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Abstract. The Learning With Errors (LWE) problem, introduced by
Regev (STOC’05), is one of the fundamental problems in lattice-based
cryptography, believed to be hard even for quantum adversaries. Regev
(FOCS’02) showed that LWE reduces to the quantum Dihedral Coset
Problem (DCP). Later, Brakerski, Kirshanova, Stehlé and Wen (PKC’18)
showed that LWE reduces to a generalization known as the Extrapolated
Dihedral Coset Problem (EDCP). We present a quasi-polynomial time
quantum algorithm for the EDCP problems over power-of-two moduli
using a quasi-polynomial number of samples, which also applies to the
SLWE problem defined by Chen, Liu, and Zhandry (Eurocrypt’22). Our
EDCP algorithm can be viewed as a provable variant to the “Simon-
meets-Kuperberg” algorithm introduced by Bonnetain and Naya-Plasencia
(Asiacrypt’18), adapted to the EDCP setting. We stress that our algo-
rithm does not affect the security of LWE with standard parameters, as
the reduction from standard LWE to EDCP limits the number of samples
to be polynomial.

Keywords: Lattices · Learning With Errors · Dihedral Coset Problem
· Quantum algorithms

1 Introduction

Euclidean lattices have gained significant research attention due to their poten-
tial in constructing cryptographic schemes that are conjectured to be quantum-
resistant. The advantages of lattice-based cryptography are evident, as three out
of the four schemes selected in the recent NIST Post-Quantum Cryptography
Standardization process – Dilithium [45], Falcon [54] and Kyber [61] – rely on
the presumed intractability of lattice problems for their security. The security
⋆ This research was funded in part by the U.S. National Science Foundation under

Grant No. 2044855 & 2122229.
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of lattice-based cryptography is fundamentally based on two well-established
average-case problems: the Short Integer Solution (SIS) problem [1] and the
Learning With Errors (LWE) problem [57]. Both problems have been shown
to admit worst-case hardness guarantees for approximating certain worst-case
lattice problems, through worst-to-average case reductions.

The security of lattice-based assumptions, such as LWE, can be analyzed
using algorithms that address the approximate Shortest Vector Problem (SVP),
particularly through lattice reduction techniques [60,35,33,26,48]. When assess-
ing the security of cryptographic schemes against quantum attacks, NIST rec-
ommends evaluating attack complexity under circuit constraints. This has in-
spired substantial research into the quantum adaptations of classical lattice al-
gorithms and their quantum complexity analysis [6,22,17,9,12,15]. Another ap-
proach is to directly reduce LWE to related problems that are defined quantumly,
and then examine the quantum complexity for solving such problems. For in-
stance, Brakerski, Kirshanova, Stehlé and Wen [19] showed that LWE can be
reduced to a quantum computational problem known as the Extrapolated Di-
hedral Coset Problem (EDCP). Our work focuses on this perspective – more
precisely – we present a quasi-polynomial time and sample quantum algorithm
for the EDCP problem. This algorithm also applies to a closely related problem,
namely S |LWE⟩, proposed by Chen, Liu and Zhandry [25].

1.1 LWE and its quantum versions

We give a brief introduction of some problems. The Learning with Errors (LWE)
problem [58] with parameters n, q and α ∈ (0, 1) asks to find s ∈ Zn

q from samples
(a, ⟨a, s⟩+e (mod q)), where a is uniformly sampled in Zn

q and e is sampled from
a discrete Gaussian distribution of standard deviation αq.

Regev [58] showed that LWE reduces to the Dihedral Coset Problem (DCP),
a problem which is closely related to the Hidden Subgroup Problem (HSP) on
dihedral groups [42]. A converse reduction, however, is not known. Subsequently,
Brakerski, Kirshanova, Stehlé, and Wen [19] showed that LWE is polynomial-
time equivalent to a higher-dimensional analogue of DCP, known as the Extrap-
olated Dihedral Coset Problem (EDCP), which appears to be more naturally
connected to the LWE problem. The EDCPl

n,q,χ problem asks to recover the
secret s ∈ Zn

q given l quantum states of the form:∑
j∈Zq

χ(j) |j⟩ |xi + j · s (mod q)⟩ (1)

for uniformly random xi ∈ Zn
q . The two most relevant choices for the amplitude

χ(·) are the discrete Gaussian on Z with standard deviation r and the discrete
uniform distribution on a support of size M . We denote them as G-EDCPl

n,q,r

and U-EDCPl
n,q,M , respectively. The work [19] shows that LWE can be reduced

to both G-EDCP and U-EDCP. Taking the latter as an example, LWE with
parameter α reduces to U-EDCP with M ≈ 1/(α · poly (n)). Conversely, an
U-EDCP state can be tightly reduced to an LWE sample with α ≈ 1/M .
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Recently, Chen, Liu and Zhandry [25] introduced another quantum prob-
lem known as S |LWE⟩, which is closely related to both LWE and EDCP. The
problem consists of finding s ∈ Zn

q given quantum states of the form:∑
e∈Zq

χ(e) |⟨ai, s⟩+ e (mod q)⟩ ,

where ai is uniformly random in Zn
q and known classically. Similarly, the two

common choices for the amplitude χ(·) are the discrete Gaussian and uniform dis-
tributions. It has been shown that the EDCP problem reduces to S |LWE⟩ [19,25].

Given the natural connections among LWE, EDCP and S |LWE⟩, it is essen-
tial to investigate their hardness from the perspective of quantum algorithms.

1.2 Our contributions

We summarize our main contributions.

1. Quasi-polynomial time algorithm for EDCP. First, we present an algorithm
for EDCP that runs in time 2O(logn log q), requiring the same asymptotic
number of EDCP samples and poly(n) quantum space. For q = poly(n),
this becomes quasi-polynomial. The algorithm works for U-EDCP with any
support size M and for G-EDCP with any deviation r, but requires the
modulus q to be a power-of-two. To the best of our knowledge, this is the first
provable algorithm to break the subexponential complexity barrier [19,42,56]
for EDCP. This algorithm is given in Section 4.

2. Polynomial time algorithm for U-EDCP with M = q/c. A variant of our
algorithm has polynomial running time for U-EDCP when M = q/c for a
constant c. This improves upon the polynomial time algorithm for EDCP
from [25], which is applicable to the regime M = q − c. Note that these
regimes are also solvable in poly(n) time via the EDCP-to-LWE reduction
by the Arora-Ge algorithm [10]. This algorithm is given in Section 5.

3. Quasi-polynomial time algorithm for EDCPn,q,f for certain f . We give a
polynomial time algorithm for EDCP where the amplitude function f is
positive valued and non-negligible on Zq, similar to the conditions required
in [25, Theorem 12]. We also leverage our main algorithm to extend this
result to a quasi-polynomial time algorithm for EDCP requiring only that f
is non-negligible for at least two (known) points. This is given in Section 5.

4. Quasi-polynomial time algorithm for S |LWE⟩. Our algorithm for the EDCP
extends naturally to S |LWE⟩, through a reduction from S |LWE⟩ to EDCP,
a variant of the EDCP problem. For comparison, the best currently known
algorithm for S |LWE⟩ with Gaussian amplitude runs in subexponential time
and requires subexponential samples [23]. This result is given in Section 6.

To conclude, our results provide further evidence that the EDCP / S |LWE⟩
problem may not be as hard as DCP in certain parameter regimes, as already
conjectured in [19].
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Technical overview. We give a high-level overview of our algorithm in Section 4.
We consider U-EDCPn,q,M instances where M = 2. We first apply a quantum
Fourier Transform on the second register of the input states from Equation (1)
and then measure, which leads to a state of the form:

|0⟩+ ω⟨yk, s⟩
q |1⟩ , (2)

where yk is uniform known classically, and ωq := e2πi/q.
In a single step of our (iterative) algorithm we tensor (n + 1) of the above

states to get: ∑
j∈Zn+1

2

ω⟨Y·j, s⟩
q |j⟩ (3)

for some classically known uniform matrix Y ∈ Zn×(n+1)
q . In a new register we

compute Y · j (mod 2) and measure it to collapse the state to the superposition:

ω⟨Y·x0, s⟩
q |x0⟩+ ω⟨Y·x1, s⟩

q |x1⟩ ,

where x0,x1 are the unique solutions to the linear system Y · j ≡ t (mod 2), and
can be computed efficiently via Gaussian elimination. Up to a global phase, this
state is the same as:

|0⟩+ ω⟨Y·(x1−x0), s⟩
q |1⟩ = |0⟩+ ω

⟨y′, s⟩
q/2 |1⟩ ,

where Y · (x1 − x0) (mod q) is even and y′ is defined by lifting Y · (x1 − x0)
(mod q) to Zn and halving the entries. Thus, we obtained samples similar to
those in Equation (2), but with the modulus halved. Iterating this process we
collect n samples with modulus two, e.g.,{

|0⟩+ (−1)⟨yk, s⟩ |1⟩
}n

k=1
.

Measuring such a state in the Hadamard basis gives a linear equation in s (mod 2),
and hence, with n linearly independent equations, we can learn n bits of s. We
can obtain the next batch of n bits of s by ‘clearing’ out the already known bits
via a linear transformation on input EDCP states. Since each step requires O(n)
states and there are O(log q) steps, overall we require 2Ω(logn log q) samples.

We noted that the idea of tensoring more than two quantum states has been
used in the Regev’s polynomial-space algorithm [56] for Kuperberg’s sieve [42,43],
as well as folklore in [39]. In contrast to previous approaches, our method pro-
cesses vectors y in a breadth-first way, ‘clearing’ a single bit across all entries at
each merge. This approach incurs only a polynomial cost for each merge step.

Bonnetain and Naya-Plasencia’s algorithm. It should be noted that our
algorithm for EDCP is not entirely new. In fact, the core merging step (Equa-
tion (3)) and the lifting procedure already appeared3 in the “Simon-meets-
Kuperberg” algorithm of Bonnetain and Naya-Plasencia [18,16]. While their work
3 We thank one of the reviewers for bringing this algorithm to our attention.
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focuses on symmetric constructions, our focus is on the EDCP problem, which
is more naturally connected to the LWE problem. We provide a rigorous, prov-
able analysis that applies to EDCP instances with arbitrary M , along with its
implications for the hardness of related problems such as S |LWE⟩.

1.3 Related work and comparison

We review prior and related work, and compare our results to them. We first
summarize known algorithms for EDCP, including our contributions, in Figure 1.
For clarity, we focus on the U-EDCP problem here, though our algorithm also
applies to the G-EDCP problem via the G-EDCP-to-U-EDCP reductions.

M

#Samples

poly(n) ω(q/
√
n) q/c q − c M = q

poly(n)

2Ω(log2 n)

2Ω(
√
n)

exp(n)
folklore [56,39]

exp(n)
folklore [56,39]

2O(
√

n)

[42,58,31]

exp(n)
Arora-Ge

exp(n)
Arora-Ge

2O(
√
n)

Arora-Ge

poly(n)

Theorem 8
or Arora-Ge

poly(n)

Theorem 8
or Arora-Ge

or [25]

poly(n)

folklore
[27,39]

M = 2

Fig. 1. Complexity of U-EDCPn,q,M as a function of M (x-axis) and the number of
U-EDCP samples (y-axis). We fix a power-of-two q = poly(n). Our quasi-polynomial
time algorithm outperforms the previously known subexponential (or exponential) al-
gorithms in the top-left red-shaded region. It has the same polynomial time complexity
in the region where M > q/c for a constant c (region in blue), compared to the com-
bination of the EDCP-to-LWE reduction [19] and Arora-Ge algorithm [10].

