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Abstract. Quasi-cyclic moderate-density parity check (QC-MDPC) code-based encryption
schemes under iterative decoders o!er highly-competitive performance in quantum-resistant
cryptography, but their IND-CCA2 security is an open question because the decoding failure
rate (DFR) of these algorithms is not well-understood. The DFR decreases extremely rapidly
as the blocklength increases, then decreases much more slowly in regimes known as the
waterfall and error floor, respectively. The waterfall behavior is rather well predicted by a
Markov model introduced by Sendrier and Vasseur [SV19b] but it does not capture the error
floor behavior. Assessing precisely for which blocklength this error floor begins is crucial for
the low DFRs sought the context of cryptography.
By enriching the Markov model [SV19b] with information about near codewords we are able
to capture this error-floor behavior for a step-by-step decoder. This decoder displays worse
decoding performance than the parallel decoders used in practice but is more amenable to a
Markov chain analysis. We already capture the error floor with a simplified model. A refined
model taking into account certain structural features of the secret key is even able to give
accurate key dependent predictions both in the waterfall and error floor regimes. We show
that error floor behavior is governed by convergence to a near codeword when decoding fails.
We ran this model for the BIKE cryptosystem with this simpler step by step decoder to
better ascertain whether the DFR is low enough to achieve IND-CCA2 security. Our model
gives a DFR below 2→131.2, using a block length r = 13477 instead of the BIKE parameter
r = 12323. This paper gives some strong evidence that the IND-CCA2 requirement can be
met at the cost of a modest increase of less than 10% in the key size.

1 Introduction

1.1 Motivation

The NIST PQC standardization process. The U.S. National Institute of Standards and
Technology (NIST) Post-Quantum Cryptography (PQC) standardization process, which began
with 82 submissions, has selected four algorithms for standardization while three algorithms remain
under consideration in the fourth round. One of the remaining candidates is BIKE, a cryptosystem
based on quasi-cyclic moderate-density parity check (QC-MDPC) codes which are decoded by
an iterative Black-Grey-Flip (BGF) decoder [ABB+21,DGK20]. The BIKE cryptosystem o!ers
competitive performance but lacks a formal security claim in the static-key setting, unlike its
code-based competitors.

Estimating the DFR of BIKE. Cryptosystems with a non-zero probability of decryption
failures require careful analysis when proving IND-CCA2 security. In particular, the standard
security proof [HHK17] requires the average failure probability to be below 2→ω where ω is the
security parameter. BIKE is one such cryptosystem, so meeting IND-CCA2 security requires the
average Decoding Failure Rate (DFR) of the QC-MDPC code used to be below 2→ω. A low DFR



for BIKE is not just a theoretical concern, since a DFR su"ciently higher than 2→ω enables the
GJS key-recovery attack [GJS16], which exploits decoding failures in an IND-CCA security model.

The target DFR of 2→ω is too small to measure directly, so another approach is needed
to prove that the DFR of BIKE is below 2→ω for the given parameter sets. Previous work
[SV19b,SV19a,DGK20] approximates the DFR by (i) directly measuring the average DFR for
smaller code sizes by running the decoder (which is doable since the DFR is high enough so that
decoding failures can be observed) then (ii) extrapolating the behavior to estimate the DFR for
larger parameters that are out of reach of experiments. However, the DFR falls into two regimes,
making such extrapolations unreliable. The first regime is called the waterfall region, where the
DFR decays more than exponentially in the block size n of the scheme (with other parameters
fixed). The second regime is called the error floor which kicks in when the block size is su"ciently
large and where the decay is much slower (Figure 1.1). The issue is that the experiments are
done in the waterfall region and extrapolation is made under the hypothesis that for the BIKE
parameters we are still in the waterfall region. This could lead to underestimation of the DFR
and consequently, an underestimation of the block size needed to achieve a particular security
parameter ω.
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Fig. 1.1: Waterfall and error floor re-
gions for decoding failure rate.

It remains an open problem to predict for which value
of n the error floor begins for BIKE. It is really a problem
of being able to predict the iterative decoding perfor-
mance of a QC-MDPC code. For LDPC codes (which
have rows and columns of weight O(1) compared to
O(

→
n) for MDPC codes), when using the same kind of it-

erative decoder, the error floor phenomenon is better un-
derstood. For LDPC codes, the error floor is either due to
the existence of low-weight codewords which would fool
any decoder, or of small near codewords. They are also
called trapping sets and are errors of small weight with a
syndrome also of small weight [Ric03,HB18,VCN14]. Er-
ror vectors which have a large enough intersection with
those codewords or near codewords are known to cause
the error floor behavior in LDPC codes.

On the other hand, MDPC codes typically have no low-weight codewords or near codewords.
However, BIKE is based on QC-MDPC codes, and this gives BIKE more structure than a ran-
dom MDPC code. BIKE admits a parity-check matrix H formed by two circulant blocks. Such
codes have codewords of weight equal to the row weight w of H (which is of order O(

→
n))

[SV19a,BBC+21]. There are near codewords of half the row weight which, due to the block-
circulant structure, is also equal to the column weight d of H. In particular, the set of near

codewords consists of error vectors where either the first or second half of bits is precisely a row
of H and the rest of the bits are 0 [Vas21]. The lower bound6 on the DFR based on those
moderate-weight codewords is too low to be of concern for the BIKE parameters [BBC+21].

However, a clear explanation of the error floor for QC-MDPC has not been found to date.
The e!ect of the near codewords put forward in [Vas21] could be a factor since it has been shown
in [Vas21] that if the error vector has a large intersection with one of the near codewords, then
the DFR conditioned on this event is non-negligible and can be observed experimentally for the
BIKE parameters. However, the probability that the error has a large enough intersection with
those near codewords so that the DFR conditioned on this event can be measured experimentally
is too small to be of concern for the BIKE parameters, even if it is bigger than the contribution
to the DFR coming from the moderate-weight codewords. The experimental study conducted in
[ABH+22] shows that for scaled-down BIKE parameters where the error floor can be observed
experimentally, the errors that contribute to the DFR do not have large intersection with the near
codewords of [Vas21].

6 It corresponds to the probability that the error covers at least half one of those codewords.
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Remarkably, the waterfall region is much better understood. Sendrier and Vasseur showed
that an iterative decoder which works step by step can be analyzed by a Markov chain approach
[SV19b,Vas21]. Decoding step by step means that bits are flipped one at a time: at each step a
random position is considered and flipped according to whether the number of unsatisfied parity-
checks involving this position (called the counter of the position) is greater than some threshold.
The rationale behind this rule is as follows: Denote by ε0 the probability that a parity-check
involving a bit not in error is not satisfied. Similarly we denote by ε1 the probability that a
parity-check involving a bit in error is not satisfied. The crucial observation is that

ε0 < ε1. (1.1)

Recall that due to the regular structure of H all positions are involved in the same number d of
parity checks. We therefore expect that the counter of a position which is not in error behaves
as a binomial random variable Bin(d,ε0) for parameters d and ε0

7 whereas the counter of a
position which is in error behaves as Bin(d,ε1). Therefore a bit in error tends to be involved in
more unsatisfied parity checks than a bit which is correct. For the standard iterative decoder, all
positions are considered at once and flipped or not according to the same rule. The fact that the
decoder is step by step makes it much more amenable to a Markov-chain modeling where the states
are the pairs (s, t), t being the number of positions which are in error and s the syndrome weight
of the error. This Markov-chain model closely predicts the DFR in the waterfall region but does
not capture the error floor region. Roughly speaking, the DFR is predicted here by computing
the resulting probability distributions of the pairs (s, t). The predicted DFR is the probability to
attain a state where t is not zero at the end.

1.2 Intuition behind our approach

Convergence to near codewords in the error floor regime. Our work started with a
fundamental observation, namely that in the toy examples for which we could observe the error
floor phenomenon experimentally, the remaining error at the end of the iterative decoding process
when decoding failed covered in many cases one of the near codewords put forward in [Vas21].
Interestingly enough, [ABH+22, Fig 3,4 and 5] shows that in the error floor regime, errors which
result in a decoding failure tend to have a bigger intersection with at least one of those near
codewords than a random error of the same size. It was also experimentally shown in [ABH+24]
that the majority of decoding failures in the error floor of a scaled-down version of BIKE were due
to these near codewords. Moreover, when we increase the block size resulting in parameters even
further from the waterfall region, this phenomenon becomes even more prominent.

There is a good justification for this behavior as explained in §2.4. It was noted in [BBC+21]
that there exist bad counters which can lead to decoding failures. We provide a full classification
of such bad counters. The point is that we actually do not have two kinds of behaviors for the
counters depending on if the bit is in error or not as explained before, but rather four di!erent
behaviors of the counters. At each iteration of the iterative decoder, consider the near codeword
ω that is the closest to the actual error (incidentally, as explained before, all near codewords are
of weight d, the column weight of H) and denote by u the size of its intersection with the actual
error e. As we will explain in §2.4, we expect the following four kinds of behavior:

1. The counters of the u bits belonging to the support of ω and e behave like the sum of two
independent binomial variables Bin(u↑ 1,ε0) + Bin(d↑ u+ 1,ε1)

2. The counters of the d↑ u bits not in error but in the support of ω behave as the sum of two
binomial variables Bin(u,ε1) + Bin(d↑ u,ε0).

3. The counters of the rest of the t ↑ u bits in error behave “as usual” as a binomial variable
Bin(d,ε1).

7 The notation Bin(n, p) denotes a binomial random variable of parameters n and p; i.e. the sum of n
i.i.d. Bernoulli variables Xi of parameter p, that is P(Xi = 1) = p for all i in {1, · · · , n}.
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4. The counters of the rest of the n↑ d↑ t+u bits that are not in error also behave as expected,
namely as a binomial variable Bin(d,ε0).

In other words, since ε0 < ε1, we expect an abnormal behavior from the d bits which belong to
the closest near codeword. Indeed, those that are in error are less likely to be corrected by the
iterative decoding process than the others which are in error: their counter is somewhat in between
a counter of a bit which is in error and a counter of a bit which is not in error. Similarly, the d↑u
bits of the near codeword that are not in error have a greater chance to be wrongly flipped by
the iterative decoding process than the other bits in error. This is even worse, because the more
bits are in error in the near codeword, the more the bits involved in this near codeword behave
as their opposite: those that are still not in error tend to look even more like bits which are in
error. We experience in this case a snowball e!ect. As soon as enough bits are in error in the near
codeword, there is a non negligible chance to end up at the end of the iterative decoding process
with the whole near codeword being in error. Due to the peculiar structure of near codewords, the
iterative decoding process gets stuck there.

This discussion suggests that errors which give rise to a decoding failure in the error floor region
should be somewhat closer to one of those near codewords at the beginning, and the intersection
size only increases during the decoding process. This is why we adapted the Markov model of
[SV19b,Vas21] to also keep track of this parameter u which is the biggest intersection of a near
codeword with the residual error vector in the decoding process.

1.3 Our approach

A new Markov model. We have followed two di!erent but related approaches for keeping track
of the size of the intersection of the error vector with the near codewords in a Markov model.
At each step, it is possible to move from one state to another with prescribed probabilities. It is
assumed that transitioning to any state depends only on the current state.

– The first approach is to use the simple model for the counters described before together with
a simplified model of the parity-check matrix for computing the transition probabilities. This
simple model keeps track of the size u of the intersection of the error with a single, randomly
selected near codeword ω. We estimate the contribution to the DFR coming from ω. This
contribution is measured and used to account for the contributions coming from all near
codewords. See Section 5.

– The second approach is much more involved. It computes the transition probabilities much
more accurately. Among several improvements, it takes into account the secret key structure
by using for this computation the specific structure of the near codewords corresponding to a
given key. The only simplifying assumption which is made is that in the error floor regime the
decoding failure is dominated by errors which are close to a single near codeword, and that
this does not change during the decoding process. In this case, the Markov model keeps track
of the size u of the intersection of the error with the closest near codeword. We capture the
DFR in the error floor regime with high accuracy within this model. See Section 6.

