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Abstract
CVRFs are PRFs that unify the properties of verifiable and constrained PRFs.

Since they were introduced concurrently by Fuchsbauer and Chandran-Raghuraman-
Vinayagamurthy in 2014, it has been an open problem to construct CVRFs without
using heavy machinery such as multilinear maps, obfuscation or functional encryp-
tion.

We solve this problem by constructing a prefix-constrained verifiable PRF that
does not rely on the aforementioned assumptions. Essentially, our construction is a
verifiable version of the Goldreich-Goldwasser-Micali PRF. To achieve verifiability
we leverage degree-2 algebraic PRGs and bilinear groups. In short, proofs consist of
intermediate values of the Goldreich-Goldwasser-Micali PRF raised to the exponents
of group elements. These outputs can be verified using pairings since the underlying
PRG is of degree 2.

We prove the selective security of our construction under the Decisional Square
Diffie-Hellman (DSDH) assumption and a new assumption, which we dub recursive
Decisional Diffie-Hellman (recursive DDH).

We prove the soundness of recursive DDH in the generic group model assuming
the hardness of the Multivariate Quadratic (MQ) problem and a new variant thereof,
which we call MQ+.

Last, in terms of applications, we observe that our CVRF is also an exponent
(C)VRF in the plain model. Exponent VRFs were recently introduced by Boneh et al.
(Eurocrypt’25) with various applications to threshold cryptography in mind. In
addition to that, we give further applications for prefix-CVRFs in the blockchain
setting, namely, stake-pooling and compressible randomness beacons.

1 Introduction
Pseudorandom Functions (PRFs) allow for the generation of bit strings that are indistin-
guishable from true random coins, thereby constituting a central cryptographic building
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block. Concretely, a PRF is a keyed deterministic function that has to be indistinguishable
from a truly random function for any party that does not know the secret key of the
PRF. Goldreich, Goldwasser & Micali [GGM86] showed how to construct PRFs from
Pseudorandom Generators (PRGs). In contrast to PRFs, PRGs only need to generate a
polynomial number of pseudorandom bits from a truly random key (or seed) and can be
instantiated from one-way functions [Lev85, HILL99].

A popular line of research augments PRFs with additional properties. In this work,
we will study two useful properties for PRFs: constrainability and verifiability.

A Constrained PRF (CPRF) [BW13, KPTZ13, BGI14] allows deriving constrained
keys from the root secret key. While a constrained key enables one to evaluate the CPRF
on a proper subset X ⊊ {0, 1}ℓ of its input domain, the security of the CPRF guarantees
that a constrained key does not reveal anything about the CPRF on inputs outside X .
This allows one to delegate the power of the CPRF hierarchically.

By design, outputs of a PRF cannot be trusted by third parties, as checking the
correctness of a potential output of a PRF requires access to its secret key. This limits
the use-case of plain PRFs to inherently trusted settings. Verifiable Random Functions
(VRFs) [MRV99] are PRFs that solve this problem by tying a public verification key to
the secret key and accompanying outputs by proofs of correctness. Without a proof,
any output of the VRF must be indistinguishable from random coins, even given the
verification key. However, with the corresponding proof, correctness of the output can
be easily checked. To be practical in trustless settings, VRFs must satisfy a very strong
soundness property called unique provability, which asserts that even for malformed
verification keys (and adversarially programmed random oracles) it is not possible to
prove the correctness of two different output values (for the same input).

Since both primitives, CPRFs and VRFs, enjoy simple instantiations, one might assume
that a natural construction could be made to achieve both constrainability and verifiability,
at the same time. Quite surprisingly, however, the construction of PRFs that are both,
constrained and verifiable, turned out to be quite involved. In 2014, Fuchsbauer [Fuc14] and
Chandran, Raghuraman & Vinayagamurthy [CRV14] put forth the notion of constrained
verifiable PRFs (CVRFs) that unify CPRFs and VRFs. CVRFs are versatile tools. For
example, prefix-constrained CVRFs imply hierarchical identity-based signature algorithms
with unique pseudorandom signatures. Both works devised candidates based on multilinear
maps (mmaps), a heavy tool. Subsequent works [LLC15, LZW19, DDM17, ZLX23] tried
to relax this assumption, but still relied on indistinguishability Obfuscation (iO) or
functional encryption (FE) [Dat20].

Naturally, the heavy machinery of iO, mmaps and FE yield impractical constructions
that are hard to understand and implement. Hence, we raise the following decade-long
open question:

Can we construct constrained verifiable PRFs from simple cryptographic building blocks?

1.1 Our Candidate
In this work, we answer the above question positively. Concretely, we devise a candidate
construction for prefix-constrained verifiable PRFs, which only makes use of bilinear
groups and algebraic PRGs of degree 2. Those are PRGs whose outputs are computed by
quadratic multivariate polynomials.
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The Starting Point. Recall the (constrained) PRF construction of Goldreich, Gold-
wasser & Micali [GGM86]. It uses a length-doubling PRG G : {0, 1}n → {0, 1}2n where we
let G0 and G1 be the functions computing the first and last n output bits of G, respectively.
The value of the PRF F on a point x = x1 · · ·xℓ ∈ {0, 1}ℓ is given by

Fsk(x) := Gx(sk) := Gxℓ
(Gxℓ−1(· · · (Gx2(Gx1(sk)))))

where sk← {0, 1}n is the secret key of the PRF. Given the simplicity of this construction,
its security follows from a simple hybrid argument. In addition, F is already a prefix-
constrained PRF [BW13, KPTZ13, BGI14]. Indeed, given a constrained key skw = Gw(sk)
for a prefix w ∈ {0, 1}ℓ′ , one can compute any value Fsk(wx′), while the pseudorandomness
of G implies that a value Fsk(x) still looks random as long as w is not a prefix of x ∈ {0, 1}ℓ.

A First Attempt at Adding Verifiability. As a first step, we take the CPRF of
Goldreich, Goldwasser & Micali [GGM86] and move it to an algebraic setting to allow
for verifiability. To this end, let e : G2

1 → G2 be a bilinear pairing of groups G1 = ⟨g1⟩
and G2 = ⟨g2⟩ of prime order p. Further, let G : Zn

p → Z2n
p now be a PRG that outputs

values computed by quadratic multivariate polynomials over Zp. Again, we subdivide
G = (G0, G1) into two parts computing the left and right half of its output.1 Since G is
quadratic, it is possible to compute the target group elements gG0(s)

2 , gG1(s)
2 ∈ Gn

2 when
given source group elements gs

1 = (gs1
1 , . . . , gsn

1 ) ∈ Zn
p by using the bilinear pairing e. In

other words, we can evaluate the PRG G in the exponents of group elements, however,
this will necessitate a transition from G1 to G2.

We draw the secret key sk of the CPRF F as a seed for G, i.e. sk←$ Zn
p . Consequently,

Fsk outputs now vectors Fsk(x) = Gxℓ−1(· · · (Gx1(sk))) ∈ Zn
p . To allow for verification, we

introduce the verification key vk = gsk
2 , a vector of group elements whose exponents are

the elements of sk, and supply a proof π with every output Fsk(x). The proof π consists
of a list of group elements

π0 = gsk
1 , π1 = gGx1 (sk)

1 , π2 = gGx2 (Gx1 (sk))
1 , . . . , πℓ = gGxℓ

(···(Gx1 (sk)))
1 .

Given π, we can verify the correctness of the output Fsk(x) of our CPRF as follows:
we first verify the soundness of the first vector of group elements π0 ∈ Gn

1 by checking
e(π0, g1) = vk. Subsequently, we verify the correctness of πi by asserting the equality
e(πi, g1) = gGxi (···(Gx1 (sk)))

2 , where we compute gGxi (···(Gx1 (sk)))
2 by evaluating Gxi

at the
exponents of πi−1. Finally, we verify the correct evaluation of Fsk at x by ensuring that
gFsk(x)

1 = πℓ holds. This approach enables the uniqueness of output elements, even under
a malformed verification key vk, proof π and PRG G. Thus, it fulfills the very strict
requirement of unique provability which is necessary for VRFs. Additionally, the simplicity
of this construction allows constraining a constrained key even further, fulfilling the notion
of delegability [CRV14]. On top of that, constrained keys themselves can be verified and
fulfil again unique provability.

1Because of technical reasons, we will actually choose a fresh PRG G(i) : Zn
p → Z2n

p for every layer
i ∈ [ℓ] of the binary tree underlying our construction later.
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An Issue with the First Attempt and the Solution. While the first attempt is
verifiable, a keen eye will have noticed that the above construction is not pseudorandom.
To demonstrate this, consider the case ℓ = 2. The proof π = (π0, π1, π2) for the output
Fsk(00) contains the value π1 = gG0(sk)

1 . It can be used to compute gG1(G0(sk))
2 , which

suffices to verify the other output Fsk(01). In general, this leads to a simple attack where
an adversary queries a proof for 0ℓ and challenges the pseudorandomness of F at 0ℓ−11.

To solve this problem, we redefine the output of the CVRF F as

Fsk(x) = gy2

2 ∈ Gn
2 where y = Gxℓ

(· · · (Gx1(sk))).

(y2 = (y2
1, . . . , y2

n) denotes the vector of squares of entries of y = (y1, . . . , yn) ∈ Zn
p .)

This output can still be verified using π by checking that Fsk(x) = e(πℓ, πℓ) while intu-
itively ensuring pseudorandomness under the Decisional Square Diffie-Hellman (DSDH)
assumption.2 (An example for input lengths of ℓ = 2 is given in Fig. 1.) Indeed, this

G0(sk) G1(sk)

G0(G1(sk)) G1(G1(sk))G1(G0(sk))G0(G0(sk))

0

0 0

1

1 1

sk

vk = g
sk
2g

sk
1

g
G0(G0(sk))
1

3.

1.

g
G0(G0(sk))

2

2

Output
4.

g
G0(sk)
1

2.

Figure 1: Illustration of our construction for 2 bit inputs. For the sake of example, it shows
the evaluation on input 00 by highlighting the corresponding path and output in orange.
The verification key vk, the proof π = (π0, π1, π2), and the four iterative verification steps
are depicted in pink. All verification steps rely on the pairing e, especially steps 2 and 3,
which evaluate the degree-2 PRG in the exponent using e.

change invalidates the given counterexample for ℓ = 2, as DSDH implies that the output
Fsk(01) = gG1(G0(sk))2

2 stays pseudorandom even if an adversary can obtain gG1(G0(sk))
2 .

Unfortunately, fully proving the selective3 security of the CVRF F remains challenging.
The reason lies in the fact that F commits to the root secret key sk in two ways: by
the verification key vk = gsk

2 , a vector of group elements, and by constrained keys
2The decisional square Diffie-Hellman problem (in the target group G2) consists in distinguishing

(g2, ga
2 , ga2

2 ) and (g2, ga
2 , gr

2) for a, r ←$ Zp.
3In this work, we focus only on the selective security of CVRFs, where an adversary has to commit to

a challenge point x∗ ∈ {0, 1}ℓ before it sees a verification key. Proving the adaptive security is out of
scope as it requires intricate rewinding techniques [HKK23].
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Gw(sk), vectors over Zp. This prohibits typical reduction techniques of, for example,
the generic group model, and makes it hard to hop between different games by using
the pseudorandomness of G. Indeed, sk is committed to in such a rigid way that it is
impossible for a reduction to directly replace some values of F by randomness behind the
scenes without the adversary noticing.

1.2 Contribution
Proving the pseudorandomness of the CVRF F is non-trivial and requires new techniques.
As a first step, we modularize the proof by a new tool, which we dub the recursive
Decisional Diffie-Hellman (recursive DDH) assumption. This assumption (detailed in
the technical overview) asserts that an a posteriori challenge must be hard if an a priori
challenge is hard. From this assumption and DSDH, the pseudorandomness of F follows,
leading to our first main result:

Theorem 1. Under the decisional square Diffie-Hellman and the recursive decisional
Diffie-Hellman assumption, F is a selectively secure prefix-constrained verifiable random
function.

As a next step and second result, we prove the soundness of recursive DDH in Maurer’s
Generic Group Model [Mau05] assuming the hardness of MQ and MQ+. MQ is a standard
assumption capturing the hardness of solving multivariate quadratic equation systems.
For example, multiple NIST post-quantum digital signatures candidates are based on it.
MQ+ is a new assumption that we introduce and that is closely related to MQ. We will
discuss MQ and MQ+ in the technical overview, and analyze attacks on recursive DDH,
MQ and MQ+ in App. A.

Theorem 2. In the generic group model, the recursive DDH assumption is implied by the
MQ and the MQ+ assumption.

Finally, we adapt the verification algorithm to improve the verification time of our
CVRF construction. For n = ℓ = 256, we estimate that verification takes ca. 1 minute4,
which is reasonably practical. Our optimization reduces the number of pairings computed
by the verifier to O(ℓn). It does so by randomly combining n quadratic equations into one.
This introduces a negligible error probability that only depends on the verifier’s coins.
Thus, it does not go against the spirit of unique provability. For details see App. B.

1.3 Technical Overview
We will first sketch the security of our CVRF F under our novel recursive DDH assumption,
and then prove the hardness of recursive DDH in the generic group model under two
falsifiable and contained assumptions, MQ and MQ+.

