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Abstract. Integral attacks exploit structural weaknesses in symmetric
cryptographic primitives by analyzing how subsets of inputs propagate
to produce outputs with specific algebraic properties. For the case of
(XOR) key-alternating block ciphers using (independent) round keys, at
ASIACRYPT’21, Hebborn et al. established the first non-trivial lower
bounds on the number of rounds required for ensuring integral resis-
tance in a quite general sense. For the case of adding keys by modular
addition, no security arguments are known so far. Here, we present a
unified framework for analyzing the integral resistance of primitives us-
ing (word-wise) modular addition for key whitening, allowing us to not
only fill the gap for security arguments, but also to overcome the heavy
computational cost inherent in the case of XOR-whitening.

Keywords: Block cipher, Integral attacks, ANF, Modular addition, In-
verse cipher

1 Introduction

Symmetric cryptographic primitives play a foundational role in ensuring the con-
fidentiality and integrity of digital communications. The security of these prim-
itives is typically evaluated against well-established cryptanalytic techniques,
such as differential [7] and linear attacks [31]. Besides these classical statistical
attacks, there is also the important category of structural attacks, which includes
integral cryptanalysis as the most prominent example. Integral attacks focus on
analyzing how subsets of inputs propagate through a cipher to produce out-
puts with specific algebraic properties. Those properties can then be exploited
to distinguish the cipher from a family of random permutations, making them a
critical aspect of modern cryptanalysis.

Integral attacks, rooted in the study of high-order differentials, were intro-
duced by Lai [30] and Knudsen [28], then extended by Knudsen and Wagner [29]
with the ”Square attack”. Classically, an integral distinguisher for a block ci-
pher (Ek : Fn

2 → Fn
2 )k∈Fκ

2
relies on identifying a subset M /∈ {∅,Fn

2} of plaintexts
for which the sum of ciphertexts (or internal states if key-recovery rounds are
added)

∑
x∈M Ek(x) is independent of the secret key k, i.e., for which the map

Fκ
2 → Fn

2 , k 7→
∑
x∈M

Ek(x)
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is constant.
The ability to argue against the existence of such subsets M , a property

referred to as integral resistance is central to assessing security. A necessary
condition for a cipher to be integral resistant is that the encrypted values over any
set M /∈ {∅,Fn

2} must sum to a value that depends on the key. While arguments
for security against classical statistical attacks have been developed over decades,
integral attacks present unique difficulties. For many ciphers, integral resistance
remains poorly understood, with most existing analyses covering only specific
constructions or subsets M with certain properties (e.g., being a linear subspace
of Fn

2 ).
For key-alternating block ciphers, Hebborn et al. [24] provided the first secu-

rity arguments against integral distinguishers in a more general sense under the
assumption of independent round keys. Given a block cipher (Ek : Fn

2 → Fn
2 )k∈Fκ

2
,

their definition of integral resistance was as follows:
For every subset M /∈ {∅,Fn

2} of Fn
2 and every non-zero β ∈ Fn

2 , the Boolean
function

Fκ
2 → F2, k 7→

∑
x∈M

⟨β,Ek(x)⟩

is not constant.
That work established lower bounds on the number of rounds required to

guarantee integral resistance in the above sense. Interestingly, when applied to
ciphers from the literature, most of these lower bounds coincide with the best-
known integral distinguishers, showing the tightness of previously-known crypt-
analytic attacks. However, the above definition of integral resistance and the
criteria established in [24] for ensuring the resistance necessitate further inves-
tigation and generalization, particularly to address limitations and additional
scenarios.

Practical Limitations While conceptually nice, the key problem of the ap-
proach in [24] is its computational feasibility. In a nutshell, the method required
the computation of n2 monomials in the ANF of the component functions of Ek.
While the advances of monomial prediction based on division trails have made
the computation of those monomials feasible in many cases, this approach is still
far from generic and requires ad-hoc, cipher-specific optimization to terminate
in practice. Addressing this computational bottleneck is, therefore, crucial.

Modular Addition of Keys The use of modular addition to mix key material
with the state appears throughout ARX-style designs – SPECK [3] and ChaCha
[4] employ it in their round functions – and is also used for key whitening in
block ciphers, for example, such as Threefish [20] and MARS [13].

Intuitively, and backed up by previous cryptanalytic results, modular ad-
dition of the keys enhances the resistance against integral attacks. One of the
examples that explores ARX ciphers in the context of integral attacks is the
work by Hu and Yap [26], in which monomial prediction is used to find integral
distinguishers for ciphers using modular addition for key mixing.
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However, when it comes to security arguments, the situation is fundamentally
different: The method of [24] is inherently limited to whitening the keys by XOR
and thus no formal arguments for the resistance of ciphers with modular key-
additions are available to date.

Our Results

In our work, we develop the theory and the results necessary to give the missing
security arguments for ciphers with key whitening by modular addition. Intrigu-
ingly, as we will see below, our theory also leverages the second drawback, i.e.,
computational feasibility, as the number of monomials to be considered is dras-
tically reduced for modular addition.

As a second line of research, we investigate the power of chosen ciphertext
attacks based on integral properties. That is, we study the integral resistance
properties of block cipher inverses, exploring under what conditions the resis-
tance of E implies the resistance of E−1.

On a bit more technical level, we formulate a generalized notion of integral
resistance as follows: A block cipher E : Fn

2×Fκ
2 → Fn

2 is called d-th order integral
resistant if, for all sets M1, . . . ,Mn ⊆ Fn

2 with not all Mi ∈ {∅,Fn
2}, the Boolean

function

Fκ
2 ∋ k 7→

n∑
i=1

∑
x∈Mi

E(i)(x, k)

is of algebraic degree at least d. Here E(i) denotes the i-th coordinate of E. As it
was already developed in [24], proving (1-st order) integral resistance of E boils
down to checking linear independence of a set of n(2n−1)+1 polynomials in the
key k, which is infeasible for block ciphers in practice. The main result in [24]
was that this complexity can be reduced from n(2n − 1) to only n2 if we assume
that E is an FX-construction.

The generalization to higher degree is, technically and practically, straight-
forward and for d ≥ 2 in particular ensures that no linear equations about the
key are leaked via integral distinguishers. Of course, also high-degree equations
might be helpful for an attack, but an exact definition capturing those cases
seems elusive with today’s knowledge.

We generalize this result to the case of a t-MAFX (Modular Addition FX)
construction depicted below, which adds independent pre- and post-whitening
keys by word-wise modular addition, where we assume that n is split into t
words, each of length s. Note that the case s = 1 coincides with the known case
for XORing the key.

E
ss

k0 k k1

... ...t words
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The essence of our main result is that for a t-MAFX construction, the above-
mentioned complexity is reduced to only t2. Moreover, we are able to handle the
integral resistance of the inverse block cipher as well.

Theorem 1. Let E : Fn
2 × Fκ

2 → Fn
2 be a block cipher with its i-th coordinate

E(i) (for 1 ≤ i ≤ n) expressed by its algebraic normal form

E(i)(x, k) =
∑
u∈Fn

2

p(i)u (k)xu,

where each p
(i)
u (k) is an ANF polynomial in k. Let Ẽ : Fn

2 × Fκ+2n
2 → Fn

2 be a
t-MAFX block cipher defined by

(x, k, k0, k1) 7→ Ek(x⊞t k0)⊞t k1

where k0, k1 ∈ Fn
2 .

There is a subset S of t2 polynomials in {p(i)u (k) | u ∈ Fn
2 , 1 ≤ i ≤ n} with

the following property: If every non-trivial linear combination of S has degree
in k at least d, then both Ẽ and its inverse cipher Ẽ−1 are d-th order integral
resistant.

More precisely, this set S is given as

S := {p(js+1)
uis+1

(k) | i, j ∈ {0, . . . , t− 1}},

where ui is set to the bitwise complement of the i-th unit vector.
In a similar manner as in [24] with the concept of an integral-resistance

matrix, we can verify this sufficient condition for d-th order integral resistance.

More precisely, let the polynomials p
(i)
u (k) be given by

p(i)u (k) =
∑
v∈Fκ

2

λ(i)
u,vk

v, λ(i)
u,v ∈ F2.

A d-th order integral-resistance matrix for E is defined as
λ
(1)
u1,v1 λ

(s+1)
u1,v1 λ

(2s+1)
u1,v1 · · · λ((t−1)s+1)

u1,v1 λ
(1)
us+1,v1 λ

(s+1)
us+1,v1 · · · λ((t−1)s+1)

u(t−1)s+1,v1

λ
(1)
u1,v2 λ

(s+1)
u1,v2 λ

(2s+1)
u1,v2 · · · λ((t−1)s+1)

u1,v2 λ
(1)
us+1,v2 λ

(s+1)
us+1,v2 · · · λ((t−1)s+1)

u(t−1)s+1,v2
...

...
. . .

...
...

...
. . .

...

λ
(1)
u1,vp λ

(s+1)
u1,vp λ

(2s+1)
u1,vp · · · λ((t−1)s+1)

u1,vp λ
(1)
us+1,vp λ

(s+1)
us+1,vp · · · λ((t−1)s+1)

u(t−1)s+1,vp

 ,

where v1, . . . , vp are p ≥ t2 elements from Fκ
2 of Hamming weight at least d. We

get the following corollary.

