 , Ũ := gzu2 , Ṽ :=

gzv2 and W̃ := gzw2 . It then computes the
challenge c := H(g1, g2, pkC , S, T0, T1, U,
V,W, S̃0, S̃1, T̃0, T̃1, Ũ , Ṽ , W̃ ), followed by
au := zu + cy1, av := zv + cy2, aw :=
zw + cy3, c1 := c− c0, a1 := z1 + c1x2.

Finally, it outputs the proof π =
(c0, c1, au, av, aw, a0, a1).

• Verify. The NIZK verification algorithm takes the
crs, the statement x = (S, T0, T1, U, V,W ) and
the proof π. We use a small modification to the
Fiat-Shamir transformation similar to [10] for ef-
ficient verification. Specifically, the client (verifier)
parses π =: (c0, c1, au, av, aw, a0, a1) and computes
c = c0+c1, S̃0 := Ra0 ·S−c0 , S̃1 := Ra1 ·S−c1 , T̃0 :=
ga0
1 · T

−c0
0 , T̃1 := ga1

1 · T
−c1
1 , Ũ := gau2 · U−c, Ṽ :=

gav2 · V −c and W̃ := gaw2 · W−c. Finally, the
client checks that c := H(g1, g2, pkC , S, T0, T1, U,
V,W, S̃0, S̃1, T̃0, T̃1, Ũ , Ṽ , W̃ ).

19



4.4. Batch verification. Let us now explain the joint ver-
ification check that reduces the overall number of pairing
computations required for batch verifications. Firstly notice
that for both, the client and the verifier, the pairing compu-
tation for e(pkC , pk

(3)
I ) and e(g1, pk

(3)
I ) respectively, can be

precomputed. This already reduces the number of pairing
computations per presignature/token by one. For an issuing
authority with key pair (skI , pkI), let n be the number of
presignatures issued to some client with public key pkC ,
and n′ be the number of tokens redeemed. Then the batch
verification check for the client is given by
n∏

i=1

e (Zi, Y2,i)
?
= e

(
pkC , pk

(3)
I

)n
· e

(
n∏

i=1

Ri, pk
(4)
I

)
· e

(
n∏

i=1

Si, pk
(5)
I

)
(1)

∧ e

(
n∏

i=1

Y1,i, g2

)
?
= e

(
g1,

n∏
i=1

Y2,i

)
(2)

Similarly, the batch verification check for the verifier is
given by replacing n by n′ in (2)9 and linearly computing
the other pairing check. So that instead of 5n (resp. 5n′)
pairings, the client (resp. the verifier) performs n+4 (resp.
3n′ + 2) pairings.

5. Security Proofs for Section 5

Correctness, reusability of Construction 5 are easily
extendable from that of the previous protocol (see Ap-
pendix C); and privacy of metadata bit is also proven
identically. One-more unforgeability of Construction 5 can
similarly be extended from that of the previous protocol
with the additional requirement of soundness of NIZKobt.
Due to space constraints, these proofs are thus omitted.
We now provide sketches for the unlinkability, double-
spend identification and exculpability of our construction,
and defer the proofs to the full version of this article.
THEOREM 5.2 (κ-UNLINKABILITY). Construction 5 is κ-
unlinkable (in the random oracle and KOSK models) for κ =
2, assuming NIZKiss is sound, that DDH, k-DDH assumption
holds in G1 and EQ perfectly adapts signatures under a
malicious signer NIZKobt satisfies zero knowledge.

Pf sketch. Recall the proof of Theorem 4.3 (Appendix C).
The idea there was to make the final token effectively inde-
pendent of skC =: α, psig =: (σ, R, S, π) and nonce =: r,
and then use the perfect adaptation of the SPS-EQ signa-
ture scheme in order to simulate a valid token. This was
facilitated by our use of the random oracle model along
with assumptions from the DDH family that allowed us to
replace H(r)α

−1

in the tag with a random group element in
G1. The approach here remains the same, however we now
need to deal with several additional elements in the final
token.

Notice that due to zero-knowledge of NIZKobt,
the proof πo is simulatable. Next, we can

9. At verification, we are cautious to not batch first part of the pairing
check similar to (1) as the client does not produce any ZK proof for its
computations.

replace t =
(
g
(α+r̂)−1

1 , R(α+r̂)−1

, S(α+r̂)−1
)

by(
gρ1 , (g

ε
1)

ρ
,
(
g
ε·((1−b)x1+bx2)
1

)ρ)
where we can might

hope to again use inverse DDH argue indistinguishability,
but this does not fully work here. Instead, we make the
observation that each g

(α+r̂)−1

1 is the output of the Dodis-
Yampolskiy PRF [31] which is adaptively secure under the
k-DDH assumption [32] for poly(λ) sized domains. This,
in particular means that we must ensure that the range of
HZ(r) is of size poly(λ). However, we remark that this
does not influence security of our scheme in any way,
although resuability will now hold only with high (and not
all but negligible) probability.