A Markov model taking into account the structure of the key. The first approach has
been tested with scaled-down BIKE parameters and by taking a random key H. To simplify the
computation of ε0 and ε1 we made the heuristic assumption that the columns of H are drawn
uniformly at random up to fixed column weight d. This new Markov model captures the error
floor region and provides a much more conservative estimate than the DFR estimate based on the
Markov model of [SV19b,Vas21] which is too optimistic in the error floor regime. It turns out that
the new DFR estimate is larger than the true estimate in both the waterfall and error floor regions
(and not only in the waterfall regime as was the case for the Markov model of [SV19b,Vas21]). This
is quite encouraging since even with this simple model there is a tool for choosing the parameters
of BIKE in a conservative manner.
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However, one drawback of this simple Markov model is that it does not take into account the
structure of the key. It is indeed well known that there are weak keys [DGK20,Vas21,NSP+23,WWW23]
for which the decoding process behaves really badly. Moreover, there is a non-negligible di!erence
between the best and worst key of the DFR in the few thousand of instances we took in the toy
example we considered. This led us to refine the Markov model. We have tested Approach 1.3 and
improved it in two ways : we took into account the structure of the key and we computed the
transition probabilities in a more sophisticated way.

One of the di"culties of having a Markov model working for all sorts of keys is that the
near codewords split into two classes, those that have their support in the first half of the code
positions and those having their support in the second half. These two classes of near codewords
might a!ect the DFR in a very di!erent way. To circumvent this problem, we added a bit to the
Markov state, i.e. getting a state (s, t, u, b) where b = 0 indicates that the closest near codeword
has all its support in the first half of the positions and 1 otherwise. At the expense of increasing
the state space size and adding more involved transition probability formulas, we get a Markov
model which captures now all possible keys. Remarkably enough, in the toy examples we tried,
this model is still accurate for predicting the error floor for the step-by-step decoder and other
variants: the majority decoder (the threshold for flipping being half the total number of equations
involving a bit), the BGF decoder, or a decoder with a new custom threshold rule which improves
the DFR by a significant amount.

Moreover, we can also use our model to examine in more detail what causes the DFR. In order
to do so, we split the contribution of the DFR into two parts. The first one is the contribution
DFRe to the DFR where decoding failed because it ended up covering a near codeword: The final
state where we got blocked in the Markov chain was a state (s, t, u, b) for which u = d. It can
be viewed in some sense as the error-floor term in the DFR. The second one is just the total
DFR minus DFRe: DFRw = DFR↑DFRe. The second one can be viewed as the waterfall part of
the DFR. It turns out that not only did our Markov model accurately predict the DFR, but did
also predict well each term separately. Indeed, even in the error floor region where DFRe is really
bigger than DFRw, the DFRw term predicted by our model matches the DFRw term computed
in the experiments. This is a further indication that the model predicts accurately the error floor
and the waterfall behaviors. All in all, in this work, we conclude that the dominant contribution
to the error floor for QC-MDPC codes under iterative decoders is due to convergence to a near
codeword.

1.4 Summary of the main results

We present two Markovian models for the decoding behavior of QC-MDPC codes under iterative,
hard-decision decoders: the simplified model and the refined model. The Simplified Model considers
the distance of the error vector at each round of decoding from one fixed, randomly-selected near
codeword. This model captures the error floor regime and gives a more conservative estimate than
experimental data and the [SV19b] model. It is discussed in Section 5. The Refined Model for
All Keys considers the distance of the error vector at each round of decoding from the closest
near codeword and takes the structure of the key into account. This is done by using the degree
distribution of a certain graph associated with the key to derive the Markov model. This model is
discussed in Section 6. We use this model to

– give an extremely close approximation of the experimental data in both the waterfall and error
floor regimes, further improving upon the first model and the work of [SV19b]

– estimate for the BIKE 1 parameters and with the previous BIKE 1 decoder using a single
threshold function a DFR of about 2→91

– show that for this decoding rule, there is an error floor behavior which appears already for
slightly larger values of the block length than the one which was chosen and depending on the
gap parameter ϑ of the decoder gives a contribution to the DFR which is between 2→100 and
2→120
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– improve this decoding rule by simply raising the minimum allowed threshold from 36 to 39
to show that for a slightly larger block length (r = 13477 instead of r = 12323), we obtain a
DFR which is below 2→131.2 for a typical key.

These models predict and experiments confirm that the dominating cause of failures in the error
floor regime in a wide range of parameters is due to convergence to near codewords. All models use
the step-by-step decoder which is experimentally shown to produce more decoding failures than
parallel decoders. The most impactful model is the Refined Model for All Keys which matches
the experimental data, also run using a step-by-step decoder, remarkably well throughout both
the error floor and waterfall regimes. This model is applied to the BIKE cryptosystem parameter
sets to give a DFR approximation; it is expected that the DFR for the same parameter sets
using a parallel bit-flipping decoder as specified in [ABB+21] and decoding rule based on iteration
dependent threshold functions would result in a lower DFR than what is approximated by the
model.

All in all, this paper solves a major issue for the fourth round candidate BIKE of the NIST
PQC competition, namely to give a convincing prediction for the DFR of this cryptosystem. Being
able to show that this quantity is below 2→ω is a major concern for BIKE to prove its IND-CCA2
security. This paper gives some strong evidence that this requirement can be met at the cost of
a modest increase of less than 10% in the key size, by raising a little bit the minimum threshold,
and filtering out atypical keys during key generation.

2 Background

2.1 Notation

Basic notation. Vectors and matrices are respectively denoted in bold letters and bold capital
letters such as a and A. Vectors are assumed to be row vectors and x

↭ denotes the column vector
which is the transpose of the row vector x. For a matrix A, the vector that is the transpose of the
j-th column of A is denoted by Aj . The entry at index i of the vector x is denoted by xi or x(i).
The Schur (component-wise) product (xiyi)1↫i↫n of two vectors x = (xi)1↫i↫n and y = (yi)1↫i↫n

of the same length is denoted by x ϖ y. The Hamming weight |x| of a vector x is its number of
nonzero entries.

Probabilistic notation. Bin(n, p) denotes a random variable following a binomial distribution
with parameters n and p, that is the sum

∑n
i=1 Xi of n i.i.d. Bernoulli variables with parameter

p. Expressions like Bin(n1, p1) + Bin(n2, p2) stand for the sum of the two independent binomial
random variables Bin(n1, p1) and Bin(n2, p2). By abuse of notation, we write X ↓ Y when two
random variables X and Y follow the same distribution. For a finite set S , x $↔ S means that x
is an element of S sampled uniformly at random in S .

Binary linear codes. All codes considered here are binary and linear, which means that they
are vector spaces over F2. A code of length n and dimension k is a k-dimensional subspace of
Fn
2 . We say that such a code is an [n, k] code. They are specified here by a parity-check matrix,

meaning a matrix whose kernel is the corresponding code, i.e. an [n, k] code C is specified by a
full-rank parity-check matrix H ↗ F(n→k)↑n

2 as C = {c ↗ Fn
2 : Hc

↭ = 0}.

Quasi-cyclic codes and polynomial notation. On top of being binary and linear, all the
codes considered are quasi-cyclic, i.e. their parity-check matrix is formed by blocks of circulant
matrices. More precisely, they are double circulant codes, meaning that the parity-check matrix
has the form H =

(
C0 C1

)
where both C0 and C1 are circulant matrices. From now on, r will

denote the size of C0 and C1 and the length n of the code will be n = 2r. C0 and C1 are also
supposed to have the same column weight (and therefore also the same row weight). This weight is

6



denoted by d. The row weight w of H is constant and satisfies w = 2d. Such codes are conveniently
represented by polynomials since r↘r binary circulant matrices form a ring R which is isomorphic
to F2[x]/(xr ↑ 1), where the isomorphism ϱ from R to F2[x]/(xr ↑ 1) is given by





c0 cr→1 · · · c2 c1
c1 c0 cr→1 c2
... c1 c0

. . .
...

cr→2

...
. . . . . . cr→1

cr→1 cr→2 · · · c1 c0




≃⇐ c0 + c1x+ · · ·+ cr→1x

r→1.

We use this isomorphism to view H =
(
C0 C1

)
as the pair (h0(x), h1(x)) where h0(x) = ϱ(C0)

and h1(x) = ϱ(C1). We overload the notation from now on:

Notation 1. We denote the parity-check matrix H
def
= (h0, h1). We also write

h0(x) =
d∑

j=1

xlj and h1(x) =
d∑

j=1

xrj ,

where lj and rj run over the nonzero coe!cients of h0 and h1, respectively.

We likewise represent error vectors e = (e0, · · · , en→1) ↗ Fn
2 with polynomials

e ↭ e(x) = e0(x)⇒ e1(x) =
r→1∑

j=0

ejx
j ⇒

r→1∑

j=0

er+jx
j ↗ (F2[x]/(x

r ↑ 1))2

We use here “⇒" to denote a formal sum, and “+" to denote addition in the ring F2[x]/(xr ↑ 1).
The syndrome s = (s0, · · · , sr→1) of an error e = (e0, ..., en→1), i.e. s

↭ = He
↭ is also represented

conveniently as a polynomial s(x) =
∑r→1

j=0 sjx
j and it is readily seen that

s(x) = e0(x)h0(x) + e1(x)h1(x). (2.1)

Here and elsewhere it is important to note that all polynomial operations will be performed in the
ring F2[x]/(xr ↑ 1), that is modulo xr ↑ 1.

2.2 Iterative Decoders

The problem we will be interested to solve e"ciently during the deciphering process is the decoding
problem which in its syndrome form is described as

Problem 2.1 (syndrome decoding problem (SDP)). Given an r ↘ n parity-check matrix H ↗ Fr↑n
2

and an error vector e sampled uniformly at random of weight t with syndrome s
↭ = He

↭, find
an error vector e

↓ that satisfies He
↓↭ = s

↭ and |e↓| = t.

Iterative, bit-flipping syndrome decoders generally solve the SDP by guessing that columns of
H with many bits in common with s are likely a!ected by errors. Recall that Hi denotes the
transpose of the i-th column of matrix H, and define ςi(H, s) = |Hiϖs|, the number of unsatisfied
parity-check equations involving i. We will denote this quantity simply by ςi in what follows and
say that it is the counter corresponding to bit i. The bit-flipping decoders initialize e↓ = 0, compute
ςj for all or some j ↗ {0, . . . , n ↑ 1}, then flip the j-th bit e↓j whenever ςj ⇑ T , where T is a
given threshold function. We say a decoding failure has occurred whenever the output e↓ satisfies:
He

↓↭ ⇓= s
↭ or e

↓ ⇓= e.
The accuracy of bit-flipping decoders greatly depends on the threshold function T . If the

threshold is too high, the decoder ceases to flip bits before arriving at the correct vector e↓. If the
threshold is too low, more bits are flipped than should be, again resulting in an incorrect vector

7



e
↓. T is always chosen such that T ↫ d+1

2 . This ensures that the weight of φs
↭ def
= s

↭ +He
↓↭ is

strictly decreasing, so that we may expect it to reach 0 in order to have He
↓↭ = s

↭ at the end.
It is most common for iterative decoders to consider each column of H in comparison with s

during each round of decoding. This can result in multiple bits of the guess e↓ being flipped in one
round of decoding. The BIKE cryptosystem round 4 specification uses the Black-Grey-Flip (BGF)
iterative decoder [DGK20]. A closed form analysis of the DFR of the BGF decoder remains an
open problem.

In this work we analyze the step by step decoder - an iterative decoder which randomly selects
one column of H for comparison with s during each decoding round: At most one bit is flipped per
round. This simplifies the computation of the Markov chain transition probabilities by restricting
the number of possible states in the next step. It is detailed in Algorithm 2.1.

Algorithm 2.1 Step by step decoder.
Input: H → Fr↑n

2 , s → Fr
2, t → {1, . . . , n}

Output: e → Fn
2 such that He

↭ = s
↭ and |e| = t or ↑ (decoding failure)

Require: a threshold function T such that T ↫ d+1
2

Ensure: the weight of ωs
↭ = s

↭ +He
↓↭ decreases strictly in the algorithm below

e
↓ ↓ 0, ωs ↓ s

while ωs ↔= 0 do

E ↓ {{0, · · · , n↗ 1} : |Hj ε ωs| ↫ T} ϑ |Hj ε ωs| is the counter ϖj

if E ↔= ↘ then

j
$↓ E

e↓j ↓ 1↗ e↓j , ωs ↓ ωs+Hj ϑ |ωs| has decreased by d↗ 2ϖj

else return (↑) ϑ The decoder is then in a blocked state
if |e↓| = t then return (e↓)
else return (↑)

The step by step decoder has been studied in detail and experimental evidence [Vas21, Chap
7, Fig. 7.1] shows that for the classical bit flipping strategy, the step by step decoder performs
significantly worse than the parallel version.

2.3 Near codewords

Near codewords were introduced in the literature of iterative decoding as a way to formalize a
collection of error vectors with lower-weight, nonzero syndrome than expected, which are therefore
di"cult to decode.