Fresh PRGs per Layer.. Before we sketch our proofs of the pseudorandomness of F ,
we point out an additional technicality. In our actual construction of F , we use a fresh
algebraic degree-2 PRG G(i) = (G(i)

0 , G
(i)
1 ) : Zn

p → Z2n
p for every layer i ∈ [ℓ]. This means,

4We assume that each pairing takes 1 millisecond and neglect all other operations at verification.
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the coefficients of the quadratic polynomials computing the functions G(1), . . . , G(ℓ) are all
distributed uniformly and independently at random. Consequently, we define the value of
F at input x = x1 · · ·xℓ by

Fsk(x) := gy2

2 where y = Gx(sk) := G(ℓ)
xℓ

(G(ℓ−1)
xℓ−1

(· · · (G(2)
x2 (G(1)

x1 (sk))))),

with y2 = (y2
1, . . . , y2

n). Constrained keys for prefixes w = w1 · · ·wℓ′ are computed by

skw := Gw(sk) = G(ℓ′)
wℓ′ (G

(ℓ′−1)
wℓ′−1

(· · · (G(2)
w2 (G(1)

w1 (sk))))).

Because of this change, we can always assume in the selective security game that an
adversary submits 0ℓ as challenge point x∗, at which it has to distinguish the value of F
from uniform random group elements. Indeed, if x∗ ≠ 0ℓ, we can simply swap G

(i)
0 and

G
(i)
1 whenever x∗i ̸= 0.

The Recursive Decisional Diffie-Hellman Assumption. The recursive Decisional
Diffie-Hellman (recursive DDH) assumption states that, for each sampler Samp, a certain
challenge stays hard even if we hand out more, seemingly useless, auxiliary information.
Concretely, let e : G2

1 → G2 be a bilinear map of groups and Samp be a PPT algorithm that
on input 1λ, p, n outputs three hint functions h0 : Zn

p → Zm0
p , h1 : Zn

p → Zm1
p , h2 : Zn

p → Zm2
p

and a challenge function c : Zn
p → Zn

p .
The recursive DDH assumption states for each sampler Samp that, if gc(s)

2 is pseudo-
random given

(c, h0, h1, h2), h0(s), gh1(s)
1 , gh2(s)

2 , gs
2,

then gc(s′)
2 is pseudorandom given

(c, h0, h1, h2), h0(s′), gh1(s′)
1 , gh2(s′)

2 , gs′

2 ,

and (G0, G1), G1(x), gx
1 ,

where we draw s, x ← Zn
p , (c, h0, h1, h2) ← Samp(1λ, p, n) and set s′ = G0(x) for two

uniformly random maps G0, G1 : Zn
p → Zn

p computed by multivariate quadratic polynomi-
als. We will call the first decisional problem the if-challenge, and the second decisional
problem the then-challenge.

Let us explain the soundness of this assumption intuitively: The if-challenge states
that the auxiliary information h0(s), gh1(s)

1 , gh2(s)
2 and gs

2 do not help at distinguishing gc(s)
2

from a vector of n random group elements of G2. This implies, in particular, that gc(s)
2 ,

while it is correlated with the auxiliary information, cannot be simply algebraically derived
from the other group elements gh1(s)

1 , gh2(s)
2 , gs

2, even when knowing h0(s) in plain. The
then-part of the assumption postulates that gc(s)

2 stays pseudorandom, even if s = G0(x)
is now sampled as the left-hand output of the PRG G, and even if we additionally give
the adversary the corresponding right-hand output G1(x) in plain and the seed of the
PRG gx

1 as source group elements. Hence, recursive DDH simply states that a certain
group vector stays pseudorandom even if we hand out more information, gx

1 and G1(x),
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to the distinguisher. Note if we would hand out only one of {gx
1 , G1(x)}, the correctness

of the assumption would easily follow.5
Unfortunately, giving a reduction of the if-problem to the then-problem becomes

challenging as soon as one hands out both additional auxiliary elements gx
1 and G1(x).

While it is intuitively clear that both vectors together do not help at distinguishing gc(s)
2

from random group elements, the above techniques fail at proving this, since we are
committed to the PRG-seed x in two different ways (as group elements gx

1 and as plain
numbers G1(x)). For now, we postpone the discussion of how we solve this conundrum
and continue to show the application of recursive DDH.

Proving Security under Recursive DDH. The recursive DDH assumption gives an
elegant way to prove the pseudorandomness of our CVRF F . Let A be a selective adversary
that, at the start of the game, sends a challenge point x∗ ∈ {0, 1}ℓ to a challenger C. As
explained above, we can assume x∗ = 0ℓ without loss of generality. C has to respond by
sending A a verification key vk, constrained6 keys sk1, sk01, . . . , sk0ℓ−21 (for all non-prefixes
of 0ℓ), the output value Fsk(0ℓ−11), and finally proofs π1, . . . , πℓ for the correctness of the
aforementioned constrained keys and output value. Here, sk = s ← Zn

p is a uniformly
random vector. The verification key is given by vk = gs

2. The output at 0ℓ−11 is given by

Fsk(0ℓ−11) = gy2

2 for y = G
(ℓ)
1 (G(ℓ−1)

0 (· · · (G(1)
0 (s)))).

The constrained keys are all vectors in Zn
p of shape

G
(1)
1 (s), G

(2)
1 (G(1)

0 (s)), G
(3)
1 (G(2)

0 (G(1)
0 (s))), . . . , G

(ℓ−1)
1 (G(ℓ−2)

0 (· · · (G(1)
0 (s)))),

while the proof elements are vectors of group elements given by

π0 = gs
1, π1 = gG

(1)
0 (s)

1 , . . . , πℓ−1 = gG
(ℓ−1)
0 (···(G(1)

0 (s)))
1 , πℓ = gG

(ℓ)
1 (G(ℓ−1)

0 (···(G(1)
0 (s))))

1 .

Let us first consider the base-case of ℓ = 0. In this case, our CVRF has exactly one
possible input (the empty word ϵ), and A only gets the verification key gs

2, while it has
to distinguish the only possible output value Fsk(ϵ) = gs2

2 from random group elements.7
Obviously, the pseudorandomness of our CVRF for ℓ = 0 is equivalent to the decisional
square Diffie-Hellman problem and, therefore, follows directly from the corresponding
assumption.

The pseudorandomness of our construction for ℓ = 1 follows now by applying recursive
DDH. Indeed, by letting c(s) = s2 be the squaring function and defining all hint functions
h0, h1, h2 to be empty (and letting G(ℓ) = (G(ℓ)

0 , G
(ℓ)
1 ) be the PRG randomly sampled by the

5For example, if the adversary only receives G1(x) as additional auxiliary information, we can invoke
(in the absence of gx

1 ) the pseudorandomness of G = (G0, G1), and replace s = G0(x) and G1(x) in the
distribution by uniformly random vectors r1, r2 ←$ Zn

p , which immediately reduces the if-challenge to
the then-challenge.

6Note that from those values, A can compute all other possible queries on its own. Further, since
constrained keys, evaluation values and proofs are generated deterministically, A does not profit from
querying the same value multiple times.

7The proof of the correctness of Fsk(ϵ) is given by the group element vector gs
1. However, since ℓ = 0,

A can challenge the pseudorandomness of the CVRF at one point and, hence, not receive this proof
element.
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assumption), recursive DDH implies directly that Fsk(0) = gG
(ℓ)
0 (x)2

2 is pseudorandom given
G

(ℓ)
1 (x) and πℓ−1 = gx

1 . Since A can compute vk = gx
2 , πℓ = gG

(ℓ)
1 (x)

1 and Fsk(1) = gG
(ℓ)
1 (x)2

2
from this data, recursive DDH implies now the pseudorandomness of our construction for
input lengths ℓ = 1. (Note that the secret key is now called x instead of s.)

Applying recursive DDH a second time, now with ℓ = 2, h0(s) being the empty
function, h1(s) = G

(ℓ)
1 (s), h2(s) = G

(ℓ)
1 (s)2 and c(s) = G

(ℓ)
0 (s)2, yields that Fsk(00) =

gc(s)
2 = gc(G(ℓ−1)

0 (x))
2 = gG

(ℓ)
0 (G(ℓ−1)

0 (x))2

2 stays pseudorandom, for s = G
(ℓ−1)
0 (x), even when

given

πℓ = gh1(s)
1 = gG

(ℓ)
1 (G(ℓ−1)

0 (x))
1 , Fsk(01) = gh2(s)

2 = gG
(ℓ)
1 (G(ℓ−1)

0 (x))2

2 ,

sk1 = G
(ℓ−1)
1 (x), πℓ−1 = gx

1 .

Again, A can compute the remaining element vk = gx
2 on its own, hence, the pseudoran-

domness of our CVRF for ℓ = 2. Applying recursive DDH a third time will imply the
pseudorandomness of our CVRF for inputs of length ℓ = 3, and so on. Hence, the security
of our CVRF candidate in the selective pseudorandomness game for inputs of length ℓ
follows directly by the decisional square Diffie-Hellman assumption and ℓ applications of
our recursive DDH assumption.

Proving Recursive DDH in the Generic Group Model. We will sketch now how
to prove the soundness of the recursive DDH assumption in Maurer’s Generic Group
Model (GGM) [Mau05].8 First, let us give a high-level overview: We perform two game
hops to remove the additional auxiliary information given in the then-challenge. The first
game hop replaces gx

1 by dummy-elements. Since we are committed to gx
1 by G1(x) and

gs
2 = gG0(x)

2 , we cannot use the standard GGM technique of replacing gx
1 by uniformly

random group elements. Instead, we answer group queries using a carefully designed
algebraic procedure. Omitting details for now, it allows us to invoke MQ+ to argue that
the adversary cannot detect this change. After removing gx

1 , we perform a second game
hop and replace s = G0(x) and G1(x) by uniform randomness. The indistinguishability
of both games follows directly from the MQ assumption. In the last game, s has been
sampled uniformly at random and gx

1 , G1(x) have been removed. Now, we finish the
security proof of recursive DDH by reducing the if-problem to this game.

Next, we introduce and discuss the MQ and MQ+ assumptions, and then give a more
elaborated proof sketch of the soundness of recursive DDH in the GGM under MQ and
MQ+.

MQ and MQ+. The decisional Multivariate Quadratic (MQ) problem is a post-quantum
assumption on the hardness of solving random systems of multivariate quadratic equations.
It is used to construct non-interactive zero-knowledge proofs [DJJ24] and underlies
the security of a large proportion of candidates [BCD+24, AFI+24, BCC+24, BBFR24]

8Remember that in the GGM a generic adversary obtains handles for group elements, which only
allow it to perform group and pairing operations. In Maurer’s GGM, those handles are deterministic and
given by increasing register addresses. As alternative model, one can also consider Shoup’s GGM [Sho97]
where handles are uniformly random bit strings.
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in NIST’s standardization process for additional post-quantum signatures. MQ+ is
a computational assumption, similar to MQ, that requires an adversary to extract a
simple non-trivial relationship about the solution of a random quadratic equation system.
While the MQ+ problem is likely not equivalent to the MQ problem, we will present
some intuitive arguments in App. A.3 why MQ+ should be hard whenever MQ is hard.
Essentially, if there would be an MQ+ solver that outputs fresh solutions for MQ+, we
could leverage it to a solving algorithm for MQ (under some assumptions).

For our construction, we need to assume, at a minimum, that G is a PRG. Indeed,
otherwise an adversary could invert G1(x) and break the then-challenge, while the if-
challenge might still be intractable for it. Note that we sample G as a function where
each output is computed by a uniformly random quadratic polynomial g ∈ Zp[X1, . . . , Xn]
over Zp in n variables. Distinguishing outputs of G from uniform randomness constitutes
exactly the decisional MQ problem.

Now, the MQ+ problem is intuitively similar. Formally, the MQ+ assumption
states that it is hard for a PPT adversary, when given 2n uniformly random degree-
2 polynomials g1, . . . , g2n ∈ Zp[X1, . . . , Xn], which compute G : Zn

p → Z2n
p for example,

and their values g1(x), . . . , g2n(x) on a secret point x ←$ Zn
p , to find an additional

quadratic polynomial h ∈ Zp[X1, . . . , Xn] that vanishes on x but is linearly independent
of g1(X) − g1(x), . . . , g2n(X) − g2n(x). Let us explain this: when given g1, . . . , g2n and
g1(x), . . . , g2n(x), it is trivial to find new polynomials that vanish on x, even if we do not
know x. Indeed, any linear combination h(X) = α1 · (g1(X)−g1(x))+ · · ·+α2n · (g2n(X)−
g2n(x)) must be zero at x. On the other hand, finding a degree-2 polynomial h that
vanishes on x and does not lie in the space spanned by g1(X)− g1(x), . . . , g2n(X)− g2n(x)
would give us a new and non-trivial information about the solution of the equation system
g1(X) = g1(x), . . . , g2n(X) = g2n(x). Indeed, if we would be able to solve the MQ+ prob-
lem O(n2) times with fresh and independent solutions h1, h2 . . ., we could simply linearize
the quadratic equation system and solve it trivially. We will postpone cryptanalysis of
MQ and MQ+ for now, and continue with showing how both assumptions imply recursive
DDH in the generic group model.

