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Abstract. In this paper we study supersingular elliptic curves primi-
tively oriented by an imaginary quadratic order, where the orientation is
given by an endomorphism that factors through the Frobenius isogeny.
In this way, we partly recycle one of the main features of CSIDH, namely
the fact that the Frobenius orientation can be represented for free. This
leads to the most efficient family of ideal-class group actions in a range
where the discriminant is significantly larger than the field characteristic
p. Moreover, if we orient with a non-maximal order O ⊂ Q(

√
−p) and we

assume that it is feasible to compute the ideal-class group of the maximal
order, then also the ideal-class group of O is known and we recover the
central feature of SCALLOP-like constructions.
We propose two variants of our scheme. In the first one, the orientation
is by a suborder of the form Z[f

√
−p] for some f coprime to p, so this is

similar to SCALLOP. In the second one, inspired by the work of Chenu
and Smith, the orientation is by an order of the form Z[

√
−dp] where d is

square-free and not a multiple of p. We give practical ways of generating
parameters, together with a proof-of-concept SageMath implementation
of both variants, which shows the effectiveness of our construction.

Keywords: Isogeny-based cryptography, class group action, Frobenius
endomorphism.

1 Introduction

In recent years, there has been a surging interest in the cryptographic use of
finite abelian group actions. This concept extends exponentiation in finite cyclic
groups, while maintaining the flexibility needed for generalizing several discrete
logarithm-based cryptographic constructions, with the Diffie–Hellman key ex-
change protocol as the main example. The primary motivation for this gen-
eralization is that there exist group actions which, unlike exponentiation, are
believed to be hard to invert by quantum adversaries.

Unfortunately, we know of one family of post-quantum finite abelian group
actions only: ideal-class groups of imaginary quadratic orders acting on sets of
elliptic curves over finite fields via isogenies,1 a construction originating from the

1 The cryptographic use of ideal-class group actions on abelian varieties of higher
dimension has seen preliminary exploration only [34].
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theory of complex multiplication. Their cryptographic potential was first recog-
nized by Couveignes [15] and, independently, by Rostovtsev and Stolbunov [33].
While the original proposal was to work with ordinary elliptic curves, the re-
search focus has shifted entirely to supersingular elliptic curves. This is mainly
for reasons of efficiency, but there is also greater flexibility: through the theory
of orientations [14,28], supersingular elliptic curves admit actions by ideal-class
groups of (infinitely) many different imaginary quadratic orders.

The most practical instantiation is CSIDH [10], coming from the so-called
Frobenius orientation. Here one acts with the ideal-class group of a quadratic
order containing Z[

√
−p] on the set of supersingular elliptic curves E/Fp up to

Fp-isomorphism, where p denotes a large prime number; the required order of
magnitude to achieve security is debated (see Section 6 for a discussion). Under
this orientation the ring element

√
−p corresponds to the p-th power Frobenius

endomorphism πp : E → E : (x, y) 7→ (xp, yp). There are three main reasons
why the (supersingular) Frobenius orientation stands out in terms of efficiency:

1. all curves and isogenies that one encounters during the group action evalu-
ation are defined over Fp;

2. it is easy to choose parameters such that there exist many prescribed ideals
that are very easy to act with (e.g., having a small norm and ideal kernels
consisting of Fp-rational points),

3. representing the orientation comes at no cost, i.e., when given an elliptic
curve E/Fp, it is immediate how to evaluate the endomorphism πp corre-
sponding to

√
−p on it.

Reason 2 distinguishes the supersingular case from the ordinary case and was
the main selling point of CSIDH. The focus of this article is on reason 3: this
is a very powerful feature which was not recognized until other orientations
started entering the picture, where the lack of this property is often an important
bottleneck.

For the sake of flexibility in current and future applications of cryptographic
group actions, it is desirable to cultivate a pool of practical orientations that is as
diverse as possible. Indeed, there are good reasons for studying orientations by
imaginary quadratic orders O ̸⊇ Z[

√
−p]. For example, certain applications like

CSI-FiSh [6] require knowledge of the order (or even the structure) of the ideal-
class group cl(O). In general, this is very hard to compute: our fastest known
(classical) methods run in sub-exponential time [21]. Here, the leading family of
proposals is SCALLOP [19,12,2], where O is chosen to be an order with large
conductor in an imaginary quadratic field having a small(ish) class number. How-
ever, unlike the Frobenius case, representing such orientations is non-trivial. This
situation was greatly improved through the use of higher-dimensional isogeny
representations [12], but the cost remains really substantial.

Orientations factoring through Frobenius

Inspired by the “higher-degree” supersingular group actions introduced by Chenu
and Smith [13], in this paper we study orientations by orders O containing
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Z[
√
−dp] with p ∤ d. On an O-oriented supersingular elliptic curve E/Fp2 , the

endomorphism corresponding to
√
−dp necessarily factors through the Frobenius

isogeny:

E
τ−→ E(p) πp−→ E, deg(τ) = d.

Our motivation for studying this kind of orientations is easy to state: in order
to represent the endomorphism πp ◦ τ , it suffices to represent the isogeny τ since
the Frobenius part comes for free. As such, we recover a part of the selling
point highlighted in feature 3. The isogeny τ can then be represented in terms of
interpolation data, i.e., by the images of a basis of E[N ] for some smooth integer
N ≈

√
d (which in practice is of the form 2a). Without the Frobenius boost, this

lower bound would grow to
√
dp, negatively affecting

– the speed: longer higher-dimensional isogeny chains would need to be com-
puted;

– the design flexibility: the N -torsion is expected to be defined over Fp2 ,
putting severe constraints on p.

A nice by-product of orientations factoring through Frobenius is that the ideal
class group actions are transitive, since by construction p ramifies in O. Recall
from [28] that, in the inert case, the class group action has two orbits.

Comparison with other frameworks

The smaller bound on N allows to work in a regime where the discriminant |∆O|
of the orienting order O is significantly larger than p. As far as we are aware,
the only other practical instantiations of an orientation breaking through the
p-barrier are

– the first version of SCALLOP, but our construction is simpler and orders of
magnitude faster,

– a very recent and as-of-yet unpublished construction due to Houben, pre-
sented at SQIparty 2025 [22], also based on factoring endomorphisms into
isogenies, but his construction does not account for factorizations through
Frobenius, and thus does not benefit from the associated performance gains
(that said, the construction is compatible with Frobenius factors, and when
these are incorporated, the framework described below essentially becomes
a special case of Houben’s approach).

We believe that the large-discriminant range deserves further study, because
for a given class group size (i.e., a given security level) it allows to work over
smaller finite fields. In turn, this may lead to increased efficiency, or to greater
flexibility in applications where the field size is constrained. Moreover, as soon
as |∆O| ≈ p2, it seems reasonable to expect that, when forgetting about the
orientation, the class group action samples close-to-uniformly from the entire
set of supersingular elliptic curves over Fp2 , which may be seen as a security
feature (although this requires further study and justification).
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When compared to CSIDH, orientations factoring through Frobenius do not
offer any efficiency gains (yet?), but the following asymptotic trade-off is a glim-
mer on the horizon. Let us say that we are targeting a class group size having
2µ bits, then we want log2 d + log2 p ≈ µ. If (as usual) one works with curve
models satisfying

E(Fp2) ∼=
Z

(p+ 1)Z
× Z

(p+ 1)Z
and Fp2 -rational interpolation data, then we must have N | p + 1. If we allow
N to take up almost all of p+ 1, then this means that we can let d grow up to
about p2, meaning that log2 p ≈ 1

3µ. In other words, the bit size of our base field
Fp2 is about 2 log2 p ≈ 2

3µ, whereas in CSIDH the bit size of the base field Fp is
invariably log2 p ≈ µ.