Definition 2.2 (near codeword of type (s, t)). An error vector e ↗ Fn
2 is a near codeword of

type (s, t) if |e| = t and |He
T | = s.

MDPC codes are known to have minimum distance which is typically linear in the code-length
n and are unlikely to have small near codewords. This is not the case for QC-MDPC codes: the
minimum distance is of order O(

→
n). This is because h1(x)⇒h0(x) belongs to the code of parity-

check matrix H = (h0, h1). This leads one to suspect that such codes also have small-weight near
codewords. This is indeed the case and that this is most likely the main issue for decoding as
identified in [Vas21]. To define them, fix a parity-check matrix H = (h0, h1).

Definition 2.3 (The set N of near codewords). The set N of near codewords is the union

of all n-bit vectors with polynomial representations of the form xih0(x) ⇒ 0 and 0 ⇒ xih1(x), for

all i ↗ {0, ..., r ↑ 1}.

In this work, when we refer to a near codeword, we mean an element of N .
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Unusually low syndrome weight. Elements of N are (d, d)-near codewords as per Def. 2.2:
they are of weight d and have an unusually small syndrome weight of d. Moreover, even errors e

which have an overlap of size u with a near code codeword ω of this kind (meaning that |eϖω| = u)
have an unusally low weight syndrome. If |e| = t, the syndrome weight can be in general be as
large as d · t. Here it is always ↬ d · t↑ u(u↑ 1).

This can be read o! directly from the polynomial representation of the syndrome. To verify
the first claim, the near codeword e(x) = xih0(x) ⇒ 0 ↗ N , for example, has syndrome s(x) =
(xih0(x))h0(x) = xih2

0(x), which is of weight d as h0(x) has precisely d nonzero coe"cients, and
in F2[x]/(xr ↑ 1) squaring and multiplication by x preserve the number of nonzero coe"cients.
To verify the second claim suppose that the near codeword ω is say of the form xih0(x) ⇒ 0,
the error e can be written as a polynomial as e(x) = e0(x) ⇒ e1(x), xih0(x) = a(x) + b(x) and
e0(x) = a(x)+ c(x) where a(x) is the polynomial for the common part e ϖω. The syndrome of e is

s(x) = e0(x)h0(x) + e1(x)h1(x)

= xr→i(a(x) + b(x))(a(x) + c(x)) + e1(x)h1(x)

= xr→i
(
a(x)2 + a(x)b(x) + a(x)c(x) + b(x)c(x)

)
+ e1(x)h1(x).

Recall here that we perform the polynomial computation over F2[x]/(xr ↑ 1) and that xr→ixi = 1
in this ring. Let us denote by |P | the weight of a polynomial P , namely the number of its non zero
coe"cients. The weight satisfies |P ·Q| ↬ |P | · |Q| and |P +Q| ↬ |P |+ |Q| for all polynomials P
and Q. Notice that d · t is exactly |e0| · |h0|+ |e1| · |h1| = |a|2 + |a| · |b|+ |a| · |c|+ |b| · |c|+ |e1| · |h1|.
The point is that |a2| = |a| because of the forced cancellations in the product a(x)2. Indeed, as
in the previous point, squaring preserves the number of nonzero coe"cients. This implies that we
have at least a drop of |a|2 ↑ |a| = u(u↑ 1) in the syndrome weight as claimed above.

2.4 Tanner graphs

We use the language of Tanner graphs to fully explain the role of bad counters, first considered in
[BBC+21, §4.1].

Definition. A Tanner graph is a very handy tool for analyzing iterative decoding of LDPC or
MDPC codes. For LDPC codes, this notion dates back to Gallager who explained and studied his
iterative decoding algorithms [Gal63] by using them. In a more general form, they have been defined
in [Tan81]. It is a bipartite graph which represents the parity-check matrix H = (Hi,j)0↫i<r

0↫j<n
of a

code. It has two types of vertices, the variable nodes which are in bijection with the code positions
{0, · · · , n↑ 1}, and the check nodes which are in bijection with the parity checks, i.e. the rows of
H. There is an edge between a variable node j and the check node i if and only if Hi,j = 1.

In our case, where n = 2r and the parity-check matrix is formed by two circulant blocks, we
can relate this to the polynomial notation established in §2.1 and index the variable nodes and
check nodes a little bit di!erently. More specifically, the variable node associated to the i-th code
position is indexed by xi ⇒ 0 if i < r and by 0 ⇒ xi→r if i ↫ r. Polynomial notation is also used
to index the check nodes. The check node associated to the i-th row of H is indexed by xi. When
H = (h0, h1), the set of check nodes adjacent to the variable node xi ⇒ 0 is the set of monomials
in xih0(x) and the set of check nodes adjacent to the variable node 0⇒ xi is the set of monomials
appearing in xih1(x). Note that the syndrome weight |He

↭| of an error e can be read o! from the
Tanner graph:

Fact 1. Consider the subgraph of the Tanner graph induced by an error e: It is formed by the

variable nodes belonging to e and all the check nodes adjacent to it. The number of check nodes

of odd degree in this graph is |He
↭|. The counter of a bit is the number of check nodes in this

subgraph that are of odd degree and that are adjacent to it in the complete Tanner graph.
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Subgraph induced by a near codeword. The subgraph G of the Tanner graph induced by a
near codeword ω in N has a special structure. It has a unusually small number of check nodes for
subgraphs induced by d variable nodes. We detail below the structure when ω is h0(x) ⇒ 0 and
recall that h0(x) =

∑d
i=1 x

li , but the general case can be deduced from this one, by a shift of the
positions and/or replacing li by ri in the case of a near codeword 0⇒ xmh1(x).

Fact 2. Consider the subgraph G of the Tanner graph induced by ω = h0(x) ⇒ 0. The variables

nodes are the d variable nodes labeled xli ⇒0 for i ↗ {1, · · · , d}. The check nodes are all the xli+lj .

There are at most
(d+1

2

)
of them. Each pair of variable nodes (xli ⇒ 0, xlj ⇒ 0) in G has at least

one check node in common, namely xli+lj .

This simple fact has a number of consequences concerning the influence that near codewords have
on the counters. It will be helpful here to distinguish four kind of bits.

Four types of bits.

Definition 2.4. Given a fixed near codeword ω and a fixed error vector e intersecting ω in u
positions, we classify the n error vector bits into the four categories:

– u bad bits: the u bits belonging to the supports of both e and ω;

– d↑ u suspicious bits: the other d↑ u bits of ω (not in the support of e);

– t↑ u normal bits in error: the other t↑ u bits of e (not in the support of ω);

– n↑ d↑ t+ u good bits: neither in ω nor e.

Bad bits and suspicious bits really display an abnormal behavior concerning the counters due to
Fact 2 which explains why they are a nuisance for iterative decoding. Indeed we expect that the
counters ςj behave like (to simplify the discussion we assume that ω = h0(x)⇒ 0)

bad bit: ςj ↓ Bin(u↑ 1,ε0)+Bin(d↑u+1,ε1). The bad bit which is some xli ⇒ 0 is adjacent to u↑ 1
check nodes of the form xli+lj where xlj ⇒0 is another bad bit. The contributions of these two
bits for this parity-check cancel out, and this parity-check behaves in first approximation as a
parity adjacent to a bit which is not in error. Its probability for not being satisfied is therefore
ε0. Similarly the bad bit is adjacent to the check node x2li and d↑ u check nodes of the form
xli+lj where xlj ⇒0 is now a suspicious bit. In both cases, the contribution of those bits to the
parity-check is 1 and these d↑ u+ 1 parity-checks should behave as parity-checks adjacent to
a bit which is in error, in which case the probability of not being satisfied is ε1.

sus. bit: ςj ↓ Bin(u,ε1) + Bin(d ↑ u,ε0). This comes from the fact that the suspicious bit which is
some xli ⇒ 0 is adjacent to u check nodes of the form xli+lj where xlj ⇒ 0 is a bad bit (they
contribute together to 1 in the parity-check) and to d↑u check nodes of the form xli+lj where
xlj ⇒ 0 is another suspicious bit (they contribute together to 0 in the parity-check).

An illustration of this principle is given in Appendix D. Notice that the greater u is, the greater the
chances are to flip a suspicious bit which further increases u. This is what we call the snowball e!ect
leading to a potential convergence to a near codeword. This error is readily seen to uncorrectable
by further steps of iterative decoding.

3 Convergence to a near codeword in N in the error floor

To verify the convergence to a near codeword in the error floor region we have tested parameters
for which we can experimentally observe the error floor behavior. We have chosen a random QC-
MDPC code with r = 1723, d = 17 and tested two decoding algorithms:

1. The majority step by step decoder: T = d+1
2 = 9. It flips a bit every time it decreases the

syndrome weight. For this decoder, we expect to hit the error floor faster than for other
decoders because it has the most chance to flip suspicious bits, thus getting the snowball e!ect
described in § 2.4.
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2. An improved step by step decoder which uses a better (more conservative) decoding threshold.
It starts with a high threshold value T0 which favors to flip bits which are more likely to be in
error. It is only when no bit can be flipped that a threshold T1 ↬ T0 is used. The values are
given below for a syndrome s = |φs| in the step by step algorithm.

T0 = min
{
max

(
⇔↼ · s+ ↽↖, d+1

2

)}

where ↼
def
= 0.006016213884791455, ↽

def
= 8.797325112097532. (3.1)

T1 =
d+ 1

2
.

Figure 3.1 shows the experimental results obtained for both decoders. It is a striking illus-
tration of the phenomenon of convergence to a near codeword in the error floor regime for both
decoders. The curves corresponding to the “better threshold” decoder correspond to a threshold
pair (T0, T1) given in (3.1). Each point corresponds to at least 200 decoding failures. Together with
the experimental curve we have drawn two other curves: “Contrib. of ncw” is the contribution to
the DFR coming solely from the convergence to a near codeword. This contribution dominates
in the error floor regime since the DFR is almost identical to this curve in this region. This can
also be seen by removing from the DFR the contribution from the near codewords. These are the
curves referred to as “Contr. of other”. These curves show both a waterfall phenomenon and that,
as we move further in the error floor region, the DFR contribution coming from convergence to a
near codeword dominates the DFR. Both decoders display this phenomenon.
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Contr. of other, better thresh.

DFR, better thresh.

Contr. of ncw, majority

Contr. of other, majority

DFR, majority

Fig. 3.1: DFR vs. error weight (r = 1723, d = 17), experimental curves.

4 Modeling Step by Step Decoding with a Markov Chain

4.1 The Markov Model

The Markov model introduced in [SV19b] kept track of the pair (s, t) where s and t are respectively
the syndrome weight and the error weight during the step by step decoding process. Here by error
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we mean the di!erence e ↑ e
↓ between the true error e and the estimated error e

↓ in Algorithm
2.1 and by syndrome we mean the syndrome of this di!erence, namely H(e↑ e

↓)↭ = s
↭ ↑He

↓↭

which is nothing but the vector φs in Algorithm 2.1. This syndrome weight is therefore always
decreasing during the decoding process and we hope to get an error weight of 0 at the end. The
decoding process picks at random a certain error bit j and checks if ςj ↫ T (s). If it is the case, it
flips it and the resulting syndrome has weight equal to s+d↑2ς. t is either decreased or increased
by 1 if the bit that is flipped was in in error or not. It may also happen that all counters of the n
error bits are less than T (s). In this case, we go to the blocked state and decoding has failed. If
we get to the (0, 0) state, decoding has succeeded.

This model does not take into account the crucial role of near codewords in the decoding
process. Indeed, when the error has a large intersection with one of such near codewords, then it
has also an influence on the syndrome weight which is smaller. For the two Markov models that
we are considering, we are going to take near codewords into account in two ways: a first method
consists in choosing a particular near codeword ω and defines a quantity u which is the size of
the intersection of this near codeword with the residual error during iterative decoding. A second
method defines u as the size of the intersection of the error with the closest near codeword. In
all cases, the Markov chain is defined in a similar way by letting the state be the triple (s, t, u)
(actually there is an additional bit b in the definition of the state in the second method, but this
is unessential for now). There are five transition cases:

– all bits have a counter which is too low to flip them. This we call the blocked state, denoted
blocked. This corresponds to a decoding failure. This is an absorbing state of the Markov
chain: once we are in this state, we stay in it. We denote by pblocked the probability that we
are in this state.