Proof Sketch. Let Samp be an efficient probabilistic sampling algorithm that on input
1λ, p, n outputs functions c : Zn

p → Zn
p , h0 : Zn

p → Zm0
p , h1 : Zn

p → Zm1
p , h2 : Zn

p → Zm2
p . To

prove the soundness of the assumption, we need to reduce the hardness of the if-challenge,
which consists of distinguishing gc(s)

2 from random group elements when given h0(s), gh1(s)
1

and gh2(s)
2 , to the hardness of the then-challenge, which consists of distinguishing gc(s)

2
from random group elements when given h0(s), gh1(s)

1 , gh2(s)
2 and additionally gx

1 , G1(x)
where s = G0(x) (for a uniformly random quadratic map G = (G0, G1) : Zn

p → Z2n
p ).

Let G0 be the game between an adversary A and a then-challenger Ch. To prove the
recursive DDH assumption, we need to change G0 to a game to which the if-challenge can
be directly reduced.

Step 1: Removing gx
1 . As a first step, we would like to replace the group elements gx

1
given to the adversary by random group elements or dummy elements, which are devoid
of any information about x. The problem, however, is that we are committed to x in
two different ways: by gs

2 = gG0(x)
2 and by G1(x). Indeed, replacing gx

1 naively by group
elements gx′

1 , for x ̸= x′ ∈ Zn
p , can directly be detected by A by applying G0 or G1 in the
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exponent of gx′
1 and comparing the result with gG0(x)

2 or G1(x).
To solve this problem, let g1, . . . , g2n ∈ Zp[X1, . . . , Xn] be the quadratic polynomials

computing G. Additionally, since A is generic, we model each of its group queries by
polynomials on the exponents of its given group elements. This means, A can only submit
group queries in the form of polynomials f to its group oracle. Whenever A submits such
a query f , Ch has to tell A if f does vanish on the exponents of the given group elements.
Given the bilinearity of the involved groups, all of those polynomials are quadratic.

Our novel technique for the first hybrid step consists in replacing gx
1 = (gx1

1 , . . . , gxn
1 )

by dummy-elements gX
1 = (gX1

1 , . . . , gXn
1 ) and by devising an algebraic algorithm for

answering group queries of the adversary. Concretely, in this new game, which we call G1,
Ch tells A that an equality-check9 f ∈ Zp[X1, . . . , Xn] passes on the exponents of gx

1 , i.e.
f(x) = 0, if it lies in the Zp-vector space

V := spanZp [g1(X)− s1, . . . , gn(X)− sn, gn+1(X)− w1, . . . , g2n(X)− wn]

spanned by the polynomials g1(X)− s1, . . . , gn(X)− sn, gn+1(X)−w1, . . . , g2n(X)−wn ∈
Zp[X] where s = G0(x) denotes the left-hand and w := G1(x) the right-hand output of
G(x).

To prove that A cannot distinguish between G0 and G1, we invoke the MQ+ assumption.
Indeed, A can only distinguish between both games if it can come up with a query f
that passes in one game and fails in the other one. Since (s, w) = G(x), we must have
f(x) = 0 whenever f ∈ V . Hence, to notice a difference, A must output a query f that
passes in G0 (f(x) = 0), but fails in G1 (f /∈ V ). Such a polynomial f is exactly a solution
to the MQ+ problem with respect to G = (G0, G1), which asks for a non-trivial degree-2
polynomial that vanishes on x. Assuming the hardness of MQ+, we can deduce that A
can not distinguish between the honest way of answering group queries in G0 and our
novel algebraic way of answering queries in G1.

Step 2: Removing G1(x). In G2, we switch (s, w) from (G0(x), G1(x)) to two
uniformly random vectors in Zn

p . Indistinguishability follows directly from the normal
MQ assumption. Indeed, after Step 1, all group elements given to A (and thus all
information A can determine by generic group queries) do not depend on x, but only on
(G0(x), G1(x)).

Step 3: Reducing the if-Challenge to G2. Finally, in G2, w is uniformly random
and independent of s and all other information given to A. Additionally, A is given
simulated group elements gX

1 instead of the real group elements gx
1 . At this point, we

can reduce the if-challenge to G2 by simulating all extra information (gx
1 and G1(x)) the

then-adversary A would receive. There are some technicalities involved in how group
queries of A are handled, as a reduction does not know s in plain. However, these issues
can be solved by algebraically decomposing the group queries of A. For all technical
details, we refer to the full proof given in § 5.

9Note that A’s equality checks must actually involve more variables. In fact, besides X1, . . . , Xn,
f should contain variables S1, . . . , Sn representing the exponents of gs

2 ∈ Gn
2 , variables C1, . . . , Cn

representing the exponents of gc(s)
2 ∈ Gn

2 , variables H
(1)
1 , . . . , H

(1)
m1 representing the exponents of gh1(s)

1 ∈
Gm1

1 and variables H
(2)
1 , . . . , H

(2)
m2 representing the exponents of gh2(s)

2 ∈ Gm2
2 . To keep this exposition

simple, we neglect this fact and consider here group queries of A that only involve the elements gx
1 .
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Cryptanalysis of Our Assumptions. Security hinges on our new recursive DDH
assumption. In this work, recursive DDH only functions as an intermediate step to prove
the security of our construction, and we can prove the soundness of our assumption in an
idealized model under MQ and MQ+.

While MQ is a well-studied standard assumption in cryptography, MQ+ is a novel
variation of it. While there is no direct reduction from MQ to MQ+, the hardness of the
MQ+ problem should be comparable to the hardness of the MQ problem. Indeed, known
algebraic attacks should not be faster on MQ+ than on MQ, and any efficient algorithm
for solving MQ+ would, intuitively, imply a fast solving algorithm for MQ. We refer to
App. A for detailed cryptanalytic discussions on recursive DDH, MQ and MQ+.

Modularizing the Underlying PRG Family. Note that the CVRF F uses uniformly
random quadratic maps over Zp as PRGs. It is possible to replace this distribution of
PRGs by other, more specialized distributions of quadratic maps Zn

p → Z2n
p . This may be

more beneficial for practical considerations.
In App. D, we explain which properties a general distribution of degree-2 maps

needs to have for our security proofs to work through. Specifically, we replace the MQ
and MQ+ assumptions with properties of the underlying PRG distribution—namely,
pseudorandomness and a new property we call resistance.

On Generic Constructions. Finally, let us address the question if it is possible to
construct CVRFs generically from Non-Interactive Zero-Knowledge proofs (NIZKs) and
CPRFs. First, we want to point out that NIZKs and other primitives depending on
random oracles or common reference strings, are infeasible for this task, as the very
strict requirement of unique provability needs to hold, even for malformed oracles and
reference strings. However, in the plain model, one may still ask if it is possible to
enhance CPRFs with verifiability by using non-interactive witness-indistinguishable proofs
(NIWIs). Prior works [Bit20, GHKW17] constructed VRFs from NIWIs, puncturable
PRFs and commitments. It is possible to extend these constructions to CVRFs, however,
with significant drawbacks on security (and efficiency given the sizes of the involved NIWI
proofs). The crux lies in the notion of constraint-hiding, introduced by Fuchsbauer [Fuc14].
Constraint-hiding is a technical property that allows us to significantly simplify the security
game for CVRFs. A NIWI-based CVRF (following the blueprint of [Bit20, GHKW17])
not only fails to be constraint-hiding, it is also not possible to prove it secure in more
elaborate security games that better reflect reality. We discuss this in full detail in App. C.

1.4 Applications
Exponent VRFs. Recently, Boneh et al. [BHLS25] introduced exponent VRFs (eVRFs).
While a standard VRF Fsk(x) = y proves correctness of y, an eVRF proves correctness of gy,
where y in the exponent is the output of a PRF. They give two constructions (based on DDH
and Paillier encryption) in the random oracle model, and discuss multiple applications. For
example, simulatable distributed protocols (e.g., distributed key generation or multiparty
signing) with fewer rounds of communication (after initially exchanging eVRF verification
keys), or hierarchical deterministic key derivation for cryptocurrency wallets.
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Observe that our CVRF is an e(C)VRF where y = Gx(sk)2 ∈ Zn
p and gy

2 ∈ Gn
2 .10

From a theoretical point of view, our construction improves on Boneh et al. by not relying
on random oracles (and also not on a common reference string). In addition, since our
construction is also constrainable, our eCVRF enables sub-tree delegation when used
for hierarchical key derivations for cryptocurrency wallets (cf. Boneh et al.’s full version
for details [BHLS24, §4.6]). When using our construction solely as an eVRF (so no
constrained keys are handed out), we conjecture that pseudorandomness can be proven
from MQ on its own in the GGM, i.e., MQ+ is not necessary anymore. However, as this
text focuses on constrained VRFs, we leave this to future work.

Stake Pooling. Proof of stake blockchains often elect a small committee or slot leader
to produce the next block. Each party’s probability to be elected is proportional to their
stake. Hence, small stakeholders have little incentive to run a computer 24/7 to participate
at election. This lowers the resilience of the chain as it concentrates the power in the
hands of a few large stakeholders. A mitigation is stake pooling where small stakeholders
delegate their stake to a pool operator that they trust; the pool operator is elected with
probability proportional to the total stake in their pool.

Many blockchain designs use VRFs for such elections (e.g., Algorand [GHM+17] or
Ouroboros Praos [DGKR18]). Ignoring details, party i is elected at time t if Fski

(t) >
threshold(stakei). Since the long-term secret key ski must stay secret, delegating stake
currently requires on-chain communication, which is expensive. CVRFs enable off-chain
delegation: a small stakeholder constrains their key to some time span (i.e., a VRF
preimage prefix) and communicates it off-chain to the pool operator, who then acts on
behalf of the stakeholder.

Compressible Randomness Beacons. A randomness beacon outputs a pseudorandom
value periodically. For an outside observer, the beacon output for time t must be
unpredictable at any time < t. A compressible randomness beacon enables the beacon
operator to provide a concise description of all outputs preceding time t.

This notion was introduced in [HNS25] as one part of a larger protocol for anonymous
blockchain payments between light clients. They construct compressible randomness
beacons using the GGM-CPRF [GGM86]: The beacon outputs are the leaves of the tree
(from left to right as time progresses). Since the GGM-CPRF is not verifiable, a malicious
beacon may equivocate and send two different values to different users. In their model,
the beacon is trusted (e.g., executed via MPC), so this is not an issue. Using our CVRFs
prevents such equivocation attacks without trust assumptions.

Note that generally a malicious beacon operator should not be able to predict outputs
in advance as well. This may be achieved by running multiple CVRF-based beacons and
relying on non-collusion assumptions between beacons.

10Concretely, our construction computes the PRF PRF : {0, 1}ℓ → {z2|z ∈ Zp}n, PRFsk(x) = Gx(sk)2 ∈
Zn

p , in the exponent of its outputs. Since the outputs of PRF are vectors of square numbers, it is simple to
distinguish its images from uniformly random vectors over Zp. However, this problem can simply be fixed
by replacing the final squaring step of PRF with applying n uniformly random quadratic polynomials.
Security then follows by invoking the normal DDH assumption in the security game. Further, if an
application requires eVRFs with a single group element as output, it suffices to simply pick the first
output element of our construction, i.e., y1 and gy1

2 .
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1.5 Related Work
CPRFs have been introduced by [BW13, KPTZ13, BGI14]. Notably, [BW13] gave in-
stantiations for constraints specified by arbitrary circuits, assuming mmaps. CPRFs for
inputs of unbounded length and constraints specified by Turing machines have been given
by [AFP16, DKW16] using iO.

The first candidate VRFs have been constructed by [MRV99] assuming the hardness
of factoring. Important VRFs have been put forth by Lysyanskaya [Lys02] and Dodis
& Yampolskiy [DY05], which described two styles of pairing-based VRFs. Most pairing-
based VRFs use q-type assumptions [Lys02, DY05, ACF09, BCKL09, BMR10, HW10,
Jag15, Kat17, Yam17, Nie21] to achieve small proof sizes, or are based on DLIN [HJ16,
Ros18, Koh19]. [BHKÜ22] showed that it is hard for a pairing-based VRF to achieve
simultaneously proofs and assumptions of constant size. It is possible to construct VRFs
generically from NIWIs [Bit17, GHKW17]

Initially, [Fuc14, CRV14] constructed CVRFs based on the CPRFs of [BW13]. They
achieve bit-fixing and circuit constraints using mmaps. Subsequent CVRF candidates also
enjoy circuit constrainability and use iO: [LLC15] achieves selective security, [LZW19]
extends their security notion and [ZLX23] achieves adaptive security under iO. Additionally,
[DDM17, DDM19] construct CVRFs for unbounded inputs. An exception is [Dat20],
which constructs CVRFs from functional encryption (which is equivalent to iO up to
subexponential loss). In comparison, our construction only supports less expressive
constraints, but builds upon significantly simpler building blocks.
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on early prototypes of our CVRF.

This research was funded in whole or in part by the Austrian Science Fund (FWF)
10.55776/F85. For open access purposes, the author has applied a CC BY public copyright
license to any author-accepted manuscript version arising from this submission.