Remark 1. As mentioned, unfortunately, the cheaper field arithmetic does not
result in an overall speed-up because it is negatively compensated by a larger
number of field operations (mainly due to the computation of two-dimensional
isogeny chains). Moreover, we stress that this is an aymptotic trade-off, which
kicks in beyond the concrete class group sizes that are currently being proposed.
The reason is that p+ 1 must leave room for a constant number of small prime
divisors, needed for an efficient evaluation of the class group action.

When compared to the second-generation versions of SCALLOP [12,2], orien-
tations factoring through Frobenius are quite a bit more efficient, thanks to the
shorter isogeny chains and the smaller base field. Moreover, by letting d = f2 be
a square, we orient by a non-maximal order of Q(

√
−p) and, if the class group

structure of the maximal order is known, then also the class group structure
of this suborder is known. Thus, in ranges where computing the class group of
the maximal order of Q(

√
−p) is feasible, we recover the main selling point of

SCALLOP. Unfortunately, because of the constraint N | p+1, we cannot merely
recycle the record class group computation from [6], but at least it shows that
log2 p ≈ 512 is well within reach. As explained above, this allows to take d = f2

up to bit size 1024, apart from the space allocated for the small primes needed
for evaluating the class group action. So this roughly covers the concrete param-
eter sizes that were proposed in [2]. Asymptotically, this selling point evaporates
because computing the class group of the maximal order of Q(

√
−p) becomes too

costly. This being said, in most applications where cl(O) must be known, one also
wants to work with genuinely effective group actions (EGAs, see Section 2.1),
which neither the SCALLOP family nor our orientations can offer: indeed, with
the current methods, acting with arbitrary class group elements comes at the
cost of approximate closest-vector-problem computations in lattices of growing
dimension [30].

This brings us to our final comparison: we work in the restricted effective
group action (REGA) model. Using an exponential-time precomputation (i.e.,
lattice reduction), this can be turned into an EGA, but at any rate this is
a point where it cannot compete with the Clapoti-family of proposals [29,31],
which recently culminated in the efficient EGA framework PEGASIS [17]. But
these constructions strongly rely on |∆O| ⪅ p.
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2 Background

2.1 Group-Action Based Cryptography

We recall the definition of a (restricted) effective group action from [1].

Definition 1 (Abelian Group Action). Let (G, ·) be an abelian group with
identity 1 ∈ G and X a set. A map ⋆ : G × X → X is called a group action if it
satisfies the following properties:

– Identity: 1 ⋆ x = x for all x ∈ X .

– Compatibility: (g · h) ⋆ x = g ⋆ (h ⋆ x) for all g, h ∈ G and x ∈ X .

Definition 2 (Effective Group Action (EGA)). An abelian group action
(G,X , ⋆) is called effective if the following properties are satisfied:

– G is finite and there exists efficient (PPT) algorithms for membership testing,
equality testing, (random) sampling, group operation and inversion.

– X is finite and there exist efficient algorithms for membership testing and
for computing a unique representation.

– There exists a distinguished element x̃ ∈ X with known representation.

– There exists an efficient algorithm to evaluate the group action, i.e. to com-
pute g ⋆ x given g and x.

In practice, the requirements of an effective group action are too strong. In
particular, most isogeny-based instantiations of group actions lack the property
of efficiently evaluating the group action for every g ∈ G. Notable exceptions are
Clapoti [29], its successor KLaPoTi [31] and PEGASIS [17]. All other (isogeny-
based) group actions only satisfy the following weaker notion where the group
action can only be efficiently evaluated for a generating set of small cardinality.

Definition 3 (Restricted Effective Group Action (REGA)). Let (G,X , ⋆)
be an abelian group action and let g = {g1, . . . , gn} be a generating set for G. The
action is said to be g-restricted effective if the following properties are satisfied:

– G is finite and n = poly log|G|.
– X is finite and there exist efficient algorithms for membership testing and

for computing a unique representation.

– There exists a distinguished element x̃ ∈ X with known representation.

– There exists an efficient algorithm to evaluate the group action gi ⋆ x and
g−1
i ⋆ x for i ∈ [n] and all x ∈ X .

We remark, however, that a REGA can often be turned into an EGA through
some expensive precomputations. For more details, we refer to [19,12].
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2.2 Oriented Elliptic Curves and their Class Group Actions

Up to our knowledge, all current candidate post-quantum abelian group actions
involve isogenies between elliptic curves. This comes from the theory of complex
multiplication. We give a quick theoretical overview; the statements below can
be found in [14,28,35,36]. Let K be an imaginary quadratic number field and let
E be an elliptic curve over an algebraically closed field k of characteristic p ≥ 0.
A K-orientation on E is an embedding

ι : K ↪→ End0(E)

of K into the endomorphism algebra of E (such an embedding may not exist).
The couple (E, ι) is called a K-oriented elliptic curve. For an order O ⊆ K, we
say that ι is a primitive O-orientation if O = ι−1 End(E).

If φ : E → E′ is an isogeny, then there is a corresponding push-forward
K-orientation on E′ given by

ι′ : K ↪→ End0(E′) : u 7→ φι(u)φ̂

degφ
,

and we say that φ : (E, ι) → (E′, ι′) is an isogeny of K-oriented elliptic curves.
If degφ = 1 then this is called an isomorphism, and we write (E, ι) ∼= (E′, ι′). If
both ι and ι′ are primitive O-orientations then the isogeny φ is called horizontal.

For any imaginary quadratic order O, its ideal-class group cl(O) acts freely
on

Eℓℓk(O) = { elliptic curves E/k along with a primitive O-orientation ι } / ∼= (1)

via horizontal isogenies, as soon as this set is non-empty. More concretely, for
any ideal class [a] ∈ cl(O), represented by an invertible ideal a whose norm is
not divisible by p (which can be assumed w.l.o.g.), and every (E, ι) ∈ Eℓℓk(O),
one defines [a](E, ι) as the codomain of the separable isogeny

φa : E → E/E[a], E[a] =
⋂
u∈a

ker ι(u),

equipped with its induced K-orientation; it can be argued that such isogenies
are indeed horizontal, and all separable horizontal isogenies arise in this way.

If p = 0 then this group action is sometimes called the complex multiplica-
tion torsor. Here, all curves in Eℓℓk(O) can be defined over a fixed number field
(namely, the ring class field L ⊇ K of O), and the action is transitive. If p > 0
then there are four cases:

(i) If p splits in O then all curves in Eℓℓk(O) are ordinary and defined over a
fixed finite field Fq, and again the action is transitive.

(ii) If p ramifies in O but does not divide [OK : O] then all curves in Eℓℓk(O) are
supersingular and can therefore be defined over Fp2 ; here too, the action is
transitive.

(iii) If p divides [OK : O] then Eℓℓk(O) is empty.
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(iv) If p is inert in O then all curves in Eℓℓk(O) are supersingular and thus
definable over Fp2 , but in this case there are two orbits. The Frobenius map

(E, ι) → (E(p), ι(p)) jumps back and forth between these two orbits.

Remark 2. In the above statements, whenever we claim that all curves in Eℓℓk(O)
can be defined over a fixed non-algebraically closed field (the ring class field
L, or a finite field Fq), then this also applies to their endomorphism rings, in
particular to all endomorphisms in ι(O). However, we emphasize that in (1), the
isomorphism ∼= remains to be interpreted over the algebraic closure.

2.3 Higher-Dimensional Isogeny Representations

Kani’s Lemma [24] gives a tool for computing isogenies of dimension one us-
ing isogenies of dimension two. It was at the heart of the recent SIDH attacks
[8,26,32], but it quickly turned into a powerful building block for isogeny-based
protocols.

Theorem 1 (Kani). Let d1, d2 and N be pairwise coprime integers such that
N = d1 + d2, and let E1, E2, F1, and F2 be elliptic curves connected by the
following diagram of isogenies:

E1 F1

F2 E2

φ1

ψ2 φ2

ψ1

such that deg(φ1) = deg(ψ1) = d1, deg(φ2) = deg(ψ2) = d2 and φ2◦φ1 = ψ1◦ψ2.
Then the map

Φ =

(
φ1 φ̂2

−ψ2 ψ̂1

)
: E1 × E2 → F1 × F2

is an (N,N)-isogeny of (principally polarized) abelian varieties with kernel

ker(Φ) = {(φ̂1(P ), φ2(P )) | P ∈ F1[N ]}.