– If there exists a bit which can be flipped, we choose one of such bits at random. We flip it
and go to the state (s + d ↑ 2ς, t↓, u↓), where if it was a bad bit t↓ = t ↑ 1 and u↓ = u ↑ 1,
a suspicious bit t↓ = t + 1 and u↓ = u + 1, a normal bit in error t↓ = t ↑ 1 and u↓ = u, and
a good bit t↓ = t + 1 and u↓ = u. Depending on whether the bit was respectively a bad bit,
a normal bit in error, a suspicious bit or a good bit, we denote by qbad(ς), qerr(ς), qsus(ς),
qgood(ς) the respective probabilities to flip the corresponding bit conditioned on the fact that
there is at least one bit that we can flip. The corresponding transition probabilities are then
(1↑ pblocked)q·(ς) where · ↗ {bad, err, sus, good}.

The transitions are depicted in Fig. 4.1.

s, t, ublocked

s+ d↗ 2ϖ, t↗ 1, u↗ 1

s+ d↗ 2ϖ, t↗ 1, u

s+ d↗ 2ϖ, t+ 1, u+ 1

s+ d↗ 2ϖ, t+ 1, u

1

pblocked

(1↗ pblocked)qbad(ϖ)

(1↗ pblocked)qerr(ϖ)

(1↗ pblocked)qsus(ϖ)

(1↗ pblocked)qgood(ϖ)

Fig. 4.1: Transition diagram starting with syndrome weight s, error weight t, and intersection u
with a (d, d)-near codeword ω.

All these probabilities can be computed easily once we have the counter probabilities pbad(ς),
perr(ς), psus(ς) and pgood(ς) that a bit chosen uniformly at random among respectively the bad
bits, the normal bits in error, the suspicious bits and the good bits, has a counter equal to ς.
If we let p↓bad(ς), p↓err(ς), p↓sus(ς) and p↓good(ς) the probabilities that a bit chosen uniformly at
random has a counter equal to ς and belongs respectively to the group bad, norm, sus and
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good, then clearly p↓bad(ς) =
u
npbad(ς), p↓err(ς) = t→u

n perr(ς), p↓sus(ς) =
d→u

n(1→p)psus(ς), p↓good(ς) =
(n→t)→(d→u)

n(1→p) pgood(ς). If we let p def
=

∑
ε<T

(
p↓bad(ς)+p↓err(ς)+p↓sus(ς)+p↓good(ς)

)
, then the transition

probabilities of Fig. 4.1 are given by

pblocked =
( ∑

ε<T

pbad(ς)
)u( ∑

ε<T

perr(ς)
)t→u( ∑

ε<T

p↓sus(ς)
)d→u( ∑

ε<T

pgood(ς)
)n→t→d+u

,

qbad(ς) =
p↓bad(ς)

1↑ p
, qerr(ς) =

p↓err(ς)

1↑ p
, qsus(ς) =

p↓sus(ς)

1↑ p
, qgood(ς) =

p↓good(ς)

1↑ p
.

The probabilities of the counters pbad(ς), perr(ς), psus(ς) and pgood(ς) depend on the model and
will be dealt with later in the paper.

4.2 Computing the DFR with the help of the Markov chain

Let us show now how to e"ciently compute the stationary probability distribution P↔(blocked|s, t, u)
which is the probability that, after an infinite number of iterations, we end up in the blocked state
(where decoding fails). We let P(s↓, t↓, u↓|s, t, u) be the probability of transitioning to state (s↓, t↓, u↓)
given that we were previously in state (s, t, u). We make use of the following equality

P↔(blocked|s, t, u) = P(blocked|s, t, u) +
∑

s→,t→,u→

P↔(blocked|s↓, t↓, u↓) ·P(s↓, t↓, u↓|s, t, u) (4.1)

and the simple but crucial remark that the only transition probabilities P(s↓, t↓, u↓|s, t, u) which are
non zero have s↓ < s. This suggests to compute the probabilities P↔(blocked|s, t, u) by starting
from s = 0 and increasing s by 1 each time and the recursion formula (4.1) to compute the
remaining ones. For s = 0 we set P↔(blocked|0, t, u) = 0 if t < 2d and P↔(blocked|0, t, u) = 1
otherwise. The first rule accounts for the fact that there should be no codeword of weight less
than w = 2d. We also set P↔(blocked|s, t, u) = 0 if s < t(d ↑ t + 1) and t ↬ d to account for
the fact that we make the assumption that there is no near-codeword of size t < d which has a
smaller syndrome than a subset of size t of a near codeword of N . This leads to Algorithm 4.1.
Computing the initial state distribution P(s, t, u) is detailed in Appendix §A. Note that once this

Algorithm 4.1 Algorithm for computing the DFR
for all t, u do ϑ initialization

if t < 2d then

P↔(blocked|0, t, u) ↓ 0
else

P↔(blocked|0, t, u) ↓ 1

for all s, t, u s.t. s < t(d↗ t+ 1) and t ↬ d do

P↔(blocked|0, t, u) ↓ 0

for s = 1 to smax do ϑ main loop
for all t, u do

P↔(blocked|s, t, u) ↓
∑

s→<s,t→,u→ P↔(blocked|s↓, t↓, u↓) ·P(s↓, t↓, u↓|s, t, u) +P(blocked|s, t, u)
DFR ↓

∑
s,t,u P↔(blocked|s, t, u)P(s, t, u).

initial probability distribution is computed, the complexity for computing the DFR is just of order
O(E + S) where E is the number of possible transitions in the Markov chain and S the number
of states.
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5 A Simple Markovian Model

Since convergence to a near codeword dominates the error floor, it must be accounted for in a
Markov state modeling the decoding process. We define the Markov state as the triple (s, t, u),
where s is the syndrome weight, t is the error weight, and u is the size of the intersection of the
support of the error with a fixed, random near codeword ω. To amplify this e!ect by the size of
the set of near codewords, we post-process the DFR obtained by this model together with a DFR
obtained from a variant model which does not take into account the e!ect of near codewords. The
equation used to combine these DFRs is given in Section 5.2. This is in contrast to the models
used in Section 6), where only the e!ect of the closest near codeword is taken into account, and
this remains the only near codeword which is assumed to have an e!ect on the decoding process.

Model 1 (M). Let e be an error of weight t with syndrome of weight s, and let ω be a fixed

random near codeword. Let u
def
= |eϖω|. This model follows the values (s, t, u) through the decoding

process using a step by step decoder.

Model 2 (M0). Let e be an error of weight t with syndrome of weight s. This model follows the

same values as Model 1, but the value u is set to 0 in the initial vector, so this model does not

take into account the e"ect of a near codeword.

Our model, which combines Models 1 and 2 according to the formula given in Section 5.2,
is bound to see an error floor behavior: when the number of overlaps between an error vector
and the near codeword becomes as large as possible (i.e., as u approaches d), decoding fails, and
the probability that u = d at the beginning of decoding is lower bounded by td

nd where t is the
initial error weight. In the waterfall region, the DFR decays more than exponentially in n with
other parameters fixed and therefore this td

nd term is going to dominate and provoke an error floor
phenomenon.

In summary: we distinguish bad, suspicious, normal, and good bits (Definition 2.4). We estimate
the probabilities ε0 and ε1 to take into account s, the syndrome weight, t the error weight, and u
the size of the intersection of the error with the near codeword. Recall ε0 is the probability that a
parity-check adjacent to a given bit which is a good bit is not satisfied, and ε1 is the probability
that a parity-check adjacent to a given bit which is a normal bit in error is not satisfied. The
transition probabilities are obtained under the assumptions described in the following section.

5.1 Assumptions

The forced cancellations are a result of the quasi-cyclic structure of H. For the remainder of
Section 5, we make the heuristic assumption that the columns of H are drawn uniformly at
random up to fixed column weight d.

For convenience of counting arguments, the error vector e may be permuted so that the bad,
suspicious, normal, and good bits are collected. Let Q denote this permutation matrix. Likewise,
the bits of the syndrome s may be permuted to collect the 1’s and 0’s. Let P denote this permuta-
tion matrix. Applying these permutations to the parity check matrix H and flipping the canceling
pairs yields a matrix H

↓
e! := PHQ. Details may be found in Appendix C. We use random vari-

ables to describe the columns of H↓
e!. Let Xe! :=

∑
j↗supp(e) ςj ↑ |s|. Xe! measures the deviation

from the ideal case where exactly one error is involved in each unsatisfied parity-check equation.

Proposition 5.1. Assuming that the random variables that indicate the number of errors |Hi ϖe|
for a given equation i are independent and if |e| = t, the expectation of Xe! knowing s, t, and

u = |e ϖ ω| is

E[Xe!|s, t, u] = s ·
∑

l 2l⇀2l+1∑
l ⇀2l+1

, where (5.1)
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⇀l =
l∑

j=0

(
t↑ u

j

(
u

l ↑ j

(
d

r

j (r ↑ d

r

t→u→j (d+ 1↑ u

r

l→j (r ↑ d↑ 1 + u

r

u→l+j

(5.2)

is the probability that any row in H
↓
e! restricted to the support of e has weight l.

Proof. For any row i ↗ {0, . . . , r↑1} in H
↓
e!, consider the t columns corresponding to the support of

e. There are t↑u columns corresponding to bits in supp(e)\supp(ω) and u columns corresponding
to bits in supp(e) ↙ supp(ω). All columns in supp(e) \ supp(ω) have weight d and all columns in
supp(e) ↙ supp(ω) have weight d + 1 ↑ u due to forced cancellations. Any entry in row i on
supp(e)\ supp(ω) has probability d

r of being nonzero and probability r→d
r of being zero. Any entry

in row i on supp(e) ↙ supp(ω) has probability d+1→u
r of being nonzero and probability r→d→1+u

r
of being zero.

Assumption 1. The counters ςj follow binomial distributions:

ςj ↓






Bin(d,ε0) if j is a good bit

Bin(d,ε1) if j is a normal bit

Bin(d↑ u,ε0) + Bin(u,ε1) if j is a suspicious bit

Bin(d↑ u+ 1,ε1) + Bin(u↑ 1,ε0) if j is a bad bit

(5.3)

where

ε0 =
s

r
, ε1 =

s+ ⇁E[Xe!|s, t, u]
smax

, smax = d · t↑ 2

(
u

2



for some constant ⇁.

Remark 5.2. The probability estimate ε0 in Assumption 1 is particularly pessimistic. Indeed, it is
the probability that a random parity check is not satisfied, which is certainly an upper bound for
the probability that a parity check corresponding to a bit which is not in error is unsatisfied. The
model in Section 6 uses a more refined estimate of the probability ε0.

Remark 5.3. The constant ⇁ in Assumption 1 is inherited from a refinement given in [Vas21] of
the previous Markov model [SV19b]. Reducing the value of ⇁ from 1 was intended to compensate
for Non-Markovian e!ects relative to the state information (s, t) used in that model, which would
otherwise produce an overly optimistic DFR. The experimental data in Figure 5.1 assumes the
same value ⇁ = 0.955 used by [Vas21], which further contributes to the pessimism of Assumption 1
as reflected in our experimental data. There is no analogous factor to ⇁ used in Section 6.

Assumption 2. The step by step bit flipping decoder is a time homogeneous Markov chain, i.e.,

for all i ↫ 1, we have:

Pr[(si+1, ti+1, ui+1) = (ai+1, bi+1, ci+1)
¬Li, (si, ti, ui) = (ai, bi, ci), . . . ,¬L0, (s0, t0, u0))

= Pr[(si+1, ti+1, ui+1) = (ai+1, bi+1, ci+1)
¬Li, (si, ti, ui) = (ai, bi, ci)],

where Li := {ς(i)
j < T ∝j} is the blocked state at the i-th iteration.

Markov end states. There are two possible Markov end states that dominate the experiment
findings: (0, 0, 0) when we have successful decoding or (d, d, d) when the state converges to a
(d, d)-near codeword.
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5.2 Markov Model Estimation of the DFR

Our simple Markov model experiments yield the decoding failure rate under the assumptions of
models 2 and 1. Model 2 assumes no e!ect of the near codewords N on the decoding failure rate
and Model 1 records the e!ect of a single near codeword on the decoding failure rate. Model 2
uses the same code but initializes the value of u to 0 in the initial vector.

Let DFR(M) and DFR(M0) denote the respective decoding failure rates of Model 1 and 2.
From these two values, we wish to estimate the true decoding failure rate, which we denote
DFR, taking into account the existence of |N | = r near codewords. The di!erence DFR(M) ↑
DFR(M0) accounts for the number of decoding failures due to the existence of one near codeword,
so |N |(DFR(M)↑DFR(M0)) gives the increase in DFR due to the existence of |N | near codewords.
This philosophy yields the formula:

DFR = DFR(M0) + |N |(DFR(M)↑ DFR(M0)). (5.4)

This assumes an additive e!ect of the elements of N on DFR, and we refer to Equation (5.4) as
the linear model. See Figure 5.1. We compare our data with experimental data obtained using
[Vas24], as well as a previous Markov model [SV19b] which does not take into account the e!ect
of the error having a large number of overlaps with a near codeword. The Simple Markov model
gives a more conservative estimate for the DFR, in instances where models not taking into account
the e!ect of near codewords underestimate the DFR.