2 Preliminaries
Notation. Denote by λ ∈ N the security parameter. We denote the output of de-
terministic and probabilistic algorithms by y = D(x) and y ← P (x), respectively. De-
note by x ←$ X that x is sampled uniformly at random from the set X. Denote by
2X = {A : A ⊆ X} the power set of X. Set [n] := {x ∈ N : 1 ≤ x ≤ n} where
N = {1, 2, 3, . . .} is the set of natural numbers.

We denote elements of cyclic groups G,G1,G2 of order p by monospaced letters g, g1, g2.
Given a vector x = (x1, . . . , xn) ∈ Zn

p and a group element h ∈ G, we denote by hx the
vector of group elements (hx1 , . . . , hxn) ∈ Gn.

For a bit b ∈ {0, 1}, set b = 1 − b. We denote the length of a bit string x ∈ {0, 1}∗
by |x|. Let ϵ be the empty word of length 0 and note that {0, 1}0 = {ϵ}. For ℓ ∈ N, we
write {0, 1}ℓ to denote the bit strings of length ℓ. By {0, 1}≤ℓ we denote the set of all
bit strings of length at most ℓ, including ϵ. We denote string concatenation by x · y and
sometimes write xy to avoid clutter. Given a bit string x ∈ {0, 1}ℓ, we denote its bits by
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x = x1 · · ·xℓ. A bit string x ∈ {0, 1}∗ is a prefix of a bit string y ∈ {0, 1}∗ if there exists
w ∈ {0, 1}∗ such that x · w = y.

On Groups. We will consider a definition of symmetric bilinear groups akin to certified
bilinear groups as given in [HJ16].

Definition 1 (Symmetric Bilinear Groups ). A (symmetric) bilinear group, is a pair of
cyclic groups G1,G2 of prime order p with generators g1, g2 and a map e : G1 ×G1 → G2
s.t. the following holds: e is bilinear, i.e., e(ga

1, gb
1) = e(g1, g1)ab for all a, b ∈ Z, and e is

perfect, i.e., e(g1, g1) = g2. We require that e and the group operations on G1 and G2 are
efficiently computable.

As a small technicality, we additionally require G1,G2 to have unique, recognizable
representations of its elements. That is for each element h1 ∈ G1, there is a canonical
encoding as a bit string ⟨h1⟩1. Further, there is a verification algorithm GrpVfy1(s), which
on input of a supposed bit-string description of an element s outputs 0 or 1. The encoding
is uniquely recognizable in the sense that GrpVfy1(s) = 1 implies that there is a ∈ Zp

such that s = ⟨ga
1⟩1. The same holds respectively for an encoding ⟨h2⟩2 and a verification

algorithm GrpVfy2(s) in G2. When referring to a group element h in G1 or G2 as input in
the following, we will implicitly mean its unique encoding, which is implicitly checked to
be a valid group element encoding at the beginning of each algorithm.

In this work, we use Maurer’s generic model [Mau05] for bilinear groups. Concretely,
access to the elements and operations on the two groups G1,G2 (isomorphic to Zp) with
a non-trivial bilinear (symmetric) pairing e : G1 × G1 → G2 are hidden behind oracles.
Further, instead of real group elements, a generic adversary is given handles which only
point to elements used by the oracles to perform group operations. Whenever a group
query is made to an oracle to perform a certain group operation, handles for the involved
group elements and possibly a number in Zp has to be supplied. In Maurer’s original
model, the oracle will then respond with a handle for a new group element (which will be
stored internally) and a list of pairs of handles which point to equal group elements.

We will deviate here from Maurer’s original model by making equality checks explicit.
First note that the adversaries in our setting do not need to output group elements.
Instead, they only need to output bits. Hence, we also do not need to give them handles
for new group elements after performing group operations. To make this precise, we will
define generic adversaries as algorithms that receive handles for group elements as inputs
and may only query if some degree-2 polynomial over the exponents of the group elements
vanishes. This means, the generic adversary can only query if some computation on its
group elements yields the trivial group element, or if two of its computed group elements
collide. We model this by allowing it to submit degree-2 polynomials to some oracle,
which tells the adversary if the polynomial would vanish on the exponents of the group
elements.

The difference between Maurer’s original model and our interpretation of it is poly-
nomial: in Maurer’s original model, an adversary needs to query q group operations to
receive the result of (q + n)2 equality checks, where n is the number of received group
elements at the start of the experiment. In our variation, the adversary needs to perform
(q + n)2 equality checks, which is by a polynomial amount larger than q.
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Definition 2 (Generic Adversaries). An adversary is called generic if it works as follows:
At the beginning of a security game, the generic adversary receives a number of source
group element handles, let’s say gx1

1 , . . . , gxn
1 and gy1

2 , . . . , gym
2 , where g1 and g2 are fixed

generators of G1 and G2, respectively, with e(g1, g1) = g2. It may now only query equality
checks, which are modelled by h ∈ Zp[X1, . . . , Xn, Y1, . . . , Ym], which must have the shape

h(X, Y ) =
n∑

i,j=1
αi,jXiXj +

m∑
k=1

βkYk

for some αi,j, βk ∈ Zp. Whenever the simulator of the group receives such a polynomial
h, it has to reply with “h(x, y) = 0” if h(x1, . . . , xn, y1, . . . , ym) = 0. (This means, the
equality check passes.) Otherwise, the simulator has to reply with “h(x, y) ̸= 0”.

On Pseudorandom Functions.

Definition 3 (Constrained Pseudorandom Function). A constrained pseudorandom func-
tion (CPRF) with input domain X = X (λ), output codomain Y = Y(λ), and set of
efficiently representable constraints C = C(λ) ⊆ 2X where ∅ ∈ C is a tuple CPRF =
(Setup, Constrain, Eval) of three (probabilistic) polynomial-time algorithms

Setup(1λ)→ sk∅: Given a unary encoded security parameter, samples a secret key sk∅,
which may evaluate all inputs X .

Constrain(skC , C ′) = skC′: Given a secret key skC with constraint C ∈ C and a constraint
C ′ ∈ C, outputs the constrained secret key skC′ or ⊥.

Eval(skC , x) = y: Given a secret key skC with constraint C ∈ C and an input x ∈ X ,
outputs y ∈ Y or ⊥.

A CPRF has to fulfill the following properties:

d-Delegability: For any constraints ∅ = C0 ⊆ · · · ⊆ Cd with Ci ∈ C, any x ∈ X \ Cd

and any skC0 ← Setup(1λ) it holds that

Eval(skC0 , x) = · · · = Eval(skCd
, x)

where skC1 = Constrain(skC0 , C1), . . . , and skCd
= Constrain(skCd−1 , Cd).

(t, q, µ)-Selective Pseudorandomness: Consider the following game parameterized by
λ that is played by an adversary A making at most q queries:

1. Sample sk∅ ← Setup(1λ) and b←$ {0, 1}.
2. A outputs a challenge point x∗ ∈ X .
3. A outputs a list of constraint queries (Ci)i∈[q1] and a list of input queries

(xj)j∈[q2] where q ≥ q1 + q2.
4. A receives skCi

← Constrain(sk∅, Ci) for i ∈ [q1] and yj = Eval(sk∅, xj) for
j ∈ [q2].

5. A receives y∗b where y∗0 = Eval(sk∅, x∗) and y∗1 ←$ Y .
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6. A outputs a guess b∗.

We say “A wins” if and only if b = b∗, x∗ ∈ Ci for i ∈ [q1], and xj ̸= x∗ for j ∈ [q2].
The advantage of A in the above game is

AdvACPRF(λ) = |Pr[A wins]− 1/2|

where the probability is taken over the randomness of A and the game.
CPRF is (t, q, µ)-selective pseudorandom if, for every A running in time at most t(λ)
making at most q(λ) queries, it holds that AdvACPRF(λ) ≤ µ(λ).

We call CPRF delegable if it is d-delegable for every d ∈ poly(λ), and (t, µ)-selective
pseudorandom if it is (t, q, µ)-selective pseudorandom for every q ∈ poly(λ).

Definition 4 (Puncturable CPRF). A CPRF with input domain X and set of constraints
C is puncturable if {x} ∈ C for every x ∈ X .

Definition 5 (Constrained Verifiable Pseudorandom Function). A constrained verifiable
pseudorandom function (CVRF) with public parameter space P = P(λ), input domain
X = X (λ), output codomain Y = Y(λ), and set of constraints C = C(λ) ⊆ 2X where
∅ ∈ C is a tuple CVRF = (Setup, Constrain, Eval, Verify, VerifyC) of five (probabilistic)
polynomial-time algorithms

Setup(1λ)→ (pp, sk∅, vk, π∅): Given a unary encoded security parameter, samples public
parameters pp ∈ P , secret key sk∅, verification key vk, and proof π∅.11

Constrainpp(skC , πC , C ′)→ (skC′ , πC′): Given a secret key skC with constraint C ∈ C, proof
πC , and a constraint C ′ ∈ C, outputs the constrained secret key skC′ and proof πC′ ,
or ⊥.

Evalpp(skC , πC , x)→ (y, π): Given a secret key skC with constraint C ∈ C and an input
x ∈ X , outputs y ∈ Y and proof π, or ⊥.

VerifyCpp(vk, C, skC , πC) = b: Given the verification key vk, constraint C ∈ C, constrained
secret key skC , and proof πC , outputs b ∈ {ACCEPT, REJECT}.

Verifypp(vk, x, y, π) = b: Given the verification key vk, input x ∈ X , output y ∈ Y, and
proof π, outputs b ∈ {ACCEPT, REJECT}.

A CVRF has to fulfill the following properties:

d-Delegability: For any constraints ∅ = C0 ⊆ · · · ⊆ Cd with Ci ∈ C, and x ∈ X \ Cd it
holds that

Pr
[

VerifyCpp(vk, C0, skC0 , πC0) = · · · = VerifyCpp(vk, Cd, skCd
, πCd

) =
Verifypp(vk, x, y0, π0) = · · · = Verifypp(vk, x, yd, πd) = ACCEPT

]
= 1

where the probability is taken over (pp, skC0 , vk, πC0)← Setup(1λ), and (skCi
, πCi

)←
Constrain(skCi−1 , πCi−1 , Ci) and (yi, πi)← Evalpp(skCi

, πCi
, x) for i ∈ [d].

11The proof π∅ is a formality that allows us to streamline definitions and syntax. π∅ can be seen as
part of sk∅.
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Unique Provability: For all (even malformed) public parameters pp, verification keys
vk, and proofs π, π′ as well as all inputs x ∈ X and outputs y, y′ ∈ Y , it holds that

Verifypp(vk, x, y, π) = Verifypp(vk, x, y′, π′) = ACCEPT =⇒ y = y′.

Functionality Binding : For all (even malformed) public parameters pp, verification
keys vk, secret keys skC , sk′C and proofs πC , π′C the following holds: If

VerifyCpp(vk, C, skC , πC) = VerifyCpp(vk, C, sk′C , π′C) = ACCEPT,

then, for all inputs x ∈ X \ C, for all (y, π) ← Eval(skC , πC , x) and (y′, π′) ←
Eval(sk′C , π′C , x) it holds that y = y′.

(t, q, µ)-Selective Pseudorandomness: Consider the following game parameterized by
λ that is played by an adversary A making at most q queries:

1. Sample (pp, sk∅, vk, π∅)← Setup(1λ) and b←$ {0, 1}.
2. A outputs a challenge point x∗ ∈ X .
3. A gets pp and vk.
4. A outputs a list of constraint queries (Ci)i∈[q1] and a list of input queries

(xj)j∈[q2] where q ≥ q1 + q2.
5. A receives (skCi

, πCi
) ← Constrain(sk∅, π∅, Ci) for i ∈ [q1] and (yj, πj) ←

Eval(sk∅, π∅, xj) for j ∈ [q2].
6. A receives y∗b where (y∗0, π∗0) = Eval(sk∅, x∗) and y∗1 ←$ X .
7. A outputs a guess b∗.

We say “A wins” if and only if b = b∗, x∗ ∈ Ci for i ∈ [q1], and xj ̸= x∗ for j ∈ [q2].
The advantage of A in the above game is

AdvACVRF(λ) = |Pr[A wins]− 1/2|

where the probability is taken over the randomness of A and the game.
CVRF is (t, q, µ)-selective pseudorandom if, for every A running in time at most t(λ)
making at most q(λ) queries, it holds that AdvACVRF(λ) ≤ µ(λ).

We call CVRF delegable if it is d-delegable for every d ∈ poly(λ), and (t, µ)-selective
pseudorandom if it is (t, q, µ)-selective pseudorandom for every q ∈ poly(λ).

Definition 6 (Constraing-Hiding). CVRF is constraint-hiding if we have for all constraints
C1 ⊆ C2 and x ∈ X \ C1 the following equalities of distributions:

Constrainpp(sk∅, π∅, C2) ≡ Constrainpp(skC1 , πC1 , C2),
Evalpp(sk∅, π∅, x) ≡ Evalpp(skC1 , πC1 , x)

where we sample (pp, sk∅, vk, π∅)← Setup(1λ) and (skC1 , πC1)← Constrain(sk∅, π∅, C1).
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Remark 1. Note that our notion of constraint-hiding (Def. 6) is slightly stricter than the
notion of Fuchsbauer [Fuc14]. Also, note that the selective pseudorandomness game in
Def. 5 does not cover complex cases of repeated or nested constraining a passive adversary
may observe in a scenario where multiple parties might receive constrained keys and further
constrain them.