Lastly, viewing ϕ as ElGamal encryption of g
id·(α+r̂)
1

(times some extra randomness), we replace it with the
encryption of a random value and argue indistinguishability
by IND-CPA security of the encryption scheme (which,
in turn, follows from DDH). At a high level, we first set
each HG→G(r) := gνr1 . Then, for a query of the form
(·, r, id), we create the encryption ϕ as ϕ1 := gνr1 , and
ϕ2 := µ · ϕα

1 for message µ := pkidC · g
(id+νr)·r̂
1 . Next,

we can replace ϕα
1 = gα·νr1 with gγ1 for γ ←$ Zp, so that

ϕ2 = µ·gγ1 is indistinguishable from uniform. Consequently,
the final token is now independent of pkC , psig and nonce
as desired.

THEOREM 5.4 (DOUBLE-SPEND IDENTIFICATION). Con-
struction 5 satisfies double-spend identification (in the ran-
dom oracle model) assuming NIZKobt is sound.

Pf sketch. If NIZKobt is sound, then it follows that the
adversary knows (skC , r̂) (resp. (sk′C , r̂

′)) such that t1 =

g
(skC+r̂)−1

1 (resp. t1 = g
(sk′C+r̂′)

−1

1 ) and ϕ2 = g
id·(skC+r̂)
1 ·

HG→G(t1)
skC+r̂ (resp. ϕ′

2 = g
id′·(sk′C+r̂′)
1 · HG→G(t1)

sk′C+r̂)
with respect to (t,σ) (resp. (t,σ′)). Now since t is common
between both tokens, we have (skC + r̂) =

(
sk′C + r̂′

)
(all computations are mod p) so that

(
ϕ2

−1 · ϕ′
2

)(id−id′)
−1

simplifies to g
skC+r̂
1 = g

sk′C+r̂′

1 , such that at least one
of (g

skC
1 , nonce) and (g

sk′C
1 , nonce′) is in aux with r̂ =:

HZ(nonce) (similarly, r̂′). Thus, with all but negligible
probability, DSIden(pkI , t,σ,σ

′) ̸= ⊥.

THEOREM 5.5 (DOUBLE-SPEND EXCULPABILITY). Con-
struction 5 satisfies double-spend exculpability assuming
NIZKobt is sound and the discrete log assumption holds in
G1.

Pf sketch. Suppose an adversary accuses some (hon-
est) client pkC and provides a proof of guilt Π :=
(t,σ,σ′, nonce) where σ := (s,ϕ, πo, id) (similarly σ′)

such that
(
ϕ−1
2 · ϕ′

2

)(id−id′)
−1

= pkC · g
HZ(nonce)
1 and, both,

the proof and signature verify. Having queried OIssue at
most once per (psig, nonce) pair (w.l.o.g. suppose the query
corresponds to the token (t,σ)) then, such an adversary
must have to create a satisfying proof π′

o. However, in order
to do so, it either learns skC—in which case, we can reduce
to the hardness of discrete log—or it is able to create a
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Issuer(b) Client

x = (x1, x2) ∈ (Z∗
p)

2︸ ︷︷ ︸
ekI

,y = (y1, y2, y3) ∈ (Z∗
p)

3︸ ︷︷ ︸
skI

, α ∈ Z∗
p︸ ︷︷ ︸

skC

, gα1 ∈ G1︸ ︷︷ ︸
pkC

gx1 = (gx11 , gx21 ) ∈ G2
1, g

y
2 = (gy12 , gy22 , gy32 ) ∈ G3

2︸ ︷︷ ︸
pkI

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r ←$ {0, 1}λ, R := H(r), S := R(1−b)x1+bx2

EQ.Sign ((y1, y2, y3), (pkC , R, S))

υ ←$ Z∗
p, Y1 := g

1
υ
1 , Y2 := g

1
υ
2

Z :=
(
pky1C ·R

y2 · Sy3
)υ

σ := (Z, Y1, Y2)

π ←$ NIZK.Prove

(
crs, x := (pkI , R, S)
w := (ekI , skI , b)

)
psig := (σ, S, π), nonce := r

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R := H(r), m := (pkC , R, S)

if NIZK.Verify(crs, x := (pkI , R, S), π) ̸= 1

∨ EQ.Verify
(
(pk

(3)
I , pk

(4)
I , pk

(5)
I ),m,σ

)
̸= 1

then return ⊥

EQ.Verify
(
(pk

(3)
I , pk

(4)
I ),m,σ

)
e(Z, Y2)

?
= e(pkC , pk

(3)
I ) · e(R, pk(4)I ) · e(S, pk(5)I )

∧ e(Y1, g2)
?
= e(g1, Y2)

t :=
(
Rα

−1

, Sα
−1
)

σ ←$ EQ.ChRep((pk
(3)
I , pk

(4)
I , pk

(5)
I ),m,σ, α−1)

EQ.ChRep((pk
(3)
I , pk

(4)
I , pk

(5)
I ),m,σ, α−1)