400 500 600 700 800 900 1,000
2→26

2→22

2→18

2→14

2→10

2→6

2→2

Block length r

D
F
R

Simple model DFR

[Vas24] model

Exp. data

Fig. 5.1: Plot of experimental DFR data, Simple Markov model DFR, and the DFR of the Markov
model in described in [SV19b].

6 A Key Dependent Markov Model

The simplified model does not depend on the secret key. However, experimental evidence shows
that the DFR is definitely key dependent: Even if it does not vary much for typical keys, there are
rare keys for which this DFR behaves better and weak keys which behave significantly worse. In
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this section, we give a way to predict the iterative decoding performance which is key dependent.
It makes use of the degree distribution of the subgraph G of the Tanner graph associated to the
near codeword closest to e

↓ + e denoted in the whole section by ω.

6.1 Derivation of the Markov chain model

The state space. The state space is the set of (s, t, u, b) where s = |φs| and t = |e+e
↓| as before,

u = |(e + e
↓) ϖ ω| and b ↗ {0, 1} encodes whether or not ω is xah0(x) ⇒ 0 (a left near codeword)

or 0 ⇒ xbh1(x) (a right near codeword). The structure of G depends on b. Its degree structure is
given by the following proposition which follows immediately from Fact 2

Proposition 6.1. The parity checks of even degree 2m in the subgraph G corresponding to a

left near codeword are associated to sets of m di"erent pairs {la1 , lb1}, · · · , {lam , lbm} such that

la1 + lb1 = · · · = lam + lbm , where the ai’s and the bi’s all belong to {0, · · · , d↑ 1} and ai ⇓= bi for

all i ↗ {1, · · · ,m}.
The parity checks of odd degree 2m + 1 in G are associated to an a ↗ {0, · · · , d ↑ 1} and sets

of m di"erent pairs {la1 , lb1}, · · · , {lam , lbm} such that 2la = la1 + lb1 = · · · = lam + lbm , where

ai, bi ↗ {0, · · · , d↑ 1} and ai ⇓= bi for all i ↗ {1, · · · ,m}.

A similar proposition holds for right near codewords where the ri’s replace the li’s. We can
partition the set of code positions in four sets, the bad bits, the suspicious bits, the normal bits
in error and the good bits. We will simplify notation in what follows and label a parity check xa

simply by a. We assume from now on that the closest near-codeword ω to the error intersects it
in exactly u positions and that the error has weight t. We also assume that ω = h0(x) ⇒ 0. The
case ω = 0 ⇒ h1(x) is similar. The label xa ⇒ 0 of a variable node is also simplified here to a. In
this section, we explain how we model the counters for each kind of bits. This will lead to Model
3 which is then used as explained in Section 4.

The case of bad bits. We have three kinds of parity checks adjacent to a bad bit. If the label of
the bad bit is a1, the labels of the other bad bits are a2, · · · , au, and the labels of the suspicious
bits are au+1, · · · , ad, then we can group the parity check nodes adjacent to a1. The first group
consists of a single parity check node of odd degree in G labeled 2a1. The second group consists of
(u↑ 1) parity check nodes labeled a1 + a2, · · · , a1 + au. The third group consists of (d↑ u) parity
check nodes labeled a1 + au+1, · · · , a1 + ad.

We do not know the label a1, · · · , au, and we model the probability that the corresponding
parity checks are unsatisfied by using the following lemma.

Lemma 6.2. Let a be a bad bit and let

– ⇀b,1ϑ,ϖ be the probability that the parity check labeled 2a is adjacent to , bits in error given that

it is of degree φ in G ;

– ⇀b,2ϑ,ϖ be the probability that a parity check labeled a + b of degree φ in G is adjacent to , bits

in error given that it b is another bad bit;

– ⇀b,3ϑ,ϖ be the probability that a parity check labeled a+ b is adjacent to , bits in error given that

it is of degree φ in G , that b is a suspicious bit;

Then ⇀b,1ϑ,ϖ =

∑min(ϑ,ϖ)
j=1

(ϑ→1
j→1

)(d→ϑ
u→j

)(w→ϑ
ϖ→j

)(n→d→w+ϑ
t→u→ϖ+j

)
(d→1
u→1

)(n→d
t→u

)

⇀b,2ϑ,ϖ =

∑min(ϑ,ϖ)
j=2

(ϑ→2
j→2

)(d→ϑ
u→j

)(w→ϑ
ϖ→j

)(n→d→w+ϑ
t→u→ϖ+j

)
(d→2
u→2

)(n→d
t→u

)

⇀b,3ϑ,ϖ =

∑min(ϑ,ϖ)
j=1

(ϑ→2
j→1

)(d→ϑ
u→j

)(w→ϑ
ϖ→j

)(n→d→w+ϑ
t→u→ϖ+j

)
(d→2
u→1

)(n→d
t→u

) .
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1 ω↗ 1 d↗ω w ↗ω n↗ d↗ w +ω

1 j ↗ 1 u↗ j ϱ↗ j t↗ u↗ ϱ+ j

d

a

Fig. 6.1: The configuration of the error and the parity check. The black and pink are the positions
of the parity check. The numbers on top are the block sizes. The numbers below are the number
of errors in each block. The first block of size 1 is the bad bit a. The second block consists of the
other positions involved in the parity check which are in the support of the near codeword ω. The
third block consists of the positions in the support of ω not involved in the parity check equation.
The fourth block consists of the positions of the parity check which are not in the support of ω.
The last block contains the remaining positions.

Proof. The reasoning is similar in all three cases.
The formula for ⇀b,1ϑ,ϖ. We compute the probability that an error of weight t which has weight u
on the d bits of the near-codeword ω and t↑ u on the complement of the support of ω intersects
a given parity check of weight w in exactly , positions. The parity check 2a involves the bad bit
a we are interested in, plus φ↑ 1 other bits of ω. If we denote by ⇀b,1ϑ,ϖ,j the probability that this
error is also of weight j on the φ bits which belong at the same time to the support of the parity
check labeled 2a and the support of ω, then we have

⇀b,1ϑ,ϖ,j =

(ϑ→1
j→1

)(d→ϑ
u→j

)(w→ϑ
ϖ→j

)(n→d→w+ϑ
t→u→ϖ+j

)
(d→1
u→1

)(n→d
t→u

)

This can be verified by counting the number of ways the
(d→1
u→1

)(n→d
t→u

)
configurations of t↑ 1 errors

where there are u↑1 errors among the d↑1 bits of ω other than the bad bit a we are interested in
satisfy all the needed constraints. Figure 6.1 gives a picture of the configuration we are interested
in. This yields the formula for ⇀b,1ϑ,ϖ by summing over all possible values of j.
The formula for ⇀b,2ϑ,ϖ. We introduce ⇀b,2ϑ,ϖ,j , the probability that the error is also of weight j on
the φ bits which belong at the same time to the support of the parity check labeled a+ b and the
support of ω. Then,

⇀b,2ϑ,ϖ,j =

(ϑ→2
j→2

)(d→ϑ
u→j

)(w→ϑ
ϖ→j

)(n→d→w+ϑ
t→u→ϖ+j

)
(d→2
u→2

)(n→d
t→u

)

Figure 6.2 displays the corresponding configuration. The di!erence with the previous case is that
now the parity check labeled a+ b contains two bits which are in error by definition, namely a and
b.

2 ω↗ 2 d↗ω w ↗ω n↗ d↗ w +ω

2 j ↗ 2 u↗ j ϱ↗ j t↗ u↗ ϱ+ j

d

a b

Fig. 6.2: The configuration of the error and the parity check, as in Figure 6.1. The first block of
size 2 corresponds to bad bits a and b. The second block consists of the other positions involved
in the parity check which are in the support of the near codeword ω. The last three blocks are as
in Figure 6.1.
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The formula for ⇀b,3ϑ,ϖ. This uses a similar reasoning, with the only di!erence that the parity check
labeled a + b contains by definition a bit which is in error, namely a and a bit which is not in
error, namely b. ′∞

Proposition 6.3. For g ↗ {1, 2, 3}, let εb,g be the average probability that a parity check of group

g associated to a bad bit is unsatisfied. Then

εb,1 =
1

d

∑

a↗ω

∑

ϖ

⇀b,1deg(2a),2ϖ+1,

εb,g =
1

d(d↑ 1)

∑

a↗ω
b↗ω, b ↘=a

∑

ϖ

⇀b,gdeg(a+b),2ϖ+1, for g ↫ 2,

where deg(c) is the degree of the parity check node c in G .

Proof. The probability that the parity check labeled 2a associated to a bad bit a is unsatisfied is∑
ϖ ⇀

b,1
deg(2a),2ϖ+1. The average is taken over all possible bits of the near codeword ω. The reasoning

is the same for εb,g, the only di!erence is that we take the average over all possible edges leaving
a variable node labeled a to a check node labeled a+ b for all possible b’s di!erent from a. ′∞

The case of suspicious bits. The case of a suspicious bit is similar to the case of a bad bit.
We partition the parity checks associated to it in three groups, as we did for a bad bit. There is
a single parity check in the first group associated to a suspicious bit a, namely the parity check
labeled 2a. The second group contains d↑u↑1 other parity checks labeled a+b where b is another
suspicious bit. The last group contains u parity check bits labeled a+ b where b is a bad bit.

Lemma 6.4. Let a be a suspicious bit and let

– ⇀s,1ϑ,ϖ be the probability that the parity check labeled 2a in G is adjacent to , bits in error given

that it is of degree φ in G ;

– ⇀s,2ϑ,ϖ be the probability that a parity check labeled a+ b is adjacent to , bits in error given that

it is of degree φ in G and b is another suspicious bit;

– ⇀s,3ϑ,ϖ be the probability that a parity check labeled a+ b is adjacent to , bits in error given that

it is of degree φ in G , that b is a bad bit.

Then ⇀s,1ϑ,ϖ =

∑min(ϑ,ϖ)
j=0

(ϑ→1
j

)(d→ϑ
u→j

)(w→ϑ
ϖ→j

)(n→d→w+ϑ
t→u→ϖ+j

)
(d→1

u

)(n→d
t→u

)

⇀s,2ϑ,ϖ =

∑min(ϑ,ϖ)
j=0

(ϑ→2
j

)(d→ϑ
u→j

)(w→ϑ
ϖ→j

)(n→d→w+ϑ
t→u→ϖ+j

)
(d→2

u

)(n→d
t→u

)

⇀s,3ϑ,ϖ =

∑min(ϑ,ϖ)
j=1

(ϑ→2
j→1

)(d→ϑ
u→j

)(w→ϑ
ϖ→j

)(n→d→w+ϑ
t→u→ϖ+j

)
(d→2
u→1

)(n→d
t→u

) .

Proposition 6.5. For g ↗ {1, 2, 3}, let εs,g be the average probability that a parity check of group

g associated to a suspicious bit is unsatisfied. Then

εs,1 =
1

d

∑

a↗ω

∑

ϖ

⇀s,1deg(2a),2ϖ+1

εs,g =
1

d(d↑ 1)

∑

a↗ω
b↗ω, b ↘=a

∑

ϖ

⇀s,gdeg(a+b),2ϖ+1, for g ↫ 2.

Here deg(c) refers to the degree of the parity check node c in G .
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The case of normal bits in error. We do not need to distinguish several groups of parity
checks in this case.

Proposition 6.6. Let ⇀eϑ,ϖ be the probability that a parity check node of degree φ in the subgraph

G of the Tanner graph induced by ω and adjacent to a normal bit in error contains exactly ,
erroneous bits. A parity check not in G is said to be degree of 0. We also let εe be the average of

these probabilities over all edges of the Tanner graph leaving the bits which are not in ω.

⇀eϑ,ϖ =

∑min(ϑ,ϖ→1)
j=0

(ϑ
j

)(d→ϑ
u→j

)(w→ϑ→1
ϖ→j→1

)(n→d→w+ϑ
t→u→ϖ+j

)
(d
u

)(n→d→1
t→u→1

) (6.1)

εe =
1

d(n↑ d)

∑

ϑ

(w ↑φ)nϑ

∑

ϖ

⇀eϑ,2ϖ+1, (6.2)

where nϑ is the number of check nodes in the subgraph G of the Tanner graph induced by ω which

are of degree φ.