Kuperberg [42] introduced a subexponential time algorithm for DCP, known
as Kuperberg’s sieve, which also requires a subexponential number of samples.
By combining this algorithm with Regev’s reduction [58] from LWE to DCP, it
appears plausible to obtain a subexponential algorithm for LWE if the number
of DCP samples produced is subexponential. However, it is worth noting that the
reduction in [58] is probabilistic, which only produces perfect DCP states with
inverse polynomial probability. Furthermore, imperfect states are not efficiently
detectable, so this does not lead to a subexponential algorithm for LWE.
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The original algorithm of Kuperberg [42] also requires a subexponential quan-
tum space. Regev [56] proposed an improvement to Kuperberg’s sieve that uses
only polynomial quantum space, at the cost of a slight increase in the running
time. A second algorithm by Kuperberg [43] proposed further improvements
based on this idea, which offer a better heuristic running time for general N and
allow for balancing space and time. Asymptotically, all of these algorithms run
in subexponential time and require a subexponential number of samples.

Subexponential algorithms for the U-EDCP problem are folklore, inheriting
from the subexponential algorithms for DCP, as discussed above. First, (part
of) the reduction from LWE to DCP by Regev [58] already implies a reduction
from U-EDCP to DCP. Therefore, one can apply one of the subexponential-
time algorithms discussed earlier to solve U-EDCP. Additionally, Doliskani [31]
provides an algorithm that directly addresses U-EDCP with general support,
based on Kuperberg’s sieve and the algorithm of Childs and van Dam [27]. In
summary, for the U-EDCP problem with general parameters, the best known
methods run in subexponential time and require a subexponential number of
U-EDCP samples. This corresponds to the square region for M = poly(n) and
#samples = 2Ω(

√
n) in Figure 1. Our quasi-polynomial algorithm in Section 4

outperforms these algorithms in this region.
Furthermore, our algorithm also covers the square region whereM = poly(n),

with the number of samples being 2Ω(log2 n) in Figure 1. In comparison, the best
previous algorithm for U-EDCP, for such parameters, is the folklore algorithm
from [56,39], which is achieved through a trade-off between sample complexity
and running-time in Regev’s algorithm [56] (see Subsection 3.3). It is also noted
that one can transform U-EDCP instances into LWE instances using the reduc-
tion from [19], followed by lattice reduction. However, it is easy to see that lattice
reduction requires exponential time, since both 1/α and q are polynomial. Our
quasi-polynomial algorithm outperforms these algorithms for this region as well.

U-EDCPn,q,M becomes easier as M increases. Leveraging the reduction from
U-EDCP to LWE, one can show that U-EDCP with M = ω(q/

√
n) reduces to

a simpler version of LWE that can be solved in subexponential time using the
Arora-Ge algorithm [10], when given a subexponential number of EDCP (hence,
LWE) samples. This corresponds to the square region in Figure 1, where M =
ω(q/

√
n) and the number of samples is 2Ω(

√
n). In comparison, our algorithm

also runs in quasi-polynomial time in this region.
We further increase M : when M = q/c for a constant c, we present a variant

of our algorithm that runs in polynomial time for U-EDCP, as described in Sec-
tion 5. This improves upon the polynomial-time algorithm for EDCP by Chen,
Liu and Zhandry [25], which tackles the regime M = q − c. This corresponds to
the square region in Figure 1, where M = q/c (or q − c), with the number of
samples polynomial. Setting M = q makes EDCP solvable in polynomial time
due to quantum Fourier transform, which is folklore [39].

In parallel, our quasi-polynomial time algorithm for EDCP can be extended
to S |LWE⟩, via a reduction from S |LWE⟩ to a variant of EDCP. In comparison,
the best algorithm [23] for S |LWE⟩ with Gaussian amplitude is a Kuperberg-
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like algorithm that runs in subexponential time and also requires a subexpo-
nential number of samples. Our result also solves an open question from [23],
namely: “Given arbitrarily many samples, is S |LWE⟩ with Gaussian amplitude
still hard?”

Finally, we stress that our quasi-polynomial algorithm does not compromise
the security of LWE with standard parameters. Our algorithm requires a quasi-
polynomial number of EDCP samples, whereas the existing reductions from
standard LWE to EDCP [19,58] generate only a polynomial number of samples.
Moreover, imperfect EDCP states cannot be efficiently detected. At present,
we do not know how to either improve the reduction to yield more samples or
enhance our algorithm. We attempted the latter without success and describe
our failed attempts in Subsection 4.3. After introducing the necessary tools, we
will give more details on the impacts and future directions in Section 7.

2 Preliminaries

Notations. We give the notations and definitions used in this paper. Let n be
a positive integer. We let [n] := {0, . . . , n − 1}. Let q be a positive integer. We
denote by Zq the set of all integers modulo q. Lowercase bold letters such as
v represent column vectors while uppercase bold letters such as A represent
matrices. Given a vector v, we denote by v⊤ its transposed row vector. A vector
v of length n has entries (v1, . . . , vn)

⊤. A zero vector is denoted as 0. The
Hermitian inner product between two vectors u and v is denoted as ⟨u, v⟩.
A matrix B = (b1,b2, . . . ,bn) is represented in a column-wise manner. For a
vector x we denote its ℓ2-norm by ∥x∥. We denote by logb the logarithm of base b
and denote log := log2. We let ⌊a⌋ denote the floor function. Let Bn(r) denote
the n-dimensional ball of radius r centered at the origin. Let X be a countable
set and f : X → R be a function, we define f(X) :=

∑
x∈X f(x). Given two

computational problems A and B, we denote A ≤ B, if an algorithm for solving
problem B could also be used as a subroutine to solve problem A.

We define the notations O(·), Ω(·), Θ(·) and ω(·) in the standard way. We
let poly(·) denote a polynomial function. These functions are typically defined
with respect to the lattice rank n (or some security parameter κ). We say a
positive function is quasi-polynomial if it is upper bounded by 2O(logc n) for
some constant c ≥ 1. Let f : N → (0, 1] be a function. We say f is negligible
if for all positive polynomials p(·) there exists a positive integer N such that
f(n) < 1

p(n) ,∀n > N . When f corresponds to a probability density function,
we say f admits a negligible probability. Conversely, we say a function g(n) is
overwhelming if 1− g(n) is negligible.

2.1 Euclidean lattices

A lattice L is an additive, finitely generated discrete subgroup of Qm. Let B =
(b1, · · · ,bn) ∈ Qm×n be a full rank matrix. The lattice L generated by B is
defined as L(B) = {Bx | x ∈ Zn}. Let n denote the rank of the lattice L. We
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call the lattice L full rank when m = n. The matrix B is called a basis of L(B).
Given a lattice L, we let λ1(L) denote the Euclidean norm of a shortest non-
zero vector in L. Similarly, the i-th minimum λi(L) is the radius of the smallest
sphere centered at the origin that contains i linearly independent lattice points.
A fundamental computational problem on lattices is the γ-approximate shortest
vector problem (SVPγ). On input a lattice basis B, SVPγ asks to find a non-
zero lattice vector v ∈ L(B) such that ∥v∥ ≤ γ · λ1(L(B)). When γ = 1, it is
exact SVP. A closely-related problem is the shortest independent vectors problem
(SIVPγ): on input a lattice basis B, it asks to find n linearly independent lattice
vectors of length at most γ · λn(L(B)).

In lattice-based cryptography, two q-ary lattices are common. Let A ∈ Zm×n
q

for integers m > n, q ≥ 2. We define Lq(A) := {y ∈ Zm | y = A·s (mod q),∃s ∈
Zn} and L⊥

q (A) := {x ∈ Zm | A⊤ · x = 0 (mod q)}. The two lattices are dual
to each other up to a scalar factor, as Lq(A) = q · (L⊥

q (A))∗. We will use the
following lower bound, e.g., a generalization of [34, Lemma 5.3].

Lemma 1 ([23, Lemma 18]). Let q ≥ 2, m ≥ 2n log q, then for all but q−0.16n-
fractions of A ∈ Zm×n

q , we have λ∞1 (Lq(A)) ≥ q/4, where λ∞1 denotes the length
of a shortest vector w.r.t. the infinity norm.

2.2 Probability distribution

Given a distribution χ, we let Supp(χ) denote its support. Let S be a finite set.
We denote by U(S) the uniform distribution on S. For example, U(Zq) denotes
the uniform distribution on the set Zq. Let χ be a distribution over S. We
denote by x←$χ the process of sampling x ∈ S according to the distribution χ.
When the distribution χ is uniform, we use the shortcut notation x←$S such as
x←$Zq. We will use the following fact on the rank of uniform binary matrices.

Lemma 2. Let matrices A be sampled uniformly from Zn×(n+1)
2 . Then A admits

a full rank with some constant probability C ≥ 0.577.

Proof. The probability of A being full row-rank is p(n) :=
∏n+1

i=2 (1− 2−i). The
conclusion follows as p(n) is decreasing in n and limn→∞ p(n) ≥ 0.577.

Discrete Gaussian. We will use several distributions in this work. For any
vector c ∈ Rn and any real deviation r > 0, the spherical Gaussian function is:

ρr,c(x) := exp(−π∥x− c∥2/r2).

The Gaussian distribution has density function υr,c(x) := ρr,c(x)/r
n. We may

omit the subscript c when c = 0. The spherical discrete Gaussian distribution
over a lattice L ⊆ Rn with deviation r > 0 and center c is defined as:

DL,r,c := ρr,c(x)/ρr,c(L), ∀x ∈ L.

We give a few facts on the discrete Gaussian. First, we cite the tail bounds for
Gaussian distributions on lattices.
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Lemma 3 ([13, Lemma 1.5]). For any c > 1/
√
2π, rank-n lattices L and

vectors u ∈ Rn, we have:

ρ(L \ Bn(c
√
n)) < Cn · ρ(L), and

ρ((L+ u) \ Bn(c
√
n)) < 2Cn · ρ(L),

where C := c ·
√
2πe · e−πc2 for C < 1. We also have the bound:

ρr((L+ u) \ Bn(r
√
n)) < 2−Ω(n) · ρr(L).

These bounds imply that truncating the tail has only a negligible impact on the
distribution. For the lattice Z, a similar bound can be established by connecting
the radius to the security parameter.

Lemma 4 ([19, Lemma 1] and [44, Lemma 4.4]). Let κ be the security
parameter and r > 0, we have:

ρr(Z \ B1(
√
κ r)) < 2−Ω(κ) · ρr(Z).

This gives the following negligible event:

Pr[|z| >
√
κ r, z←$DZ,r] < 2−Ω(κ).

We will also use the following estimate on the total Gaussian mass on Zn.

Lemma 5 ([59, Claim 8.1]). For n ≥ 1 and r > 0, we have:

rn · (1 + 2 · e−πr2)n ≤ ρr(Zn) ≤ rn · (1 + (2 + 1/r) · e−πr2)n.

2.3 Fourier transform

Let f : Rn → R be an absolutely integral function. The Fourier transform of f is
defined as f̂(y) :=

∫
Rn f(x)e

−2πi⟨x,y⟩dx. The Fourier transform of the Gaussian
function is ρ̂r = rn · ρ1/r. We use the following form of Poisson summation.

Theorem 1 (Poisson summation). Let L be a lattice and c ∈ Rn, we have:

ρr(L+ c) = rn · det(L∗) ·
∑
x∈L∗

exp(2πi⟨x, c⟩) · ρ1/r(x).

When the shift c = 0, this simplifies to ρr(L) = det(L∗) · ρ̂r(L∗).

The discrete Fourier transform of a function f over Zn
q is defined as

f̃(y) := (1/qn/2)
∑
x∈Zn

q

f(x)ω⟨x,y⟩
q , ∀y ∈ Zn

q .
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2.4 Quantum computation

The state space of an n-qubit quantum system resides in the 2n-dimensional
complex space C2n . A quantum state |u⟩ can be expressed as a superposition
with respect to some standard basis {|i⟩}i, as |u⟩ =

∑
i ai |i⟩, where the coef-

ficients ai ∈ C satisfy the normalization
∑

i |ai|2 = 1. The trace distance T

between two quantum states ρ and σ is T (ρ, σ) := (1 − |⟨ρ|σ⟩|2)1/2. The trace
distance bounds the distinguishability of two quantum states in a similar way as
the statistical distance between two distributions. In particular, trace-preserving
quantum operations cannot increase the trace distance and unitary operations
preserve the trace distance [50, Theorem 9.2]. Similarly, the induced distribu-
tions on the possible outcomes of measurements have equal or smaller statistical
distance than the trace distance [50, Theorem 9.1]. We say two quantum states
are close if their trace distance is inverse exponentially small.