As an example, consider the following case that is not covered: Let x∗ be the point
challenged by the adversary. Additionally, it asks the challenger to generate a constraint key
skC for a constraint with x∗ ̸∈ C and then further constrain skC to skC′ with x∗ ∈ C ′ ⊇ C.
Finally, we hand skC′ to the adversary. Creating skC′ and its corresponding proof πC′ in
this way results in a potentially different output than constraining sk∅ at C ′ directly. Such
types of constraining are not covered by the security notion of 5.

The constraint-hiding property solves this problem by ensuring that the proofs of
constrained keys and output values are independent of the (constrained) key they were
computed from. The construction we give in § 3 is constraint-hiding in the strongest possible
way, as all outputs, proofs and constrained keys of it are determined deterministically by
its verification key.

Definition 7 (Prefix-Constrained CPRFs and CVRFs). A CPRF or CVRF with input
domain X = {0, 1}ℓ is prefix-constrained if, for every x ∈ {0, 1}≤ℓ,

{y ∈ {0, 1}ℓ | x is not a prefix of y} ∈ C.

For C = {y ∈ {0, 1}ℓ | x is not a prefix of y}, we will usually denote the outputs of
Constrain(sk∅, π∅, C) by (skx, πx) instead of (skC , πC).

On Quadratic Polynomials. We will introduce here some notation on polynomials of
degree 2 that will span through this work.

Definition 8. Let n, p ∈ N. A degree-2 map F : Zn
p −→ Zn

p is a map whose outputs are
computed by n polynomials f1, . . . , fn ∈ Zp[X1, . . . , Xn] of degree ≤ 2. Denote the set of
all degree-2 maps by

Qp,n := {F : Zn
p → Zn

p | F is a degree-2 map}.

In this work, we will sometimes refer to Qp,n as Q, whenever p, n are clear from context.

Definition 9. For ℓ ∈ N, denote by Qℓ×2
p,n the set of lists of ℓ pairs of functions in Qp,n.

We will denote an element G ∈ Qℓ×2
p,n by

G = ((G(1)
0 , G

(1)
1 ), . . . , (G(ℓ)

0 , G
(ℓ)
1 ))

where G
(1)
0 , . . . , G

(ℓ)
0 , G

(1)
1 , . . . , G

(ℓ)
1 ∈ Qp,n are all degree-2 maps from Zn

p to Zn
p . Further,

for a bit string x = x1 · · ·xℓ′ ∈ {0, 1}≤ℓ, we set

Gx := G(ℓ′)
xℓ′ ◦ · · · ◦G(1)

x1 : Zn
p → Zn

p .

For the sake of completeness, let Gϵ denote the identity function on Zn
p .
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Finally, let e : G1 ×G1 → G2 be a bilinear pairing with generators g1 ∈ G1, g2 ∈ G2.
For a degree-2 map F ∈ Q, we define an efficiently computable function eF : Gn

1 → Gn
2 as

follows: let f1, . . . , fn ∈ Zp[X1, . . . , Xn] be the polynomials that compute the outputs of
F . Decompose each fi as

fi =
∑

1≤j≤k≤n

c
(i)
j,k ·XjXk +

∑
j∈[n]

c
(i)
0,j ·Xj + c

(i)
0,0

with coefficients c
(i)
j,k ∈ Zp. Then, the output of eF on input gs

1 is given by eF (h1, . . . , hn) =
(h′1, . . . , h′n) where

h′i :=
 ∏

1≤j≤k≤n

e(hj, hk)c
(i)
j,k

 ·
 ∏

j∈[n]
e(hj, g1)c

(i)
0,j

 · gc
(i)
0,0

2 .

Note that we have eF (gs
1) = gF (s)

2 for s ∈ Zn
p .

3 Our CVRF Construction
Our construction draws inspiration from the CPRF of Goldreich, Goldwasser and Mi-
cali [GGM86] (GGM-CPRF). The GGM-CPRF’s input domain is {0, 1}ℓ and, conceptually,
it may be viewed as a binary tree of depth ℓ. Each node is identified by a bit string
x ∈ {0, 1}≤ℓ where the root node is ϵ, and the children of a node x are x0 and x1 respec-
tively. The set of leafs is {0, 1}ℓ. Additionally, each node has a label associated with it,
and these labels are defined inductively by a length-doubling PRG G = (G0, G1). The
label of the root node is the CPRF’s root secret keys skϵ. The label of others node is
computed recursively: the label of the left and right child is yielded by applying G0 and
G1 to the parent’s label, respectively. In the GGM-CPRF, constrained keys correspond to
the labels of inner nodes, while outputs correspond to the labels of leaf nodes.

Our CVRF construction (denoted by CVRF) shares the input domain {0, 1}ℓ and
PRG-defined tree structure with the GGM-CPRF. To enable verification, however, our
construction differs in several aspects:

1. Our PRGs are degree-2 polynomials over Zp in n variables (as explained in Def. 8).
Additionally, for each level of the tree, we use a fresh PRG G(i) ←$ Q2 that is
sampled uniformly and independently of all other PRGs.

2. Due to our choice of PRGs, each node’s label is a value in Zn
p . In particular, the

root secret key skϵ is a uniformly random vector s←$ Zn
p .

3. While constrained keys are the labels of inner nodes as in the GGM-CPRF, outputs
are not the labels of leaf nodes directly, but a function of them. In particular,
outputs are vectors of group elements in Gn

2 where, on input x ∈ {0, 1}ℓ, the output
is gGx(s)2

2 (where Gx(s) is the label of the leaf node x by the notational shorthand
introduced in Def. 9, and Gx(s)2 is the vector of squares of entries of Gx(s)).

4. To enable verification of constrained keys and outputs, nodes not only have a label,
but also a proof element associated to them.
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(a) The verification key is vk = gskϵ
2 = gs

2.
(b) Each node x ∈ {0, 1}≤ℓ has the proof element gGx(s)

1 associated to it.

5. Each constrained key or output is accompanied by the proof elements along the path
from the root node to itself. Since the labels are inductively defined via degree-2
polynomials, the proof elements enable efficient verification by using the pairing e.

Given this high-level overview, we give the pseudocode of CVRF in Fig. 2. To avoid
redundant code, CVRF uses internally the helper algorithms HelperEval and HelperVerify,
which are called whenever outputs and constrained keys are generated and verified,
respectively.
Theorem 3. CVRF fulfills Delegability, Unique Provability and Functionality Binding
(Def. 5). In addition, it is constraint-hiding (Def. 6).

Proof. Delegability follows almost directly from the fact that HelperVerify accepts outputs
of HelperEval by construction and the fact that HelperEval and HelperVerify do not dif-
ferentiate between root and constrained secret keys. Constraint-Hiding also follows by
construction since HelperEval is deterministic.

With respect to Unique Provability and Functionality Binding, we will show that,
for any input x ∈ {0, 1}≤ℓ, and any verification key vk ∈ Gn

2 there is a unique input
(πx ∈ (Gn

1 )ℓ′
, π̃(ℓ′) ∈ Gn

1 ) resulting in HelperVerify(vk, x, πx, π̃(ℓ′)) = ACCEPT.
This directly implies the unique provability as Verify only accepts an input y if it

fulfills y = e(π̃(ℓ′), π̃(ℓ′)) for a thus unique π̃(ℓ′) predetermined by HelperVerify. Regard-
ing functionality binding, we can actually show the stronger notion, that for any con-
straint x ∈ {0, 1}<ℓ constrained keys skx, sk′x and proofs πx, π′x, VerifyCpp(vk, x, skx, πx) =
VerifyCpp(vk, x, sk′x, π′x) = ACCEPT already implies that skx = sk′x. This follows in the
same way as unique provability, as VerifyC only accepts a key skx if it conforms to
gskx

1 = π̃(ℓ′) for this unique value π̃(ℓ′).
Let us now show that there is one unique accepting input to HelperVerify. Consider

any pp = ((G(i)
0 , G

(i)
1 )ℓ

i=1) and any vk ∈ Gn
2 . Let ℓ′ ≤ ℓ and x ∈ {0, 1}ℓ′ . Suppose we are

given two proofs π1 = (π̃(i)
1 )ℓ′−1

i=0 and π2 = (π̃(i)
2 )ℓ′−1

i=0 ∈ (Gn
1 )ℓ′ with corresponding inputs

π̃
(ℓ′)
1 and π̃

(ℓ′)
2 that both result in ACCEPT (we use the subscripts 1 and 2 to differentiate

between the two executions of HelperVerify). We will show by induction on 0 ≤ i ≤ ℓ′ that
π̃

(i)
1 = π̃

(i)
2 = gGx1...xi (skϵ)

1 for every i.
For the base case i = 0 it holds that π̃

(0)
1 = π̃

(0)
2 = gskϵ

1 = gGϵ(skϵ)
1 as otherwise

the comparison with vk in Line 2 would not pass. For the induction step assume that
π̃

(i−1)
1 = π̃

(i−1)
2 = g

Gx1...xi−1 (skϵ)
1 holds. By the check in Line 4, G(i)

xi
is a degree-2 map, so

the output of the pairing e in Line 5 is well-defined. The check in Line 5 ensures that
π̃

(i)
1 = π̃

(i)
2 = gGx1...xi (skϵ)

1 , completing the proof.

4 Security Proof by Recursive Assumptions

4.1 Diffie-Hellman Assumptions
The security of our efficient construction in § 3 is based on two assumptions. The first
one assumes the hardness of the Decisional Square Diffie-Hellman (DSDH) problem over
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CVRF. Setup(1λ):

01 Sample s←$ Zn
p ; Set skϵ = s

02 Set vk = gs
2

03 Sample degree-2 maps G ←$ Qℓ×2
p,n ; Set pp = G

04 Output (pp, skϵ, vk, πϵ = ∅)

HelperEvalpp(skx′ ∈ Zn
p , πx′ ∈ (Gn

1 )ℓ′
, x ∈ {0, 1}ℓ′′):

01 Check that |x′| = ℓ′ ≤ ℓ′′ ≤ ℓ; otherwise, abort
02 Parse πx′ = (π̃(i))ℓ′−1

i=0 , pp = ((G(i)
0 , G

(i)
1 ))ℓ

i=1, and sℓ′ = skx′

03 For i ∈ {ℓ′, . . . , ℓ′′ − 1}:
04 Set π̃(i) = gsi

1
05 Set si+1 = G(i)

xi
(si)

06 Output (y = sℓ′′ , πx = (π̃(i))ℓ′′−1
i=0 )

CVRF. Constrainpp(skx′ ∈ Zn
p , πx′ ∈ (Gn

1 )ℓ′
, x ∈ {0, 1}<ℓ):

01 Check whether x′ is a prefix of x and |x| < ℓ; else, abort
02 Output (skx, πx)← HelperEvalpp(skx′ , πx′ , x)

CVRF. Evalpp(skx′ ∈ Zn
p , πx′ ∈ (Gn

1 )ℓ′
, x ∈ {0, 1}ℓ):

01 Check whether x′ is a prefix of x and |x| = ℓ; else, abort
02 (ŷ, πx)← HelperEvalpp(skx′ , πx′ , x)
03 Output (y = gŷ2

2 , π = (πx, gŷ
1)) where (ŷ1, . . . , ŷn)2 = (ŷ2

1, . . . , ŷ2
n) ∈ Zn

p

HelperVerifypp(vk ∈ Gn
2 , x ∈ {0, 1}ℓ′

, πx ∈ (Gn
1 )ℓ′

, π̃(ℓ′) ∈ Gn
1 ):

01 Parse πx = (π̃(i))ℓ′−1
i=0 and pp = ((G(i)

0 , G
(i)
1 ))ℓ

i=1
02 If vk ̸= e(π̃(0), g1), output REJECT
03 For 1 ≤ i ≤ ℓ′:
04 If G(i)

xi
is not a degree-2 map, output REJECT

05 If e(π̃(i), g1) ̸= e
G

(i)
xi

(π̃(i−1)), output REJECT
06 Output ACCEPT

CVRF. VerifyCpp(vk ∈ Gn
2 , x ∈ {0, 1}ℓ′

, skx ∈ Zn
p , πx ∈ (Gn

1 )ℓ′):

01 If ℓ′ ≥ ℓ, output REJECT
02 Output HelperVerifypp(vk, x, πx, gskx

1 )

CVRF. Verifypp(vk ∈ Gn
2 , x ∈ {0, 1}ℓ, y ∈ Gn

2 , π = (πx ∈ (Gn
1 )ℓ, π̃(ℓ) ∈ Gn

1 )):

01 If HelperVerifypp(vk, x, πx, π̃(ℓ)) = REJECT, output REJECT
02 If e(π̃(ℓ), π̃(ℓ)) = y, output ACCEPT; else REJECT

Figure 2: Pseudocode of CVRF.
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a cyclic group G of order p with generator g, which consists in distinguishing a pair of
the form (ga, gb) where a, b←$ Zp from a pair (ga, ga2) where a←$ Zp.

Definition 10 (DSDH Assumption). Fix n ∈ poly(λ), a prime p ≤ 2poly(λ) and a cyclic
group G of order p with generator g ∈ G.