Proof. The reasoning for (6.1) is similar to what is done for Lemma 6.2 and is omitted. For
computing the average of (6.1), observe that there are d(n↑ d) edges in the Tanner graph leaving
the n↑ d positions which are not in ω. ⇀eϑ,ϖ is nothing but the average probability over all edges
that such an edge is adjacent to a check node which is not satisfied. If such a check node is of
degree φ in G , then the probability that it is in error is exactly

∑
ϖ ⇀

e
ϑ,2ϖ+1. There are exactly

(w ↑φ)nϑ edges of this kind that are adjacent to a check node of degree φ in G . This explains
(6.2).

The case of good bits. This case is similar to the case of normal bits in error.

Proposition 6.7. Let ⇀gϑ,ϖ be the probability that a parity check node of G of degree φ adjacent

to a good bit contains exactly , erroneous bits. We also let εg be the average of these probabilities

over all edges of the Tanner graph leaving the bits which are not in ω. We have

⇀gϑ,ϖ =

∑min(ϑ,ϖ)
j=0

(ϑ
j

)(d→ϑ
u→j

)(w→ϑ→1
ϖ→j

)(n→d→w+ϑ
t→u→ϖ+j

)
(d
u

)(n→d→1
t→u

) (6.3)

εg =
1

d(n↑ d)

∑

ϑ

(w ↑φ)nϑ

∑

ϖ

⇀gϑ,2ϖ+1, (6.4)

This analysis of bad, suspicious, normal, and good bits yields the following model:

Model 3. We model the counters ςi according to the type of bit:

– bad bit: ςi ↓ Bin(1, sϱb,1

E(s|t,u) ) + Bin(u↑ 1, sϱb,2

E(s|t,u) ) + Bin(d↑ u, sϱb,3

E(s|t,u) )

– suspicious bit: ςi ↓ Bin(1, sϱs,1

E(s|t,u) ) + Bin(d↑ u↑ 1, sϱs,2

E(s|t,u) ) + Bin(u, sϱs,3

E(s|t,u) )

– normal bit in error: ςi ↓ Bin(d, sϱe

E(s|t,u) )

– good bit: ςi ↓ Bin(d, sϱg

E(s|t,u) )

where E(s|t, u) is given by:

E(s|t, u) = 1

w

(
uεb,1 + u(u↑ 1)εb,2 + u(d↑ u)εb,3 + (d↑ u)εs,1

+ (d↑ u)(d↑ u↑ 1)εs,2 + (d↑ u)uεs,3 + (t↑ u)dεe + (n+ u↑ t↑ d)dεg
)
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6.2 Results

First, we checked this more general model on the same toy example of Section 5 with a random key
(see Figure 6.3). The new model is not really a generalization of the one given in Section 5. The εi’s
are estimated in this model applying to any key in a direct fashion by scaling the expected syndrome
on each set of parity checks according to the whole syndrome weight. It gives a better behavior
in the waterfall region than the previous model, based on Chaulet’s approach for estimating the
εi’s. We partition decoding failures both in the experiments and in the model in two parts: the
decodings that failed because they converged to a near codeword (“Contr. of ncw”) and the rest of
the decoding failures (called “Contr. of other”). The models and the experiments agree remarkably
well.

We also tested two di!erent step-by-step decoders on the same code: one which uses the
majority rule for the threshold, and another one which uses the decoder with two thresholds
T0 and T1, see Figure 3.1. There is a first conservative threshold to flip the bits initially, and a
second threshold (actually the majority rule) to flip the bits when there are no more bit flips to
perform with the first rule. This decoder is much better than the majority decoder.

20 30 40 50 60 70 80
2→46

2→35

2→24

2→13

2→2

Error weight

D
F
R

Contr. of ncw, better thresh., exp.

Contr. of other, better thresh., exp.

Contr. of ncw, majority, exp.

Contr. of other, majority, exp.

Contr. of ncw, better thresh., model

Contr. of other, better thresh., model

Contr. of ncw, majority, model

Contr. of other, majority, model

Fig. 6.3: DFR vs. error weight (r = 1723, d = 17), experiments vs. model.

In [Vas21] which compared parallel decoders to similar step-by-step decoders, the performance
of the parallel decoders was much better than those of the step by step decoders. However, the
step-by-step decoder with two thresholds used to draw Figure 6.3 is rather competitive with the
parallel BGF decoder of BIKE, see Figure 6.4. This seems to confirm that there is a significant
gain in choosing conservative thresholds in the early iterations, as observed in [Sen24]. The BGF
decoder is slightly superior to the step-by-step decoder, with a somewhat steeper waterfall and a
better error floor.

After all this experimental evidence, we ran the model of this section on a key chosen at
random for the step-by-step decoder by choosing several di!erent thresholds for various block
sizes for d = 71 and t = 134. See Figure 6.5.

We checked the influence of the gap parameter ϑ used for decoding. Here the threshold T
depends only on the syndrome weight s, the block length r, the error weight t and the gap
parameter ϑ as follows

T = min

(
d,max

(
⇔Ar,t(s) + ϑ↖, d+ 1

2


, (6.5)

where Ar,t(s) is an a"ne function ↼ · s + ↽ of s depending on r and t which is computed with
the same method as for BIKE. For t = 134 and various values of r, the coe"cients are given in
Appendix B.2.
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2→25

2→19

2→13

2→7

2→1

Error weight
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F
R

Step by step, better thresh.

BGF

Fig. 6.4: DFR vs. error weight (r = 1723, d = 17), BGF vs. step by step.

10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000
2→170

2→128

2→86

2→44

2→2

2→91.74

2→119.71

Block size

D
F
R

Gap = 0 Gap = 1 Gap = 2

Gap = 3 Gap = 4

Fig. 6.5: DFR vs. block size (d = 71, t = 134).

22



Using the same gap parameter ϑ = 3 as the one used in the latest BIKE decoder seems in
the model to be optimal for the actual BIKE 1 parameter: r = 12323. It results in a DFR of
about 2→91.7, unfortunately above 2→ω. Moreover, even if we increase the block length r we do not
improve the DFR by much, because the error floor kicks in right after this value of r. We attain
a DFR of 2→114.1 with this gap for r = 13109, but need to go to r = 18427 to go below 2→ω. It
is 2→130.6 in this case. Using a gap ϑ equal to 4 allows to an error floor which appears a little bit
later and allows to obtain a DFR which is about 2→119.6 for r = 13477. This r-value is less than
10 percent more than the actual BIKE parameter.

Experimental evidence for cryptographic parameters in the waterfall region. However
there is a caveat here. It appears that taking a larger threshold function a!ects the accuracy of the
waterfall prediction. Indeed, we have performed two kinds of experiments for values of r close to
the BIKE 1 parameters and the same d and t as BIKE 1 so as to be able to observe experimentally
the DFR. We are clearly in the waterfall region in this case. We have run the step by step decoder
(with an infinite number of iterations so as to comply with the Markov chain modeling) and the
parallel version of the decoder, where at each step after computing the syndrome we flip all bits
above the threshold. The maximum number of iterations has been fixed to 100 in order to be
comparable with the step by step decoder. All these experiments clearly show that the parallel
version of the decoder outperforms significantly the step by step by step decoder. In particular
it shows a much stronger decay than the step by step decoder. The experiments also show that
the Markov chain modeling predicts rather well the step by step decoder (even if it becomes more
pessimistic as the block size r increases) when the gap is equal 0 and 1. This is shown in Figures
6.6 and 6.7.
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(a) Waterfall behavior for d = 71, t = 134, gap ς = 0.
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Model Step-by-step Parallel

(b) Waterfall behavior for d = 71, t = 134, gap ς = 1.

Fig. 6.6

However, the Markov model becomes clearly optimistic in the waterfall region when the gap
increases. The DFR is underestimated by about 6 bits for a gap ϑ = 2 (Figure 6.8a), by 7 bits for
a gap ϑ = 3 (Figure 6.8b) and by about 6.5 bits for a gap ϑ = 4 (Figure 6.8c). Notice that the
experimental curve for the parallel decoder shows a steeper decline of the DFR which seems to
catch up (and even go below) the Markov chain predictions for larger values of r. The reason for
this too optimistic estimation of the DFR is very likely to be the fact that for larger thresholds
we do not take into account in the model that the distribution of the counters of the normal bits
in error (which are precisely the first one to get flipped because they have the highest expected
counter value) gets truncated during the decoding process. This is because we decimate during it
the highest counters. In any case, the waterfall behavior of the Markov model is too optimistic in
the beginning of the waterfall region.

24



9,400 9,600 9,800 10,000 10,200 10,400
2→31

2→24

2→17

2→10

2→3

Block size

D
F
R

Model Step-by-step Parallel

(a) Waterfall behavior for d = 71, t = 134, gap ς = 2.
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(b) Waterfall behavior for d = 71, t = 134, gap ς = 3.
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(c) Waterfall behavior for d = 71, t = 134, gap ς = 4.

Fig. 6.7
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Evidence that the error floor behavior is always captured accurately. To have a better
understanding of the influence of the gap parameter on the Markov chain parameters we have
performed a systematic study on the toy parameters, where we have taken (r, d) = (1723, 17).
First we have chosen t = 65 to be in the waterfall region. The results are displayed in Figure 6.9.
There are several interesting features. We have separated the contribution of the DFR in two parts

DFR = DFRe + DFRw,

where DFRe gives the contribution to the DFR, where decoding failed because it converged to a
near codeword. This contribution can be computed experimentally when DFRe is large enough.
The Markov model can also give the corresponding contribution. The term DFRw (as “waterfall”
contribution and “other” in legend of the figure) can be viewed as the waterfall contribution and is
defined simply as DFR↑DFRe. In Figure 6.9 we are in the waterfall region since DFR ∈ DFRw or
what amounts to the same DFRe ∋ DFRw. The Markov chain predictions are slightly pessimistic
when ϑ is in the interval [0, 1] but become optimistic in the case ϑ ↗ [1, 3]. However, what is
remarkable is that the predictions for the error floor term DFRe are in general really accurate for
a gap bigger than 0.5. This strongly suggests that the Markov model predicts accurately the error
floor behavior irrespective of the gap parameter.

0 0.5 1 1.5 2 2.5 3
2→23

2→17

2→11

2→5

21

Gap
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F
R

Model, contrib of ncw Model, contrib of other

Experiments, contrib of ncw Experiments, contrib of other

Fig. 6.8: Waterfall region (r, d, t) = (1723, 17, 65)

This has been further tested in Figure 6.10 with (r, d, t) = (1723, 17, 35). This time we are
clearly in the error floor since DFRw ∋ DFRe. The predictions for the DFR are this time rather
accurate (even if a little bit pessimistic). The experimental DFR and predicted DFR agree this
time for all values of the gap parameter between 0 and 3. This shows the accuracy of the error
floor prediction for our model.

26



0 0.5 1 1.5 2 2.5 3
2→37

2→31

2→25

2→19

Gap

D
F
R

Model, contrib of ncw Model, contrib of other

Experiments, contrib of ncw

Fig. 6.9: Error floor region (r, d, t) = (1723, 17, 35)

6.3 Further evidence for the error floor region

The rationale for extending experimental evidence beyond toy parameters. Notice that
we can write the DFR as

DFR =
d∑

u=1

DFR(u)p(u), (6.6)

where DFR(u) is the DFR conditioned on the event that the closest near-codeword intersects the
error in exactly u positions and p(u) is the probability that this event occurs. We can tweak the
initial distribution of the Markov chain so as to compute exactly DFR(u). In the case where the
dominating terms in this sum correspond to u’s for which p(u) is small and the corresponding
DFR(u) are large enough, we can run experiments conditioned that the error intersects the closest
near-codeword in exactly u positions and check if DFR(u) is indeed predicted correctly. This
allows to make such verification way beyond DFR’s that we can measure experimentally, since we
just have to verify DFR(u) experimentally and we may have DFR ∋ DFR(u). Of course, these
experiments really make sense only in the error floor regime, since it is precisely in this case that
the DFR is dominated by terms DFR(u)p(u) where p(u) is small (and for unusually large values
of u). Note that it is really the error-floor behavior that we want to verify.