Assuming that N is powersmooth, the isogeny Φ can be efficiently evaluated
at any point on E1×E2. In practice, if N = 2a for some a ≥ 1 (which will always
be the case for us) one can use algorithms given in [18].

Kani’s Lemma is mostly used in isogeny-based cryptography to represent
isogenies of a given degree, leading to the following definition.

Definition 4 (2dim-Representation). A 2dim-representation for an isogeny
φ = φ2 ◦ φ1 of degree d = d1 · d2 and with domain E is a tuple

(E, a, u, v, P,Q, φ(P ), φ(Q))

where u, v ∈ N under the condition that ud1 + vd2 = 2a and (P,Q) a basis of
E[2a].
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Definition 4 leverages the following result, which appeared in different shapes
in the literature and that we report for convenience.

Proposition 1. Let (E1, a, u, v, P,Q, φ(P ), φ(Q)) be a 2dim-representation for
an isogeny φ = φ2 ◦φ1 : E1 → E2, where φ1 : E1 → F1 has degree d1, φ2 : F1 →
E2 has degree d2, and

ud1 + vd2 = 2a (2)

where degree-u isogenies from E1 and degree-v isogenies from E2 are efficiently
computable. Assume moreover d1, d2, u and v odd. Then we can efficiently eval-
uate:

1. φ1 on any point on E1 with order coprime with u;
2. φ̂2 on any point on E2 with order coprime with v;
3. φ on any point on E1, with order coprime with uv.

Proof. Equation (2) implies gcd(ud1, vd2) = 1 and in particular gcd(d1, d2) = 1.
We have the following commuting square:

F2

E1

E2

F1

φ1

φ2
φ

ψ2

ψ1

where ψ1 is the pushforward of φ1 and ψ2 is the pullback of φ2. In particular,
deg(φ1) = deg(ψ1) = d1 and deg(φ2) = deg(ψ2) = d2. With the assumption
that we can compute u-isogenies and v-isogenies from E1 and E2 respectively,
and thanks to Equation (2), we can apply Theorem 1 to a new diagram, of the
following form:

Eu E1 F1

E′
1 E2

F ′
2 E′

2 Ev

φu φ1

ψv φ2

ψ′
2

φv

ψ′
1 ψu

τ

where φu and φv are any degree u and v isogenies, and τ = φv ◦ φ2 ◦ φ1 ◦ φu =
φv ◦ φ ◦ φu. The map ψu ◦ ψ′

1 is the pushforward of φ1 ◦ φu and ψ′
2 ◦ ψv is the

pullback of φv ◦ φ2. Then, the map

Φ =

(
φ1 ◦ φu φ̂2 ◦ φ̂v
−ψ′

2 ◦ ψv ψ̂′
1 ◦ ψ̂u

)
: Eu × Ev → F1 × F2
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is a (2a, 2a)-isogeny with kernel

ker(Φ) = {(φ̂u◦φ̂1(P ), φv◦φ2(P )) | P ∈ F1[2
a]} = {([ud1]P, τ(P )) | P ∈ Eu[2

a]}.

Thus, from the torsion point information and the knowledge of φu and φv we
can compute ker(Φ) and consequently evaluate Φ. Now for given points R ∈ Eu
and S ∈ Ev, we have that

Φ(R, 0) = (φ1 ◦ φu(R),−ψ′
2 ◦ ψv(R)), Φ(0, S) = (φ̂2 ◦ φ̂v(S), ψ̂′

1 ◦ ψ̂u(S)).

From the first components of these points, and with the knowledge of φu and
φv, we can recover φ1 and φ̂2 on any point of order coprime with u and v
respectively. This proves (1) and (2).
Now let l be a prime and R ∈ Eu[l]. Let us assume that l is coprime with vd2
(otherwise it will be coprime with ud1). Let ⟨P,Q⟩ = Ev[l]. We can compute

Φ(R, 0) = (φ1 ◦ φu(R),−ψ′
2 ◦ ψv(R)),

Φ(0, P ) = (φ̂2 ◦ φ̂v(P ), ψ̂′
1 ◦ ψ̂u(P )),

Φ(0, Q) = (φ̂2 ◦ φ̂v(Q), ψ̂′
1 ◦ ψ̂u(Q)).

Since P and Q form a basis of Ev[l], and gcd(l, vd2) = 1, P1 = φ̂2 ◦ φ̂v(P )
and Q1 = φ̂2 ◦ φ̂v(Q) form a basis of F1[l]. We can then write φ1 ◦ φu(R) =
[x]P1 + [y]Q1 and consequently

τ(R) = φv ◦ φ2 ◦ φ1 ◦ φu(R) = [xvd2]P + [yvd2]Q.

With the knowledge of φu and φv, and consequently of their duals, we can recover
the evaluation of φ on points of order coprime with uv from the evaluation of
τ = φv ◦ φ ◦ φu, which proves (3). ⊓⊔

This technique was first introduced in QFESTA [27], where the degree of
φ was restricted to the shape q(2a − q) (i.e. u = v = 1). Notably, together
with the RepresentInteger algorithm of [20], this method allows us to find an
endomorphism of degree q(2a−q) and hence find and evaluate isogenies of given
(not necessarily smooth) degree q from a curve with j = 1728. Building on this
result, other works generalized it to the current form, most notably [29,4]. We
refer to these papers for a more detailed exposition.

To efficiently compute degree u (and v) isogenies from a given curve E, we
generally have three options:

– if u is smooth, a degree-u isogeny can be computed from any curve;
– if u is not smooth, we can compute a u-isogeny from E with the technique

from [27] mentioned above, assuming some additional information on E (gen-
erally, the knowledge of the endomorphism ring is enough);

– if u is non smooth and End(E) is unknown, there is no known way of effi-
ciently computing a u-isogeny from E. A workaround consists in computing
a (u, u)-isogeny in dimension 2, and moving the entire construction from
Proposition 1 to dimension 4. This technique is explained in [17], and, while
concretely feasible, it is significantly slower than the first two.
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3 Orientations Factoring Through Frobenius

In this paper, we study case (ii) from the classification in Section 2.2. That is,
we study primitively O-oriented supersingular elliptic curves E/Fp2 in the case
where p ramifies in O but does not divide the conductor [OK : O]. Necessarily
O contains an element of the form

σ =
√

−dp

for some positive integer d coprime with p. We take σ such that d is as small as
possible, for reasons of efficiency (see below).

Remark 3. It may not be possible to pick σ such that it concerns a generator
of O. Nevertheless a primitive orientation ι : O ↪→ End(E) is completely deter-
mined by ι(σ). To simplify notation, we will just assume that O = Z[

√
−dp],

since this has no effect on any of our conclusions. Only if we would want to act
with ideals of norm 2, as in CSURF [7], then it would be important to be more
careful. But in our case the 2-torsion is used for representing the orientation.

Since [p] is purely inseparable, there must exist a degree-d isogeny

τ : E
τ−→ E(p)

such that ι(σ) = πp ◦ τ , where πp : E → E(p) denotes the p-th power Frobenius
isogeny. Clearly, in order to represent ι(σ), it suffices to represent the isogeny
τ , i.e. the degree-p part of ι(σ) comes for free: this is the central observation
on which this entire paper builds. E.g., using higher-dimensional isogeny repre-
sentations, it suffices to specify how τ acts on a basis of E[N ] with N > 2

√
d.

Clearly, this becomes more efficient for smaller values of d, which is why we take
d as small as possible for a given instance of O.