Corollary 1. Using the same definitions as in Theorem 1, if there exists a d-th
order integral resistance matrix for E of full rank, then both Ẽ and Ẽ−1 are d-th
order integral resistant.
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Note that the coefficients λ
(i)
u,v are given as the parity of the number of division

trails with input pattern u and key pattern v for the i-th output bit. In the case
where E is a key-alternating cipher with independent round keys, those can be
efficiently computed using mixed-integer linear programming [24] [26]. It is worth
highlighting that, in the special case of t = 1, i.e., key whitening by a (single-
word) modular addition, it is enough to find only a single v ∈ Fκ

2 of Hamming

weight at least d such that λ
(1)
u1,v = 1.

Finally, we applied the developed theory to check the bounds on the minimal
number of required rounds to prove the integral resistance property of at least 1st

order. Specifically, we analyzed well-known ciphers such as GIFT-64, SKINNY-64,
and PRESENT in a t-MAFX construction with the assumption of independent and
full round key XORing. We showed improved bounds on the number of rounds
required to achieve integral resistance compared with bounds in [24], namely
from 12-13 rounds to 9-11 rounds. Particularly, some of the new bounds are below
the number of rounds that are exploited by the best-known distinguishers on the
ciphers. Moreover, we proved in each case at least 18th order integral resistance,
depending on the cipher. In some cases, the number of rounds coincides with the
upper bounds on the algebraic degree [23], demonstrating the tightness of our
results. The computational efficiency of the approach is also highlighted, with
every result obtained in under 40 minutes, making it a practical tool.

Cipher
Best-known integral

distinguisher

IR property
in [24]
(t = n)

IR property
for t-word-wise

whitening (t = 1)

IR property
for t-word-wise

whitening (t = 2)

GIFT-64 10 [2] 12 9 10
PRESENT 9 [36] 13 10 10
SKINNY-64 12 [15] 13 11 11

Note: IR stands for Integral Resistance. The numbers give the number of rounds

needed for proving IR. The ciphers assume full and independent round key additions.

Note that, as mentioned in [24], the 11-round distinguisher for SKINNY-64 [15] can be

extended to 12 rounds for free due to the absence of a pre-whitening key.

1.1 Related Work

After the foundational works on high-order differentials [30] and the ”Square
attack” [29], an important research direction became the investigation of the
connection between the integral attack and the algebraic degree of a cipher. One
of the main results in this area was provided by Boura et al. [9] [11], where the
authors established bounds on the algebraic degree of a composition of func-
tions. Hebborn et al. [23] investigated lower bounds on the algebraic degree for
various block ciphers, including PRESENT and GIFT-64. Additionally, the work
investigated lower bounds on the minimum algebraic degree and the number of
rounds required for every output bit’s ANF to include all monomials of maximal
degree n− 1, as such a property rules out many types of integral distinguishers.
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A major breakthrough in integral cryptanalysis came with Todo’s work on
the Conventional Division Property [32]. This technique studies how properties
of subsets of messages propagate through different cipher operations. Instead of
relying solely on algebraic degree arguments, the division property tracks the
change of message structures.

The division property framework was later extended in various ways. For
example, Todo et al. introduced the Bit-based Division Property and 3-subset
Division Property in 2016 [34] by analyzing bitwise propagation rather than
whole-word structures. Hao et al. further refined these techniques by proposing
the 3-subset Division Property without Unknown Subset [22].

Boura et al. [10] provided an alternative perspective on the division property
by the theory of Parity Sets. Meanwhile, Hu et al. [25] introduced Monomial
Prediction, an approach that determines integral distinguishers by predicting
the appearance of monomials in the polynomial representation of the cipher.

As integral attacks became more sophisticated, researchers began exploring
methods for automatizing the search for distinguishers. Hadipour et al. [21] de-
veloped a framework for an automated search for identifying integral properties
in block ciphers, leveraging constraint-programming techniques. More recently,
Beyne et al. [5] introduced the concept of Algebraic Transition Matrices and
its generalization, Ultrametric Integral Cryptanalysis [6]. This latter approach
lifts the theory of integral attacks to a field of characteristic zero and is able to
describe more general divisibility properties than just divisibility by 2 (as it is
used in classical integral cryptanalysis).

Another important branch of research focuses on optimizing key-recovery
attacks based on integral distinguishers. Notably, Ferguson et al. [19] used Partial
Sums, which exploits integral properties to simplify key extraction. In particular,
they decreased the complexity of an integral attack on 6-round AES from naive
272 encryptions to 252 S-box lookups. Later, Todo [33] introduced FFT-based
Key-Recovery. These approaches were further refined by Dunkelman et al. [17],
who combined the above-mentioned strategies to improve attack efficiency in
many times.

Outline The paper is structured as follows: Section 2 provides the necessary
preliminaries, introducing key definitions and notations related to (vectorial)
Boolean functions, algebraic normal forms, and word-wise modular addition.
Section 3 refines and generalizes the integral resistance criteria established in
prior work, addressing limitations in previous definitions. Section 4 analyzes
word-wise modular key pre- and post-whitening, demonstrating its strong im-
pact on integral resistance and bridging the gap between full-state modular ad-
dition and traditional XOR-key whitening. Section 5 investigates the integral
resistance properties of block cipher inverses, exploring under what conditions
the resistance of E implies the resistance of E−1.
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2 Preliminaries

We provide the basic concepts and notations required to establish the results
discussed in this work. These include definitions related to vectorial Boolean
functions, their algebraic normal form (ANF), and the necessary theoretical
framework for word-wise modular addition.

2.1 Notations on (Vectorial) Boolean Functions

For a positive integer n, we denote by F2 the finite field with two elements and
by Fn

2 the n-dimensional F2-vector space.
We follow the convention that the least significant bit (LSB) of a binary

string corresponds to the left-most bit, and indexing starts from 1, meaning that
for an n-bit binary vector x = (x1, x2, . . . , xn), we consider x1 as the LSB.

A unit vector (or basis vector) in Fn
2 is a vector ei where all coordinates

are zero except at the i-th position. At the i-th position, its value takes one.
We denote by 1 the all-one vector (1, . . . , 1) in Fn

2 and by 0 the all-zero vector
(0, . . . , 0) in Fn

2 .
A Boolean function is a mapping f : Fn

2 → F2. Any Boolean function f(x)
can be uniquely described by its algebraic normal form (ANF) via

f(x) =
∑
u∈Fn

2

λux
u,

where input pattern u defines the monomial xu :=
∏n

i=1 x
ui
i and λu ∈ F2 is the

corresponding coefficient. The algebraic degree of non-zero f is the maximum
degree of the monomials in its ANF, i.e., the maximal Hamming weight of u for
which λu = 1.

A keyed Boolean function is a Boolean function that depends not only on the
input vector x ∈ Fn

2 but also on a key vector k ∈ Fκ
2 , defined by its ANF

fk(x) := f(x, k) =
∑

v∈Fκ
2 ,u∈Fn

2

λu,vk
vxu =

∑
u∈Fn

2

pu(k)x
u

where k ∈ Fκ
2 is the κ-bit key with corresponding key-pattern v (selection of key

bits that determine kv monomial) and pu(k) :=
∑

v∈Fκ
2
λu,vk

v is a polynomial in

the key k.
A vectorial Boolean function is a mapping F : Fn

2 → Fm
2 , where n and m

represent the number of input and output bits, respectively. A vectorial Boolean
function can be expressed as

F (x) =
(
F (1)(x), F (2)(x), . . . , F (m)(x)

)
,

where each Boolean function F (i) : Fn
2 → F2 is referred to as a coordinate

function of F . The notion of a keyed vectorial Boolean function is analogous.
A Boolean function F : Fn

2 → Fm
2 is said to be balanced if for each element

y ∈ Fm
2 there are exactly 2n−m preimages under F .
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Any (keyed) vectorial Boolean function F , resp., Fk can be represented in a
similar way as the Boolean function with the help of its ANF,

Fk(x) = F (x, k) =
∑

v∈Fκ
2 ,u∈Fn

2

λu,vk
vxu =

∑
u∈Fn

2

pu(k)x
u,

with the only difference that λu,v is now an element in Fm
2 and pu(k) expresses

an m-dimensional vector of polynomials. The algebraic degree of F (x) is the
maximum algebraic degree among all its coordinate functions.

Any non-trivial linear combination of the coordinate functions of a (keyed)
vectorial Boolean function F , expressed as

⟨β, F (x)⟩ := β1F
(1)(x) + β2F

(2)(x) + · · ·+ βmF (m)(x),

where β ∈ Fm
2 \ {0}, is called a component function of F .

We define a block cipher as keyed vectorial Boolean function E : Fn
2 × Fκ

2 →
Fm
2 such that each Ek : x 7→ E(x, k) is balanced. We emphasize that we focus on

the most relevant special case of m = n, in which the condition of balancedness
of Ek is equivalent to Ek being a permutation. In that case, the inverse of E is
defined by E−1 : (x, k) 7→ E−1

k (x).