We will present our algorithms in the quantum circuit model, where the
operations performed on quantum states are unitary operators, known as “gates”.
As usual, we will implicitly assume a set of universal operators and simplify the
discussions leveraging the Solovay-Kitaev theorem [40,29].

We will use the Quantum Fourier Transform (QFT), which can be done for
arbitrary finite Abelian groups [41] – we mostly use the QFT over Zn

q . Let q ≥ 2

be an integer and denote ωq := e2πi/q. The QFT over Zn
q of an input state

|ϕ⟩ :=
∑

x∈Zn
q
f(x) |x⟩ is

QFTqn |ϕ⟩ = (1/qn/2)
∑
y∈Zn

q

∑
x∈Zn

q

ω⟨x,y⟩
q f(x) |y⟩ .

This can be instantiated efficiently with poly(n log q ) gates. We use the exact
QFT, but there is also an approximate QFT [28].

To conclude, our algorithms consist of primitive components that can be ef-
ficiently instantiated or approximated using unitary operations such as modular
addition/multiplication and QFT. The algorithms may also use a polynomial
number of ancilla registers – initialized to the state |0⟩ – to facilitate the com-
putation. Hence, the algorithms may also include operations such as ancilla
initialization, tracing out, and measurement in the computational basis. These
operations are trace-preserving and therefore cannot increase the trace distance.
For further background on quantum computation, we refer to [50,64].

We will use the following form of the quantum rejection sampling [51].

Lemma 6 (Adapted from [19, Lemma 7]). Let |ϕ⟩ be a normalized input
quantum state, where |ϕ⟩ :=

∑
j∈D1

πj |ξj⟩ |j⟩ for some (possibly unknown) |ξj⟩ ∈
Cd and πj ≥ 0. Let support D2 ⊆ D1. There is a quantum algorithm that,
with |ϕ⟩ as input, outputs a quantum state |ψ⟩ := (1/B)

∑
j∈D2

σj |ξj⟩ |j⟩ where
0 ≤ σj ≤ πj and succeeds with probability B2 =

∑
j∈D2

σ2
j .
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2.5 Computational problems

Two fundamental average-case problems used in lattice-based cryptography are
the short integer solution problem (SIS) [1] and the learning with errors problem
(LWE) [57]. They are defined as follows.

Definition 1 (Search Learning with Errors [57]). With input parameters
m,n ≥ 1, a modulus q ≥ 2 and a distribution χ, the search version of LWEm

n,q,χ

problem consists of m samples of the form (a, b) ∈ Zn
q × Zq, with a←$Zn

q ,
b = ⟨a, s⟩+ e (mod q) and e←$χ for a fixed s ∈ Zn

q . We say that an algorithm
solves the search LWEm

n,q,χ problem if it finds s with non-negligible probability
w.r.t the input n log q.

Typically, we take m = Ω(n log q) for the problem to be well-defined. We also ex-
press LWEm

n,q,α samples in its matrix form (A,b) ∈ Zm×n
q ×Zm

q where b = As+e
(mod q). If the number of samples m is not specified, we denote it as LWEn,q,χ.
In this work, χ is usually a discrete Gaussian DZ,αq (in such case, we use the
shortcut LWEn,q,α) or bounded uniform distribution. Regev [57, Theorem 1.1]
shows that: (informally) for αq = Ω(

√
n), an efficient algorithm for LWEn,q,α

implies an efficient (quantum) algorithm for worst-case lattice problems such as
SIVPγ with γ = Õ(n/α). For polynomial modulus q, this requires α to be at
most polynomially small – we refer to such α, q as “standard LWE parameters”.
A dual problem to LWE is the short integer solution problem (SIS) [1].

Definition 2 (Short Integer Solution [1]). Input parameters m,n ≥ 1, a
modulus q ≥ 2 and a positive integer bound β, and let A⊤ be uniformly sam-
pled from Zn×m

q . The SISm,n,q,β problem asks to find a non-zero x ∈ Zm such
that A⊤x ≡ 0 (mod q) and ∥x∥2 ≤ β.

Typically, we take m = Ω(n log q). A variant of the problem, namely the inhomo-
geneous short integer solution problem (ISIS), asks to recover a non-zero x ∈ Zm

given A⊤x ≡ y (mod q) with ∥x∥2 ≤ β, where y is given as input. Sometimes,
the solution is bounded by the infinity norm, in such case, we let it denote as
SIS∞m,n,q,β (or ISIS∞m,n,q,β). The SIS problem has been shown [1,46] to be at least
as hard as approximating several worst-case lattice problems.

We now introduce some problems that are defined quantumly. Regev [58]
showed that LWE can be reduced to the Dihedral Coset Problem (DCP), which
is closely related to the Hidden Subgroup Problem (HSP) on dihedral groups [42].
Concretely, DCPl

N asks to recover the secret s ∈ ZN , given l states with uniform
xi, of the form:

{|0⟩ |xi⟩+ |1⟩ |xi + s mod N⟩}li=1.

The space ZN hides the secret, which is usually exponential w.r.t the security
parameter. A higher dimensional version of the DCP problem, which appears to
be more naturally related to LWE, is defined in [19] as follows:

Definition 3 (Search Extrapolated Dihedral Coset Problem [19, Defi-
nition 4]). On input a dimension parameter n, modulus q ≥ 2 and a (discrete)

11



distribution χ, the search Extrapolated Dihedral Coset Problem (EDCPl
n,q,χ) con-

sists of l input states of the form{ ∑
j∈Supp(χ)

χ(j) |j⟩ |xi + j · s mod q⟩
}l

i=1
,

where xi ∈ Zn
q are sampled uniformly, and asks to recover the secret s ∈ Zn

q .

We say an algorithm solves EDCPl
n,q,χ efficiently if it finds s with advantage

poly(1/(n log q)) in time poly(n log q ). Typically we require l = Ω(n log q) for
the problem to be well-defined [31], which is always the case in this work. The two
most interesting amplitude functions for χ are discrete Gaussian and uniform
(up to a normalization factor): when χ = DZ,r for r ≥ 1, we denote it as
G-EDCPl

n,q,r. When χ = U(ZM ) for 2 ≤M ≤ q, we denote it as U-EDCPl
n,q,M .

We omit the number of samples l when it is not important.
The EDCP problem reduces to the LWE problem tightly, and conversely,

LWE reduces to the EDCP problem where the number of samples produced are
limited. We give both reductions.

Theorem 2 (G-EDCP ≤ LWE [19, Theorem 4]). Let κ be the security param-
eter. Given l = Ω(n log q) many G-EDCPn,q,r samples where r = Ω(

√
κ), there

exists a probabilistic polynomial-time quantum reduction from G-EDCPl
n,q,r to

LWEl
n,q,α with α = 1/r that succeeds with probability (1− 2−Ω(κ))l.

The theorem also assumes q/r = Ω(
√
κ) implicitly to ensure that the support

in Definition 3 is predominantly contained in Zq. It is worth noting that this
reduction works for l, beyond polynomial size, as long as it is below exponential.
The converse reduction, however, puts a restriction on the number of samples
that can be obtained with respect to the given LWE parameters.

Theorem 3 (LWE ≤ G-EDCP [19, Theorem 3]). Let κ be the security param-
eter. Given m = Ω(n log q) many LWEn,q,α samples, there exists a probabilistic
polynomial-time quantum reduction from LWEm

n,q,α to G-EDCPl
n,q,r with

r · l < 1/(6
√
2πemκαqn/m) (4)

that succeeds with probability (1− 2−ml)ml ≥ 1/4.

This reduction transforms m LWE samples into l G-EDCP samples subject to
Equation (4). For standard LWE parameters (e.g., both q and 1/α are poly-
nomial), the condition restricts m · l to be a polynomial. This implies that the
reduction can only produce polynomially many EDCP samples, given standard
LWE parameters.

From a cryptanalysis point of view, it is more convenient to work with the
U-EDCP problem. There exists reductions between the G-EDCP and U-EDCP
problems using quantum rejection sampling.
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Lemma 7 (G-EDCP ≤ U-EDCP [19, Lemma 8]). Let κ be the security pa-
rameter. Let n, q,M, l be integers greater than 1 and r a positive real number.
There exists a probabilistic polynomial-time quantum reduction from G-EDCPl

n,q,r

to U-EDCP
O(l/κ)
n,q,M , where M = c · r for some constant c, that succeeds with prob-

ability 1− 2−Ω(κ).

This reduction transforms l G-EDCP samples to O(l/κ) U-EDCP samples with
overwhelming success probability. On the other hand, there exists a converse
reduction from U-EDCP ≤ G-EDCP.

Lemma 8 (U-EDCP ≤ G-EDCP [19, Lemma 9]). Let κ be the security pa-
rameter. Let n, q,M, l be integers greater than 1 and r a positive real number.
There exists a probabilistic polynomial-time quantum reduction from U-EDCPl

n,q,M

to G-EDCPO(l/κ1.5)
n,q,r , where M =

√
κ·r, that succeeds with a probability 1−2−Ω(κ).

The EDCP problem also admits self-reductions [19,31] that convert a larger
support into a smaller one. We use the following self-reduction.

Lemma 9 (U-EDCP self-reduction [31, Lemma 10]). Let κ be the security
parameter. Let n, q, l,M,M ′ be integers greater than 1 and M ≥ M ′. There
exists a probabilistic polynomial-time quantum reduction from U-EDCPl

n,q,M to
U-EDCP

Θ(l)
n,q,M ′ that succeeds with a constant success probability.

Two closely related quantum problems are S |LWE⟩ and C |LWE⟩. S |LWE⟩
is similar to LWE but defined on quantum state.

Definition 4 (Solve S |LWE⟩ [25,23]). On input parameters m,n, q and a
function χ : Zq → C, the S |LWE⟩n,m,q,χ problem consists of m input states:{ ∑

ei∈Zq

χ(ei) |⟨ai, s⟩+ ei mod q⟩
}m

i=1
,

where ai ∈ Zn
q are uniformly distributed and known classically, and asks to

recover the secret s ∈ Zn
q .

In our context, the function χ often comes from a probability density function
which is related to the error distribution of some LWE instances. When χ is a
discrete Gaussian, we denote it as G-S |LWE⟩; when χ is uniform, we denote it
as U-S |LWE⟩. The G-S |LWE⟩ problem has been used implicitly in the reduction
from EDCP to LWE in the proof of Theorem 2. In addition, there is an efficient
quantum reduction from S |LWE⟩n,q,χ̃ to EDCPn,q,χ in [19, Theorem 4] and [25,
Lemma 47]. Note that this reduction uses the QFT, which converts the input
distribution into its DFT in the output.

A related problem, namely C |LWE⟩, is defined as the task of constructing a
certain quantum state.

Definition 5 (Construct C |LWE⟩ [25,23]). Input parameters m,n, q and a
function χ : Zq → C, the C |LWE⟩n,m,q,χ problem asks to construct a quantum
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state of the form: ∑
s∈Zn

q

m⊗
i=1

( ∑
ei∈Zq

χ(ei) |⟨ai, s⟩+ ei mod q⟩
)
,

where the ai ∈ Zn
q are uniformly distributed and given as inputs.