Of course, the case d = 1 just corresponds to CSIDH [10], where we can
always take τ = Id and the orientation representation becomes totally implicit.
(But one can also take τ = − Id which leads to the twisted version of CSIDH.)
Higher values of d were studied by Chenu and Smith in [13], where they mainly
focused on the cases d = 2, 3, but such small factors do not provide any additional
security (in view of genus theory attacks, see Section 6.4); in contrast, the cases
studied in this paper will correspond to large values of d without small prime
factors. From [13, Lemma 1] we recycle the following useful fact:

Lemma 1. τ̂ = τ (p).

Proof. We calculate

τ (p)τ =
−1

p
τ (p)π2τ =

−1

p
πτπτ =

−1

p
(πτ)2 =

dp

p
= d

and conclude by composing on the right with 1
d τ̂ . ⊓⊔
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3.1 Representing the Orientation

To instantiate the framework described above, we will need an efficient way to
encode and evaluate the isogeny τ , which will be of large non-smooth degree.
The only currently known method to do so is to embed them into 2-dimensional
isogenies as described in Section 2.3. This will naturally put a constraint on the
degrees we will choose for our orientation. In particular, we need to be able to
solve Equation (2) where d1 and d2 are related to the norms of generators of the
orders determining our orientations. In Section 4 and Section 5 we will discuss
in more detail how this is done in practice.

3.2 Evaluating the Action

Given an efficient way of evaluating τ (and consequently σ), we can proceed to
evaluate the group action. This is completely analogous to [12, Algorithm 3].

We start from an ideal a = (m,σ − λ) of O of odd norm m, coprime to pd,
and an oriented curve (E, σ). The first step is to compute the kernel E[a] of a
on E. Let X,Y be points of E such that ⟨X,Y ⟩ = E[m], σ(X) = λ(X) and
σ(Y ) = µ(Y ), where (m) = aa = (m,σ − λ)(m,σ − µ). Notice that such X,Y
must exist since (m) splits by construction. Any multiple of X will generate
E[a]. If we sample a random point P ∈ E[m], we will have P = aX + bY for
some (unknown) a, b and hence

σ(P )− µP = a(σ(X)− µX) + b(σ(Y )− µY ) = a(λ− µ)X.

Thus, if a ̸= 0, σ(P )−µ(P ) generates the kernel of a. If a = 0 (which will happen
with probability 1/m), then σ(P )−µ(P ) = 0 and we will try again with another
point P ′. In particular, by choosing P ′ to be independent from P , we can ensure
σ(P ′)− µP ′ = a′(λ− µ)X with a′ ̸= 0.

Remark 4. This first step can be done on multiple ideals at the same time.
Given ideals ai = (mi, σ − λi) (with mi pairwise coprime), we sample a point
P ∈ E[

∏
mi] and define λ to be the integer such that λ ≡ λi mod mi via the

Chinese Reminder Theorem. We can then compute R = σ(P ) − λP with a
single evaluation of σ (and in particular of τ). By iterating the argument above,
(
∏
j ̸=imj)R ∈ E[mi], if non-zero, generates ai.

Once a point P generating the kernel E[a] is found, the corresponding isogeny
φa : E → E′ ∼= E/⟨P ⟩ can be computed using Velu’s formulae. Finally, we need
to recover the orientation σ′ = π′ ◦ τ ′ on E′. The involved isogenies respect the
following diagram:

E E(p) E

E′ E′(p) E′

τ π

τ ′ π′

φa φ
(p)
a

φa
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and we have interpolation data of the form (P, τ(P )) for P ∈ E[2a]. Then,
interpolation data for τ ′ is given by (φa(P ),− 1

pπ
′ ◦ φa ◦ σ(P )).

Remark 5. At this step it is important not to publish (φa(P ), φa(Q)) directly,
where (P,Q) is a basis of E[2a], as the secret isogeny φa can otherwise be recov-
ered by an attacker. However, a random scaling of the basis is enough to hide
φa. In particular, picking a random basis on E′ and publishing its images under
τ ′ does not leak any additional information.

3.3 Easily Acting Ideal Classes

As a byproduct of our construction, we obtain ideals that are very easy to act
with, namely ideals of the form Il = (l,

√
−dp) with l|d. Notice that in general

l will be a big prime, so acting with this ideal via a kernel computation is very
expensive. First of all, we observe that such an ideal is 2-torsion (and typically
has exact order 2) in the class group of Z[

√
−dp], since I2l = (l). To interpret

the action of such an ideal, let us restrict to the case d = l1l2 with l1, l2 distinct
primes and l1 + l2 = 2a. This will exactly match the setting of Section 5, but
the argument can be adapted to work in general. When evaluating τ using the
machinery from Section 2.3, we end up with the following diagram:

E F1

F2 E(p)

φ1

ψ2 φ2

ψ1

where deg(φi) = deg(ψi) = li. Here we have τ = φ2 ◦ φ1. But recall from

Lemma 1 that τ̂ = τ (p), so τ = τ̂ (p) = φ̂
(p)
1 ◦ φ̂(p)

2 is a factorization of τ into an
ℓ2-isogeny followed by an ℓ1-isogeny: therefore, this is precisely the other side of
the diagram, i.e., we can rewrite

E F1

F
(p)
1 E(p)

φ1

φ̂
(p)
2 φ2

φ̂
(p)
1

Our goal is now to show that I1 = (l1,
√
−dp) corresponds to φ1. This follows

from the fact that Iτ = (d,
√
−dp) ⊂ I1, and so ker(I1) ⊂ ker(τ) and I1 has

norm l1. This shows that if we act with I1 on E we land on F1. Moreover, the
new orientation is given by

σ′ =
1

l1
φ1σφ̂1 =

1

l1
φ1πφ2φ1φ̂1 = πφ

(p)
1 φ2.

We proved that acting with I1 effectively corresponds to flipping the diagram.
In the same way, acting with I2 correspond to flipping in the other direction
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(we land on F
(p)
1 ), and acting with Ip = (p,

√
−dp) mirrors it (landing on E(p)).

Since to evaluate the action we have to construct all sides of the diagram anyway,
we obtain three ideals whose action can be computed almost for free. However,
all these ideals have order 2 in the class group (their squares are principal). So
each Il provides only one bit of extra key space each. Moreover, their product
is always trivial: we can see it directly in this case (e.g. acting with I1 and then
I2 is the same as acting with Ip), but this is true more generally if we consider
all the factors of dp. In conclusion: if there are n different factors of d whose
corresponding isogeny appears in the evaluation of τ , we have n extra ideals of
order 2 that we can evaluate efficiently, and consequently n− 1 extra bits of key
space. An alternative use of these bonus ideal classes lies in countering genus-
theory attacks on the Decisional Diffie–Hellman problem (DDH), as illustrated
in Section 6.4.

3.4 Split Primes and Exponents

In this work we focus on the key exchange setting, i.e. two parties (Alice and
Bob) acting with small-norm ideals from a starting curve E0. For an instantiation
of our protocol we need to provide a list of small-norm ideals that we can easily
act with. Typically, these will be of the form mi = (mi, σ − λ) where mi is a
small odd prime. A secret key then consists of a list of random exponents, one
for each mi, ranging in an interval [−B,B] for some bound B. If we denote by
R the number of small-norm ideals, B and R will be crucial in determining the
(classical) security of our key exchange protocol, as the size of the key space is
(2B + 1)R. However, they will have no impact on the size of the class group, and
hence on our quantum security, as argued in [11]. To prevent meet-in-the-middle
attacks and guarantee 128 bits of security, we need (2B + 1)R ≈ 2256. On the
other hand, we want to keep B as small as possible, since it will determine the
average number of times each party will need to compute an action. For a fixed
B, we also choose R to be as small as possible, while providing enough security,
as it poses less constraints on parameter generation. The values for B and R
reported in Table 1 are taken from [11, Tbl. 3] (we are in the OAYT setting).

Table 1. Exponent choices for 128 bits of security taken from [11, Tbl. 3]. R is the
number of acting ideals of small norm, with exponents in the interval [−B,B].