For an adversary A, we define its advantage at solving the Decisional Square Diffie-
Hellman Problem (DSDH) problem in G by

AdvADSDH(λ) := | Pr
a,b←$Zn

p

[A(ga, gb) = 1]− Pr
a←$Zn

p

[A(ga, ga2) = 1]|.

For non-negative functions t = t(λ), µ = µ(λ), the Decisional Square Diffie-Hellman
assumption (t, µ)-DSDH states that we have AdvADSDH ≤ µ for all algorithms A that run
in time at most t.

Note that the DSDH assumption is usually stated for n = 1. Since DSDH is reran-
domizable, there is a tight reduction of the corresponding problem from the case n = 1 to
the case n > 1.

We now state our novel Recursive Decisional Diffie-Hellman assumption. It consists of
two challenges: an if-challenge and a then-challenge. The assumption postulates that for
every adversary Athen for the then-challenge, there exists an adversary for the if-challenge of
comparable time complexity and advantage. In other words, if the if-challenge is hard, then
the then-challenge has to be hard, too. Assumptions of this structure are already known in
the lattice-setting as evasive Learning With Errors assumptions [Wee22, Tsa22, BÜW24]
and in the pairing setting [AWY20] However, we note that this assumption is just a
cornerstone for the security proof of our CVRF, as we prove the assumption sound in the
GGM under falsifiable contained assumptions.

Assumption 1 (Recursive DDH). Fix n, m1, m2 ∈ poly(λ), a prime p ≤ 2poly(λ) and a
bilinear pairing e : G1 ×G1 → G2 of groups of order p with generators g1 ∈ G1, g2 ∈ G2.
Let Samp be an algorithm that on input 1λ, p, n, outputs descriptions of

1. an efficiently computable function c : Zn
p → Zn

p ,

2. an efficiently computable function h0 : Zn
p → Zm0

p ,

3. an efficiently computable function h1 : Zn
p → Zm1

p ,

4. and an efficiently computable function h2 : Zn
p → Zm2

p .

For an adversary Aif , we define its advantage in the if-challenge by

AdvAif
if = |Pr[Aif(c, h0, h1, h2, h0(s), gh1(s)

1 , gh2(s)
2 , gs

2, gc(s)
2 ) = 1]

− Pr[Aif(c, h0, h1, h2, h0(s), gh1(s)
1 , gh2(s)

2 , gs
2, gr

2) = 1]|

where the probabilities are taken over (c, h0, h1, h2) ← Samp(1λ, p, n), s ←$ Zn
p and

r ←$ Zn
p . For an adversary Athen, we define its advantage in the then-challenge by

AdvAthen
then = |Pr[Athen(c, h0, h1, h2, G0, G1, h0(s), gh1(s)

1 , gh2(s)
2 , gs

2, gx
1 , G1(x), gc(s)

2 ) = 1]
− Pr[Athen(c, h0, h1, h2, G0, G1, h0(s), gh1(s)

1 , gh2(s)
2 , gs

2, gx
1 , G1(x), gr

2) = 1]|
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where s = G0(x), and the probabilities are taken over (c, h0, h1, h2) ← Samp(1λ, p, n),
x←$ Zn

p , G0, G1 ←$ Qp,n and r ←$ Zn
p .

Finally, fix non-negative functions t = t(λ), q = q(λ), µ = µ(λ). The Recursive
Decisional Diffie-Hellman assumption (t, q, µ)-rDDH states that for all samplers of the
above form that run in time t and for all then-adversaries Athen, there exists an if-adversary
Aif s.t.

AdvAif
if (λ) ≥ AdvAthen

then (λ)− µ(λ) and time(Aif) ≤ time(Athen) + q.

Note that we state the recursive DDH assumption in an additive manner, i.e., the
advantage and time complexity of the postulated if-adversary Aif only deteriorate by
additive amounts. This makes the assumption very strong. We justify this by proving in
Thm. 5 that any generic adversary on the then-challenge implies a generic adversary on
the if-challenge with only small additive overhead.

4.2 Security under the Recursive Decisional Diffie-Hellman
Theorem 4. Let t = t(λ), q = q(λ), µ = µ(λ), µ′ = µ′(λ). Under the (t + ℓq + ℓntpair, µ)-
Decisional Square Diffie-Hellman for the target group G2 and (t′, q, µ′)-Recursive Decisional
Diffie-Hellman assumptions CVRF : {0, 1}ℓ → Gn

2 is (t, µ + µ′ℓ)-selectively-secure, where
t′ = Θ(ℓn3 log2 p) and tpair is the time complexity to evaluate e : G2

1 → G2 once.

Proof of Thm. 4. We will consider the Selective Constrained Pseudorandomness game
(cf. Def. 5) for different input lengths idx ≤ ℓ. By Aidx we denote the adversary playing the
game with inputs of length 0 ≤ idx ≤ ℓ; its advantage is denoted by AdvAidx

CVRF-idx. Under
the (t′, q, µ′)-rDDH assumption, the following claim holds:
Claim 1. For all 1 ≤ idx ≤ ℓ, the existence of an adversary Aidx for CVRF with input
length idx which runs in time at most t+(ℓ− idx)(q +ntpair) and has advantage AdvAidx

CVRF-idx,
implies the existence of an adversary Aidx−1 for CVRF with input length idx−1 that runs in
time at most t+(ℓ−idx+1)(q+ntpair) and has advantage AdvAidx

CVRF-idx ≤ AdvAidx−1
CVRF-(idx − 1) +µ′

provided that the (t′, q, µ′)-rDDH assumption holds.
We defer the claim’s proof for now and prove the theorem’s statement first. Consider

the adversary Aℓ that we are interested in. Suppose that it runs in time at most t. After
applying Clm. 1 to Aℓ for a total of ℓ times, we arrive at A0.

Observe that A0 is an adversary against the Selective Constrained Pseudorandomness
game (cf. Def. 5) for input length 0. Since the input space only contains the empty word
ϵ, A0 must challenge x∗ = ϵ. As a consequence, it must distinguish whether a value y∗ is
equal to gsk2

ϵ
2 (i.e., an output of CVRF) or uniformly random while only receiving vk = gskϵ

2
from the game. I.e., A0 must solve the DSDH problem.

Moreover, A0 runs in time at most t + ℓ(q + ntpair) since we applied Clm. 1 ℓ times.
This together with the (t + ℓ(q + ntpair), µ)-DSDH assumption implies that AdvA0

CVRF-0 ≤ µ.
As a consequence, (again, recalling the ℓ applications of Clm. 1), AdvAℓ

CVRF-ℓ ≤ µ + µ′ℓ
holds completing the proof.

Proof of Clm. 1. For idx ∈ {1, . . . , ℓ}, let Aidx be an adversary for CVRF with inputs of
length idx. In the following, we suppose that Aidx runs in time at most t+(ℓ−idx)(q+ntpair).
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Further, we assume that Aidx always challenges x∗ = 0 · · · 0 ∈ {0, 1}idx. This is without loss
of generality since the view of Aidx is statistically identical (up to reordering terms) for each
input x∗ ∈ {0, 1}idx. Indeed, we sample a fresh and independent PRG (G(i)

0 , G
(i)
1 )←$ Q2

for every layer of the tree, so if Aidx were to submit a challenge point x∗ ̸= 0idx, we could
simply swap G

(i)
0 and G

(i)
1 whenever x∗i = 1. Further, we assume—again without loss

of generality—that Aidx requests, besides the verification key vk, the constrained keys
for the prefixes 1, 01, . . . , 0idx−21 and the evaluation of CVRF at 0idx−11 (all including
corresponding proofs). Indeed, from this information, A can evaluate CVRF anywhere
except 0idx on its own. Further, since CVRF is constraint-hiding and generates proofs
and keys deterministically, A does not learn anything by repeatedly requesting the same
evaluation or constrained key.

Hence, Aidx receives the following information from its challenger: First, pp, vk, πϵ

as sampled by (pp, skϵ, vk, πϵ) ←$ Setup(1λ). Here, pp = G ←$ Qidx×2
p,n , sk = skϵ ←$ Zn

p ,
vk = gskϵ

2 , and πϵ = ∅ where an element G ∈ Qidx×2
p,n is of the form

G = ((G(1)
0 , G

(1)
1 ), . . . , (G(idx)

0 , G
(idx)
1 ))

with each G
(j)
b : Zn

p → Zn
p being a degree 2-map. Remember that we set

Gϵ(s) := s and Gx(s) := G(idx′)
xidx′ (· · · (G(1)

x1 (s)))

for a bit string x = x1 · · ·xidx′ ∈ {0, 1}≤idx. Second, it also receives the outputs of its Eval-
and Constrain-queries, given by

(y, π) = Evalpp(skϵ, πϵ, 0idx−11) and (ski, πi) = Constrainpp(skϵ, πϵ, 0i−11) (1)

for i ∈ [idx − 1]. Note that the outputs of Eval are of shape y = gŷ2

2 and π = (π̂, gŷ
1)

where π̂ = (gG0i (skϵ)
1 )i∈[idx−1] and ŷ = G0idx−11(skϵ). The constrained keys are of the form

ski = G0i−11(skϵ) and the proofs are πi = (gG0j (skϵ)
1 )j∈[i−1].

We invoke the Recursive DDH (cf. Ass. 1) assumption to show that the existence of
Aidx implies the existence of Aidx−1 as defined in the claim’s statement. Concretely, we
define a sampler Sampidx in Fig. 3 such that Athen = Aidx which guarantees the existence
of Aif = Aidx−1 by the assumption.
Recall that Aif has to distinguish between

(c, h0, h1, h2, G0, G1, h0(s), gh1(s)
1 , gh2(s)

2 , gs
2, gc(s)

2 )

and
(c, h0, h1, h2, G0, G1, h0(s), gh1(s)

1 , gh2(s)
2 , gs

2, gr
2)

for s ←$ Zn
p and r ←$ Zn

p . The crucial observation is that Aif with s = skϵ is an
adversary against the CVRF construction with input length idx − 1 (up to rearrangement
of inputs): The description of (c, h0, h1, h2) is (G(i)

0 , G
(i)
1 )i∈[idx−1] which is equal to the

public parameters ppidx−1 for Aidx−1. Furthermore, h0,idx−1(s), gh1,idx−1(s)
1 and gh2,idx−1(s)

2
represent the values that Aidx−1 receives from its Eval and Constrain queries, analogously
to the information in Eq. (1) sent to Aidx. Second, cidx−1(s) is precisely the output of
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Sampidx(1λ, p, n)

01 Sample (G(i)
0 , G

(i)
1 )i∈[idx−1] ←$ Q(idx−1)×2

p,n .
02 Output {G(j)

0 , G
(j)
1 }idx−1

j=1 . This acts as a description of the following functions:
• cidx−1 : Zn

p → Zn
p defined as cidx−1(·) = G0idx−1(·)2.

• h0,idx−1 : Zn
p → Zn·(idx−2)

p defined as h0,idx−1(·) = (G0j1(·))idx−3
j=0 , which can be

computed using the degree-2 maps {G(j)
0 , G

(j)
1 }idx

j=1.
• h1,idx−1 : Zn

p → Zn·idx
p defined as h1,idx−1(·) = ((G0j (·))idx−2

j=0 , G0idx−21(·)).
• h2,idx−1 : Zn

p → Zn
p defined as h2,idx−1(·) = G0idx−21(·)2.

Figure 3: Pseudocode of Sampidx.

CVRF on challenge point x∗ = 0idx−1. Finally, gs
1 in the if-challenge equals the verification

key vk, which Aidx−1 receives.
Let us now consider Athen. It has to distinguish between

(c, h0, h1, h2, G0, G1, h0(s), gh1(s)
1 , gh2(s)

2 , gs
2, gx

1 , G1(x), gc(s)
2 )

and
(c, h0, h1, h2, G0, G1, h0(s), gh1(s)

1 , gh2(s)
2 , gs

2, gx
1 , G1(x), gr

2)
when x ←$ Zn

p , (G0, G1) ←$ Qp,n, r ←$ Zn
p and s = G0(x). Now, Athen is almost equal

to Aidx, only incurring an additive overhead of O(n). For this, note that G0, G1 play
the role of G

(0)
0 , G

(0)
1 in the construction, while the maps G

(i)
0 , G

(i)
1 output by the sampler

Sampidx(1λ, p, n) play the role of G
(i+1)
0 , G

(i+1)
1 in the construction. As a consequence, the

verification key needs to be gx
2 which can be computed from gx

1 by evaluating n pairings.
To summarize, (t′, q, µ′)-rDDH implies that, if Aidx exists, then there also exists Aidx−1

with

Aidx−1(λ) ≥ Aidx(λ)− µ′ and time(Aidx−1) ≤ time(Aidx) + q + ntpair,

which completes the proof.

5 Proving Recursive DDH in the Generic Group
Model

Notation. For d ∈ N, denote by Zp[X]≤d the space of all polynomials h(X1, . . . , Xn) of
degree ≤ d. Further, denote by Zp[X]d the space of all homogeneous polynomials of degree
exactly d.