When χ is a discrete Gaussian, we denote G-C |LWE⟩mn,q,r; when χ is uniform
on a support size M , we denote it as U-C |LWE⟩mn,q,M . It is noted by [25] that if
there is a quantum algorithm that solves the S |LWE⟩ problem without collaps-
ing the input quantum states, then there is a quantum algorithm that solves the
C |LWE⟩ problem for the same parameters. Looking ahead, our quasi-polynomial
algorithms work for S |LWE⟩, however, do destroy the input states. The C |LWE⟩
problem has important applications. For example, a recent work by Debris-
Alazard, Fallahpour and Stehlé [30] showed that solving C |LWE⟩ for appropriate
amplitudes implies a quantum oblivious LWE sampler. In addition, both S |LWE⟩
and C |LWE⟩ naturally reduce to the LWE problem. The converse, however, is
less trivial – we refer the details to [25,23].

Finally, there is an efficient reduction from SIS to LWE implicitly stated
in [62] and discussed in [25]. Let A⊤ ∈ Zn×m

q be the given SIS matrix. The
reduction aims to construct a quantum state of the form:

C |SIS⟩ :=
∑

x∈Zm
q ,A⊤x≡0 (mod q)

χ(x) |x⟩ .

It is sufficient to construct a C |LWE⟩ state of the form∑
s∈Zn

q

∑
e∈Zm

q

χ̃(e) |As+ e mod q⟩ ,

which is the inverse QFT of C |SIS⟩. Observe that the classical SIS problem
reduces to C |SIS⟩ through a measurement (in the C |SIS⟩ problem, the length
of the secret follows closely from the distribution χ), which in turn reduces to
C |LWE⟩, and then further reduces to LWE naturally.

3 Algorithms for LWE, (E)DCP and S |LWE⟩

In this section, we discuss previously known algorithms for the LWE, (E)DCP,
S |LWE⟩ problems (and more). We will also present some folklore algorithms that
we believe are known within the community. All previous known algorithms, to
the best of our knowledge, have at least subexponential time/sample complexity,
or deal with specific marginal parameters.

3.1 Subexponential algorithms for DCP, EDCP and S |LWE⟩

We discuss subexponential algorithms – both in terms of time complexity and
the number of samples required – for the DCP, EDCP and S |LWE⟩ problems.
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Subexponential algorithms for DCP. No quantum polynomial time algo-
rithm is known for the DCP problem. Kuperberg proposed several sieving-like
quantum algorithms [42,43] that run in subexponential time and require a subex-
ponential number of samples. These remain the best-known algorithms for solv-
ing DCP asymptotically. We give a brief introduction of the algorithm and refer
to Appendix B for more details.

On input we have DCP states of the form |0⟩ |x⟩+|1⟩ |x+ s (mod N)⟩ , where
x←$ZN . A quantum Fourier transform and measurement result in the state:

|ψy⟩ ∝ |0⟩+ ωys
N |1⟩ , (5)

where y←$ZN is classically known. Tensor two such states |ψy1
⟩ , |ψy2

⟩, apply a
CNOT gate, and then measure the second qubit, which gives:

|ψy1±y2
⟩ ∝ |0⟩+ ω

(y1±y2)s
N |1⟩ ,

up to a global phase, and each outcome occurs with probability 1/2. Now, note
that the classical values of y1 and y2 are known, allowing us to target merging
those y1 and y2 that share certain least significant bits (LSBs). This results in the
state |ψy1−y2

⟩ with its LSBs zeroed.This combinatorial approach is central to all
Kuperberg-like algorithms, which can be considered as a k-List algorithm [63].
The following theorem gives the time and samples complexity for the basic algo-
rithm when N is a power of two. A variant algorithm [42] works for general N .

Theorem 4 (Kuperberg’s sieve [42, Theorem 3.1]). Let N be a power
of two and n = log2N . Kuperberg’s sieve solves the DCPN problem in time
Õ(23

√
n) that requires O(23

√
n) samples.

The original Kuperberg’s algorithm [42] also requires subexponential quan-
tum space. Regev [56] proposed an improvement that only uses a polynomial
quantum space, at the cost of a slight increase in the running-time and the num-
ber of required samples. The core idea is to tensor a larger number of states at
each step and actively solve for the solution, rather than relying solely on the ran-
domness of samples to share the same LSBs. We describe its main idea. Let k, l
be integer parameters where l = O(

√
n log n), k = O(

√
n/ log n) and n = k ·l+1.

We tensor (l+4) such states {|ψyi⟩}l+4
i=1 from Equation (5) which produces a new

state of the form
∑

j∈Zl+4
2

ω
s·⟨y, j⟩
N |j⟩, where the vector y := (y1, · · · , yl+4). Since

we know y classically, we can construct the following state:∑
j∈Zl+4

2

ω
s·⟨y, j⟩
N |j⟩ |⟨y, j⟩ mod 2l⟩ .

We will then measure the second register and obtain some value t such that
⟨y, j⟩ ≡ t (mod 2l). One can find the solutions j by a classical brute-force enu-
meration, which takes O(2l) time. Regev [56] showed that there is a small con-
stant number of solutions, and we project to two such solutions |j1⟩ , |j2⟩ via a
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projective measurement. Thus we have the following states,

|0⟩+ ω
s·⟨y, j2−j1⟩
N |1⟩ , (6)

up to a global phase. Now it can be seen that ⟨y, j2−j1⟩ ≡ 0 (mod 2l) and hence
the l LSBs are “cleared” in the new state. The main difference, compared to [42],
lies in solving a knapsack-like problem during the merging process. Consequently,
this approach requires only a polynomial number of quantum samples to clear
O(
√
n log n) bits at each merging step. The remainder of the algorithm follows

similarly, proceeding through O(
√
n/ log n) iterations. To conclude, Regev’s al-

gorithm runs in time 2O(
√
n logn), requires the same asymptotic number of sam-

ples, and uses O(n) quantum space.
Another work by Kuperberg [43] proposed improved algorithms based on

this idea, which admit a better heuristic running time for general N and al-
low for balancing space and time. Asymptotically, these algorithms also run in
subexponential time.

Subexponential algorithms for EDCP. Subexponential algorithms for EDCP
problems are folklore. We focus on moduli q that are polynomial in n. Also, due
to Lemma 7 & 8, we do not distinguish G-EDCP from U-EDCP. For exam-
ple, one can combine the following G-EDCP ≤ DCP reduction with one of the
aforementioned algorithms for DCP.

Lemma 10 (One-dimension G-EDCP ≤ DCP [19, Lemma 11]). Let κ be
security parameter. Let N, l be integers, and r be a positive real number. There ex-
ists a polynomial-time quantum reduction from G-EDCPl

1,N,r to DCP
O(l/(log r·κ2))
N

if r ≥ 3 logN ; and from G-EDCPl
1,N,r to DCP

O(l/(log r·κ))
N otherwise.

One can solve 1-dim EDCP problem in subexponential time with respect to
logN (we can do better when r is large, as discussed in Subsection 3.3). It is
noted that one can reduce 1-dim G-EDCP to 1-dim LWE by Theorem 2 and then
to n-dim LWE by the modulus-dimension switching [20, Theorem 3.1]. However,
the reduction from n-dim LWE to n-dim G-EDCP in Theorem 3 only produces
a polynomial number of samples.

Alternatively, one could use (part) of the reduction from the n-dim LWE
to the DCP problem by Regev [58]. More precisely, Regev defines a Two-Point
Problem (2PPn,q) with some failure parameter δ. When δ → ∞, the 2PPn,q

problem converges to the U-EDCPn,q,2 problem. Regev [58, Lemma 3.2] showed
that the perfect 2PPn,q problem (and essentially U-EDCPn,q,2) reduces to the
DCP(2q)n problem. It is plausible to think that the n-dim secret in U-EDCPn,q,2

admits similar entropy to the 1-dim secret (in a larger space) in DCP(2q)n .
Doliskani [31] gives an algorithm that works directly for U-EDCP with gen-

eral support. Starting from a subexponential number of U-EDCPn,q,M samples,
one can use Lemma 9 to get a subexponential number of U-EDCPn,q,2 samples.
Doliskani showed that one can use a Kuperberg-like procedure to produce DCPq

samples. The modulus q is polynomial, hence one can use the algorithm in [27]
to solve it efficiently. The dominating part of the algorithm lies in the Kuperberg
sieve step which is subexponential.
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Subexponential algorithms for S |LWE⟩. There also exists subexponential
algorithms for G-S |LWE⟩ – the S |LWE⟩ problem with Gaussian distribution [23].
The algorithms use quantum rejection sampling to convert G-S |LWE⟩ samples
to samples of the form seen in Equation (6) (e.g., the QFT of U-EDCPn,q,2

states), then use Kuperberg’s sieve to solve it. We cite the main result.

Lemma 11 (Subexp. alg. for G-S |LWE⟩ [23, Corollary 34]). Let m,n, q
be LWE parameters and c be a given (known) real number. Given 2Θ(

√
n log q)

samples of the form:∑
e∈Z

ρr(e) exp(2πice/q) |⟨a, s⟩+ e mod q⟩ , (7)

where the deviation r = Ω(
√
n) and r ≤ q/

√
n, there exists a quantum algorithm

that finds s ∈ Zn
q in time 2Θ(

√
n log q).

In fact, the samples in Equation (7) are slightly more general than S |LWE⟩
samples, since there is an additional parameter c (which is known). Recall
that [25] shows that C |LWE⟩ reduces to S |LWE⟩ provided the oracle for the
latter does not collapse the states. This reduction is incompatible with the above
lemma so we do not know whether the same idea works for the C |LWE⟩ problem.
It is worth noting that all the algorithms discussed require perfect samples.

3.2 Polynomial algorithms for EDCP, S |LWE⟩ and C |LWE⟩ under
specific parameters

Efficient quantum algorithms also exist for the EDCP, S |LWE⟩ and C |LWE⟩
problems, when the parameters or the distributions satisfy specific conditions.

Childs and van Dam [27] give a quantum algorithm for the 1-dimensional
U-EDCP1,2n,M problem. Their algorithm runs in polynomial-time, when M =
Ω(2n/c) for any constant c ≥ 3, given l ≥ c samples. Furthermore, the EDCP ≤
LWE reduction in Theorem 2 reduces EDCP1,2n,M to LWE1,2n,1/M , which re-
duces to LWE√

n,2
√

n,1/M via modulus-dimension switching [20]. Using lattice
reduction, the latter problem can be solved efficiently when M = 2Ω(

√
n).

Chen, Liu, and Zhandry present a quantum filtering algorithm [25] which
relies on a quantum instantiation of the Arora-Ge algorithm [10]. Consequently,
similar to the Arora-Ge algorithm, these algorithms run in polynomial-time
for specific parameters. Concretely, they give several polynomial algorithms for
EDCP, S |LWE⟩ and C |LWE⟩, under different sets of parameters.

Theorem 5 (Polynomial alg. [25, Theorems 32, 45]). Let q = poly(n) and
χ : Zq → R be the amplitude of the state

∑
e∈Zq

χ(e) |e⟩ which can be efficiently
constructed. If η := miny∈Zq |χ̃(y)| is non-negligible, then there exist polynomial
time quantum algorithms that solve S |LWE⟩mn,q,χ, C |LWE⟩mn,q,χ and EDCPm

n,q,χ̃

problems for m ∈ Ω(nq/η2).
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The theorem does not cover the usual discrete Gaussian parameters, e.g.,
when χ = DZ,r where

√
κ ≤ r ≤ q/

√
κ, since its DFT contains negligible density

at the tail. However, it applies when χ is a bounded uniform distribution for the
S |LWE⟩ and C |LWE⟩ problems, stated as follows:

Corollary 1 (Polynomial alg. for uniform dist. [25, Corollary 36]). Let
q = poly (n) and integer B < (q − 1)/2 such that gcd(2B + 1, q) = 1. Let
U be the discrete uniform distribution on [−B,B] ∩ Z. There exist polynomial
time quantum algorithms that solve the S |LWE⟩mn,q,U and C |LWE⟩mn,q,U problems
when m ∈ Ω(nq4(2B + 1)).