B 1 2 3 4 5

R 139 95 79 70 64

Remark 6. As described here, our construction is a Restricted Effective Group
Action (REGA). As it is the case for many similar constructions, it can be turned
into an Effective Group Action (EGA) through some expensive precomputations,
as mentioned in Section 2. We remark that such a choice will not alter our overall
construction, but only eventually affect parameter choices.
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4 The Square Case

In this section we consider orientations by σ =
√
−dp with d = f2, hence

O = Z[f
√
−p], where we recall the convention made in Remark 3. To facili-

tate parameter generation, we take f = f0f1 the product of two large primes.
This setting resembles SCALLOP-HD [12], where O = Z[f

√
−k] for some small

k ∈ N. However, differently from SCALLOP-HD, we consider p≫ k, thus achiev-
ing much larger class groups while minimizing the size of the available 2-torsion
required to represent the orientation. Indeed, the size of the class group of O
in this setting is h(O) ≈

√
dp = f

√
p. However, d = f2 will have to satisfy

some constraints. Let σ = τ ◦ πp =
√
−dp = f

√
−p, where deg(τ) = d = f2.

To instantiate a class group action-based key exchange protocol as described in
Section 3, we need to:

– represent τ with 2-dimensional isogenies;
– find ideals that are split in Z[f

√
−p] and easy to evaluate.

The first requirement imposes that the 2a-torsion points are defined over the
base field, with 2a >

√
d = f . This forces 2a | p + 1. The second requirement,

namely finding split ideals which are easy to evaluate, can be fulfilled by using
the same strategy as in CSIDH. Imposing mi | p+1 for a number of small primes
mi ensures that the mi-torsion points are defined over the base field and that
they split in Z[f

√
−p], as we will detail in the next section.

4.1 Parameter Generation

Choosing the Conductor. As in the case of all SCALLOP variants, we re-
quire that f0, f1 are large primes to ensure the security of the protocol. For
efficiency reasons, we additionally require that the isogeny τ of degree f2 can
be represented via a higher dimensional isogeny, as described in Section 2.3.
Hence, we introduce two positive coprime integers u, v ∈ N and we require that
Equation 2 is satisfied, namely, for fixed u, v we define the binary quadratic
form Qu,v(x, y) = ux2 + vy2 and look for integer solutions to the equation
Qu,v(x, y) = 2a. We can iterate over all combinations of u, v for a fixed a, deter-
mined by the desired size of the class group, yielding candidates x = f0, y = f1
for the factors of the conductor f .

Lastly we choose u, v small since we need to compute isogenies of degree u
and v when evaluating τ. This is not a strict requirement, as we will explain in
Section 4.3.

Choosing the Characteristic p. In order to represent the orientation via
a (2a, 2a)-isogeny, we need 2a-torsion points to be defined over the base-field,
hence we require 2a | p+1, with 2a > f . Note that this last condition is already
ensured for any a such that uf20 + vf21 = 2a. Additionally, the representation
requires auxiliary isogenies, hence rational u, v-torsion points. Finally, for the
computation of the class group action we need rational mi-torsion points, hence



Orient Express: Using Frobenius to Express Oriented Isogenies 15

mi | p + 1, for small odd primes mi that split in Z[f
√
−p]. Then, we take

p = 2ac
∏
mi − 1, where uv |

∏
mi and where c is a cofactor that ensures p is

prime; this way, all primes mi split in Z[f
√
−p]. Indeed, −p ≡ 1 mod mi and

thus the order discriminant ∆ = −4f2p is always a square modulo mi.

4.2 Computing a Starting Curve and Finding the Orientation

To compute an O-oriented starting curve (E, ιE), we need to compute a descend-
ing f -isogeny starting from an elliptic curve that is oriented by Z[

√
−p], that is,

a curve defined over Fp.
To this end, we make use of the QFESTA technique [27] already mentioned

in Section 2.3. In particular, we pick the elliptic curve E1728 : y2 = x3 + x,
defined over Fp and use the RepresentInteger algorithm to compute a degree-
f isogeny φf from E1728. The algorithm yields a solution as long as f(2a−f) > p.
Depending on the choice of parameters, this condition might not hold, e.g. this is
the case for the first parameter sets in Table 2. To circumvent this issue, we can
make use of a variant introduced in [5], where RepresentInteger is used to find
an endomorphism of degree f(2a−f)t for some smooth cofactor t | p+1, allowing
to compute an isogeny of degree tf ; since we can always compute smooth-degree
isogenies from E1728, the degree-t part can then be removed. For more details
on this strategy, we refer to [5].

The obtained f -isogeny φf : E1728 → E will be descending with overwhelm-
ing probability. Indeed, if f0, f1 are both inert in Z[

√
−p] we are guaranteed that

any f -isogeny is descending and hence E is oriented by the order Z[f
√
−p]. On

the other hand, even if
(

−p
fi

)
= 1 for either factor fi | f , there are exactly 2 hor-

izontal and fi − 1 descending isogenies. Since f0, f1 are large primes, a random
f -isogeny is descending with overwhelming probability.

Once we have computed φf , we can take τ to be the composition of its dual

φ̂f with the Frobenius conjugate φ
(p)
f . To this end, we only need to evaluate

φf and φ
(p)
f on a basis (P0, Q0) of E1728[2

a], followed by a base change to a
canonical basis of E[2a]; these steps are summarized in Algorithm 1. Note that

the algorithm is correct because πp ◦ φf ◦ πp ◦ φ̂f = [p] ◦ φ(p)
f ◦ φ̂f and p ≡

−1 mod 2a.
The algorithm provides a 2dim-representation of τ, which is based on Propo-

sition 1 and relies on auxiliary u and v-isogenies, as illustrated in Fig. 1. Indeed,

note that τ = φ
(p)
f ◦φ̂f has degree f2 = f20 f

2
1 , hence can be seen as a composition

of an f20 -isogeny and an f21 -isogeny, whose degrees are chosen to satisfy Equation
(2).

4.3 Parameter Choices

For a targeted order discriminant bit size, which we denote by S, we need to
find

– a prime p = 2ac
∏
mi − 1;
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Algorithm 1: GenStartCurve

Input: A prime p = 2ac
∏

ℓi − 1 and a conductor f
Output: A 2dim-representation for an O-oriented curve (E, ιE), where

O = Z[f
√
−p]

1 Let E1728/Fp2 be the curve with j = 1728
2 Compute random isogeny φf : E1728 → E of degree f via [27, Algorithm 2]
3 Choose deterministic bases (R0, S0) of E1728[2

a] and (R,S) of E[2a]
4 Compute a matrix A ∈ GL(2, 2a) such that

(R0, S0) = A(πp(φ̂f (R)), πp(φ̂f (S)))
⊤

5 (R′, S′)← −A(πp(φf (R0)), πp(φf (S0)))
⊤ ∈ E(p)[2a]

6 return (E,R′, S′)

φ f

φ (p)f

φ
v

φu

τ

E1728

E E(p)

Eu

Ev

Z[
√
−p]

Z[f
√
−p]

πp

Fig. 1. An isogeny volcano with auxiliary isogenies φu, φv for the 2dim-representation
of τ.

– two primes f0, f1, such that uf20 + vf21 = 2a for some positive integers u, v
that are odd and coprime.

The number of primes mi, is determined by the classical security of our
protocol and by efficiency considerations, i.e. it depends on the number of times
we will have to evaluate the action, as discussed in Section 3.4. Note that we
must take into account that small prime divisors of u, v are not usable for
the class group action, as the corresponding torsion points will be needed to
produce the auxiliary isogenies for the representation of τ. Therefore, we will
have p = 2acM − 1 with M being the product of the first R + n odd primes,
where n is the number of prime divisors of uv among the first R odd primes.