Further, for maps G1, . . . , Gℓ ∈ Q, denote by

spanZp [G1, . . . , Gℓ] ⊆ Zp[X]≤2

the space generated by all polynomials that compute the outputs of G1, . . . , Gℓ.
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In this section, we prove the security of the recursive DDH Assumption Ass. 1 in
Maurer’s generic group model assuming the hardness of the following two assumptions:

Assumption 2 (MQ). The (decisional) multivariate quadratic assumption (t, µ)-MQp,n

states that we have for all adversaries A running in time t

|Pr[A((G0, G1), (G0(x), G1(x))) = 1]− Pr[A((G0, G1), y) = 1]| ≤ µ

where we draw G0, G1 ←$ Q, x←$ Zn
p and y ←$ Z2n

p .

Assumption 3 (MQ+). Let p be prime. The multivariate quadratic plus assumption
(t, µ)-MQ+p,n states that we have for all adversaries A running in time t

Pr
[
h ∈ Zp[X1, . . . , Xn]≤2, h(x) = 0,

h /∈ spanZp [G0(X)−G0(x), G1(X)−G1(x)]

]
− 2

p
≤ µ

where we draw G0, G1 ←$ Q, x←$ Zn
p and h← A((G0, G1), (G0(x), G1(x))).

Note that we require the adversary’s success probability in MQ+ to be by a noticeable
amount µ to be larger than 2/p. The reason is that there exists a default adversary
that has a success probability of exactly 2/p by simply outputting a random polynomial
outside spanZp [G0(X)−G0(x), G1(X)−G1(x)]. For example, if we always output h(X) =
(X1 − z1)(X2 − z2) for some z1, z2 ∈ Zp, then h will vanish on x←$ Zn

p with probability
2/p. On the other hand, for any fixed polynomial h, the probability that h vanishes on
x←$ Zn

p is bounded by 2/p. For exponential p, the success probability of such adversaries
is negligible, however, for polynomial p, its success probability is noticable. Hence, we need
to set the advantage of an MQ+-solver to be its success probability minus the probability
of guessing randomly correct.

Additionally, we require the modulus p to be prime. This requirement is necessary
as MQ+ can be solved with success probability larger than 2/p if p is composite. For
example, if p is even, then the polynomial h(X) = p

2 · X1 vanishes on x ←$ Zp with
probability at least 1/2. We give more details on the cryptanalysis of MQ+ in App. A.3.

Theorem 5. Let Samp be a sampling algorithm with time complexity t′′ for Ass. 1 that
outputs functions h0, h1, h2, c that can be evaluated in time t′′. Let Athen be a generic
adversary against the then-challenge of Ass. 1 with advantage µ + qµMQ+ + µMQ + 2n+3q

p

and time complexity t that makes q group-queries (in the sense of Def. 2). Assume
(t′, µMQ)-MQp,n and (t′, µMQ+)-MQ+p,n for t′ = t + t′′ + O(qn6).

Then, there exists an adversary Aif on the if-challenge of Ass. 1 that makes q group-
queries and has an advantage of µ and a time complexity of t′.

To prove Thm. 5, we will argue by hybrid games given in Fig. 4. Each game is defined
by two algorithms (GAthen

i , R) that share the same state. GAthen
i sets up the experiment

and runs Athen. Since Athen is generic, it does not receive real group elements, instead
it receives handles that we represent by dummy group elements with formal variables
as exponents: gH(1)

1 = (gH
(1)
1

1 , . . . , gH
(1)
m1

1 ) represents the group element vector gh1(s)
1 ∈ Gm1

1 ,
gH(2)

2 = (gH
(1)
1

1 , . . . , gH
(1)
m2

1 ) represents gh2(s)
2 ∈ Gm2

2 , gS
2 = (gS1

2 , . . . , gSn
2 ) represents gs

2 ∈ Gn
2 ,

gX
1 = (gX1

1 , . . . , gXn
1 ) represents gx

1 ∈ Gn
1 and gC

2 = (gC1
2 , . . . , gCn

2 ) reprsents gc
2. Since Athen
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is generic (in the sense of 2), it can only interact with the group element handles by
making explicit group queries. For this end, it has to call the oracle R on a quadratic
function f ∈ Zp[H(1), H(2), S, X, C]. To ensure that the adversary only multiplies the
exponents of source group elements with each other, R rejects any f that is not admissible
where the space of admissible polynomials is defined as

A := spanZp [V1 · V2 | V1, V2 ∈ {1, H
(1)
1 , . . . , H(1)

m1 , X1, . . . , Xn}]
+ spanZp [H(2)

1 , . . . , H(2)
m2 , S1, . . . , Sn, C1, . . . , Cn].

Additionally, denote by B ⊆ A the subspace of all admissible polynomials in which the
monomials (Xj ·Xk)j,k∈[n], do not appear

B := spanZp [1, X1, . . . , Xn] + spanZp [Xi ·H(1)
j | i ∈ [n], j ∈ [m1]]

+ spanZp [H(1)
i ·H

(1)
j | i, j ∈ [m1]] + spanZp [H(2)

1 , . . . , H(2)
m2 , S1, . . . , Sn, C1, . . . , Cn].

Lemma 1. For i ∈ [q], the advantage of Athen at distinguishing Gi−1 and Gi is bounded
by 2

p
+ µMQ+. I.e., |Pr[GAthen

i−1 (1λ) = 1]− Pr[GAthen
i (1λ) = 1]| ≤ 2

p
+ µMQ+.

Proof. Let f1, . . . , fq be the group queries made by Athen. Gi−1 and Gi only differ in how
they handle the i-th query fi. We can distinguish three cases:

1. If fi(h1(s), h2(s), x, s, c) ̸= 0, then R(fi) will reply with 0 in both games.

2. If fi(h1(s), h2(s), X, s, c) ∈ spanZp [G0(X) − s, G1(X) − w], then R(fi) will reply
with 1 in both games.

3. If fi(h1(s), h2(s), x, s, c) = 0 and fi(h1(s), h2(s), X, s, c) /∈ spanZp [G0(X)−s, G1(X)−
w], then R(fi) will reply with 1 in Gi−1, but with 0 in Gi.

It follows thatAthen’s advantage at distinguishing Gi−1 and Gi is bounded by the probability
of the last case occurring. Let us call this probability α.

To reduce the MQ+-problem to the problem of distinguishing Gi−1 and Gi, we consider
the following reduction: R receives (G0, G1, G0(x), G1(x)) from an MQ+-challenger Ch.
It sets s = G0(x), w = G1(x) and simulates Gi−1 for Athen by sampling (c, h0, h1, h2)←
Samp(1λ), b← {0, 1}, and computing c(s), h0(s), h1(s), h2(s). Note that R can evaluate
the first i− 1 calls of the R-oracle, since R is able to decide if

fj(h1(s), h2(s), X, s, c) ∈ spanZp [G0(X)− s, G1(X)−w]

for j < i. Once Athen calls R for the i-th time with fi, R stops the simulation and sends

f ′(X) := fi(h1(s), h2(s), X, s, c)

to ChMQ+. With probability α, f ′ is a correct MQ+-solution, as we have

f ′(x) = 0, but f ′(X) /∈ spanZp [G0(X)−G0(x), G1(X)−G1(x)].

Hence, we have |Pr[GAthen
i−1 (1λ) = 1]− Pr[GAthen

i (1λ) = 1]| ≤ α ≤ µMQ+ + 2
p
.
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Game GAthen
i (1λ), i ∈ {0, . . . , q + 2}, with adversary Athen:

01 Initialize generic groups G1 = ⟨g1⟩, G2 = ⟨g2⟩
02 Set j = 0
03 Sample b←$ {0, 1}
04 Sample (c, h0, h1, h2)← Samp(1λ, p, n)
05 Sample x←$ Zn

p , G0, G1 ←$ Qp,n

06 If i ≤ q, set s = G0(x) and w = G1(x)
07 If i ≥ q + 1, sample s, w ←$ Zn

p

08 If b = 1, sample c←$ Zn
p ; else, set c = c(s)

09 Run b′ ← AR
then(c, h0, h1, h2, G0, G1, h0(s), gH(1)

1 , gH(2)
2 , gS

2 , gX
1 , w, gC

2 )
10 Return 1, if b = b′; else, return 0

Group Query Subroutine R(f ∈ Zp[H(1), H(2), X, S, C]):

01 Increase j = j + 1
02 If f is not admissible or j > q, return ⊥
03 If j > i ≤ q + 1, do the following:
04 If f(h1(s), h2(s), x, s, c) = 0, return 1; else, return 0;
05 If j ≤ i ≤ q + 1, do the following:
06 If f(h1(s), h2(s), X, s, c) ∈ spanZp [G0(X)− s, G1(X)−w], return 1
07 Else, return 0
08 If i = q + 2, do the following:
09 Compute f ′ ∈ B s.t. f − f ′ ∈ spanZp [G0(X)− S, G1(X)−w]
10 If such an f ′ does not exist, return 0
11 Draw x′ ←$ Zn

p

12 If f ′(h1(s), h2(s), x′, s, c) = 0, return 1; else, return 0

Figure 4: Hybrid Games for the proof of Thm. 5. Lines whose execution depends on the
index i of the current hybrid have a gray background.

Lemma 2. The advantage of Athen at distinguishing Gq and Gq+1 is bounded by µMQ. I.e.,
|Pr[GAthen

q (1λ) = 1]− Pr[GAthen
q+1 (1λ) = 1]| ≤ µMQ.

Proof. LetR be a reduction that receives (G0, G1)←$ Q and (s, w) from an MQ-challenger
Ch. R simulates the games Gq and Gq+1 for Athen by computing h0(s), h1(s), h2(s), c(s),
sampling b ←$ {0, 1} and setting c to either c(s) or sampling it uniformly at ran-
dom. Note that R can answer each group query made by A to R, as it can check if
f(h1(s), h2(s), X, s, c) ∈ spanZp [G0(X)− s, G1(X)−w].

Now, if the vector (s, w) that R received from Ch equals (G0(x), G1(x)) for some
x ←$ Zn

p , then R simulates the game Gq for Athen. On the other hand, if (s, w) ←$ Zn
p

has been sampled uniformly at random, then R simulates the game Gq+1 for Athen. Hence,
R can use the difference in Athen’s win-probability to decide its decisional MQ-problem.
Hence, we have |Pr[GAthen

q (1λ) = 1]− Pr[GAthen
q+1 (1λ) = 1]| ≤ µMQ.
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Lemma 3. Let n ≥ 3. Over the randomness of (G0, G1)←$ Q, we have

Pr[∃s, w ∈ Zn
p ,∃f ∈ spanZp [G0(X)− s, G1(X)−w] | f ̸= 0, deg f ≤ 1] ≤ 2n

p
.

Proof. Let s, w ∈ Zn
p be arbitrary and let g1, . . . , g2n ∈ Zp[X]≤2 be the polynomials

computing (G0(X)− s, G1(X)−w). Denote by g⊤1 , . . . , g⊤2n ∈ Zp[X]2 their top terms, i.e.,
g⊤i is the homogeneous degree-2 part of gi. Note that g⊤1 , . . . , g⊤2n are independent of s
and w. The space spanZp [G0(X)− s, G1(X)−w] can only contain a degree-1 polynomial
if the top parts cancel out, i.e., if there is some α ∈ Z2n

p , α ̸= 0, s.t.

α1 · g⊤1 (X) + · · ·+ α2n · g⊤2n(X) = 0.

Since G0, G1 are uniformly at random sampled from Q, their top terms g⊤1 , . . . , g⊤2n are
distributed uniformly at random in Zp[X]2. The vector space dimension of Zp[X]2 is
given by dimZp(Zp[X]2) =

(
n+1

2

)
. Since

(
n+1

2

)
≥ 2n, by a Schwartz-Zippel argument, the

probability that g⊤1 , . . . , g⊤2n are linearly dependent is bounded by 2n/p.

Lemma 4. The advantage of Athen at distinguishing Gq+1 and Gq+2 is bounded by (2n+q)/p.
I.e., |Pr[GAthen

q+1 (1λ) = 1]− Pr[GAthen
q+2 (1λ) = 1]| ≤ (2n + q)/p.

Proof. Gq+1 and Gq+2 only differ in how they handle group queries. We show that this
difference is statistically negligible.

Because of Lem. 3, with probability ≥ 1 − 2n/p, the function (G0, G1) ←$ Q2 is
sampled such that spanZp [G0(X)− s, G1(X)−w] contains no polynomials that are linear
in the X-variables (for all s, w ∈ Zn

p ). In this case, we claim that the statistical distance
between the outputs of R in both games are bounded by 1/p.

Let f ∈ A. First, assume f /∈ B + spanZp [G0(X) − S, G1(X) − w]. In this case, R
outputs 0 in Gq+2 We claim that R in Gq+1 must also output 0, as f(h1(s), h2(s), X, s, c) /∈
spanZp [G0(X) − s, G1(X) − w]. Indeed, modulo B we can eliminate all monomials of
f that are not of shape Xj · Xk, j, k ∈ [n], and deduce f /∈ spanZp [G0(X), G1(X)] +
B. Now, if f(h1(s), h2(s), X, s, c) ∈ spanZp [G0(X) − s, G1(X) − w], we could again
eliminate all monomials that are not Xj ·Xk, and extract the contradicting statement
f ∈ spanZp [G0(X), G1(X)] + B. Hence, R must also output 0 in Gq+1.