This corollary shows that the U-S |LWE⟩ and U-C |LWE⟩ problems are some-
what easy, conditioned on the parameters. One may also notice that the above
lemma does not cover the EDCP problem. The following theorem works for the
U-EDCP problem when the distribution has a sufficiently large support, e.g.,
almost as wide as q.

Theorem 6 (Polynomial alg. for wide uniform dist. [25, Theorems 39,
46]). Let prime q = poly(n) and integer B such that q − (2B + 1) = c is a
constant. Let U be the discrete uniform distribution on [−B,B]∩Z. There exist
polynomial time quantum algorithms that solve EDCPm

n,q,U , S |LWE⟩mn,q,Ũ and
C |LWE⟩mn,q,Ũ problems when m ∈ Ω((q − c)3nc+1q log q).

It is noted that the EDCP parameters in this theorem have already been
addressed by Ivanyos, Prakash, and Santha [37] using a quantum algorithm with
similar complexity, which also relies on the Arora-Ge algorithm. The above the-
orem also applies to the S |LWE⟩ and C |LWE⟩ problems, with the distribution
being Ũ . Furthermore, these algorithms can be used to solve the SIS∞m,n,q,β where
β = (q − c)/2 using the SIS to C |LWE⟩ reduction of Subsection 2.5.

3.3 Folklore algorithms

We describe several algorithms that, while not explicitly documented in the
literature, are believed to be known folklore and may be of independent interest.

Polynomial samples algorithms for (E)DCP. All algorithms discussed
in Subsection 3.1 require at least a subexponential number of states as in-
put. However, the number of required samples can be reduced to polynomial,
by trading off running-time to exponential. Notice that Regev’s algorithm (in
Subsection 3.1) requires lO(k) DCP states. One can choose the parameters l, k
such that the algorithm requires only poly(n) DCP states. Concretely, setting
l = Θ(n log(n/ log n)/ log n) and k = n/l = Θ(log n/ log(n/ log n)), leads us to
an algorithm that uses poly(n) DCP states and runs in time O(2l) = O(2n),
where the most expensive step is (classically) enumerating the solutions j to the
system ⟨y, j⟩ ≡ t (mod 2l). Since an algorithm solving DCP [58,19] can also
solve LWE via the existing reductions, a single-exponential algorithm for DCP
is not surprising. For example, for LWE with (1/α, q) ∈ poly(n), the best-known
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algorithms are also single-exponential, using lattice reduction in Appendix A.
Similarly, one can solve EDCP in exponential time with polynomial samples by
considering (part) of the reduction from the n-dim LWE to the DCP problem
in Regev [58] – which shows that U-EDCPn,q,2 reduces to the DCP(2q)n , as
discussed in Subsection 3.1.

Polynomial time algorithm for EDCP when M = q. When the U-EDCPn,q,M

problem is defined with a uniform distribution over the full support Zq, there
is a folklore poly (n)-time algorithm that solves it [39]. Indeed, input a state∑

j∈Zq
|j⟩ |x+ j · s mod q⟩ and then apply a QFT over Zq × Zn

q on both regis-

ters. The result is
∑

z∈Zq

∑
y∈Zn

q
ω
⟨x,y⟩
q

∑
j∈Zq

ω
j·(⟨s,y⟩+z)
q |z⟩ |y⟩, which is equiv-

alent to
∑

y∈Zn
q
|−⟨s, y⟩⟩ |y⟩. Measuring the states gives (−⟨s, y⟩,y). Repeating

this process for Ω(n) times reveals s by Gaussian elimination.

Hardness of EDCP via reduction to LWE. The reduction given in [19]
reduce n-dimensional G-EDCPl

n,q,r to LWEl
n,q,α=1/r, hence, under lattice re-

duction algorithms, G-EDCPl
n,q,r (and U-EDCP through the reduction from

Lemma 8) has complexity exp(O(n log q log n/ log2(r))) for a sufficiently large l.

4 A quasi-polynomial time algorithm for EDCP

In this section, we present a quantum algorithm for solving U-EDCP with any
support size M in quasi-polynomial time using a quasi-polynomial number of
U-EDCP samples. To the best of our knowledge, this is the first quantum algo-
rithm that runs below the subexponential regime, e.g., compared to the algo-
rithms discussed in Subsection 3.1.

Theorem 7. Let positive integers n, q, M and l be the parameters in U-EDCPl
n,q,M ,

where q is a power-of-two. There exists a quantum algorithm that solves U-EDCPl
n,q,M

in time 2O(logn log q) using poly(n) quantum space, when l = 2Ω(logn log q).

When q is polynomial (or at most quasi-polynomial) in n, which is typically
the case, the running time and the number of samples required are both quasi-
polynomial. In addition, this theorem naturally extends to G-EDCP via Lemma 7.

Corollary 2. Let positive integers n, q, r and l be the parameters in G-EDCPl
n,q,r,

where q is a power-of-two. There exists a quantum algorithm that solves G-EDCPl
n,q,r

in time 2O(logn log q) using poly(n) quantum space, when l = 2Ω(logn log q).

Our algorithm for U-EDCP directly addresses a variant problem called U-EDCP,
which is almost the QFT of U-EDCP. We first introduce the U-EDCP problem.
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Definition 6 (U-EDCP problem). The U-EDCP
l

n,q,M problem consists of l
samples |ψk⟩ of the form:

|ψk⟩ ∝
M−1∑
j=0

ωj⟨yk, s⟩
q |j⟩ ,

where k ∈ [l] and yk←$Zn
q are known classically, and asks to recover the secret s.

One can obtain U-EDCP samples by applying a QFT on the U-EDCP samples.
Let |ϕ⟩ ∝

∑M−1
j=0 |j⟩ |x+ j · s⟩ be an input. Applying a QFT on the second

register gives, up to a global phase, the following state:

(1⊗QFTn
q ) |ϕ⟩ ∝

∑
y∈Zn

q

M−1∑
j=0

ωj⟨y, s⟩
q |j⟩ |y⟩ .

Then measuring the second register gives an U-EDCP sample, where y←$Zn
q

is known classically. Therefore, U-EDCP naturally reduces to U-EDCP, and we
will focus on algorithms for the latter.

4.1 Algorithm for U-EDCP with M = 2

We begin by describing our algorithm for U-EDCPn,q,2 (and hence U-EDCPn,q,2)
and then rely on a self-reduction to handle the general case of U-EDCPn,q,M .
Our proof relies on an iterative application of the following merging step. In this
work, we assume the underlying field operations are efficient and we focus on
the arithmetic complexity.

Lemma 12. Let p ≥ 4 be a power-of-two. Given (n + 1) samples {|ψk⟩}n+1
k=1

from U-EDCPn,p,2 with known yk←$Zn
p , there exists a quantum polynomial-time

algorithm that outputs one sample from U-EDCPn,p/2,2 with the same secret s,
succeeding with constant probability C ≥ 0.577.

Proof. By tensoring our initial n+1 U-EDCP samples, we can create the state:

n+1⊗
k=1

|ψk⟩ ∝
∑

j∈Zn+1
2

ω⟨Y·j, s⟩
p |j⟩ , (8)

where Y := (y1, . . . ,yn+1) ∈ Zn×(n+1)
p is a column matrix formed by the yk’s.

In a new register, we compute:∑
j∈Zn+1

2

ω⟨Y·j, s⟩
p |j⟩ |Y · j mod 2⟩ ,

and then measure it to get some t ∈ Zn
2 such that Y · j ≡ t (mod 2). By

definition, the input Y is uniform in Zp. Since 2 | p, we see that Y (mod 2) is
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uniform. By Lemma 2 it has full rank modulo 2 with constant probability. As
Y is an n× (n+ 1) matrix, there are exactly two solutions {x0,x1} ⊆ Zn+1

2 for
Yx ≡ t (mod 2). Classically, we can compute the two solutions using Gaussian
elimination in time O(n3). Therefore, we are left with the state:

ω⟨Y·x0, s⟩
p |x0⟩+ ω⟨Y·x1, s⟩

p |x1⟩ .

By factoring out the global phase and renaming, we obtain the state:

|0⟩+ ω⟨y′, s⟩
p |1⟩

where the new vector y′ := Y · (x1 − x0) (mod p) is even. Choose any y′′ such
that 2y′′ = y′ mod p. Since 2 divides p there is no unique y′′ mod p, but we can
define it as the result of lifting y′ mod p to Zn and dividing each entry by 2.

Now since ω⟨y′′, s⟩
p/2 = ω

⟨y′′, s⟩ mod p/2
p/2 and y′′ is unique modulo p/2, we have

the state
|0⟩+ ω2⟨y′′, s⟩

p |1⟩ = |0⟩+ ω
⟨y′′, s⟩
p/2 |1⟩

for a known vector y′′. By Lemma 13 it is uniform in Zn
p/2, so the above is a

valid U-EDCPn,p/2,2 sample, with the original secret.

Abusing notation, we will denote this lemma U-EDCP
n+1

n,p,2 → U-EDCP
1

n,p/2,2.
This notation can be interpreted to mean that there exists an efficient quantum
procedure that converts (n+1) samples of the former problem into a single sam-
ple of the latter problem, sharing the same secret. Note that the idea of tensoring
more than two samples has been used in Regev’s polynomial-space algorithm [56]
for Kuperberg’s sieve, as well as in [39]. Unlike the previous approach, we process
the vector in a breadth-first manner, handling a single bit for all coordinates,
which results in only a polynomial cost for each merge. The following lemma
shows the uniformity of the merged vectors in the above procedure.

Lemma 13. Let p ≥ 4 be a power of two. We consider the following procedure,
which simulates the merging step in Equation (8) classically.

– sample Y←$Zn×(n+1)
p until it has full rank over Z2 and x0←$Zn+1

2 inde-
pendently;

– let x1 ∈ Zn+1
2 \ {x0} denote the other solution to Yx0 = Yx1 (mod 2);

– output y′ := Y · (x1 − x0) (mod p), which is even.

Then the distribution of y′, induced from the input randomness on Y and x0, is
uniform in 2Zn

p/2.

Proof. We use a counting argument to prove this. It suffices to show that for any
fixed y′ and x0, the number of matrices Y ∈ Zn×(n+1)

p with full rank modulo 2
that produce the given y′, conditioned on the given x0, is a constant. Noting that
the two sources of randomness, Y and x0, are uniformly independent, the proof
is then completed by an averaging argument over x0. Now we let y′ ∈ 2Zn

p/2 and
x0 ∈ Zn

2 be fixed. We count the total number of Y that produces the given y′.
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Given y′ and x0, we sum over all possible x1 ∈ Zn+1
2 \ {x0} and count the

number of Y’s. Denote x′ := (x1 − x0) which is non-zero and has entries in
{−1, 0, 1}. We claim that, for any non-zero vector x′ ∈ {−1, 0, 1}n and any
given even y′, the number of Y in Zn×(n+1)

p with full rank modulo 2 such that
Y · x′ ≡ y′ (mod p) is precisely |GLn(Zp)|.

To see this, assume w.l.o.g that the last coordinate of x′ is 1 (or −1). We
enumerate over all possible left n×n sub-matrices Yl of Y, where we denote Y =
[Yl | yr]. For each such fixed Yl, the right-hand side vector yr in Y is uniquely
determined since the last coordinate of x′ is invertible in Z2. Furthermore, we
claim it is sufficient to count only invertible square sub-matrices Yl. Assume Yl

is non-invertible. Then it will have determinant a multiple of 2, so Yl modulo 2 is
also non-invertible and does not have full rank. Then the last row of its reduced
echelon form is zero. It follows the last entry of yr must also be 0 modulo 2,
since y′ is even and the last entry of x′ is 1 or -1. Thus Y can not have full rank
modulo 2 and the total number of such Y is |GLn(Zp)|.