In order to find parameters for a class group discriminant ∆ of expected bit
size S, which mainly determines the class group size h(O) ≈

√
|∆| = 2f

√
p

according to our previous discussions, we first estimate a range of corresponding
values of a. Recall that f ≈ 2a hence in general, for a given S and M we have
a ≈ (S − log2M)/3. Note that, since f0 and f1 will have roughly the same bit
size, we ensure log2(f) > 2128 to avoid attacks via evaluation of prime-degree fi-
isogenies, as we will discuss in Section 6.3. Then, for a chosen value of a, iterating
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on pairs u, v we look for integer prime solutions f0, f1 to Qu,v(x, y) = 2a, of
appropriate size. The values of u, v are picked so that they are coprime and have
few and small prime divisors. It is not a strict requirement that u, v are of this
form, as we could compute auxiliary isogenies from the starting curve and its
Frobenius conjugate as push-forwards of u and v-isogenies from E0; then, during
the action computation it suffices to compute their push-forwards through the
isogeny we are acting with and its Frobenius conjugate.

In Table 2 we report on parameter sets that allow us to choose B = 5 and
B = 2. For each set, M is the product of all primes from 3 to the last prime
reported in the table. We then set p = 2acM + 1. We set d = f2, with f = f0f1
where f0 and f1 are prime integer solutions to 2a = uf20 + vf21 , not dividing M .
The values of c, chosen to be coprime to u, v, are reported in the table, together
with the size of p and of the discriminant of the class group (note the class group
size is half of the discriminant size).

Table 2. Parameter sets for the case d = f2 with f = f2
0 f

2
1 , where f0, f1 are solutions

to uf2
0 + vf2

1 = 2a. The prime field characteristic is p = 2acM − 1, where M is the
product of distinct primes mi such that m1 = 3 ≤ mi ≤ mL. Parameter B is chosen
to allow for 128 bit classical security.

Discriminant size (bits) p size (bits) a mL B c u, v

1438 780 333 331 5 59 5, 3

4242 1897 1184 521 2 5 173, 83

5 The Square-Free Case

Let d square-free, and O = Z[
√
−dp]. This setting was firstly studied in [13] for

small d. The size of the class group of O in this setting is h(O) ≈
√
dp. This

means that by allowing d to grow we can act with a larger class group for the
same field size p. However, d cannot grow indefinitely. Let σ = τ ◦ πp =

√
−dp,

where deg(τ) = d. To instantiate a CSIDH-like protocol in this setting we want
to be able to

– represent τ with 2-dimensional isogenies;
– find ideals that are split for σ and easy to evaluate.

The first requirements imposes the same conditions as in the previous case, which
are described in Section 4: to represent τ we need access to the 2a torsion, with
2a >

√
d, forcing 2a | p + 1 and giving us a lower bound on the size of p. The

best result we can obtain with this approach is hence d ≈ p2, for a class group
of size

√
dp ≈

√
p3 over a field of size p2.

However, we still have to take care of the second requirement, namely find
split ideals which are easy to evaluate. The most natural way is again to adapt
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the CSIDH approach to our setting: by imposing mi | p + 1 for enough small
primes mi we gain access to the rational mi torsion. We still have to make sure
that the ideal (mi) is split in O for all such mi, but that can be achieved by a
careful choice of d. On the other hand, this method imposes further constraints
on p, forcing it to be bigger that the optimal size

√
d. Since the number of

small ideals that we can evaluate is only relevant to the classical security of
our scheme, and not the quantum one [11, Sec. 4], this effect is mitigated for
higher quantum security levels. However, for small parameters this will become
a significant limiting factor.

5.1 Finding the Orientation

A concrete way to instantiate the above setting is the following. Let us start
by taking E0 as the curve y2 = x3 + 1 in characteristic p ≡ 2 mod 3. Given
a primitive 3rd root of unity ω ∈ Fp2 \ Fp, the map (x, y) 7→ (ωx, y) is an
endomorphism on E0, that we denote (with a slight abuse of notation) ω as well;
in other terms, Z[ω] naturally embeds into End(E0). By [16, Prop. 4.7], a prime
l ̸= 3 appears as a norm of an element in Z[ω] if and only if l ≡ 1 mod 3. As a
consequence, for every prime l ≡ 1 mod 3 we can find an endomorphism on E0

of norm l. We cannot choose d to be prime, since we need to write it as u(2t−u)
to embed τ into a 2-dimensional isogeny. The next natural choice is to look for
d = l1l2, with l1 ≡ l2 ≡ 1 mod 3. Let us fix a even. Then l1 = 2a − 3x and
l2 = 2a + 3x are both 1 mod 3, for any value of x. We can hence set d = l1l2 =
l1(2

a+1 − l1). Since in principle we have no restriction on x, we can try multiple
values until both l1 and l2 are primes. We can then find elements α1, α2 ∈ Z[ω]
of norm l1, l2 respectively and define τ = α1α2.

There is still an aspect that we need to assess, namely how to access enough
small ideals to act with. As already observed, by enforcing mi | p + 1 we can
access the rational mi torsion for small primes. This also implies −p ≡ 1 mod mi

is a square. To make sure that the ideal (mi) is split, we then need
(
d
mi

)
= 1.

If we impose mi | x, we get d = l1l2 ≡ 22a mod mi, and so d is a square modulo
all the mi as required.

5.2 Parameter Generation

With the notation of the previous section, let us define M =
∏R
i=1mi. For a

given S, denoting the bit size of the discriminant, we need to find

– a prime p = 2a+1cM − 1;

– two primes l1 = 2a − 3x and l2 = 2a + 3x, such that
(
d
mi

)
= 1 for all mi.

The value of R, and consequently ofM , is determined by the classical security
of our protocol and by efficiency considerations (the number of times we will have
to evaluate the action), as discussed in Section 3.4. Asymptotically, the value of
M is just a constant, and should not impact the method outlined in Section 5.1.
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However, if the security parameter S is not big enough compared to M , we may
run into trouble. In general, for a given S and M we would like to compute a as
⌈(S − log2M)/3⌉, then set p = 2a+1cM − 1 (for a small cofactor c) and d ≈ 22a

as outlined above. If we set li = 2a ± x where M | x this method will fail as
soon as log2M > a, or S < 4 log2M , strongly limiting our parameter choices.
Notice that for fixed M and a we have roughly 2a/M choices for l1 and l2; since
the probability of a number l being prime is 1/ log l, assuming independence
between l1 and l2 the probability that they are both prime is roughly 1/a2,
meaning that we need 2a/M > a2 to find a valid pair (this estimate is extremely
conservative; see Remark 7). If this is not true, we can relax the condition M | x
and replace it with M ′ | x, where M ′ =

∏R′

i=1mi with R
′ = R − k. In this way,

the condition
(
d
mi

)
= 1 is automatically satisfied only by the mi for i < R′; this

means that the number of attempts to find a valid pair l1, l2 grows by a factor
2k. On the other hand, the number of possibilities grows by a factor

∏R
i=R′ mi,

i.e. the product of the last k primes. This product is certainly bigger than 2k,
and generally by some margin. For instance, the last prime if we pick B = 1 in
Table 1 is 809, which is 10 bits. This greatly improves our chance of finding valid
parameters. While the choice of k is limited by our computational capabilities,
this is a one time computation.

We show the effectiveness of our method by computing a parameter set for
a discriminant size of 1500 bits where B = 5 and so M is 424 bits, way above
the limit S/4. To investigate the scalability of our protocol we also provide a
parameter with S = 4000, but there B = 2 and so we get a > log2M . These
parameters are reported in Table 3. The prime is p = 2a+1cM − 1, and d = l1l2
where li = 2a ± xM ′, with M ′ defined as above.

Table 3. Parameter sets for the case d = l1l2 square-free, where li = 2a ± xM ′

and M ′ is the product of primes mi such that 3 ≤ mi ≤ mL−k. The prime field
characteristic is p = 2a+1cM − 1, where M is the product of distinct primes mi such
that m1 = 3 ≤ mi ≤ mL. Parameter B is chosen to allow for 128 bit classical security.