2.2 Notations on Word-Wise Ordering and Modular Addition

Let x and y ∈ Fn
2 be partitioned into t equally-sized words, each of dimension

s = n/t, such that

x =
(
x(1), x(2), . . . , x(t)

)
and y =

(
y(1), y(2), . . . , y(t)

)
with x(j) =

(
x
(j)
1 , x

(j)
2 , . . . , x

(j)
s

)
and y(j) =

(
y
(j)
1 , y

(j)
2 , . . . , y

(j)
s

)
for 1 ≤ j ≤ t.

For each word, the left-most bit corresponds to the LSB and the right-most bit
corresponds to the MSB.

We also introduce the ϕ-weight, which provides a flexible framework for as-
signing weights to vectors based on partitioning the vector into t distinct words.
This approach bridges the gap between the Hamming weight, which counts the
number of non-zero coordinates in a vector, and the integer weight, which inter-
prets the vector as a binary representation of an integer and assigns its weight
based on its numerical value modulo 2n.

Firstly, we specify the auxiliary term ϕs(x), which gives the weight of one
particular word. Let be ϕs : Fs

2 → Z be the canonical integer representation
mapping on vector x ∈ Fs

2, such that

ϕs(x) =

s∑
i=1

2i−1xi.

The ϕ-weight of x, denoted ϕt,s(x), is defined as the sum of the weights of
each word. Let be ϕt,s : Fs×t

2 → Z be the mapping on vector x ∈ Fn
2 , such that

ϕt,s(x) =

t∑
j=1

ϕs(x
(j)),
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where ϕs(x
(j)) is the weight assigned to the j-th word.

Again, when t = n, the ϕ-weight coincides with the Hamming weight, ef-
fectively counting the number of bits set to 1, when t = 1 - with the standard
integer ordering - the ϕ-weight corresponds to the numerical value between 0
and 2n − 1 when interpreting the entire vector as a single binary number.

To illustrate the concept of ϕ-weight, consider the following examples with
specific values of n and t:

Example 1. Let x = (x1, x2, x3, x4) = (1, 0, 1, 1) ∈ F4
2 be partitioned into t = 2

words, each of dimension s = n/t = 2:

x = (x(1), x(2)) = ((x1, x2), (x3, x4)).

Assuming the weight of each word is its integer value modulo 2s:

ϕ2,2(x) = ϕ2(x
(1)) + ϕ2(x

(2)) = (2x2 + x1) + (2x4 + x3)

= (2 · 0 + 1) + (2 · 1 + 1) = 1 + 3 = 4.

Now, we introduce a partial order for t-partitioned vectors.

Definition 1. We define the partial order ≤t on Fn
2 by

x ≤t y ⇐⇒ ∀j ∈ {1, 2, . . . , t}, ϕs(x
(j)) ≤ ϕs(y

(j)).

An important property of ϕ-weight is its inherent compatibility with the
partial order ≤t. Specifically, if x ≤t y, then ϕt,s(x) ≤ ϕt,s(y). Note that for the
case t = 1 we write ≤ instead of ≤1. If x ≤t y, we may also write y ≥t x.

Example 2. It holds that for different values of t:

1. (0, 0, 1, 1) ≤ (1, 0, 1, 1)
2. (0, 0, 1, 0) ≥ (1, 0, 0, 0)
3. ((0, 0), (1, 0)) ̸≤2 ((1, 0), (0, 0))
4. ((1, 0), (0, 1)) ≥2 ((1, 0), (1, 0))
5. ((1), (0), (1), (1)) ≥4 ((1), (0), (1), (0))
6. ((1), (0), (0), (1)) ̸≤4 ((1), (0), (1), (0))

Note, when t = n, the partial order≤t coincides with the standard component-
wise partial order (also known as the predecessor partial order ⪯). Conversely,
when t = 1, then ≤t corresponds to the integer (total) ordering ≤.

The binary operation ⊞t denotes the word-wise modular addition of two
vectors x and y in Fn

2 . Specifically, each corresponding pair of words from x and
y is added modulo 2s.

Formally,

x⊞t y =
(
x(1) ⊞ y(1), x(2) ⊞ y(2), . . . , x(t) ⊞ y(t)

)
,

where for each j = 1, 2, . . . , t,
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ϕs

(
x(j) ⊞ y(j)

)
≡ ϕs(x

(j)) + ϕs(y
(j)) mod 2s.

With this definition, (Fn
2 ,⊞t) is an abelian group with neutral element 0. We

denote the inverse operation by ⊟t.
The case when t = n, each word consists of a single bit (s = 1). In this case,

the operation ⊞t reduces to the bitwise XOR operation since addition modulo 2
is equivalent to XOR. On the other hand, if t = 1, the entire vector is treated as
a single word of dimension s = n. Here, ⊞t corresponds to the standard integer
addition modulo 2n, or ⊞.

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

n

0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1

4
0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 1

s s s s

Fig. 1. Example of word-wise modular addition for t = 4 and n = 16.

Remark 1. Note that our approach can be naturally extended to cases where
the partitioning is not restricted to equally-sized words, but instead allows for
arbitrary word lengths. All ideas presented here seamlessly adapt to this more
general setting. However, for the sake of clarity, we assume throughout our anal-
ysis that the full state is partitioned into equally-sized words.

3 On the Definition of Integral Resistance

We recall the formal definition of integral resistance by Hebborn et al. in [24].

Definition 2 (Integral Resistance Property [24]). Let E : Fn
2 × Fκ

2 → Fm
2

be a block cipher. We say that E is integral resistant if, for all sets M ⊆ Fn
2

with M /∈ {∅,Fn
2} and all non-zero β ∈ Fm

2 , the Boolean function

Fκ
2 → F2, k 7→

∑
x∈M

⟨β,E(x, k)⟩

is not constant.

In their work, the authors provided security arguments for the integral resistance
of a block cipher using XOR pre-whitening and the assumption of independent
round keys.
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To provide an intuition for how those security arguments work, let us first
consider the case of a block cipher with only one output bit, i.e., f : Fn

2×Fκ
2 → F2,

and β = 1. The goal is to prevent the existence of a subset M ⊆ Fn
2 with

M /∈ {∅,Fn
2} such that ∑

x∈M

fk(x) (1)

is constant, independently of k.
For a subset M ⊆ Fn

2 , we denote its parity set [10] by

U(M) :=

{
u ∈ Fn

2 |
∑
x∈M

xu = 1

}
.

A crucial property used in the following is the fact that there is a one-to-one
correspondence between subsets M of Fn

2 and parity sets.

Lemma 1 (Identification of Subsets by Parity Sets [10]). The mapping
U : M 7→ U(M) is a bijection on the set of all subsets of Fn

2 . We further have

U(∅) = ∅ and U(Fn
2 ) = {1}.

Expressing fk(x) in its algebraic normal form, we can rewrite (1) as∑
x∈M

fk(x) =
∑
x∈M

∑
u∈Fn

2

pu(k)x
u =

∑
u∈Fn

2

pu(k)
∑
x∈M

xu =
∑

u∈U(M)

pu(k).

Then, following from Lemma 1, the function k 7→
∑

x∈M fk(x) is non-
constant for all M ⊆ Fn

2 with M /∈ {∅,Fn
2} if and only if the polynomial∑

u∈M pu(k) is non-constant for all non-empty sets M ⊆ Fn
2 with M ̸= {1}.

Because of the fact that p(1,...,1)(k) = 0 (because fk is balanced for all k), this
latter statement is equivalent to the statement that every non-trivial linear com-
bination of the set of polynomials {pu(k) | u ∈ Fn

2 \ {1}} is non-constant, i.e.,
has degree at least 1 in the key.

Remark 2. In [24], the authors were missing to include this requirement on the
degree in the above characterization of linear independence of polynomials. In-
deed, including the bound is necessary for ensuring integral resistance. For ex-
ample, consider the scenario where p110(k) = k1 and p101(k) = k1 + 1. These
are linearly independent, but their sum results in a constant value. The most
notable example of exploiting this property is an attack on 12-round SIMON32
[34] using L set (set of u’s s.t.

∑
x∈M xu = 1 for defined M) in 3SDP leading to

the existence of an integral distinguisher
∑

x∈U(M)⟨β,E(x, k)⟩ = 1.

It is important to note that, although the incomplete criterion in [24], in
their experiments, the authors generated only non-zero key patterns v, i.e., the
Hamming weight of v is at least 1. Hence, their bounds on the number of rounds
for integral resistance remain valid. This is because they evaluated polynomials
only for these key patterns, meaning that if the polynomials are linearly inde-
pendent in the general sense (without considering bounds on the degree), then
the obtained bound corresponds to the minimal weight of key patterns.
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So, for the general case of a block cipher E, we can ensure integral resistance
if every non-trivial linear combination of the set

n⋃
i=1

{p(i)u (k) | u ∈ Fn
2 \ {1}} (2)

has degree at least 1 in k, where p
(i)
u denotes the i-th coordinate of the vector of

polynomials pu.