Now we let x1 vary over Zn+1
2 \ {x0}. A simple computation shows there

is no overlap between the Y’s associated with two distinct x1’s. Hence for a
fixed (y′,x0) there are |GLn(Zp)| · (2n+1 − 1) full rank matrices Y such that
Y · (x0−x1) = y′ (mod p). This number is independent of the choice of (y′,x0).
It follows that y′ is uniform in 2Zn

p/2.

Remark 1. As discussed in Subsection 1.2, our merging and lifting procedures
used in the proof of Lemma 12 essentially follow the “Simon-meets-Kuperberg”
algorithm of Bonnetain and Naya-Plasencia [18,16], originally proposed in the
context of symmetric cryptanalysis. In Lemma 13 and Subsection 4.2, we provide
a rigorous analysis that applies to EDCP instances with general M .

Now, we are ready to prove the main theorem. We first present the proof of
Theorem 7 for the case M = 2.

Proof of Theorem 7 (for M = 2). Let q = 2t be the modulus of the given
U-EDCPn,q,2 problem. Define qi = q/2i for i ∈ [t]. Following Lemma 12 we
consider the following chain of combinations:

U-EDCP
l0
n,q0=q,2 → · · · → U-EDCP

li
n,qi,2 → · · · → U-EDCP

lt−1=n

n,qt−1=2,2. (9)

Looking ahead, assume that n samples have been obtained for the final U-EDCPn,2,2

problem. The resulting samples are of the form:{
|0⟩+ (−1)⟨yk, s⟩ |1⟩

}n

k=1
.

By measuring each in the Hadamard basis we learn ⟨yk, s⟩ (mod 2),∀k ∈ [n].
This allows us to recover s̄ = s (mod 2) as soon as the linear system is non-
singular. By Lemma 12 the vectors yk are uniform in Zn

2 , so by Lemma 2 this
happens with constant probability. This procedure recovers the first n bits of s.
To recover the next n bits, we process fresh EDCPn,q,2 samples by mapping

|j⟩ |x+ j · s (mod q)⟩ → |j⟩ |x+ j · s− j · s̄ (mod q)⟩ .
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After doing a QFT over Zn
q on the second register and measuring, we obtain

U-EDCPn,q/2,2 states of the form:

|0⟩+ ω⟨yk, s−s̄⟩
q |1⟩ = |0⟩+ ω

⟨yk, (s−s̄)/2⟩
q/2 |1⟩ .

Note that s− s̄ (mod q) is even, so the equality is justified by the same argument
used in the proof of Lemma 12. One can now apply the above chain (partially)
in a similar manner to learn the next n bits of s. Proceeding in this way, log q
iterations of this procedure are sufficient to recover the entire secret.

Now we analyze the complexity. It is sufficient to focus on recovering the
first n bits of s. Consider a single step U-EDCP

li
n,qi,2 → U-EDCP

li+1

n,qi+1,2 of the
chain in Equation (9). By a Chernoff bound argument, on input Ω(li) sam-
ples this step outputs at least li/(n + 1) samples with overwhelming probabil-
ity. Since the chain of merges in Equation (9) has length log q − 1, on input
Ω(q · nlog q) = 2Ω(logn log q) samples the procedure outputs n samples with over-
whelming probability. Finally, the algorithm processes O(n) samples at a time so
it requires poly(n) quantum space, following the “pipeline” analogy of Regev [56].

4.2 Algorithm for U-EDCP with general M

For general M , we will rely on a self-reduction of U-EDCP. Two self-reductions
for the U-EDCP problem already exist in the literature. The first, given in [19,
Lemma 10], relies on the quantum rejection sampling from [51, Sec.4]. Quali-
tatively, reducing U-EDCPn,q,M to U-EDCPn,q,M ′ for some M ′ < M with this
approach reduces the number of samples by a factor ofO(M/M ′) and requires the
ratio M/M ′ to be polynomially bounded. The second self-reduction is Lemma 9,
which loses half of the samples on average and places no restriction on the ra-
tio M/M ′. For our application, we use a simpler reduction specific to U-EDCP,
which may also be of independent interest. Concretely, we reduce U-EDCPn,q,M

to U-EDCPn,q,M ′ which is lossless when M ′ divides M , and loses half of the sam-
ples on average otherwise. The proof is similar in nature to that of Lemma 9.

Lemma 14 (U-EDCP self-reduction). Let n, q, l, l′ be integers greater than 1
and M,M ′ integers at most q such that M ′ < M . Then there is a probabilistic
polynomial time reduction from U-EDCP

l

n,q,M to U-EDCP
l′

n,q,M ′ with l′ = Θ(l).
Furthermore, if M ′ divides M then l′ = l.

Proof. Given an U-EDCPn,q,M state:

M−1∑
j=0

ωj⟨y, s⟩
q |j⟩

compute ⌊j/M ′⌋ in a new register and measure it as k. Now let k := ⌊j/M ′⌋ be
fixed. Note that ⌊j/M ′⌋ = k if and only if j ∈ [M ′k,M ′(k + 1)), so we are left

23



with the state: ∑
j∈[0,M)∩[M ′k,M ′(k+1))

ωj⟨y, s⟩
q |j⟩ .

A simple calculation shows that if j < M ′ ⌊M/M ′⌋ then M ′(k + 1) ≤ M . With
probability (M ′ ⌊M/M ′⌋)/M , we are left with the state:

M ′(k+1)−1∑
j=M ′k

ωj⟨y, s⟩
q |j⟩ .

Now factor out the common phase ω(M ′k) ⟨y, s⟩
q and map |j⟩ 7→ |j −M ′k⟩ to get:

M ′(k+1)−1∑
j=M ′k

ω(j−M ′k)⟨y, s⟩
q |j −M ′k⟩ =

M ′−1∑
j=0

ωj⟨y, s⟩
q |j⟩ .

Now we consider the success probability (M ′ ⌊M/M ′⌋)/M . If M ′ divides M ,
this is exactly 1. Otherwise, we consider M ′ > M/2 and M ′ < M/2 separately.
When M > M ′ > M/2, we have 1 < M/M ′ < 2, so ⌊M/M ′⌋ = 1 and the success
probability is at least 1/2. When M ′ < M/2 then we have (M ′ ⌊M/M ′⌋)/M >
1−M ′/M which is also at least 1/2.

Now we complete the proof of Theorem 7.

Proof of Theorem 7 (for general M). Follows immediately from Lemma 14
and Theorem 7 with M = 2.

4.3 A failed generalization of our algorithm

A natural generalization would be an algorithm that operates directly on U-EDCP
samples modulo M > 2, bypassing the aforementioned self-reduction. If possible,
this approach could asymptotically reduce both the length of the reduction chain
and the number of required samples. In particular, we could set M = poly(n),
where t = logM q is a constant. This would lead to a poly(n)-time algorithm
for U-EDCP (e.g., this would break standard LWE quantumly). We discuss why
such generalization fails.

Concretely, let us try to generalize the proof of Lemma 12 by expressing
q = M t for M > 2. We start with U-EDCPn,q,M states as in Definition 6.
Following the proof Lemma 12, we tensor (n+ 1) states to have:

n+1⊗
k=1

|ψk⟩ =
∑

j∈Zn+1
M

ω⟨Y·j, s⟩
q |j⟩ ,

where Y = (y1, . . . ,yn+1) ∈ Zn×(n+1)
q . In a new register compute Y ·j (mod M)

and measure it as t ∈ Zn
M . Classically, in polynomial time we compute the set

X = {x ∈ Zn+1
M | Y · x = t (mod M)}. Assuming Y has full rank, the set of
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all solutions xi ∈ X can be written as xi ≡ x0 + i · u (mod M) for 0 ≤ i < M ,
where x0 is any fixed solution and u ∈ Ker (Y) is any fixed non-zero element
in the kernel. Such an expression, seemingly, reproduces an EDCP-like sample.
However, notice that4 xi ≡ x0+i·u holds (modM) but not necessarily (mod q).
In fact, they are of the form x0 + i · u +M · vi for some vi. Because of these
different vi’s, factoring out the “global” phase fails:

M−1∑
i=0

ω⟨Y·xi, s⟩
q |xi⟩ =

M−1∑
i=0

ω⟨Y·(x0+i·u+M ·vi), s⟩
q |xi⟩ ̸∝

M−1∑
i=0

ωi⟨Y·u, s⟩
q |xi⟩ .

Therefore, it does not seem to be possible to “craft” the setX such that the above
procedure gives us the desired state

∑M−1
i=0 ω

i⟨Y·u, s⟩
q |xi⟩ =

∑M−1
i=0 ω

j⟨y′, s⟩
q/M |xi⟩.

5 Algorithms for EDCP with specific parameters

In Section 3 we discussed Theorem 5 and Corollary 1, polynomial time algorithms
for EDCP, S |LWE⟩ and C |LWE⟩ with specific parameters presented by [25].
Both of these results rely on a technique they call quantum filtering, which uses
a quantum version of the Arora-Ge algorithm. Corollary 1 gives a polynomial
time algorithm for U-EDCPn,q,M when M = q − c , and Theorem 5 allows to
solve EDCPn,q,f in polynomial time when minz∈Zq |f(z)| is non-negligble. Both
algorithms require a polynomial number of samples.

First, we show that a modified version of our algorithm allows to solve the
harder instance of U-EDCP for M = q/c in polynomial time, providing an
asymptotic improvement over Corollary 1. Note that we do not require q to be
a power of two here, only that c is a power of two.

Theorem 8. Let n ∈ N and q = poly(n). Let c be a constant power of two
dividing q. Let M = q/c and l = Ω(nlog c log q). There is a polynomial time
algorithm for U-EDCPl

n,q,M .

We sketch the proof ideas: When M divides q, Lemma 12 (and Lemma 13)
can be modified to transform (n+1) samples of U-EDCPn,q,M to a single sample
of U-EDCPn,q/M=c,2. This can be done using the ideas discussed in Section 4.3
followed by a projective measurement onto two states, which succeeds with prob-
ability 1/q.

Assume we have Ω(nlog c) samples of U-EDCPn,c,2. Then we can apply The-
orem 7 with modulus c to recover n bits of the secret in time poly(n). By a
Chernoff bound, Ω(nlog c) samples are sufficient to succeed with constant prob-
ability. Thus to recover all n log q bits of the secret we need l = Ω(nlog c log q).

Next we give a simple proof of a variation of Theorem 5 which assumes that
f takes on only positive values (which is the case whenever f is a distribution).
Using our algorithm as well as rejection sampling (Lemma 6) we then extend

4 We thank Damien Stehlé for pointing this out.
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this result to a quasi-polynomial time algorithm for EDCPn,q,f when f is non-
negligible for at least two points. Neither of these results place any restriction
on the divisors of q. In the following we will assume that samples of EDCPn,q,f

are normalized such that
∑

j f(j)
2 = 1.

Theorem 9. Let n ∈ N and q = poly (n). Let f : Zq → R+ be such that
η := minz∈Zq

f(z) is non-negligible. Let l = Ω(n/(qη2)). There is a polynomial
time algorithm for EDCPl

n,q,f .

Proof. We use quantum rejection sampling as stated in Lemma 6 to reduce
the problem to U-EDCP with M = q. Using the notation of Lemma 6 we set
πj := f(j) and σj := η, so that σj ≤ πj . Then rejection sampling produces:

(1/B)
∑
j∈Zq

η |j⟩ |x+ j · s⟩

with probability B2 = qη2. This is proportional to a U-EDCP state with M = q.
As discussed in Section 3.3 only Ω(n) such states are needed to recover the
secret, so l = Ω(n/(qη2)).

Theorem 10. Let n ∈ N and a power-of-two modulus q = poly (n). Let f :
Zq → R+ be such that f is non-negligible for at least two points z0, z1 ∈ Zq

which are known. Set η := min{f(z0), f(z1)} and let l = 2Ω(logn log q). There is
a quasi-polynomial time algorithm for EDCPl

n,q,f .