ψ ← Z∗
p, σ :=

(
Zψα

−1
, Y

1
ψ

1 , Y
1
ψ

2

)
t, σ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ReadBit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m := (g1, t1, t2)

if EQ.Verify
(
(pk

(3)
I , pk

(4)
I , pk

(5)
I ),m,σ

)
̸= 1

then return ⊥

EQ.Verify
(
(pk

(3)
I , pk

(4)
I , pk

(5)
I ),m,σ

)
e(Z, Y2)

?
= e(m1, pk

(3)
I ) · e(m2, pk

(4)
I ) · e(m3, pk

(5)
I )

∧ e(Y1, g2)
?
= e(g1, Y2)

foreach b ∈ {0, 1} do

if t
ek

(1+b)
I

1 = t2 then

return b

return ⊥

Figure 14. Expanded SPS-EQ construction for NIAT presignature issuance and token generation using [19].

proof without skC , and we can reduce to the soundness of
NIZKobt.

6. NIAT with Public Attributes

We now show that our NIAT constructions can be mod-
ified to also include public attributes. The construction is
almost identical to our Construction 4. The only notable
change is that the issuer now uses a tag-based equivalence
class signature scheme instead of a structure-preserving
signature.

6.1. Construction. Tools required. Our construction
requires a hash function H : {0, 1}λ → G1 modeled as a
random oracle, a TB-EQS scheme TEQ = (TEQ.Setup,
TEQ.KeyGen,TEQ.Sign,TEQ.ChRep,TEQ.Verify,
TEQ.VerKey), and a NIZK NIZK = (NIZK.Setup,
NIZK.Prove,NIZK.Verify) for Liss.

Presignature issuance and token generation. The
presignature issuance and token generation protocols is
presented in detail in Figure 15. The difference here from
construction 4 is the use of the public attribute τ as input
to the TB-EQS scheme.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Public attribute τ ∈ {0, 1}λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Issuer(b) Client

x = (x1, x2) ∈ (Z∗
p)

2︸ ︷︷ ︸
ekI

,y = (y1, y2, y3) ∈ (Z∗
p)

3︸ ︷︷ ︸
skI

, α ∈ Z∗
p︸ ︷︷ ︸

skC

, gα1 ∈ G1︸ ︷︷ ︸
pkC

gx1 = (gx11 , gx21 ) ∈ G2
1, g

y
2 = (gy12 , gy22 , gy32 ) ∈ G3

2︸ ︷︷ ︸
pkI

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r ←$ {0, 1}λ, R := H(r), S := R(1−b)x1+bx2

σ ←$ TEQ.Sign
(
(y1, y2, y3), (pkC , R, S), τ

)
π ←$ NIZK.Prove

(
crs, x := (pkI , R, S)

w := (skI , b)

)
psig := (σ, S, π), nonce := r

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Obtain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R := H(r), m := (pkC , R, S)

if NIZK.Verify(crs, x := (pkI , R, S), π) ̸= 1

∨ TEQ.Verify
(
(pk

(3)
I , pk

(4)
I , pk

(5)
I ),m, τ ,σ

)
̸= 1

then return ⊥

t :=
(
Rα

−1

, Sα
−1
)

σ ←$ TEQ.ChRep(m,σ, α−1)

Figure 15. TB-EQS construction for NIAT (with public attributes) presignature issuance and token generation.

Public verification (token redemption). The public
verification algorithm simply verifies the tag-based
equivalence class signature σ for the public attribute τ .

Verify(pkI , t,σ, τ )

1 : return TEQ.Verify((pk
(3)
I , pk

(4)
I , pk

(5)
I ), (g1, t1, t2), τ ,σ)

Correctness, reusability and all security properties follow
similarly from that of construction 4.
Security.

Theorem A.5 (One-more unforgeability). Construction F is
one-more unforgeable (in the random oracle model) assum-
ing NIZK satisfies zero knowledge and TEQ is existentially
unforgeable under adaptively chosen-message attacks.

Proof. Proof is omitted as it is nearly identical to that of
Theorem 4.1 but with respect to EUnf-CMA security of the
TB-EQS scheme.

Theorem A.6 (κ-unlinkability). Construction F is κ-
unlinkable (in the random oracle and KOSK models) for
κ = 2, assuming NIZK is an argument of knowledge, that
inverse DDH assumption holds in G1 and TEQ perfectly
adapts signatures under a malicious signer.

Proof. Proof is omitted as it is nearly identical to that of
Theorem 4.3 but with respect to perfect signature adaptation
of the TB-EQS scheme.

Theorem A.7 (Privacy of metadata bit). Construction F has
private metadata bit (in the random oracle model) assuming
NIZK satisfies zero-knowledge, that DDH assumption holds
and EQ is existentially unforgeable under adaptively chosen-
message attacks.

Proof. Proof is omitted as it is nearly identical to that of
Theorem 4.4.
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