Discriminant size (bits) p size (bits) a mL B c x k

1506 786 360 313 5 2 2308855 11

4006 1802 1102 503 2 51 8075 0

Remark 7. The probability (loosely speaking) that a random number n is prime
is asymptotic to 1/ log n. Hence, the probability that two random numbers
n1, n2 ≈ n are prime at the same time is 1/(log n)2. However, we are working with
numbers of the form 2a±xM , with M a product of many small primes. This al-
ready ensures that l1 and l2 are not divisible by all the mi, greatly boosting their
probability of being prime. Moreover, they are coprime with each other, making
the probability slightly higher. Determining the number of representations of a
number as a sum of two primes is a famous open problem in mathematics, known
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as the extended Goldbach’s conjecture; a more detailed treatment of the matter
is outside the scope of this work. However, form this preliminary discussion we
can already conclude that the estimate 1/a2 provided above is conservative.

5.3 Protocol Setup

Unlike in the square case, we can setup our protocol already on E0 : y2 =
x3 + 1, the curve of j-invariant 0. We can then efficiently evaluate τ = α1α2

(where α1 and α2 are the endomorphisms of norm l1 and l2 described above) as
an endomorphism. Notice that τ could also be represented by a 2-dimensional
isogeny, namely

Φ : E0 × E0 → E0 × E0 =

(
α1 α̂2

−α2 α̂1

)
,

as detailed in Section 3.1. This representation is used to evaluate the orientation
away from E0. For this reason, the first step of the action from E0 (namely, the
first step of the public key generation) will be much faster than the subsequent
ones.

Moreover, we observe the following interesting fact. Recall that, by construc-
tion, α1, α2 ∈ Z[ω].

Proposition 2. Let

Φ : E0 × E0 → E0 × E0 =

(
α1 α̂2

−α2 α̂1

)
be a (2n, 2n)-isogeny, with α1, α2 ∈ Z[ω]. Then we can write Φ as a composition
of n (2, 2) isogenies Ψi : E0 × E0 → E0 × E0, i = 1, . . . , n, of the form

Ψi =

(
γ 1
−1 γ̂

)
with γ ∈ Z[ω]×.

Proof. We proceed by induction. The first step is to prove that if Φ is a (2, 2)-
endomorphism of E0 × E0, it can always be expressed in the form above, up to
post-composition with an isomorphism, or in other words up to multiplication
on the left with an invertible matrix. Since n(α1)+n(α2) = 2, and Z[ω] does not
contain elements of norm 2 ([16, Prop. 4.7]), we must have n(α1) = n(α2) = 1.
In particular α1, α2 are isomorphisms, and their inverses coincide with the dual.
Then, (

α2 0
0 α̂2

)(
α1 α̂2

−α2 α̂1

)
=

(
α2α1 1
−1 α̂1α̂2

)
and the matrix on the right corresponds to Ψ1 with γ = α2α1.

For the induction step, given the matrix Φ with n(α1)+n(α2) = 2n, we want
to write it as (

α1 α̂2

−α2 α̂1

)
=

(
β1 β̂2
−β2 β̂1

)(
γ 1
−1 γ̂

)



Orient Express: Using Frobenius to Express Oriented Isogenies 21

with the additional condition n(β1)+n(β2) = 2n−1 and n(γ) = 1. By expanding
the product, we obtain two equations{

α1 = β1γ − β̂2

α2 = β2γ + β̂1

that we can rearrange into {
α1 − γα̂2 = −2β̂2

α1 + γα̂2 = 2β1γ.

We are left with proving that there exists γ ∈ Z[ω]× = {±1,±ω,±ω2} such that
α1 + γα̂2 ≡ 0 mod 2 for any given α1, α2 such that n(α1) + n(α2) = 2n. Let us
assume this is not true. We can then write down α1, α2 ∈ Z[ω], and compute
α1 + γα̂2 mod 2 for each γ ∈ Z[ω]. We get a set of 4 binary equations (three
choices for γ plus the norm condition) which have to hold at the same time.
Direct calculation shows that this is not possible. From the above system,

n(β1) + n(β2) =
1

4
(n(α1 − γα2) + n(α1 + γα2)) =

1

4
(2n(α1) + 2n(α2))

from which we conclude that n(β1) + n(β2) = 2n−1.

As a consequence, our starting orientation Φ on E0 × E0 can be written as
a composition of (2, 2)-endomorphisms. This ceases to be true as we move away
from E0, since we do no longer see all elements of Z[ω]× as endomorphisms.

6 Security

As for the hardness of the vectorization problem, i.e., the problem of retrieving
the secret ideal class [a] connecting two public oriented elliptic curves (E, ι) and
(E′, ι′) = [a](E, ι), we largely fall back on the discussion from [11], which is
restricted to Frobenius orientations aka CSIDH, but the analysis carries over to
all orientations as long as one works in the REGA framework. In a nutshell,
to achieve classical 128-bit security, the size of the key space should be in the
order of 256 bits due to meet-in-the-middle attacks. It is believed that this
is also suffices against a quantum adversary; Grover-type speed-ups over the
standard meet-in-the-middle algorithm have been proposed in the past but are
now considered unrealistic [23,11]. However, a much bigger quantum threat is
Kuperberg’s algorithm (and its descendants) for hidden-shift finding, which runs
in time L|∆|(1/2). For this reason the discriminant∆ should be large (in absolute
value). How large exactly is a topic of debate. Two of the main fuzzy factors
are the cost of an oracle query and the cost of using quantum random access
classical memory (QRACM). For NIST level 1, the authors of [11] propose a
discriminant of 4096 bits, which is why these orders of magnitude were included
in Table 2 and Table 3, along with the more aggressive choice |∆| ≈ 1596.

Let us now discuss some (non-)threats that are specific to our proposal.
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6.1 Known Endomorphisms

A priori, a security concern could be that the orientation gives away two endo-
morphisms of E in interpolation form, thereby potentially revealing a full-rank
subring of End(E): indeed, an eavesdropper has access to

τ (p) ◦ τ and π ◦ τ.

However, this was resolved in Lemma 1: the first map is just the multiplication-
by-d map. Thus, we only leak an embedding of O, and this is the same as for all
known class group actions.

6.2 Acting on Conjugate Pairs

Recall from Section 3.3 that the ideal class [(p,
√
−dp)] acts by Frobenius conju-

gation. Therefore, the action of cl(Z[
√
−dp]) on our set of oriented elliptic curves

E
τ→ E(p) induces a well-defined action of

cl(Z[
√
−dp]

⟨[(p,
√
−dp)]⟩

on the set of conjugate pairs E
τ→ E(p), E(p) τ

(p)

→ E.

Of course, this is just a special case of a general statement: for every subgroup
H ⊂ cl(O), the quotient group cl(O)/H acts on the set of orbits under H.
However, despite the size of cl(O)/H being smaller, in general this does not lead
to a simpler vectorization problem: it is very hard to represent the orbits in a way
that allows for the desired quantum state collapses in Kuperberg’s algorithm.
However, in the case of conjugate pairs this is much more natural, so it could
allow for a faster run of Kuperberg’s algorithm. But this just reduces the size of
cl(O) with 1 bit, so the effect is minimal.

6.3 Walking Up the Volcano

In the setting of Section 4, namely when the orientation comes from Z[f
√
−p],

a potential attack consists in walking up the isogeny volcano to solve the vec-
torization problem in a larger suborder of Z[

√
−p] (with smaller class group)

instead. In our case f = f0f1, so the cost of walking up is lower bounded by the
cost of computing any f0 (or f1) isogeny from a random curve. Computing iso-
genies of large prime degree is considered cryptographically hard, with the best
known classical algorithms running in Õ(d2) where d is the degree [3, Section
4.4]. Moreover, no quantum speed-up on such algorithms is currently known. To
protect against such an attack it is thus sufficient to ensure f0, f1 ≈ 264, which
is way below the sizes we need for quantum security.