Proof. For each input state we use rejection sampling as in Lemma 6 with
πzi := f(zi) for i ∈ [q], σzi := η for i ∈ {0, 1} and σzi := 0 otherwise. This results
in states of the form |z0⟩ |xk + z0 · s⟩+ |z1⟩ |xk + z1 · s⟩ with non-negligible prob-
ability 2η2. Doing a QFT over Zn

q on the second register and relabeling yields a
U-EDCPn,q,2 state. With l = 2Ω(logn log q) such states we can recover the secret
by Theorem 7.

Alternative EDCP algorithm by Arora-Ge. As alluded to in Section 1 it
is possible to solve EDCPl

n,q,M by first reducing the problem to LWEl
n,q,1/M

(e.g., Theorem 2) and applying the Arora-Ge algorithm, which has complexity
2Õ((αq)2) and requires 2Õ((αq)2) samples. When αq = q/M = c this complexity
is poly(n), so Arora-Ge can also be used to solve EDCPl

n,q,q/c in polynomial
time when l = poly(n). We consider this approach with other parameters when
comparing algorithms for EDCP in Figure 1.

6 A quasi-polynomial time algorithm for S |LWE⟩

In this section, we present a quasi-polynomial time quantum algorithm for solv-
ing the Gaussian-S |LWE⟩ problem, leveraging our EDCP algorithm from Sec-
tion 4. To the best of our knowledge, this appears to be the first algorithm
that runs below the subexponential regime. By comparison, the previously best-
known algorithm for G-S |LWE⟩ is the Kuperberg-like algorithm in Lemma 11.

26



Theorem 11. Let κ be the security parameter and n, q = poly(κ) be integers,
where q is a power-of-two. Let r = Ω(

√
κ) and q/r = Ω(

√
κ). There exists

a quantum algorithm that solves S |LWE⟩ln,q,r in time 2O(log2 n) using poly(n)

quantum space, when l = 2Ω(log2 n).

Proof. The proof is a combination of Lemma 15, 16 and Theorem 7.

Our algorithm will use a variant problem called G-EDCP, defined similarly to
U-EDCP in Definition 6.

Definition 7 (G-EDCP problem). The G-EDCP
l

n,q,r problem consists of l
samples |ψk⟩ of the form:

|ψk⟩ ∝
∑
j∈Zq

ρr(j)ω
j·⟨yk, s⟩
q |j⟩ ,

where k ∈ [l] and yk←$Zn
q are known classically, and asks to recover the secret s.

One can obtain G-EDCP samples by applying a QFT on the G-EDCP samples
and then measure. This is similar to the U-EDCP of Definition 6 so we omit the
details. We usually take r ≤ q/

√
κ to ensure that the support in the definition is

predominantly contained in Zq. To prove the theorem, we first show a reduction
G-S |LWE⟩ ≤ G-EDCP and then a reduction G-EDCP ≤ U-EDCP. Therefore,
our algorithm for U-EDCP implies an algorithm for G-S |LWE⟩.

6.1 G-S |LWE⟩ ≤ G-EDCP

We begin by describing a polynomial-time reduction from G-S |LWE⟩ to G-EDCP.
The proof is conceptually similar to a part of the reduction from EDCP to LWE
of [19, Theorem 4], but reversed.

Lemma 15 (G-S |LWE⟩ < G-EDCP). Let κ be the security parameter and
n, q = poly (κ) be integers. Let r = Ω(

√
κ) and q/r = Ω(

√
κ). There exists

a quantum polynomial-time reduction from S |LWE⟩ln,q,r to G-EDCP
l

n,q,σ, where
σ = q/r, admitting the same secret s.

Proof. We are given G-S |LWE⟩ samples of the form
∑

e∈Zq
ρr(e) |⟨a, s⟩+ e (mod q)⟩

which is close to: ∑
e∈Z

ρr/q(e/q) |⟨a, s⟩+ e (mod q)⟩

using the tail bound from Lemma 4. Then we change the variable b := ⟨a, s⟩+ e
and split the summation of b ∈ Z into a double summation of z ∈ Zq and j ∈ Z.
This leads to: ∑

z∈Zq

(∑
j∈Z

ρr/q(j + (z − ⟨a, s⟩)/q)
)
|z⟩ .
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Using the Poisson summation formula of Theorem 1, the above state is propor-
tional to: ∑

z∈Zq

(∑
j∈Z

ωj·(−⟨a, s⟩+z)
q ρq/r(j)

)
|z⟩ .

Since q = poly(κ) and r = Ω(
√
κ), the above state is close to:∑

z∈Zq

(∑
j∈Zq

ωj·(−⟨a, s⟩+z)
q ρq/r(j)

)
|z⟩ .

Now we do an inverse QFT over Zq and denote a′ = −a, which gives:∑
j∈Zq

ωj·⟨a′, s⟩
q ρq/r(j) |j⟩ .

Note that a′ is known classically and is uniform in Zn
q . Let A be the normalization

scalar of the final state, e.g., A2 ·
∑

j∈Z ρ
2
q/r(j) = 1. Using Lemma 5, we get

A ≈ 21/4 ·
√
r/q up to an error factor of 2−Ω(κ).

6.2 G-EDCP to U-EDCP reduction

We give a G-EDCP to U-EDCP reduction using quantum rejection sampling.
This proof is analogous to Lemma 7. Another related work [24, Theorem 32]
provides a similar reduction, but focuses on a support of size two, with an in-
verse polynomial success probability. The following reduction converts G-EDCP
samples to U-EDCP samples with constant success probability.

Lemma 16 (G-EDCP ≤ U-EDCP). Let κ be the security parameter. Let n, q,M
and l = ω(κ) be positive integers, and σ be a positive real number such that
σ = Ω(

√
κ) and q/σ = Ω(

√
κ). Then quantum rejection sampling converts

G-EDCP
l

n,q,σ to U-EDCP
O(l)

n,q,M , where M = c · σ for some constant c, and suc-
ceeds with overwhelming probability.

Proof. We use the quantum rejection sampling of Lemma 6 for d = 1, e.g.,
when the |ξk⟩’s degenerate to unknown complex phases. Concretely, the input
G-EDCPn,q,σ state (normalized) has the form:∑

j∈Zq

ρσ(j)/(2
1/4
√
σ)ωj·⟨a, s⟩

q |j⟩ .

The output state, after rejection sampling, has the form:

(1/B) ·
M−1∑
j=0

ρσ(M)/(21/4
√
σ)ωj·⟨a, s⟩

q |j⟩ .

It is clear that the condition in Lemma 6 is satisfied. Thus the success probability
is B2 = M · ρ2σ(M)/(21/2σ). For M = c · σ where c is a constant, the success
probability is a constant. The lemma follows from a Chernoff bound argument.
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7 Impacts and discussions

In this section we assess the impacts of our algorithm and consider some further
discussions and open questions.

7.1 LWE to U-EDCP and (non-)impacts of our algorithms

An algorithm for solving EDCP can be used to solve LWE via reductions from
LWE to EDCP [55,19]. Concretely, Theorem 3 gives a reduction from LWE to
G-EDCP where the amplitudes of the resulting states are Gaussian. We provide
a direct reduction from LWE to U-EDCP, adapting the proof of Theorem 3.
The same reduction has been given in [31, Section 5.2], but without details. For
completeness, we present the reduction with concrete parameters.

Theorem 12 (LWE ≤ U-EDCP reduction). Let κ be the security parameter.
Given m ≥ n log q where m = o(2κ ) many LWEn,q,α samples, there exists a
probabilistic quantum reduction, with run-time polynomial in n, from LWEm

n,q,α

to U-EDCPl
n,q,M where M ≥ 1 and l ≥ 1 are integers, satisfying the condition:

M · l < 1/(64
√
κmα). (10)

We refer to Appendix C for the proof of Theorem 12. Notice that, compared
to the result of Theorem 3 for the case of G-EDCP, there is an asymptotic saving
of
√
κ in the denominator. Furthermore, the condition shows that it is better to

keep the smallest value m = n log q in the reduction. It should also be possible
to use the refined reduction in [19, Theorem 3] to further improve the above
result, which we will leave as future work.

The above reduction can be specified to the constant error case, leading
to a refined result that may be of independent interest. Concrete examples of
LWE instances in this regime include LWE with binomial error distributions and
practical homomorphic encryption schemes.

Lemma 17. Let κ be the security parameter. Given m ≥ n log q many LWEn,q,B

samples, where m = o(2κ ), with error bounded in ℓ∞-norm by B, there exists a
probabilistic quantum reduction, with run-time polynomial in n, from LWEm

n,q,B

to U-EDCPl
n,q,M where M ≥ 1 and l ≥ 1 are integers, satisfying the condition:

M · l < q/(64Bm). (11)

Proof. The proof is identical to the proof of Theorem 12 in Appendix C except
we change the upper bound on ∥e0∥∞. There is no need to use the tail bound
in Lemma 4, as it is bounded by B. Thus we directly have:

M ·B < q/(8ck),

which, given that c ≥ 8 and k ≥ ml, leads to the statement.
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(Non-)impacts of our algorithms to standard LWE. Our algorithm of
Section 4 requires l = 2Ω(logn log q) samples to solve U-EDCPn,q,M . Unfortunately
(but fortunately for LWE), the two LWE to U-EDCP reductions outlined in this
section put lower bounds on l for standard LWE parameters. Let q = poly(n).
We first consider the case of fixed LWE error magnitude as in Ineq. (11) where:

2Ω(logn log q) < 1/(64MBm).

Re-arranging the terms of the above inequality and setting M = 2, we see that
B = o(1). This implies that the LWE instances we can tackle with our algorithm
are actually poly(n)-time solvable classically (e.g. via Gaussian elimination) since
there is no error (with high probability) in them. Analogously, for LWE with
Gaussian error with deviation αq, using Ineq. (10), we obtain a similar bound
on αq, e.g., it must be inverse quasi-polynomially small. Note that one can also
use Regev’s reduction [58]. As discussed in Subsection 3.1, part of the reduction
chain in [58] implies a reduction from LWE to U-EDCPn,q,2, which can be solved
by our algorithm. However this reduction, again, only produces perfect U-EDCP
samples with an inverse polynomial probability (also, imperfect EDCP states
are not efficiently detectable). Therefore, we conclude that our quasi-polynomial
time algorithm does not affect the security of LWE with standard parameters.

7.2 Discussions

Directions for improvement. There are two potential avenues to make our algo-
rithm applicable to more “standard” LWE instances. First is improved success
probability of the g function from Lemma 18 in Appendix C, which restricts the
number of output U-EDCP samples in the reduction. Concretely, the role of g
is to map Ax+ e1 and Ax+ e2 to the same value. In Lemma 18 this function
is efficient but it has a non-zero probability of failure. In contrast, one could
consider a decoder for Lq(A) that can decode within the bound ∥ei∥∞, which
is smaller than λ1(Lq(A)) for LWE instances. This would allow us to generate
as many U-EDCP samples as we want, however, all known decoders for Lq(A)
have at least exponential in dim(Lq(A)) time, as this problem is nothing else
but solving LWE classically.

The second approach is to improve the algorithm from Section 4 such that it
requires less samples. We attempted to do so by considering a shorter chain of
reductions (9) that directly operate on U-EDCP samples with M > 2, but, as
explained in Subsection 4.3, this attempt failed (Lemma 12 becomes false).