Remark 3. Ensuring that every non-trivial linear combination of the set in (2)
is not constant is actually equivalent to a much stronger property than integral
resistance in the sense of Definition 2. Namely, the latter assumes that just a
fixed subset of plaintexts M is used when applying a non-zero mask β on the
output of the cipher. More generally, each output bit can have its own subset
of the input subset. The above-mentioned condition gives more “flexibility”,
the actual integral resistance outcome is the following statement: for all sets
M1, . . . ,Mm ⊆ Fn

2 with not all of them in {∅,Fn
2}, the Boolean function

Fκ
2 → F2, k 7→

m∑
i=1

∑
x∈Mi

E(i)(x, k)

is non-constant (or is of algebraic degree at least d, if we use the more gen-
eral notion, defined below). Note that this notion already covers attacks with a
sum over different subsets. Here, we refer, for example, to some of the integral
distinguishers on 9-round PRESENT listed in [5]:∑

x10=0

E(17)(x) +
∑

x11=0

E(49)(x) is constant.

Notably, for each Ek : Fn
2 → Fm

2 , the number of polynomials p
(i)
u (k) grows

exponentially with n. Specifically, for each i ∈ {1, . . . ,m}, there are 2n − 1 such
polynomials (since u ∈ Fn

2 and for a block cipher, we have p(1,...,1) = 0), resulting
in a total of m(2n − 1) polynomials. Clearly, this makes direct computation
infeasible. This is where the key insight from [24]—Theorem 2 and Corollary
2—becomes crucial. Here, we will state a corrected version of Theorem 2.

Proposition 1 (Theorem 2 in [24]). Let fk : Fn
2 → F2 be a balanced Boolean

function with ANF

fk(x) =
∑
u∈Fn

2

pu(k)x
u

and consider a version of fk with an additional pre-whitening key k0, i.e.

f̃k,k0(x) := fk (x+ k0) =
∑
v∈Fn

2

qv (k, k0)x
v.
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If any non-trivial linear combination of polynomials pu(k) for u of Hamming
weight n− 1 is non-constant, then any non-trivial linear combination of polyno-
mials

{qv (k, k0) | v ∈ Fn
2\{1}}

is non-constant.

Let us analyze the case of a block cipher E with m = n. There are n such
monomials for one coordinate function whose input patterns u are of Hamming
weight n − 1 (and n2 for a permutation Ek(x) as there are n coordinates).
Proving that any non-trivial linear combination of just these polynomials pu’s is
not constant is enough to guarantee that the block cipher with a whitening key,
defined by Ek(x + k0), achieves integral resistance. In simple words, the linear
independence of degree d = 1 can be propagated from high-order terms to the
full space of monomials in case of using a pre-whitening key.

Consequently, the complexity is reduced, involving the computation of values
of pu(k) for n2 values of the key of Hamming weight at least 1 (i.e., n2 num-
ber of key-patterns v) and proving their linear independence. This technique
allowed a robust approach to find the required number of rounds for different
ciphers like SKINNY-64 or GIFT-64 [24] to ensure resistance against any integral
distinguishers.

For that, an integral-resistance matrix I(E) for the block cipher E is con-

structed by finding the coefficients λ
(i)
u,v in the algebraic normal form of the

cipher, for n input patterns u (of Hamming weight n − 1), for n output coor-
dinates (i) and p ≥ n2 key patterns v (of Hamming weight ≥ 1). Its full rank
ensures that every non-trivial linear combination of pu(k) for u of Hamming
weight n−1 is non-constant, assuring integral resistance after pre-whitening the
cipher.

I(E) =


λ
(1)
u1,v1 λ

(2)
u1,v1 · · · λ(n)

u1,v1 λ
(1)
u2,v1 λ

(2)
u2,v1 · · · λ(n)

un,v1

λ
(1)
u1,v2 λ

(2)
u1,v2 · · · λ(n)

u1,v2 λ
(1)
u2,v2 λ

(2)
u2,v2 · · · λ(n)

un,v2
...

...
. . .

...
...

...
. . .

...

λ
(1)
u1,vp λ

(2)
u1,vp · · · λ(n)

u1,vp λ
(1)
u2,vp λ

(2)
u2,vp · · · λ(n)

un,vp

 .

3.1 A Refinement of the Notion of Integral Resistance

We will refine the notion of integral resistance. Let

pM (k) :=
∑

u∈U(M)

pu(k),

where pM (k) represents the resulting polynomial in k. Having that
∑

x∈M fk(x)
is not constant in k is equivalent to having degk(pM (k)) ≥ 1, where degk(p(k))
denotes the degree of the polynomial p(k) in k (i.e., the highest degree of any
monomial in k that appears with a nonzero coefficient). In other words, pM (k)
must not be a constant polynomial.
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For simplicity, we introduce a new concept: d-independence of polynomials
over F2. This definition ensures that any non-trivial linear combination of the
polynomials in S = {p1(k), p2(k), . . . , pm(k)} retains a degree of at least d.

Definition 3 (d-independence). Let S be a set of polynomials over F2. S is
called d-independent if any non-trivial linear combination of S is a polynomial
of degree at least d.

For integral resistance with respect to the Definition 2, 1-independence is
sufficient to ensure that pM (k) is not constant as a resulting polynomial of a
sum of values over any non-empty set M ⊆ Fn

2 ,M ̸= Fn
2 .

Nevertheless, in the light of Remarks 2 and 3, it requires a new more precise
definition of integral resistance.

Definition 4 (d-th order Generalized Integral Resistance Property).
Let E : Fn

2 × Fκ
2 → Fm

2 be a block cipher and d ≥ 1. We say that E is d-th order
integral resistant if, for all sets M1, . . . ,Mm ⊆ Fn

2 with not all Mi ∈ {∅,Fn
2}, the

Boolean function

Fκ
2 → F2, k 7→

m∑
i=1

∑
x∈Mi

E(i)(x, k)

is of algebraic degree at least d.

In other words, it states that for proving d-th order integral resistance, it is
necessary to choose key patterns v for matrix I(E) only of Hamming weight at
least d, similarly to what we briefly discussed in Remark 2.

Intuitively, the higher the order d, the stronger the resistance against inte-
gral attacks. However, there are some exceptions to this intuition. Let us define

pM1,...,Mm(k) :=
∑m

i=1

∑
u∈U(Mi)

p
(i)
u (k). While it may seem reasonable to as-

sume that increasing the degree of pM1,...,Mm
(k) inherently strengthens security,

the relationship is more nuanced.
For example, 1st order integral resistance could still imply that the attacker

knows a resulting polynomial pM1,...,Mm
(k) of degree 1 for some subsets M1, . . . ,

Mm of Fn
2 . Then this is equivalent to revealing one bit of the key. A similar

property is exploited by the original cube attack described by Dinur and Shamir
[16]. This follows from the fact that solving linear equations over F2 is trivial.
Thus ensuring, for example, that d ≥ 2 could address such direct key leakage.
This is because the analysis of polynomials from degree 2 onwards becomes
significantly more complex.

On the other hand, consider the extreme case where some pM1,...,Mm
(k)

achieves its maximal degree and pM1,...,Mm
(k) = k1k2 · · · kκ. In this scenario,

there is only one key assignment that doesn’t satisfy pM1,...,Mm(k) = 0, namely
k1 = k2 = k3 = · · · = km = 1. Consequently, the integral property holds for
almost the entire key space and always evaluates to zero, except for the special
case of the ”all-one” key. This means that although the resulting polynomial
has a high degree, it does not necessarily provide stronger security, as the in-
tegral property becomes trivially true for most keys, making the cipher highly
predictable in this setting.
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So, analyzing the polynomial pM1,...,Mm
(k) provides a way to investigate the

existence of weak keys for integral attacks, i.e., keys for which pM1,...,Mm
(k) = 0

or pM1,...,Mm(k) = 1. Still, in general, the case analysis becomes significantly
more complex for degk(pM1,...,Mm(k)) ≥ 2 as already mentioned. Nonetheless,
in certain corner cases, we may still be able to derive insights about the size
of the kernel ker(pM1,...,Mm

(k)), which represents the set of keys that nullify
pM1,...,Mm

(k).

3.2 Does Integral Resistance Exist in Reality?

Let us assume some cipher has a known linear or differential distinguisher, but on
only a reduced-round variant and with complexity 2n−1. Does it mean that the
full version has no such attack? Of course, no. There still can exist distinguishers.
However, we still cannot find them.

In the same manner, things work for integral cryptanalysis. Let us give an
example. For simplicity, let us consider an integral attack on one fixed coordinate
function fk(x) and let us assume that the key space and message space are both
Fn
2 . There are 2

2n subsets M of Fn
2 , so we assume to get 22

n

Boolean polynomials
in the key of the form

∑
x∈M fk(x) = pU(M)(k). However, the number of possible

unique polynomials is also 22
n

. So, the probability that there will be two subsets
M1 and M2 of the message space with

∑
x∈M1

fk(x) =
∑

x∈M2
fk(x) = p(k)

is almost 1. Hence, if we take the sum of encrypted values over the symmet-
ric difference of M1 and M2, i.e.,

∑
x∈M1∆M2

fk(x), where ∆ is the symmetric
difference, it will be equal to zero (for any key).

For an n-to-n bit block cipher, taking into account that the attacker can
use a more sophisticated type of integral attack, for example, exploiting a linear
combination of the output bits or different subsets of plaintexts for each output
bit, as we discussed in Remark 3, by the pigeonhole principle, the probability
of such collision becomes 1. For each M1, . . . ,Mn ⊆ Fn

2 there are 22
n

possible
choices resulting in 2n2

n

possible configurations. Then, to at least have a chance
that there is no integral attack, this number should be not less than the number
of possible resulting polynomials in the key, i.e., 22

κ

. Thus, if the key size κ is
below the threshold n+ log2 n, then integral attacks, in the way defined earlier,
are certain to exist. Thus, integral distinguishers become almost inevitable unless
the key size significantly exceeds n+ log2 n.