Experimental Evidence. This approach has permitted to expand significantly the regime of
parameters that we can verify experimentally. We were able to increase the value of d from 17 to
27, t from 35 to 46 and r from 1723 to 17053. All our parameters that have been found are such
that DFR(umax), DFR(umax ↑ 1) and DFR(umax + 1) are all verifiable experimentally. Here umax
is the value of u which maximizes the term DFR(u)p(u) in the decomposition (6.6). This provides
compelling evidence that we indeed predict well the DFR with this method, since the experimental
measured f(u) is also maximal at umax. We have plotted the function f(u) = DFR(u)p(u) for all
values of u for which we could verify DFR(u) experimentally. Finding parameters for small values of
the gap is easier. This is why most of our parameters are for the gap parameter ϑ = 0. We also give
parameters for larger values of the gap, here ϑ = 2. We have observed no noticeable di!erence when
the value of the gap changes: in all cases we get a remarkable prediction of f(u) = DFR(u)p(u) for
large values of u and a good prediction at umax and umax ↑ 1 which is just a little bit pessimistic
in this case. All in all, these experiments permit to verify values of DFR that are as low as 2→80.
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Fig. 6.10
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We have also performed experiments for the cryptographic parameters. The Markov model
predictions agree well for the DFR(u) that we were able to check.
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6.4 Changing the threshold function

From now on, we use a"ne functions that are closer to the latest BIKE specification, as specified
in Appendix B.2. A closer inspection of the a"ne function Ar,t shows that for a large set of
values of s (roughly between 0 and more than 70 per cent of the typical initial syndrome value)
the threshold takes the value d+1

2 . This seems to be a bad choice: the majority threshold rule
maximizes the probability of flipping a suspicious bit. This leads to the convergence to a near-
codeword and thus to the error floor phenomenon. Instead of (6.5), it is tempting to conjecture that
the modified threshold function T = min (d,max (Ar,t(s) + ϑ, Tmin)) might perform better, where
Tmin > d+1

2 . For the BIKE 1 parameters, d = 71 and d+1
2 = 36. Choosing larger values for Tmin has

a significant e!ect on the error floor and does not deteriorate the waterfall behavior too much. We
have studied this point in detail for a gap ϑ = 3 and for r = 13109, as illustrated in the following
table. To see the e!ect on the DFR we have decomposed the DFR as DFR = DFRe + DFRw.
DFRe is the contribution of the DFR coming solely from the near-convergence to a near codeword.
Experimental evidence shows that this term is very good for predicting the error floor. DFRw is
defined as DFR ↑ DFRe and is good for predicting the waterfall behavior.
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Tmin DFRe DFRw
36 -113.046457928823 -123.378559395570
37 -118.243581226345 -123.378559395558
38 -123.405489448735 -123.378559389356
39 -128.809000162163 -123.378537439281
40 -134.809143919309 -123.310820300205

Increasing Tmin by 1, we gain roughly 5 bits on DFRe.
In order to lower the DFR as much as possible, we first optimized both Tmin and ϑ, and found

that Tmin = 39 and ϑ = 2.6 reduce the DFR by about 2.5 bits, to DFRe ∈ 2→127.006, DFRw ∈
2→126.777, DFR ∈ 2→125.887. Now let us note that the decoder behavior only depends on the floor
of the threshold function, and thus on the intervals [ai, bi[ on which ⇔T ↖ = i for Tmin ↬ i ↬ d.
Therefore, we can further optimize the DFR by adjusting the bounds of these intervals. In order
to simplify the situation, we upper bound the thresholds by 50 instead of d = 71, which does
not a!ect the DFR. With the modified intervals shown on Figure 6.14 and specified in Appendix
B.2, we obtain DFRe ∈ 2→127.358, DFRw ∈ 2→128.248, DFR ∈ 2→126.736, an improvement of
about 0.9 bit. We have obtained this DFR reduction by performing some kind of gradient descent
optimization of the endpoints of the intervals. It has ended up with irregular intervals.

For r = 13477, with Tmin = 39 and ϑ = 3.4 we obtain DFRe ∈ 2→131.719, DFRw ∈ 2→133.131

and DFR ∈ 2→131.259. For r = 12323, we did not optimize the DFR to the same extent as for
r = 13109 but we fine-tuned Tmin and ϑ. For Tmin = 36 and ϑ = 2.47, we obtain DFRe ∈ 2→109.754,
DFRw ∈ DFR ∈ 2→96.663, which is an improvement of about 4.3 bits.
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Fig. 6.13: Syndrome weight intervals for the choice of threshold, with r = 13109

7 Concluding Remarks
A new accurate Markov model. This work highlights the central role that the near codewords put
forward in [Vas21] play in the error floor regime. We enrich the Markov model of [SV19b,Vas21]
with the size of the intersection of the error with a near codeword. Using a model which is
key-dependent, we obtain an accurate prediction of the DFR in the error-floor regime, matching
experimental data for various decoders and keys.
Attaining a DFR below 2→ω

. If we run this Markov model on the BIKE level 1 parameters with
the former threshold function, we fall short of reaching a DFR of about 2→91, which is below 2→ω.
This problem cannot simply be addressed by taking slightly larger parameters, because the error
floor kicks in just after the block size r = 12323 chosen for BIKE 1. However, this error floor
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seems to be due to the fact that the threshold function is equal to its minimum possible value
d+1
2 for a very large range of values of the syndrome weight s. This can be addressed adequately

by increasing this minimum threshold value from 36 to 39 in the case of BIKE 1. In this case,
a threshold function with an adjusted gap leads to a DFR for the step-by-step decoder which is
below 2→131.2 for a block size r = 13477. This is slightly less than a 10% increase of the current
BIKE 1 parameter.

Analyzing a parallel decoder. There are reasons to believe [Vas21] that the parallel decoders used
in the actual BIKE implementation produce an even lower DFR. Whereas up to now, only the
beginning of the waterfall region could be explored for cryptographic parameters, this work opens
a new road for exploring the ability of various decoders to attain even more e"ciently the needed
2→ω DFR and for understanding the e!ect of various weak keys on the DFR. Concerning the first
point, it could be interesting to consider the approach followed in [ABP24a] (for the full version
see [ABP24b]) to analyze parallel decoders.
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A Computing the initial state distribution

Let H be the parity check matrix for a QC-MDPC code of row weight d where the degree distri-
butions nϑ are known for both blocks. 8 Consider the following variables: the syndrome weight
s, error weights in blocks 0 and 1 denoted by t0 and t1 (with total error weight t = t0 + t1),
maximal numbers of intersections between the error vector and any near codeword in blocks 0 and
1 denoted by u0 and u1 (with u = max(u0, u1)) and b ↗ {0, 1} indicating which block contains the
closest near codeword (i.e., b = 0 if u0 > u1 and b = 1 if u1 > u0).

With BIKE, the initial decoding conditions involve an error vector of fixed weight t chosen
uniformly at random. While t is thus known, determining the joint distribution of (s, u, b) is non-
trivial as it depends on the structure of the code, particularly its regularity but also the degree
distribution of the Tanner graph given by nϑ.

Our goal here is therefore to compute the joint distribution P(s, u, b|t). We decompose this
computation where first we compute P(u0, u1|t0, t1), which we marginalize to obtain P(u, b|t). We
then compute P(s|t, u, b). The desired distribution is obtained as

P(s, u, b|t) = P(u, b|t)P(s|t, u, b) .

A.1 Distribution P(u, b|t)

For two same-sized blocks of length r, the probability of partitioning t errors between them, with t0

errors in block 0 and t1 errors in block 1, follows a hypergeometric distribution: P(t0, t1) =
( r
t0
)( r

t1
)

(nt)
.

Within each block i, the probability of intersection size k with any particular near codeword

follows a hypergeometric distribution where the probability mass function is: fi(k) =
(dk)(

r↑d
ti↑k)

( r
ti
)

.

Let Fi(k) denote its cumulative distribution function: Fi(k) =
∑k

j=0 fi(j).
According to order statistics theory, since we consider the maximum over r independent such

variables, the CDF of the maximum is [Fi(k)]r. Therefore, the probability mass function of the
maximum intersection in block i is:

P(ui|ti) = [Fi(ui)]
r ↑ [Fi(ui ↑ 1)]r

The joint distribution combines three mutually exclusive cases: when both blocks have maximum
intersection u, when the maximum intersection u occurs uniquely in block 0, when the maximum
intersection u occurs uniquely in block 1.

P(u0, 0|t) =
∑

t0+t1=t

P(t0, t1)


1
2 P(u0|t0)P(u0|t1) +

∑

u1<u0

P(u0|t0)P(u1|t1)


P(u1, 1|t) =
∑

t0+t1=t

P(t0, t1)


1
2 P(u1|t0)P(u1|t1) +

∑

u0<u1

P(u1|t1)P(u0|t0)


A.2 Distribution P(s|t, u, b)

To compute the conditional probability P(s|t, u, b), we must account for both the number of check
nodes connected to an odd number of errors (which determines the syndrome weight s) and the
8 Remember that nω is the number of check nodes in the subgraph G of the Tanner graph induced by a

near codeword ω which are of degree ω.
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total number of edges connected to errors in the Tanner graph (which must equal d · t). The
structure of the code, particularly the degree distributions n(b)

ϑ of check nodes in the subgraph G
for block b, plays an important role in this computation.

We need to track the parity of errors connected to each check node while we ensure that the
total number of edges connected to errors sums to d · t. For this, we use a generating function that
encodes both these quantities.

For each check node of degree φ in block b, let

⇀(b)ϑ,ϖ :=

∑min(ϑ,ϖ)
j=0

(ϑ
j

)(d→ϑ
u→j

)(w→ϑ
ϖ→j

)(n→d→w+ϑ
t→u→ϖ+j

)
(d
u

)(n→d
t→u

)

denote the probability that a check node of degree φ in G involves exactly , errors, where these
errors are distributed between: the u bits common to both the error vector and nearest near
codeword and the remaining t ↑ u error bits not in the near codeword. The generating function
for a single check node of degree φ is then defined as:

G(b)
ϑ (x, y) =

∑

ϖ

⇀(b)ϑ (,) · xϖ mod 2 · yϖ,

where yϖ tracks the number of errors connected to the check node, and xϖ mod 2 encodes the parity
of , (thus x1 indicates a syndrome bit equal to 1 and x0 indicates a syndrome bit equal to 0).

For the n(b)
ϑ check nodes of degree φ in block b, their collective contribution is given by

(G(b)
ϑ (x, y))n

(b)
ω . The full generating function for block b is thus:

G(b)(x, y) =


ϑ

(
G(b)

ϑ (x, y)
)n(b)

ω

.

This generating function encodes all possible configurations of errors and their parities across check
nodes in block b, while respecting the degree structure of the subgraph G under the assumption
that parity check equations are independent. However, we know that the regularity of the code
induces a constraint on the total number of edges connected to errors in the Tanner graph.

The joint probability of observing s check nodes with odd parity and a total of d · t edges
connected to errors is given by the coe"cient of xsyd·t in G(b)(x, y), denoted [xsyd·t]G(b)(x, y).
The conditional probability P(s|t, u, b) is then obtained by normalizing over all possible syndrome
weights:

P(s|t, u, b) = [xsyd·t]G(b)(x, y)∑
s→ [x

s→yd·t]G(b)(x, y)
.

E!cient computation of the distribution. While the generating function provides a theoretical
framework, direct computation using this approach would be ine"cient, as it would require cal-
culating probabilities for all possible configurations, only to select a small subset where the edge
count equals d · t. We instead use a more practical computational approach.

Let us decompose the syndrome weight s into components by degree, where sϑ denotes the
number of degree-φ parity check equations in G that have an odd number of errors, for φ =
0, 1, . . . ,φmax. Thus, s =

∑ϑmax
ϑ=0 sϑ. The computation begins by constructing vectors for each

degree φ that map the number of errors , to the unnormalized probability ⇀(b)ϑ,ϖ, separated into
odd and even components. For each possible value sϑ ↗ {0, . . . , n(b)

ϑ }, we compute sϑ convolutions
of the odd-error vector and (n(b)

ϑ ↑ sϑ) convolutions of the even-error vector. These results are
then divided by sϑ! and (n(b)

ϑ ↑ sϑ)! respectively9 The next step involves performing convolutions
first within each φ group to obtain the distribution of total edge count for each possible value of
9 These factorial divisions account for the multinomial coe"cient that counts the number of ways to

partition s into ωmax + 1 components.
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sϑ. We then convolve across di!erent φ groups to compute the joint distribution of the sum of
sϑ values and their corresponding edge count distributions. Finally, we filter to retain only the
configurations where the total edge count equals d · t, and normalize to obtain the final probability
distribution.