Binary/small secret EDCP and LWE. Our algorithm from Section 4 performs
slightly better when the secret is binary, namely, as soon as we know s mod 2,
we terminate the algorithm and save a poly(n) factor in the number of required
samples and in runtime. On the LWE front, a binary secret can also speed up
classical attacks [21], and moreover, the known LWE-to-EDCP reduction does
not take advantage of the shape of the LWE secret. Hence, we do not know
how to leverage small secrets in quantum attacks to achieve a super-polynomial
improvement.
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Extending the algorithm to general q. Since our algorithm is only applicable to
a power-of-two modulus, it is natural to ask whether it can be generalized to an
arbitrary modulus. For LWE, one can switch to a different modulus at the cost of
a slight increase in error; see [20]. However, no such reduction tailored to EDCP
is known. One possible approach is to leverage the chain of reductions EDCP→
LWE

mod switch−−−−−−−→ LWE → EDCP. However, the first reduction produces LWE
with 1/α = poly (n) when the M in EDCP is poly (n), and hence the final
reduction [19] yields only a polynomial number of EDCP samples, rendering our
algorithm inapplicable. Another possibility is to apply the modulus-switching
techniques from [5] directly to EDCP samples. We leave this for future research.

Modulus vs. dimension trade-offs. Modulus-dimension switching for LWEn,q,α [20]
allows reducing the LWE dimension to n/k by increasing the modulus to qk,
keeping the entropy of the LWE secret 2n log q fixed. If a converse reduction to
LWE with dimension n log q and modulus 2 were possible, again with entropy
2n log q, then we could potentially use the reductions EDCP→ LWE

mod switch−−−−−−−→
LWE → EDCP to convert EDCPn,q to EDCPn log q,2. Our algorithm can solve
this in polynomial time, so it would be interesting to exhibit such a reduction.

Application to C |LWE⟩. As discussed earlier, it has been observed in [25] that,
if there is a quantum algorithm that solves the S |LWE⟩ problem without col-
lapsing the input quantum states, then there is a quantum algorithm that solves
the C |LWE⟩ problem. Notice that our quasi-polynomial algorithm of Section 6
solves S |LWE⟩, however, it does destroy the input S |LWE⟩ states due to the
merging steps. If this algorithm could be modified to preserve the input states
then it could be relevant to the task of oblivious LWE sampling [23,30] as well
as potentially impact various quantum cryptographic constructions for certified
deletion and key revocation [53,8]. However, at present, the potential impacts of
our algorithm on applications based on C |LWE⟩ remain unclear. We leave this
for future research.
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A Algorithms for LWE and SIS

We provide a brief overview of algorithms for the LWE problem relevant to the
scope of this paper.

The LWE problem can be solved using algorithms that solve the approximate
Shortest Vector Problem (SVP), such as lattice reduction techniques. Notable
algorithms in this category include the Block-Korkine-Zolotarev (BKZ) algo-
rithm [60] and its modern variants [35,33,26,48]. Various practical strategies
have been proposed for implementing the core operations required in these algo-
rithms, such as enumeration [38,32,60] and sieving [2,49,47,14]. Quantum vari-
ants of these core procedures have been investigated in the literature [6,22,12].
In this work, we focus primarily on the asymptotic behavior and do not delve
into details. For discussions on practical aspects, we refer the readers to [7,4].

Asymptotically, given LWEm
n,q,α instances where the number of samples m is

sufficiently large, lattice reduction algorithms solve LWE [36,11] with a running-
time of exp(O(n log q log n/ log2 α)). We consider a few relevant parameter set-
tings for the LWE problem. Let n denote the security parameter: when q =
poly(n) and 1/α = poly(n), lattice reduction requires exponential time; when q
and 1/α are subexponential, e.g., q = O(2nϵ

) for ϵ ∈ (0, 1) and 1/α = Θ(2n
δ

)
for δ > ϵ/2, lattice reduction runs in subexponential time – such parameters
satisfy the reduction described in [57, Theorem 1.1], which reduces the LWE
problem to a worst-case lattice problem with a subexponential approximation
factor Õ(n/α).

A similar approach applies to the Short Integer Solution (SIS) problem.
Given SIS∞m,n,q,β instances where the number of columns m is sufficiently large,
the lattice reduction algorithms solve SIS with an asymptotic running time of
exp(O(n log q log n/ log2(β/q))).

Lattice reduction is one of the strategies for solving LWE; however, it is not
always the most efficient approach for certain parameter settings. For example,
when q = poly(n) and αq = O(1), algebraic algorithms such as the Arora-Ge
algorithm [10] run in polynomial time, provided a polynomial number of samples
is available. In contrast, lattice reduction requires full exponential time under the
same conditions. More generally, the algebraic-type algorithms have a runtime
of 2Õ((αq)2) [3], thus becomes subexponential when αq = o(

√
n).

B Kuperberg’s sieve

We give some more details on Kuperberg’s sieve.
The input consists of DCP samples of the form |0⟩ |x⟩+ |1⟩ |x+ s (mod N)⟩ ,

where x←$ZN . Implicitly, N should be at least exponential in the underlying se-
curity parameter. A quantum Fourier transform is applied to the second register
over ZN , followed by measurement, resulting in a state:

|ψy⟩ ∝ |0⟩+ ωys
N |1⟩ , (12)
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where y←$ZN is classically known. We tensor two such states |ψy1
⟩ , |ψy2

⟩ ob-
taining:

|0⟩ |0⟩+ ωy2s
N |0⟩ |1⟩+ ωy1s

N |1⟩ |0⟩+ ω
(y1+y2)s
N |1⟩ |1⟩ .

Applying a CNOT gate that sends |a, b⟩ → |a, a⊕ b⟩, we get a state proportional
to:

(|0⟩+ ω
(y1+y2)s
N |1⟩)⊗ |0⟩+ ωy2s

N (|0⟩+ ω
(y1−y2)s
N |1⟩)⊗ |1⟩ .

Measuring the second qubit leaves the first qubit in the state:

|ψy1±y2
⟩ ∝ |0⟩+ ω

(y1±y2)s
N |1⟩ ,

up to a global phase, and each outcome occurs with probability 1/2.
Now, note that the classical values of y1 and y2 are known, allowing us to tar-

get merging those y1 and y2 that share certain least significant bits (LSBs). This
results in the state |ψy1−y2

⟩ with its LSBs zeroed.This combinatorial approach
is central to all Kuperberg-like algorithms.

For simplicity, we assume that N is a power-of-two and denote n = log2(N).
To balance running time and the number of samples required, Kuperberg’s
sieving sets the number of least significant bits to be zeroed at each step to
m ≈

√
n and proceeds with approximately n/m steps. Once all the bits (except

the first one) are zeroed, the algorithm produces states |ψ2n−1⟩ or |ψ0⟩. Applying
a Hadamard transform to the first type states reveals the least significant bit of
the secret. The procedure is then repeated to recover additional bits.

We provide a rough complexity analysis. The algorithm proceeds through√
n stages, as each step zeros out

√
n bits. Furthermore, each step requires at

least O(2
√
n) samples to achieve a collision on the LSBs of

√
n bits. At each

iteration, one can start with a slightly larger subexponential number of samples,
and after merging a smaller subexponential number, the result still contains a
subexponential number of samples, which can then be used for the next iteration.

C LWE to U-EDCP reduction

To solve the LWE problem using our algorithm for U-EDCP described in Sec-
tion 4, the following reduction chain can be used based on the previous work:

(1) reduce LWE to G-EDCP using [19, Theorems 2, 3];
(2) reduce G-EDCP to U-EDCP using [19, Lemma 8];
(3) reduce U-EDCP to U-EDCP and invoke our algorithm to solve U-EDCP.

This reduction chain is depicted in dashed lines in Figure C.
In this section, we provide a direct reduction from LWE to U-EDCP, adapting

the proof of Theorem 3. The same reduction has been given in [31, Section 5.2],
but without details. This section gives more details on the LWE to U-EDCP
reduction. The following lemma from [19] is of use.
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Fig. 2. Relations between EDCP variants and LWE.

Lemma 18 (Adapted from [19, Lemma 12]). Let n, q and m ≥ n log q be
integers and A ∈ Zm×n

q . Let c ≥ 8 be a constant. We are given m LWE samples
b ≡ Ax+ e (mod q). Take k to be the largest integer such that:

k ≤ λ∞1 (Λq(A))

2c · ∥ei∥∞
.

Set z = q/c and q̄ = q/z = c. We define a function:

g : (b1, . . . , bm) 7→ (⌊b1/z − w1 mod q̄⌋ , . . . , ⌊bm/z − wm mod q̄⌋),

where w1, . . . , wm are uniformly chosen from [0, 1). Then for any x ∈ Zn
q the

following two statements hold.

– For any u = Ax + e1,v = Ax + e2 where ∥ei∥∞ ≤ λ∞1 (Λq(A))/(2ck),
with probability (1 − 1/k)m, over the randomness of w1, . . . , wm, we have
g(u) = g(v).

– For any u = Ax + e1,v = Ax̂ + e2 where ∥ei∥∞ ≤ λ∞1 (Λq(A))/(2ck) and
x ̸= x̂, we have g(u) ̸= g(v).

Proof. This lemma is identical to [19, Lemma 12], except that it allows m >
n log q.

Now we give the proof of Theorem 12.

Proof of Theorem 12. Input an LWEn,q,α instance (A,b0) with b0 ≡ As0 +
e0 (mod q). We prepare the uniform superposition:

∑
s∈Zn

q

M−1∑
j=0

|j⟩ |s⟩ .
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Evaluate f(j, s) = As− j · b (mod q) and store the result in the third register.

∑
s∈Zn

q

M−1∑
j=0

|j⟩ |s⟩ |As− j · b (mod q)⟩ .

By a change of variables on s we have

∑
s∈Zn

q

M−1∑
j=0

|j⟩ |s⟩ |s+ j · s0 (mod q)⟩ |As− j · e0 (mod q)⟩ .

Sample w1, . . . , wm uniformly from [0, 1) and set z = q/c for some constant
c ≥ 8. By Lemma 1, we have z = q/c ≤ q/8 ≤ λ∞1 (Λq(A))/2 with probability
1 − 2−Ω(m) over the randomness of A. Further, since λ∞1 (Λq(A)) ≤ q due to
q-ary vectors, we have z ∈ [1/c, 1/2] · λ∞1 (Λq(A)) with probability 1 − 2−Ω(m).
Set q̄ := q/z = c and define

g : (x1, . . . , xm) 7→ (⌊x1/z − w1 mod q̄⌋ , . . . , ⌊xm/z − wm mod q̄⌋).

Evaluate g on the third register, store the result in a new register and measure.
First, we upper bound ∥e0∥∞. By the one-dimensional tail bound in Lemma 4,

one coordinate of the vector e0 smaller than
√
καq with probability ≥ 1−e−Ω(κ).

Since e0 has m coordinates, ∥e0∥∞ ≤
√
καq with probability ≥ (1 − e−Ω(κ))m.

Thus ∥M · e0∥∞ ≤ M
√
καq with overwhelming probability when m = o(2κ ).

Second, in order to use Lemma 18, we need

M∥e0∥∞ ≤
λ∞1 (Λq(A))

2c · k
.

for a success probability of (1−1/k)m for one sample. Aiming at l-many U-EDCP
samples with constant success probability, we require k ≥ ml.

Finally, we combine the two upper bounds on ∥Me0∥∞ to obtain an upper
bound on M . Concretely, we want to achieve the “goal” inequality:

M∥e0∥∞
Lemma 4
≤ M

√
καq

goal

≤ q/(8ck)
Lemma 1
≤ λ∞1 (Λq(A))/(2ck). (13)

Therefore, recalling that c ≥ 8 due to Lemma 12 it is sufficient to set the pa-
rameters:

M <
1

(64
√
κkα)

≤ 1

(64
√
κlmα)

.

When the above inequality is satisfied, we have the following state after the
measurement:

M−1∑
j=0

|j⟩ |s+ j · s0⟩ |As− j · e0⟩

for some known s ∈ Zn
q , with constant probability (1− 1/k)m. Uncompute and

discard the third register using the function (j, s,b) 7→ b−As+ j · b0 (mod q)
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to obtain the desired states of the form

M−1∑
j=0

|j⟩ |s+ j · s0 (mod q)⟩ .

The success probability over l many states is a constant when k ⪆ ml.
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