It is important to stress that the bounds on the number of rounds for ensuring
integral resistance ([24]) use the assumption of independent rounds key and
consequently blow up the key space to Frn

2 . Therefore, such a collision can be
expected to appear with a much smaller probability for such cases. It is important
to mention that, in general, the connection between independent keys and the
use of an actual key schedule could be an interesting question for future research.

4 Modular Key Addition

Our approach of analyzing the effect of modular key addition for pre- and post-
whitening is rooted in Theorem 1 from [12], which states that for a monomial
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function f(x) = xu, we have

f(x⊞ k0) = (x⊞ k0)
u =

∑
v≤u

ku⊟v
0 xv.

To illustrate the contrasting effects of XORing the key and performing ad-
dition modulo 2n, we present a simple example of their impact on the function
x101 = x5.

Example 3.

(x⊞ k0)
5 = (x⊞ k0)

101 = x5 + x4k10 + x3k20 + x2k30 + x1k40 + k50

= x101 + x001k1000 + x110k0100 + x010k1100 + x100k0010 + k1010

(x+ k0)
5 = (x+ k0)

101 = x101 + x001k1000 + x100k0010 + k1010

4.1 Modular Key Pre-Whitening

Note that many ciphers (especially ARX constructions) in their specification use
word-wise instead of full-state modular addition. Thus, we generalize the concept
of t-word-wise modular addition using the notations given in the preliminaries.
Importantly, this framework is independent of the size of the words. When t=1,
the lemma and subsequent proposition correspond to the previously discussed
case of full-state modular addition. In contrast, when t = n, it reduces to the
XOR-based case described in ”classical” key whitening used in many ciphers.

By bridging these two corner cases—full-state modular addition and XOR-
based whitening—this framework provides a unified tool to analyze t-word-wise
modular key pre-whitening. This is particularly valuable for more advanced cases
where t is neither 1 nor n. To the best of our knowledge, we provide the first
explicit security criteria for t-word-wise pre-whitened ciphers, addressing a key
gap in the analysis of such constructions.

Firstly, we show how the Boolean function’s ANF changes after t-word-wise
modular key addition, generalizing Theorem 1 from [12].

Lemma 2. Let f : Fn
2 → F2 be a Boolean function with ANF f(x) = xu, where

u ∈ Fn
2 . Assume f̃k0(x) := f(x⊞t k0). Then we have

f̃k0
(x) = (x⊞t k0)

u
=

∑
v≤tu

xvku⊟tv
0 .

Proof. Let us proceed by induction on t.

– For t = 1.
This case exactly corresponds to Theorem 1 in [12].

f̃k(x) = f(x⊞ k) = (x⊞ k)
u
=

∑
v≤u

xvku⊟v
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– For 2 ≤ t ≤ n.

f̃k(x) = f(x⊞t k) = (x⊞t k)
u

Then, we split u as follows:

f̃k(x) = (x⊞t k)
((u(1),...,u(t−1)),u(t))

By the induction hypothesis, the lemma works for the first t−1 words. Then
we have

f̃k(x) = (x⊞t k)
((u(1),...,u(t−1)),u(t))

=
(
x(u(1),...,u(t−1)) ⊞t−1 k

(u(1),...,u(t−1))
)(u(1),...,u(t−1)) (

xu(t)

⊞ ku
(t))

)u(t)

=

 ∑
(v(1),...,v(t−1))≤t−1(u(1),...,u(t−1))

x(v(1),...,v(t−1))k(u
(1),...,u(t−1))⊟t−1(v

(1),...,v(t−1))


×

∑
v(t)≤u(t)

xv(t)

ku
(t)⊟v(t)

=
∑

(v(1),...,v(t−1))≤t−1(u(1),...,u(t−1))

 ∑
v(t)≤u(t)

xvku⊟tv


=

∑
v≤tu

xvku⊟tv .

⊓⊔

Now we consider a keyed Boolean function fk(x) with the ANF in general
form for which a modular word-wise pre-whitening is applied.

Proposition 2. Let fk : Fn
2 → F2 be a Boolean function with ANF

fk(x) =
∑
u∈Fn

2

pu(k)x
u

and assume f̃k,k0
(x) := fk(x⊞t k0) to be expressed by its ANF

f̃k,k0
(x) = fk (x⊞t k0) =

∑
v∈Fn

2

qv (k, k0)x
v.

Then, for all v ∈ Fn
2 , we have

qv (k, k0) =
∑
u≥tv

pu(k)k
u⊟tv
0
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Proof. We express qv (k, k0) in terms of pu. We get

f̃k,k0
(x) = fk (x⊞t k0) =

∑
u∈Fn

2

pu(k) (x⊞t k0)
u

=
∑
u∈Fn

2

pu(k)

∑
v≤tu

xvku⊟tv
0

 =
∑
v∈Fn

2

∑
u≥tv

pu(k)k
u⊟tv
0

xv.

⊓⊔

One special case of this proposition corresponds to Corollary 1 from Braeken
and Semaev [12], where full-state modular addition is applied, i.e., f̃k,k0

(x) =
fk (x⊞ k0). In this case, the expression for qv (k, k0) simplifies to

qv (k, k0) =
∑
u≥v

pu(k)k
u⊟v
0 .

Proposition 2 demonstrates that in the case of t < n, the propagation of
whitening key monomials ku⊟tv

0 and associated polynomials pu(k) terms under
modular addition significantly expands the space of affected terms comparing
with XORing whitening. We call it ”intra-bit” propagation. This expansion arises
due to the existence of a ”wider” partial order than the precursor partial order
in Fn

2 . Consequently, we also need fewer linearly independent pu(k) to ensure
similar linear independence of all qv(k, k0), which is shown in Proposition 3. But
before proving this, we first introduce a helpful lemma. Note that vectors of
weight t(2s− 1)− 1 correspond to all-ones vectors with one word’s LSB set to 0.

Lemma 3. Let v, w ∈ Fn
2 be such that ϕt,s(v) + ϕt,s(w) > t(2s − 1) − 1 and

v ⊞t w ≥t v. Then, v ⊞t w = 1.

Proof. From v ⊞t w ≥t v, we have

ϕs(v
(i) ⊞t w

(i)) ≥ ϕs(v
(i)) for all 1 ≤ i ≤ t.

This implies,

ϕs(v
(i)) + ϕs(w

(i)) ≤ 2s − 1 for all 1 ≤ i ≤ t.

Then,

ϕt,s(v) + ϕt,s(w) ≤ t(2s − 1).

Eventually, combined with the initial assumption, we have

ϕt,s(v) + ϕt,s(w) =

t∑
i=1

(ϕs(v
(i)) + ϕs(w

(i))) = t(2s − 1).

Then for all i ∈ {1, . . . , t},

ϕs(v
(i)) + ϕs(w

(i)) = 2s − 1.

Thus, v(i) ⊞ w(i) = (1, . . . , 1) for all i, which implies v ⊞t w = (1, . . . , 1). ⊓⊔
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Proposition 3. Let fk and f̃k,k0
be balanced Boolean functions defined by their

ANFs as follows

fk(x) =
∑
u∈Fn

2

pu(k)x
u ,

f̃k,k0
(x) := fk(x⊞t k0) =

∑
v∈Fn

2

qv(k, k0)x
v .

Let Ut := {µ ∈ Fn
2 | ϕt,s(µ) = t(2s − 1) − 1}. If the set {pµ(k) | µ ∈ Ut} is

d-independent, then set of polynomials

{qv (k, k0) | v ∈ Fn
2\{1}}

is d-independent.

Proof. Let us assume that there exist coefficients αv ∈ F2 such that

degk

 ∑
v∈Fn

2 \{1}

αvqv(k, k0)

 < d . (3)

Note that, by degk(r(k, k0)) for a polynomial r, we mean the degree in k
when considering r as a polynomial in k and k0 (i.e., we do not assume k0 as a
constant). We will prove that (3) implies αv = 0 for all v.

T =
∑

v∈Fn
2 \{1}

αvqv(k, k0) =
∑

v∈Fn
2 \{1}

αv

∑
u≥tv

pu(k)k
u⊟tv
0



=
∑

v∈Fn
2 \{1}

αv

 ∑
w∈Fn

2 ,
v⊞tw≥tv

pv⊞tw(k)k
w
0

 =
∑
w∈Fn

2

 ∑
v∈Fn

2 \{1},
v⊞tw≥tv

αvpv⊞tw(k)

 kw0 .

Assuming,

Tw :=
∑

v∈Fn
2 \{1},

v⊞tw≥tv

αvpv⊞tw(k).