B Details on threshold rules

B.1 Computation of the a!ne part coe!cients

Recall that we use thresholds of the form

T = min

(
d,max

(
⇔Ar,t(s) + ϑ↖, d+ 1

2



where Ar,t(s) = ↼r,t · s+ ↽r,t.
In this subsection, we explain the procedure to compute these coe"cients ↼r,t and ↽r,t. This

is based on the approach from [?] which is used in [ABB+21] and the following binomial counter
model. The counter values of bits in error (resp. not in error) are namely assumed to follow a
binomial distribution Bin(d,ε1) (resp. Bin(d,ε0)) where :

ε1 =
s+X

dt
and ε0 =

(w ↑ 1)s↑X

d(n↑ t)
.

Here X is a certain function of s and t which is related to the random variable Y
def
=

∑
j↗e ςj ↑ s.

Depending on the version of BIKE [ABB+21], X is either given by

version V1 (before Oct. 2022): X
def
= E(Y ) = r

∑

l

2l · ⇀2l+1

version V2 (Oct. 2024): X
def
=

E[Y ]

E[s] s = s

∑
l 2l · ⇀2l+1∑

l ⇀2l+1

where ⇀l
def
=

(w
l

)(n→w
t→l

)
(n
t

) .

Therefore, for 0 ↬ ς ↬ d :

E[|{j ↗ e | ςj = ς}|] = t

(
d

ς


εε
1 (1↑ ε1)

d→ε (B.1)

E[|{j /↗ e | ςj = ς}|] = (n↑ t)

(
d

ς


εε
0 (1↑ ε0)

d→ε (B.2)

We define the function T0 by :

T0(s) =
log

(
n→t
t

)
+ d log

(
1→ϱ0(s)
1→ϱ1(s)

)

log
(

ϱ1(s)
ϱ0(s)

)
+ log

(
1→ϱ0(s)
1→ϱ1(s)

)

T0(s) is chosen such that, for ς ↫ T0(s), among the bits whose counter is ς, we expect to flip more
bits in error that not in error, i.e. E[|{j ↗ e | ςj = ς}|] ↫ E[|{j /↗ e | ςj = ς}|]. T0 is defined here
for positive real values of s and T0(s) corresponds to the real value of ς for which the right-hand
terms in (B.1) and (B.2) coincide.

Then we define Ar,t by:

Ar,t(s) = T0(E[s]) + T ↓
0(E[s]) · (s↑ E[s])

i.e.
↼r,t = T ↓

0(E[s]) and ↽r,t = T0(E[s])↑ ↼r,tE[s]
Note that the graph of Ar,t is the tangent to the curve of T0 at point (E[s], T0(E[s]).
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B.2 Details on the model computations of Subsection 6.2

Table B.1: A"ne part Ar,t (V1) of the threshold function corresponding to Figure 6.5 6.6 6.7 6.8a
6.8b 6.8c 6.13a 6.13b. The threshold Tr(s) is given for a block length r and a syndrome weight s
by the formula Tr(s) = min

(
d,max

(
⇔Ar,t(s) + ϑ↖, d+1

2

))
.

r φ ↼
9283 0.007835394510038963 13.297180113728302
9661 0.007393105300920274 13.567391558872282
10037 0.007061848501098616 13.594659657463222
10289 0.006883993637624069 13.520590051799362
10427 0.006798500986468654 13.456553521076303
10789 0.006606617361836905 13.228860262727327
11171 0.006444309408601018 12.921143566520255
11549 0.0063141209528076135 12.572979649160397
11933 0.006205362314938619 12.192085979992001
12323 0.0061135837435673315 11.789323238365313
12739 0.00603182965107241 11.351398154970589
13109 0.005970219758260547 10.96007467501192
13477 0.005917328871862742 10.572456366568613
13859 0.0058697311301313835 10.173985156386603
15373 0.005733664525418103 8.655332501782194
16901 0.00565184187736275 7.233670336326141
18427 0.005604464463216208 5.915303733756538
19949 0.005580554453148446 4.683511294611625
21467 0.0055736761566337325 3.521321141011274
23003 0.005579882422098863 2.399420709618189
24533 0.005596416334069782 1.32559949672806

Table B.2: Coe"cients of the a"ne part Ar,t (V2) of the threshold function for figures 6.9 6.10

t φ ↼
35 0.018258736281959287 2.6333251606224053
65 0.008490421212064447 6.592815448465522
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Table B.3: Coe"cients of the a"ne part Ar,t (V2) of the threshold function for figures 6.11a 6.11b
6.11c 6.12a 6.12b 6.12c

r d t φ ↼
2851 19 33 0.022496109582380977 -0.31520011389499025
6299 19 33 0.03208537235574351 -7.516590006034072
9661 19 33 0.04113979857756371 -13.578711997396
1907 21 37 0.017594633411850264 3.477612429106303
2621 21 37 0.018705456845101318 1.4280333460625592
4397 21 37 0.02205136991866539 -2.4420447265246334
7013 21 37 0.027305118972899983 -7.246375579783971
2621 23 41 0.016505660253078373 2.577358096338255
3779 23 41 0.017907602055643648 -0.0325178801759094
6211 23 41 0.021411794519924247 -4.476148584279839
10357 23 41 0.027577185118666955 -11.035680668050869
10501 27 46 0.02174043010171235 -9.178324290764118
17053 27 46 0.028256124734199098 -17.95017858186116

Table B.4: A"ne part Ar,t (V2) of the threshold function used as a starting point for optimization,
closer to the latest BIKE specification

r φ ↼
12323 0.0062549227639326485 11.101167408537833
13109 0.006180462568160698 9.8998430883248
13477 0.006147235585082764 9.39527217136597

Table B.5: Upper bounds bi of the threshold intervals shown on fig 6.14

i Tmin = 36 ; ς = 3.0 Tmin = 39 ; ς = 2.6 Modified intervals
36 3900 0 0
37 4062 0 0
38 4224 0 0
39 4385 4450 4434
40 4547 4612 4618
41 4709 4774 4764
42 4871 4935 4893
43 5033 5097 5097
44 5194 5259 5259
45 5356 5421 5421
46 5518 5583 5583
47 5680 5744 5744
48 5842 5906 5906
49 6003 6068 6068
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C Simple Model: Permutations of the parity check matrix

Fix a parity check matrix H ↗ Fr↑n
2 Apply permutations P ↗ Fr↑r

2 ,Q ↗ Fn↑n
2 to H, e and s so

that H
↓ = PHQ

→1, e↓ = eQ
↭, and s

↓↭ = Ps
↭ corresponding to Figure C.1. Let S := |s|. When

|B| = S, there is exactly one error per unsatisfied parity-check equation. This is the ideal case for
error correction as flipping a bit in e from 1 ⇐ 0 will not a!ect the other counters.

Let X =
∑

j↗e |Hj ϖ s|↑ S. The ideal case above corresponds to X = 0.

1

1

0

0

0 0 1 1

n↑ t t

S

r ↑ S

A B

C D

Fig. C.1: H
↓ matrix, obtained by permuting rows and columns of H. Below, we have e

↓ from
rearranging the entries of e, and likewise s

↓ to the right, computed from H
↓
e
↓↭.

Construct the matrix H
↓
e! by permuting columns of H

↓ according to the support of ω as
pictured in Figure C.2. Since H

↓ has been permuted, we likewise have permuted ω and e
↓, which

have u nonzero overlaps in the B and D sections of H↓. In particular, there will be u columns in
the B,D sections of H↓. In the rows of these columns, we will find the pairs of 1’s which are forced
to cancel by the algebraic structure of the circulant blocks. We flip these pairs from 1’s to 0’s. A
total of

(u
2

)
pairs of 1’s will be flipped: Together, blocks B and D of H↓ have weight d · t. After

the cancellations, H↓
e! will have blocks Be! and De! which will be weight Smax := d · t↑ 2

(u
2

)
.

1

1

0

0

0 0 1 1

n↗ t t

S

r ↗ S

A0 A1 B0 B1

C0 C1 D0 D1

0 0 1 1

good bits (t↗ u) nor. bits (d↗ u) sus. bits u bad bits

0 0 1 1

Fig. C.2: He! matrix, obtained by permuting rows and columns of H according to the intersection
of e and ω.

D A useful partition of the parity checks

In order to understand the probabilistic model for the counters it is helpful to partition the parity
checks in 6 groups. To simplify the discussion we assume that we are in the ideal case when all
the li + lj ’s are di!erent when i ↬ j.

P1 : The set of parity checks which are of degree 1 in the subgraph G induced by the closest near
codeword and which are adjacent to a bad bit.
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P2 : The set of parity checks in G of degree 2 and are adjacent to two bad bits.
P3 : The set of parity checks in G of degree 2 and are adjacent to one bad bit and one suspicious

bit.
P4 : The set of parity checks in G of degree 2 and are adjacent to two suspicious bits.
P5 : The set of parity checks which are of degree 1 in the subgraph G and which are induced by

the dominant near codeword and which are adjacent to a suspicious bit.
P6 : The rest of the parity checks (namely those that do not belong to G ).

In the ideal case we have

|P1| = u, |P2| =
(
u

2


, |P3| = u(d↑ u), |P4| =

(
d↑ u

2


, |P5| = d↑ u.

We define a red edge in the Tanner graph as an edge connecting a bit to a syndrome bit which is
equal to 1. A syndrome bit equal to 1 in the Tanner is represented by a red parity check equation.
Figure D.1 depicts this partition of bits and parity checks.

u

V bad

d → u

V sus

t → u

V norm

n → t → d + u

V good

u

(w → 1, 1)

P1

(u
2

)

(w → 2, 0)

P2

u(d → u)

(w → 2, 1)

P3

(d↑u
2

)

(w → 2, 0)

P4

d → u

(w → 1, 0)

P5

r →
(d+1

2

)

(w, 0)

P6

Fig. D.1: Illustration of the di!erent groups. The size of the group is given just below the group
and just below the size of the group, there is a pair (a, b) which gives the type of the parity-bit. a
gives the number of additional edges arriving at this group coming from the set of bits which do
not belong to the Tanner graph G induced by the closest near codeword, namely V norm △V good. b
indicates the contribution to the parity check belonging to the group coming solely from the bits
in G . For instance for the first group P1, the size is u and the corresponding pair is (w ↑ 1, 1).

The reason why we decompose the parity checks in several groups comes from the fact that
they behave di!erently during decoding depending on their type. What we call type of a parity
check is the pair (a, b) where a is the number of edges arriving at this parity check from bits
not belonging to G . b is a bit which indicates the contribution to the syndrome of parity check
coming from bits in the subgraph G of the Tanner graph induced by the closest near codeword.
All groups of parity checks have di!erent types, with the exception of P2 and P4 which both have
type (w↑ 2, 0). P2 has type (w↑ 2, 0) because a parity check belonging to it is adjacent to exactly
2 bits in G and the contribution to the syndrome is 0 because it is adjacent to 2 bits in error in G .
P4 has the same type because it is adjacent to 2 bits which are correct in G and their contribution
to the syndrome is also 0.

Let us see how the counters are impacted by the near codeword ω. Say that u positions among
ω are in error. Let ε1 be the probability that a parity check of a position in error is not satisfied.
Let ε0 denote the probability that a parity check of a position not in error is not satisfied. In
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essence, (hard decision) iterative decoding of LDPC/MDPC codes relies on the fact that ε1 > ε0.
The counters of positions in error are generally higher than the counters of positions which are
not in error. We expect that the counter of a position which is in error to be about dε1 whereas
the counter of a position which is not in error is expected to be about dε0. Now let us look at the
u positions which are in error in the near codeword (V bad): Their counter is expected to be about
ε1 + (u↑ 1)ε0 + (d↑ u)ε1 = (u↑ 1)ε0 + (d↑ u+1)ε1 which is typically much less than dε1. This
is due to the fact that there are (u ↑ 1) parity checks adjacent to such a bit which are adjacent
to another position which is in error (P2), canceling the contribution of the error to this position
(and these parity checks behave roughly as a parity check adjacent to a position which is not in
error). These positions are therefore less likely to be corrected by the iterative decoding process
than the other positions which are in error. But the situation is even worse for the d↑ u positions
which belong to the support of the near codeword, but which are not in error (V sus). For those
positions a similar reasoning now conduces to model such a counter by the sum of d↑ u Bernoulli
random variables of parameter ε0 (from P4 △P5) and u Bernoulli variables of parameter ε1 (from
P3). We therefore expect that the counter of such positions to be about (d ↑ u)ε0 + uε1. Those
positions are therefore more likely to be wrongly flipped than the other positions which are not in
error.

In the general case, check nodes of the Tanner graph G induced by the closest near codeword
can have degrees greater than 2. This is what the values of nϑ account for in Section 6.
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