6.4 Genus Theory Attacks

Another potential attack consists in breaking the Decisional Diffie-Hellman (DDH)
assumption using genus theory. Let O be the order giving the orientation, and
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∆ = −2ame1
1 · · ·mer

r its discriminant, factored into powers of distinct primes.
For any odd prime factor mi we have an assigned character

χmi
: cl(O) → {±1} : [I] 7→

(
N(I)

mi

)
where [I] is assumed to be represented by an ideal of norm coprime with mi. If
∆ = −4n is even and n ̸≡ 3 mod 4 then this list is extended with one or two
additional characters. Moreover, there is a unique non-trivial relation among
the characters [9, Eq. (3)]. The authors of [9] give a way to evaluate such an
assigned character on an ideal class [I] given access only to (E, ι) and [I](E, ι).
The cost of this evaluation is exponential in the size of mi, meaning that we can
only evaluate characters for small prime factors of the discriminant (and also the
additional characters in case they occur). Being able to evaluate a non-trivial
character effectively breaks the DDH assumption in our setting.

The discriminant of Z[
√
−dp] is −4dp. Since both d and p do not have small

prime factors, the only characters that we have to avoid are the additional ones.
In the concrete set-up from Section 4, p ≡ 3 mod 4 and d = f2 ≡ 1 mod 4,
so dp ≡ 3 mod 4 and there are no additional characters. In the set-up from
Section 5, p ≡ 3 mod 4, and l1 ≡ −l2 mod 4 implying d ≡ 3 mod 4. As a conse-
quence, dp ≡ 1 mod 4 and in this case there is a unique additional character

δ : cl(O) → {±1} : [I] 7→ (−1)(N(I)−1)/2

(where now [I] is assumed represented by an ideal of odd norm) which is non-
trivial and whose action is easy to evaluate [9, Prop. 1]. Thus in this case the
DDH assumption does not apply. One way out is to act with keys sampled from
the subgroup ker δ ⊂ cl(O). This is easy to control: when acting with a key
(e1, . . . , eR) representing an ideal class [m1]

e1 · · · [mR]eR , one should verify that

e1
m1 − 1

2
+ . . .+ eR

mR − 1

2
≡ 0 mod 2 (3)

and try another key if this is violated. Unless mi ≡ 1 mod 4 for all i (in which
case we are automatically sampling from ker δ), this reduces the size of the key
space by about 1 bit. An alternative option is to also act with [(p,

√
−dp)],

which just amounts to flipping as was explained in Section 3.3, whenever (3) is
violated. This ideal class indeed has δ-value equal to −1 because p ≡ 3 mod 4,
so it multiplies any other ideal class with δ-value −1 into ker δ.

6.5 Validating the Starting Curve

In this section we briefly discuss how to validate a starting curve, namely to
verify that it was honestly generated. In our setting, the starting curve is a curve
together with an orientation, and it is honestly generated if the orientation is by
Z[
√
−dp] and primitive. Indeed, if the orientation was not primitive, the parties

engaging in the protocol would act by ideals of a generally bigger order than
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Z[
√
−dp], hence by elements of a smaller ideal class group. The class number of

a suborder O′ ⊂ O of index f is indeed roughly f times bigger than the class
number of O, as proven in [16, Theorem 7.24] and [25, Theorem 5.4].

We note that in the case where Z[
√
−dp] is a maximal order, namely when d

is square-free and −dp ̸≡ 1 mod 4, the starting curve must be honestly generated
as long as the orientation generates an order of the correct discriminant, which
can be checked via pairings. This is always the case in the setting of Section 5,
where we have p ≡ 3 mod 4 and l1 ≡ −l2 mod 4, implying d = l1l2 ≡ 3 mod 4
and hence −dp ≡ 3 mod 4.

We mention that, even if Z[
√
−dp] with d square-free was not maximal, it

would be a suborder of conductor 2 in the maximal order Z[ 1+
√
−dp
2 ]; in this case,

either 2 is inert, hence the class number of the suborder is the same as that of
the maximal order, or 2 is split, hence the class number of the suborder is three
times the size of that of the maximal order. Thus, a non-primitive orientation
in this setting would either provide no advantage to an attacker, or reduce the
security of only roughly 1 bit.

We are then going to discuss the setting of Section 4, where Z[
√
−dp] with

d = f2 has a non-trivial conductor f = f0f1, and f0 and f1 are distinct primes.
We recall that f -isogenies from a curve that is primitively oriented by Z[f

√
−p]

are descending with overwhelming probability, as explained in Section 4.2. In
particular, a starting curve that is computed via Algorithm 1 will always be
honestly generated with overwhelming probability.

In order to validate the starting curve, one should first check that the given
orientation σ generates an order with the correct discriminant via pairings, then
verify that the orientation is primitive by checking that σ does not factor through
multiplication by f0 or f1. For this second step, one can consider the given
2dim-representation of τ and the corresponding isogeny diagram illustrated in
Section 2.3, where τ is viewed as composition of f20 and f21 -isogenies. According to
Proposition 1, the codomain curve of the isogeny of degree f20 can be computed;
if it is equal to the domain then τ , hence σ, has to factor through multiplication
by f0; similarly, if the codomain of the isogeny of degree f21 equals its domain,
then the orientation factors through multiplication by f1.

We remark that the above considerations apply in the same way to public-
key validation, which would be required to protect against active attacks on
encryption schemes based on our construction in a static setting.

7 Implementation

We provide a proof-of-concept sage implementation of our protocol, to show
feasibility and allow for a first comparison with other existing schemes. We stress
that many known optimizations are still possible, especially in the setting of key
exchange discussed in the paper.
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7.1 Timings for the Case d = f2

We report timings of an action computation from a starting curve in Table 4 for
parameter sets from Table 2.

Table 4. Timings for the case d = f2. Average timing for an action computation.

Discriminant size Avg. action B

1438 100.50s 5

4242 547.78s 2

7.2 Timings for the Case d Square-Free

As already discussed, in the maximal order case the first step of the action
computed from E0 is much faster than the other ones, since on E0 evaluating
the orientation does not require 2-dimensional isogenies. We report timings in
Table 5, highlighting this difference. We compare timings for the first step of the
action when starting from E0 and from a random curve E; we then report timings
for the remaining B−1 steps, which are all done from a random curve, separately.
Notice that in general the last B−1 steps will be each on average faster than the
first step from a random curve, since the exponents are progressively smaller.

A key generation will consist in a step from E0 together with the remaining
B − 1 steps, while the key exchange will include a step from a given E and the
remaining B−1 steps. Notice that in the latter case the first step can sometimes
be precomputed and included in the public key, as discussed in Section 7.3.

Table 5. Timings for the case d square-free. Average timing of the first step of an action
computation from E0, average timing of the first step of an action computation from a
random curve E and average timing of the last B − 1 steps of an action computation.

Discriminant Avg. first step Avg. first step Avg. B − 1 B

size from E0 from E last steps

1506 3.77s 9.17s 26.82s 5

4006 25.18s 93.24s 74.57s 2

7.3 Sizes

A public key consists in two pair of points, (P1, Q1) ∈ E and (P2, Q2) =
(τ(P1), τ(Q1)) ∈ E(p). Recall that we are working over the prime field Fp2 ,
where p is of the form p = 2acM − 1. In general, we can always assume (P1, Q1)
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to be a deterministic basis of E, and to be working with Montgomery curves.
To send this information there are two main strategies:

– sending the points (P2, Q2) directly; this allows us to recover the Mont-
gomery coefficient of E, and compute P1, Q1 from there. We can stretch this
a bit more, and send P2 and only the x-coordinate of Q2, together with a
bit denoting the sign of its y coordinate. Moreover, in this case the points
(Pi, Qi) do not need to be a basis of the respective 2a-torsion, but can in-
stead be points of p + 1-torsion at no additional cost. This allows Alice to
precompute one step of the action of Bob, and publish that in the public
data. The size in this case is 6p;

– sending the Montgomery coefficient of E together with 4 coefficients in Z2a ,
representing the coordinates of P2 and Q2 in terms of a deterministic basis
of E(p). If we are mainly concerned about sizes, we can send only 3 such
coefficients and recover the fourth one using pairings. The size in this case
is 2p+ 3a.
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