Then, degk(T ) < d if and only if for all w ∈ Fn
2 we have

degk (Tw) = degk

 ∑
v∈Fn

2 \{1},
v⊞tw≥tv

αvpv⊞tw(k)

 < d . (4)

We show that (4) for all w ∈ Fn
2 implies αv = 0 for all v by induction on the

ϕ-weight of v.
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– For ϕt,s(v) = 0.
If ϕt,s(v) = 0 then v = (0, . . . , 0). Let us consider a w = µ ∈ Ut. Then, we
have

Tw = α(0,...,0) · pµ(k) + α(1,...,1)⊟tµ · p(1,...,1)(k)

Due to the balancedness of fk, we have p(1,...,1)(k) = 0, but pµ(k) is non-zero
and degk(pµ(k)) ≥ d by assumption, thus we have necessarily α0 = 0.

– For ϕt,s(v) = ℓ ≤ t(2s − 1) − 1 = ϕt,s(µ), µ ∈ Ut.
Let us consider a vector w of ϕ-weight ϕt,s(µ) − ℓ, where µ ∈ Ut. Then, we
split Tw as follows:

Tw =
∑

v∈Fn
2 \{1},

ϕt,s(v)>ℓ,
v⊞tw≥tv

αvpv⊞tw(k) +
∑

v∈Fn
2 \{1},

ϕt,s(v)=ℓ,
v⊞tw≥tv

αvpv⊞tw(k) +
∑

v∈Fn
2 \{1},

ϕt,s(v)<ℓ,
v⊞tw≥tv

αvpv⊞tw(k) .

The last sum is equal to 0 as, by the induction hypothesis, we have αv =
0 for all v such that ϕt,s(v) < ℓ. Additionally, for the first sum we have
v ⊞t w = (1, . . . , 1) due to Lemma 3, meaning pv⊞tw(k) = 0. Then we have

Tw =
∑

v∈Fn
2 \{1},

ϕt,s(v)=ℓ,
v⊞tw≥tv

αvpv⊞tw(k) = 0 ,

where v ⊞t w ∈ Ut. By assumption, any non-trivial linear combination of
corresponding polynomials pv⊞tw is of degree at least d, so degk(Tw) < d
implies αv = 0 for all v of ϕ-weight ℓ such that v ⊞t w ≥t v. This implies
αv = 0 for all v of ϕ-weight ℓ. This is because for all v with ϕt,s(v) = ℓ there
exists w with ϕt,s(w) = t(2s − 1)− 1− ℓ such that v ⊞t w ≥t v.

⊓⊔

It is straightforward to formulate a generalized version of Proposition 3 for
vectorial Boolean Functions. That is, if Ek : Fn

2 → Fm
2 and Ẽk,k0

: Fn
2 → Fm

2 are
balanced, defined by their ANFs as

E
(i)
k (x) =

∑
u∈Fn

2

p(i)u (k)xu ,

Ẽ
(i)
k,k0

(x) := E
(i)
k (x⊞t k0) =

∑
v∈Fn

2

q(i)v (k, k0)x
v ,

then {q(i)v (k, k0) | v ∈ Fn
2 \ {1}, i = 1, . . . ,m} is d-independent if {p(i)µ (k) | µ ∈

Ut, i = 1, . . . ,m} is d-independent. The proof works in the same manner, with
the difference that we have to consider

Tw :=

m∑
i=1

∑
v∈Fn

2 \{1},
v⊞tw≥tv

α(i)
v p

(i)
v⊞tw

(k).
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The vectors µ ∈ Ut have maximal ϕ-weight among all vectors in Fn
2 except the

all-one vector. In some sense, Ut can be considered as a Pareto front dominating
all other vectors. In [24], the authors considered the case when t = n, and set Ut

corresponds to vectors of Hamming weight n− 1.
We can also define Ut in another convenient way. For this purpose, we denote

by ui the vector in Fn
2 of Hamming weight n − 1 such that its i-th position is

zero, i.e., ui is the bitwise complement of the i-th unit vector ei. Then, the set
Ut can be expressed as:

Ut = {ujs+1 | j = 0, . . . , t− 1}.

Note, for each t-partition, the corresponding vector in Ut is unique. Building
on this observation, in Proposition 3, we presented a simple general criterion
that any non-trivial linear combination of polynomials qv(k, k0), generated after
applying modular pre-whitening, will be of degree at least d.

Example 4. For n = 6 and t = 2 (i.e., each word has 3 bits), the set Ut consists
of the vectors 111011 and 011111. These vectors represent the maximal ϕ-weight
configuration that dominates all other vectors in the vector space (except for the
all-one vector).

A particularly interesting and elegant case of Proposition 3 arises when the
whitening key is added to the full state, i.e., t = 1 and f̃k,k0

(x) = fk(x ⊞ k0).
The reason is that Ut only contains one element in that case. We formalize this
specific case in the following corollary.

Corollary 2. Let fk and f̃k,k0
be balanced Boolean functions defined by their

ANFs as follows

fk(x) =
∑
u∈Fn

2

pu(k)x
u ,

f̃k,k0
(x) := fk(x⊞ k0) =

∑
v∈Fn

2

qv(k, k0)x
v .

If p(0,1,...,1,1)(k) has degree at least d in the key k, then set of polynomials

{qv(k, k0) | v ∈ Fn
2 , v ̸= 1}

is d-independent.

We established an absolutely simple condition to guarantee the non-existence
of integral distinguishes for a single output bit in the case of full-state modu-
lar pre-whitening. It suffices to ensure that only one of the polynomials pu(k)
(p(0,1,...,1,1)(k) or pu1(k) in other words) in the ANF representation of the ci-

pher is of degree at least d. Then, after applying the whitening key, f̃k,k0
is

integral-resistant (i.e., all polynomials qv(k, k0) and all their non-trivial linear
combinations will be of degree at least d). We do not even need to check the
linear independence of p(0,1,...,1,1)(k) with other polynomials in the ANF.
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4.2 Modular Key Post-Whitening

Typically, papers investigating integral resistance (e.g., [23,24]) use the assump-
tion of pre-whitening keys, as it has already been shown to significantly affect the
propagation of linear independence among polynomial coefficients in the ANF
of Boolean functions. On the other hand, classical post-whitening using XOR
operations does not affect the structure of the ANF for Ẽk,k1

(x) = Ek(x) + k1,
since it only modifies the constant coefficient p(0,...,0)(k) without introducing
new key dependencies for higher-degree terms. However, this is not the case for
modular addition, i.e., Ẽk,k1(x) = Ek(x) ⊞ k1 = Ek(x) + k1 + c, where c is a
carry function that introduces significant dependencies across output bits ANFs
coefficients via carry bit propagation. We call this ”inter-bit” propagation.

Let x, k ∈ Fn
2 and F (x, k) := x ⊞ k. Lemma 2 applied to u = ei yields

F (i)(x, k) =
∑

ϕn(v)≤2i−1 xvku⊟v. In particular, the ANF of F (i) contains the

monomial x1

∏i−1
j=1 kj as a monomial of maximum degree, and this is the only

monomial containing
∏i−1

j=1 kj . For a better understanding, we provide an illus-
trative example of the values of F after full-state modular addition.

Example 5. The first output bits of F are:

F (1) = x1 + k1,

F (2) = x2 + k2 + x1k1,

F (3) = x3 + k3 + x2k2 + x1x2k1 + x1k1k2,

F (4) = x4 + k4 + x3k3 + x3x2k2 + x3x2x1k1 + x3x1k1k2 + k3x2k2

+ k3x2x1k1 + x1k1k2k3.

The carry bit provides a robust mechanism for propagating integral resistance
across the entire state. Specifically, each carry bit part depends recursively on x1

(the LSB of x) multiplied by unique key monomials. This brings us to proving a
simple condition for integral resistance of block cipher E in the case of full-state
modular addition post-whitening.

Lemma 4. Let E : Fn
2 × Fκ

2 → Fn
2 be a block cipher and let the block cipher

Ẽ : Fn
2 × Fκ+n

2 → Fn
2 be defined by

(x, k, k1) 7→ Ek(x)⊞t k1

where k1 ∈ Fn
2 is a post-whitening key. If E(1) is d-th order integral resistant,

then Ẽ is d-th order integral resistant.

Proof. Given the modular post-whitening equation

Ẽk,k1
(x) = Ek(x)⊞ k1.

Then for each output coordinate we have, due to Lemma 2:

Ẽ
(i)
k,k1

(x) = (Ek(x)⊞ k1)
ei =

∑
v≤ei

Ev
k(x)k

ei⊟v
1

= Eei
k (x) + Eei⊟e1

k (x)ke11 + . . .+ Ee2
k (x)kei⊟e2

1 + Ee1
k (x)kei⊟e1

1 + kei1 .
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Then, we need to prove that the linear combination of output coordinates of Ẽ
is of degree at least d for all subsets M1, . . . ,Mn ⊆ Fn

2 (excluding cases when all
of them are in {∅,Fn

2}):

n∑
i=1

∑
x∈Mi

Ẽ
(i)
k,k1

(x) =

n∑
i=1

∑
x∈Mi

(Eei
k (x) + Eei⊟e1

k (x)ke11 + . . .

+ Ee2
k (x)kei⊟e2

1 + Ee1
k (x)kei⊟e1

1 + kei1 )

Separating the terms, we obtain:

n∑
i=1

∑
x∈Mi

E
(i)
k,k1

(x)

=

n∑
i=1

∑
x∈Mi

(
Eei

k (x) + Eei⊟e1
k (x)ke11 + . . .+ Ee2

k (x)kei⊟e2
1

)
︸ ︷︷ ︸

Input term

+

n∑
i=1

∑
x∈Mi

kei1︸ ︷︷ ︸
Key addition term

+

n∑
i=1

∑
x∈Mi

Ee1
k (x)kei⊟e1

1︸ ︷︷ ︸
Key-dependent term

.

The third term ensures key dependency, as the first two cannot cancel it.
The reason is that the third term includes kei⊟e1

1 of Hamming weight i− 1, for
maximal i such that Mi /∈ {∅,Fn

2}, and it is the highest weight term in k1 among
other key monomials, Then, in order to prove that the whole sum is of degree
at least d it is enough to prove the same for last term

n∑
i=1

∑
x∈Mi

Ee1
k (x)kei⊟e1

1 =

n∑
i=1

kei⊟e1
1

∑
x∈Mi

E
(1)
k (x).

As kei⊟e1
1 is unique for any i = 1, . . . , n, the above implies that it is sufficient

to show for any Mi the sum
∑

x∈Mi
E

(1)
k (x) is of degree at least d. The last

statement is equal to proving that E(1) is d-th order integral resistant, which is
given by the condition of the lemma. Therefore, Ẽ is d-th integral resistant. ⊓⊔

The same propagation extends naturally to t-word-wise operations, where
the state and post-whitening key k1 are partitioned into t equally-sized words.
Modular addition is applied independently within each partition, introducing
key dependencies within each word.

Proposition 4. Let E : Fn
2 ×Fκ

2 → Fn
2 be a block cipher and let the block cipher

Ẽ : Fn
2 × Fκ+n

2 → Fn
2 be defined by

(x, k, k1) 7→ Ek(x)⊞t k1,
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where k1 ∈ Fn
2 is a post-whitening key. If the projection

(x, k) 7→ (E
(1)
k (x), E

(s+1)
k (x), E

(2s+1)
k (x), . . . , E

((t−1)s+1)
k (x))

of E is d-th order integral resistant, then Ẽ is d-th order integral resistant.

The proof is trivial and follows directly from the full-state case. Each of
the t words is treated independently, with modular addition introducing unique
dependence on k1 in the same manner as described for the full-state key post-

whitening. This follows from the fact that the output bit E
(i)
k,k1

always includes

the term E
(⌊ i

s ⌋s+1)

k

∏i−1
l=⌊ i

s ⌋s+1 k
(l)
1 , where ⌊ i

s⌋ ∈ {0, . . . , t − 1}. Notice that bit

⌊ i
s⌋s+ 1 is the LSB with respect to the word, which also includes i-th bit.

4.3 Modular Key Pre- and Post-Whitening

After introducing intra- and inter-bit propagation, we extend the framework by
considering the simultaneous application of modular pre- and post-whitening to
the cipher E, i.e., the t-MAFX construction. This construction can be considered
in some sense as a generalization of the classical FX construction [27] [1] [8] or
of the combination of Addition Even-Mansour (AEM) [18] with a block cipher,
depending on the value of t. Specifically, when t = n, our setup reduces to the
FX construction, and when t = 1, it corresponds to AEM compounded with
block cipher E. For intermediate values of t, it introduces modular whitening
at the granularity of t-words, combining the key dependency and propagation
mechanisms in a flexible and scalable manner.

Let E be a block cipher defined as above with ANF

Ek(x) =
∑
u∈Fn

2

pu(k)x
u

and consider Ẽ which adds modular pre- and post-whitening:

Ẽk,k0,k1
(x) = (Ek(x⊞t k0))⊞t k1,

where k0 ∈ Fn
2 and k1 ∈ Fn

2 are pre- and post-whitening keys, respectively. To
ensure the construction is d-th order integral-resistant, we require the following:

1. Due to the post-whitening step, the block cipher with t output coordinates
defined by

(x, k, k0) 7→ (E
(1)
k (x⊞t k0), E

(s+1)
k (x⊞t k0), . . . , E

((t−1)s+1)
k (x⊞t k0))

must be d-th order integral resistant (Proposition 4).
2. To ensure 1., due to the pre-whitening step, the set

{p(js+1)
µ (k) | µ ∈ Ut, j = 0, . . . , t− 1}

must be d-independent (Proposition 3).
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To summarize:

Proposition 5. Let E : Fn
2 × Fκ

2 → Fn
2 be a block cipher and let

Ẽ : Fn
2 × Fκ+2n

2 → Fn
2 , (x, k, k0, k1) 7→ Ek(x⊞t k0)⊞t k1,

where k0, k1 ∈ Fn
2 . If {p

(js+1)
µ (k) | µ ∈ Ut, 0 ≤ j < t} is d-independent, then Ẽ is

is d-th order integral resistant.

In a similar manner as in [24] with the help of integral-resistance matrix, we
can show the d-independence of the set

{p(js+1)
µ (k) | µ ∈ Ut, j = 0, . . . , t− 1}.

Let the ANFs of the polynomials p
(i)
u (k) be given by

p(i)u (k) =
∑
v∈Fκ

2

λ(i)
u,vk

v,

where λ
(i)
u,v is the parity of the number of division trails with input pattern u

and key pattern v for output bit i. A d-th order integral-resistance matrix Id(E)
is defined as

λ
(1)
u1,v1 λ

(s+1)
u1,v1 λ

(2s+1)
u1,v1 · · · λ((t−1)s+1)

u1,v1 λ
(1)
us+1,v1 λ

(s+1)
us+1,v1 · · · λ((t−1)s+1)

u(t−1)s+1,v1

λ
(1)
u1,v2 λ

(s+1)
u1,v2 λ

(2s+1)
u1,v2 · · · λ((t−1)s+1)

u1,v2 λ
(1)
us+1,v2 λ

(s+1)
us+1,v2 · · · λ((t−1)s+1)

u(t−1)s+1,v2
...

...
. . .

...
...

...
. . .

...

λ
(1)
u1,vp λ

(s+1)
u1,vp λ

(2s+1)
u1,vp · · · λ((t−1)s+1)

u1,vp λ
(1)
us+1,vp λ

(s+1)
us+1,vp · · · λ((t−1)s+1)

u(t−1)s+1,vp

 ,

where v1, . . . , vp ∈ Fκ
2 with p ≥ t2 are key patterns of Hamming weight at

least d. In case where E is a key-alternating cipher with independent round
keys, those coefficients can be efficiently constructed using mixed-integer linear
programming [24].

For t-MAFX, integral resistance is verified by ensuring the full rank of a
t2 × t2 matrix Id(E). Compared to [24], this significantly reduces complexity,
requiring only t4 instead of n4 trail computations, where t is the number of words
in full-state. This construction allows the analysis to be more practical while
maintaining strong security guarantees. Additionally, modular addition enhances
resistance to integral distinguishers by enabling broader linear independence
propagation than XOR-based constructions, though it lowers the bound on the
required number of rounds.

4.4 Application

For computations, we refer in general to the framework developed in [23] and
[24], which leverages division trail counting with advanced optimization tech-
niques to derive meaningful lower bounds on the algebraic degree and inte-
gral resistance of block ciphers. The most notable method is the use of MILP
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and SAT solvers, which provide a systematic way to calculate the propaga-
tion of division trails in Boolean functions. In particular, the division property
is modeled as a constraint system that traces the propagation of monomials
through the cipher’s structure. Thus, this framework relies on many optimiza-
tion techniques for trail counting depending on the cipher design. Note, all our
implementations and results are available at: https://github.com/Eugen17/
Integral-Resistance-by-Modular-Addition

As shown in the table in Section 1, in our analysis of GIFT-64, SKINNY-64,
and PRESENT under the t-word-wise pre- and post-whitening assumption for t = 1
and t = 2, we demonstrated improved bounds on the number of rounds required
for integral resistance. The case t = 1 corresponds to the full-state modular ad-
dition of the key, simplifying the verification process significantly. Here, integral
resistance verification reduces to proving just the existence of an odd number
of division trails from the input u1 = (011 . . . 11) to the basis vector ei for at
least one non-zero key pattern v. The approach for choosing key patterns follows
directly from [23].

For t = 2, modular addition operates on two 32-bit words, as all the analyzed
ciphers are 64-bit. This configuration balances practical implementation with
security guarantees. Implementing ciphers with word sizes other than 32 or 64
bits is impractical, as modern hardware is optimized for these standard word
sizes, ensuring efficient execution.

Furthermore, when t = n, the modular addition whitening coincides with
the classical XOR-based key whitening, making the integral resistance bounds
derived in [24] directly applicable.

Our results predictably revealed that modular whitening achieves integral
resistance in fewer rounds compared to XOR-based whitening. For example,
modular whitening with t = 1 and t = 2 reduced the number of rounds required
to ensure resistance from 12–13 to just 9–11. Moreover, this allows us to address
some already existing attacks on GIFT-64 and SKINNY-64. This improvement
stems from the stronger intra- and inter-bit key dependency propagation intro-
duced by modular addition, ensuring that all ANF coefficients become linearly
independent faster.

Interestingly, some of our results for the number of rounds coincide with the
minimal possible values predicted by the upper bounds on the algebraic degree in
[23]. For example, for GIFT-64, the upper bound on the algebraic degree reaches
the maximum of n−1 after 9 rounds, which is exactly the same number of rounds
we proved for integral resistance when t = 1. The same observation holds for
SKINNY-64, where our results align with the predicted upper bounds.

One of the key advantages of our approach is the significant improvement
in computational efficiency. Our results for each cipher were obtained in under
40 minutes on a common PC, with some cases requiring less than a minute (for
example, for GIFT-64), even without additional optimizations. This is in contrast
to the computational costs in [23] and [24], where building matrices could take
several hours or even days. In particular, the optimizations used in [24], such as

https://github.com/Eugen17/Integral-Resistance-by-Modular-Addition
https://github.com/Eugen17/Integral-Resistance-by-Modular-Addition
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computing only partial rows of the matrix instead of the full matrix, were not
needed in our approach.

A crucial observation in our findings is that the smallest d-th order integral
resistance found across all cases for GIFT-64 was 18. This value is equal to the
minimal Hamming weight of all key patterns v used for the calculation of entries
in the integral resistance matrices. Similarly, for PRESENT, the minimal value of
d was 26, and 55 for SKINNY-64, across all checked rounds and values of t. It is
important to note that, due to the assumption of independent round keys, the
key space considered in our analysis was F64r

2 , where r denotes the number of
rounds.

Remark 4. Despite the improvements in round bounds achieved with modular
whitening, it is necessary to note that for t < n (word-wise modular addition),
integral resistance is achieved earlier in terms of the number of rounds needed,
but does not always extend guarantees to a higher number of rounds. However,
for all the analyzed ciphers, these guarantees hold, validating our bounds on
more rounds. For example, we are able to say that PRESENT is integral resistant
beginning from 10th round under pre- and post-whitening by 1- or 2-word-wise
modular addition, as it was confirmed that the integral-resistance matrix is full
rank for 10 to 12 rounds. This is sufficient since the bounds from [24] guarantee
security from the 13th round onward.

5 Integral Resistance of Inverse Ciphers

The connection between a function F and its inverse F−1 in the context of
integral properties has been previously explored in multiple works. In [9], the
authors established that the algebraic degree of F−1 imposes constraints on
the algebraic degree of the composition G ◦ F , influencing the propagation of
algebraic properties. This insight was further developed in [10] through Lemma
3, which describes conditions for the appearance of monomials xu in the ANF
of Sv for a given permutation S.

Then, it was extended for the division properties in [35], where Proposition 6

generalizes previous findings by stating that if a division trail u
S−→ v exists for

a permutation S, then there necessarily exists a corresponding division trail for

the inverse mapping v̄
S−1

−−→ ū, where ū and v̄ denote the complements of u and
v, respectively.

Obviously, there exists some symmetry in integral properties under inversion.
Nevertheless, the equivalence of a block cipher E and its inverse E−1 from the
perspective of integral resistance remains an open question.

5.1 Inequivalence of Integral Resistance of E and E−1

Example 6 gives an integral resistant block cipher E : F3
2 × F5

2 → F3
2, meanwhile

its inverse E−1 is not. There, E is integral-resistant since all pu(k) are at least
1-independent and key-dependent, giving full rank for the integral-resistance
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matrix I(E). However, the integral-resistance matrix of E−1 is singular, as the

q
(1)
u (k) depends linearly on other polynomials qu(k), i.e.,

q
(1)
100(k) = q

(1)
011(k) + q

(1)
000(k) + q

(1)
110(k) + q

(2)
101(k) + q

(2)
100(k) + q

(2)
011(k) + q

(2)
001(k)+

+ q
(2)
000(k) + q

(3)
100(k) + q

(3)
010(k) + q

(3)
000(k).

This example clearly demonstrates that the integral resistance of E does not
imply the integral resistance of E−1 and vice versa.

Example 6. Let E : F3
2 × F5

2 → F3
2 be the block cipher given by the following:

k
x

0 1 2 3 4 5 6 7

0 5 2 3 6 7 0 4 1

1 1 4 7 2 3 5 0 6

2 0 1 6 3 7 2 4 5

3 6 5 3 1 0 4 2 7

4 6 3 2 5 0 7 1 4

5 3 1 0 2 6 7 4 5

6 4 7 2 3 1 6 5 0

7 6 0 2 3 5 4 7 1

8 7 2 1 5 6 3 4 0

9 5 0 7 1 2 4 6 3

10 6 7 4 0 2 3 1 5

11 4 6 1 0 2 3 5 7

12 0 2 6 1 4 3 7 5

13 2 0 7 5 6 1 4 3

14 1 3 0 7 5 2 6 4

15 5 0 2 7 1 4 3 6

16 6 7 4 5 1 0 3 2

17 2 3 4 6 1 0 5 7

18 6 7 5 3 4 1 0 2

19 0 6 7 1 4 5 3 2

20 7 3 5 0 4 6 2 1

21 0 7 6 4 3 2 5 1

22 5 0 7 4 1 3 2 6

23 6 1 3 7 5 4 0 2

24 4 5 0 7 1 3 2 6

25 7 5 1 6 0 2 3 4

26 4 3 7 0 5 1 2 6

27 3 1 0 5 7 2 4 6

28 5 3 6 7 2 0 1 4

29 4 6 7 0 5 2 1 3

30 3 7 6 5 4 1 0 2

31 5 1 4 2 6 7 0 3
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5.2 Equivalence of Integral Resistance of Ek(x ⊞t k0) ⊞t k1 and its
Inverse

Another important observation is that the sets of key polynomial coefficients
pu(k) of the degree n − 1 monomials in the ANF of Ek(x) and E−1

k (x) are the
same but just permuted. In some sense, it can be seen as an implication of
Proposition 6 in [35].

For our proof, we employ the graph indicator technique, following the frame-
work established in [14]. Again, we denote by ui the bitwise complement of the
i-th unit vector ei.

Lemma 5. Let Ek : Fn
2 → Fn

2 be a permutation given by its ANF Ek(x) =∑
u∈Fn

2
pu(k)x

u and let E−1
k (x) =

∑
u∈Fn

2
qu(k)x

u be the ANF of E−1
k . Then, for

all i, j ∈ {1, . . . , n}:
p(j)ui

(k) = q(i)uj
(k).

Proof. We denote the graph of a function F : Fn
2 → Fm

2 by

G(F ) := {(x, F (x)) | x ∈ Fn
2} .

Further, let IS be the indicator function of a set S, so that

IG(Ek)(x, y) =

n∏
i=1

(
yi + E

(i)
k (x) + 1

)
We can write this as

IG(Ek)(x, y) =
∑
u∈Fn

2

yu
∑
v∈Fn

2

Sup(u)∩Sup(v)=∅

(Ek(x))
v

We denote by Sup(x) the set of non-zero bit positions, that is Sup(x) = {i | xi =
1}. It holds that

IG(Ek)(x, y) = IG(E−1
k )(y, x)

⇔
∑
u∈Fn

2

yu
∑
v∈Fn

2

Sup(u)∩Sup(v)=∅

(Ek(x))
v
=

∑
u∈Fn

2

xu
∑
v∈Fn

2

Sup(u)∩Sup(v)=∅

(
E−1

k (y)
)v

⇔
∑
u∈Fn

2

yu
∑
v∈Fn

2

Sup(u)∩Sup(v)=∅

 ∑
w∈Fn

2

pw(k)x
w

v

=
∑
u∈Fn

2

xu
∑
v∈Fn

2

Sup(u)∩Sup(v)=∅

 ∑
w∈Fn

2

qw(k)y
w

v

.

Each monomial xuiyuj occurs exactly once on both sides of the equation.
This leads to the following observation:

∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , n} : p(j)ui
(k) = q(i)uj

(k).

⊓⊔
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The integral resistance properties of a block cipher E and its inverse E−1

are generally inequivalent, as demonstrated in the previous subsection. However,
the fact that the sets of high-order polynomial coefficients coincide provides an
opportunity to establish equivalence for integral resistance with the help of key
whitening. We finally combine everything to prove the main result.

Proof (of Theorem 1). Let S be defined as {p(js+1)
µ (k) | µ ∈ Ut, j = 0, . . . , t−1},

which is of size t2. Let the ANF of E−1
k be given as

E−1
k (x) =

∑
u∈Fn

2

qu(k)x
u.

If S is d-independent, then, by Proposition 5, Ẽ is d-th order integral resis-
tant. As it was already mentioned before, we have Ut = {uis+1 | i = 0, . . . , t−1}.
Then, the above set S of polynomials is equal to

{p(js+1)
uis+1

(k) | i, j = 0, . . . , t− 1}.

From Lemma 5, p
(js+1)
uis+1 (k) = q

(is+1)
ujs+1 (k), so S is equal to

{q(is+1)
ujs+1

(k) | j, i = 0, . . . , t− 1}.

Then, any non-trivial linear combination of the q
(is+1)
ujs+1 (k)’s is also of degree

at least d, which is a sufficient condition for d-th order integral resistance with
t-word-wise (pre- and post-) whitening by modular addition. Hence, Ẽ−1, which
can be also defined as (x, k, k0, k1) 7→ (E−1

k (x⊟t k1))⊟t k0, where subtraction is
equivalent to the addition of complement keys, fulfills integral resistance. ⊓⊔
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