Now, let f ′ ∈ B s.t. f − f ′ ∈ spanZp [G0(X) − S, G1(X) − w]. Because of Lem. 3,
spanZp [G0(X)− s, G1(X)−w] does not contain degree-1 polynomials. Hence, the degree-
2 polynomial f(h1(s), h2(s), X, s, c) can only lie in spanZp [G0(X) − s, G1(X) − w] if
the degree-1 polynomial f ′(h1(s), h2(s), X, s, c) is zero. By a Schwartz-Zippel argu-
ment, we have f ′(h1(s), h2(s), X, s, c) = 0 if f ′(h1(s), h2(s), x′, s, c) = 0 for x′ ←$ Zn

p ,
except with probability 1/p. Since the output of R in Gq+1 and Gq+2 depends on
f(h1(s), h2(s), X, s, c) ∈ spanZp [G0(X)− s, G1(X)−w] and f ′(h1(s), h2(s), x′, s, c) = 0,
respectively, the statistical distance in its output behavior is bounded by 1/p.

Proof of Thm. 5. Let Athen be an adversary on the then-challenge of Ass. 1 with time
complexity t and advantage µ + q

(
µMQ+ + 2

p

)
+ µMQ + 2n+q

p
. Because of Lems. 1, 2 and 4,

Athen’s advantage at winning Gq+2 is at least µ.
Let Ch be a challenger for the if-challenge of Ass. 1. We give a reduction R that gets

challenged by Ch and simulates the then-game for Athen. Let A1 = ⟨a1⟩, A2 = ⟨a2⟩ be the
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p-order groups used by Ch. At the start of the if-game, Ch samples s←$ Zn
p , b←$ {0, 1}

and (h0, h1, h2, c)← Samp(1λ). If b = 0, it sets c = c(s), otherwise, it samples c←$ Zn
p .

It initializes R by sending c, h0, h1, h2, h0(s), ah1(s)
1 , ah2(s)

2 , as
2, ac

2 to it.
As R cannot control A1,A2, it has to set up its own generic groups G1 = ⟨g1⟩,

G2 = ⟨g2⟩. R samples G0, G1 ←$ Q, w ←$ Zn
p and sends c, h0, h1, h2, G0, G1, h0(s),

gH(1)
1 , gH(2)

2 , gS
2 , gX

1 , w, gc
2 to Athen, while simulating the game Gq+2 to Athen.

WheneverAthen makes an admissible group query f ∈ A,R computes the output of R(f)
as follows: R computes the polynomial f ′ ∈ B s.t. f−f ′ ∈ spanZp [G0(X)−S, G1(X)−w]
(if such an f ′ does not exist, R returns 0), samples x′ ←$ Zn

p and checks the equality
f ′(h1(s), h2(s), x′, s, c) = 0 by verifying

af ′(h1(s),h2(s),x′,s,c)
2 = a0

2.

R can indeed verify the above equality of group elements as it is given the group elements
ah1(s)

1 , ah2(s)
2 , as

2, ac
2 by Ch and knows x′ in plain.

Finally, note that, for each group query made by Athen, R makes exactly one group
query to Ch. Hence, R makes at most q group queries in total.
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A Cryptanalysis
We discuss here cryptanalysis on the assumptions on which we base the security of our
construction in § 3.

A.1 Cryptanalysis of Recursive and Evasive Assumptions
As already pointed out, our recursive DDH assumption shares a similar structure with
lattice-based evasive assumptions [VWW22, Tsa22, Wee22]. This structure basically
consists of two challenges, an if- and a then-challenge, and postulating the hardness of the
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then-challenge conditioned on the if-challenge being hard. Additionally, both assumptions
postulate their claims for arbitrary PPT sampling algorithms Samp. Recently, evasive
lattice-based [VWW22, Tsa22, Wee22] assumptions have aroused a lot of suspicion as
counterexamples for evasive Learning with Errors [BÜW24, HHY25, HJL25, AMYY25,
DJM+25] have been published.

We want to point out that none of the ideas underlying counterexamples against
evasive Learning With Errors (LWE) are applicable to our recursive DDH assumption:

• First, note that all attacks on evasive LWE work, basically, by hiding low-rank
matrices with some low-norm noise. These kinds of techniques are not applicable to
our assumption, as recursive DDH does not introduce matrices or noise.

• Also, we want to point out again that we proved the soundness of recursive DDH in
the generic group model under MQ and MQ+, while evasive LWE does not enjoy
proofs in idealized models under contained falsifiable assumptions. A successful
attack on recursive DDH would, hence, imply either an attack on MQ or MQ+, or
make non-generic use of the underlying groups.

A.2 Cryptanalysis of MQ
The hardness of the MQ problem is notorious in cryptography. It underlies the security of
post-quantum NIZK protocols [DJJ24] and digital signature schemes [WCD+24, BCD+24,
AFI+24, BCC+24, BBFR24]. It is known that its search version can be reduced to the
decisional version if the underlying modulus is polynomial [Üna23b, Üna23a]. In summary,
to break the decisional MQ problem algebraically, its homogenized version needs to have
a low12 degree of regularity [BFS03, Bar04, FBS04]. To estimate the degree of regularity,
one assumes that the system is semi-regular [Frö85, Par10].13 In this case, its Hilbert-series
is given by (1−T 2)2n

(1−T )n+1 . Since the degree of regularity of this series is linear [BFS03], any
algebraic attack on MQ has a time complexity in 2Ω(n). (For non-semi-regular sequences,
the degree of regularity may be very low, or infinite.)

A.3 Cryptanalysis of MQ+
Let A be some adversary for the MQ+ assumption over some prime modulus p. Recall
that we defined A’s advantage as follows:

AdvAMQ+,p,n := Pr
[
h ∈ Zp[X1, . . . , Xn]≤2, h(x) = 0,

h /∈ spanZp [G0(X)−G0(x), G1(X)−G1(x)]

]
− 2

p
.

where G0, G1 ←$ Q, x ←$ Zn
p , h ← A((G0, G1), (G0(x), G1(x))). We will first discuss

some simple adversaries for MQ+ that basically guess intelligently and achieve a success
12Concretely, the time complexity of most algebraic algorithms for solving MQ is exponential in the

degree of regularity [Sal23]. So, the degree of regularity would need to be constant for poly-time attacks,
and sublinear for subexponential-time attacks.

13A sequence f1, . . . , fm of quadratic homogeneous polynomials is called semi-regular if the spaces
spanZp

[
Xi1 · · ·Xid−2 · fj |i1, . . . , id ∈ [n], j ∈ [m]

]
admit as few linear dependencies as possible (where d

goes from 2 until the degree of regularity).
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probability of almost 2/p. For this reason we subtract 2/p from the adversary’s success
probability, note that whenever the modulus is superpolynomial this term is negligible.
Afterwards, we will discuss algebraic attacks on MQ+, and, finally, we will give a heuristic
reduction on it, assuming that we have an LPN oracle over Zp.

A.3.1 On Guessing Solvers.

For prime modulus p > 2, a straightforward attack on MQ+ is given by choosing i, j ∈ [n],
i ̸= j, s.t. the monomial Xi ·Xj does not lie in spanZp [G0(X)−G0(x), G1(X)−G1(x)]
and simply outputting h(X) = XiXj as solution. Indeed, the probability h vanishing on
x← Zn

p is exactly 2
p
− 1

p2 .14 However, since we subtract the trivial amount of 2/p from the
success probability of each adversary, this approach does not yield a positive advantage.

On the other hand, the Schwartz-Zippel lemma guarantees that the success probability
of any adversary that only considers the input (G0, G1) and ignores (G0(x), G1(x)) while
computing h ∈ Zp[X] will have a success probability of at most 2/p, amounting again to
a non-positive advantage. (This is, since h is independent of x in that case, and hence
we have Prx←$Zn

p
[h(x) = 0] ≤ 2/p.) We can deduce from this that any meaningful solver

really needs to take advantage from G = (G0, G1) and G(x) = (G0(x), G1(x)).15

Now, if p is a composite modulus, it is feasible to get an advantage significantly higher
than 2/p. For example, if p = q · q′ is the product of two numbers q and q′, an adversary
can simply output h(X) = q′ · Xi · Xj as solution (where it chooses i ̸= j such that
q′ ·Xi ·Xj does not lie in spanZp [G(X)−G(x)]). This polynomial will vanish on x←$ Zn

p

with probability 2
q
− 1

q2 , which is larger than 2
p

by a factor of almost q′. This is the reason
why we state the MQ+ assumption only for prime modulus p.

A.3.2 On Algebraic Solvers.

To bound the time complexity of algebraic algorithms for breaking MQ+, we assume again
that 2n uniformly random quadratic polynomials (g1, . . . , g2n) = (G0, G1)←$ Q form a
semi-regular sequence with overwhelming probability.16 Now, for an algebraic algorithm
to deduce a new degree-2 equation h from the system of equations (g1, . . . , g2n), it would
need to find at least one so-called non-trivial syzygy [DG10, CG21]. However, semi-regular
sequences do not admit non-trivial syzygies until the degree of regularity.17 This means,
any algebraic algorithm on MQ+ will need to search until the degree of regularity, before it
can find a solution for the MQ+ problem. Under semi-regularity, the degree of regularity
for g1, . . . , g2n grows linearly in n, hence implying an exponential time complexity for
algorithms based on Macaulay matrices and S-polynomials [CKPS00, Fau02, MDB08]

14Another approach could be to choose i ∈ [n] such that hi(X) = Xi · (Xi − 1) does not lie in
spanZp [G0(X) − G0(x), G1(X) − G1(x)]. In that case, hi would vanish with probability exactly 2/p
on x ←$ Zn

p . However, with negligible probability it may happen that all h1, . . . , hn are contained in
spanZp [G0(X)−G0(x), G1(X)−G1(x)].

15Indeed, if we go back to the solver that outputs some h(X) = XiXj as solution, note that this
adversary does not need to take G(x) into account. In fact, it suffices for it to know G to find i, j ∈ [n]
s.t. XiXj /∈ spanZp [G(X)−G(x)].

16We note that assuming semi-regularity of uniformly random polynomials is a wide-spread heuristic in
algebraic cryptanalysis.

17In other words, the degree of regularity lower bounds the so-called first-fall degree.
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A.3.3 A Heuristic Reduction.

We will close the cryptanalytic discussion on MQ+ by a heuristic reduction argument.
While we cannot formally prove the correctness of our reduction, it conveys our intuition
that the hardness of MQ+ is comparable to the hardness of the well-studied MQ problem.
Our basic idea is to reduce MQ to MQ+. I.e., given a solving algorithm for MQ+, we aim
to solve MQ. However, our MQ+-solver does not need to be perfect. Indeed, its success
probability might only be by some non-negligible function µ better than 2/p. Hence, we
might receive a lot of incorrect solutions from MQ+. To deal with this, we aim to reduce
MQ to MQ+ and LPN, the Learning Parity with Noise problem, over Zp. This is of course
a weaker reduction argument (as LPN might simply be harder than MQ), however, it
would still surprise us if MQ+ would be easy and MQ directly reducible to LPN (as LPN
does on its own not involve any polynomials or higher-degree algebra).

First, let us formally introduce the LPN problem over Zp:

Definition 11 (Learning Parity with Noise). Let m ∈ poly(k) and let Bτ be the Bernoulli
distribution that outputs 0 with probability 1 − τ and a random element of Zp with
probability τ .

The LPN problem consists of extracting s from (A, As + e) where we sample s←$ Zk
p,

A←$ Zm×k
p and e←$ Bm

τ .

Remark 2. We note that LPN over Zp with error-rate τ is indeed information-theoretically
solvable if τ is by a noticeable amount smaller than 1− 1/p and m ∈ poly(k) large enough.

To see this, we can consider an algorithm that receives m samples (A, As + e) ∈
Zm×(k+1)

p of LPN and divides them in two sets: (A1, A1s+e1) ∈ Zm1×(k+1)
p and (A2, A2s+

e2) ∈ Zm2×(k+1)
p . It uses the first set (A1, A1s+e1) to compute a list of candidate solutions

s1, . . . , sL for (A, As + e). Then, it uses (A2, A2s + e2) to filter the list of candidate
solutions. The correct solution s is expected to satisfy (1− τ) ·m2 linear equations of A2.
However, for a wrong candidate si, A2(s− si) + e2 will be uniformly random, resulting in
expectedly m2/p equations of A2 satisfied. Since 1− τ is noticably smaller than 1/p, we
can set m2 ∈ poly(k) s.t. the correct solution s will not get filtered out with overwhelming
probability, while each incorrect solution will get filtered with probability at least 1/2.

Hence, after filtering the list of solutions once, the expected number of incorrect solutions
should be at least halved. By sampling more fresh LPN-samples (A3, A3s + e3), (A4, A4s +
e4), . . ., we can repeat the filtering step polynomially many times. By Markov’s bound, this
suffices to reduce the number of incorrect solutions to zero with overwhelming probability.

Hence, for a computationally unbounded algorithm it is possible to solve LPN over Zp,
even if the error-rate τ is only by a non-negligible amount smaller than 1− 1/p.

Now, let us sketch the reduction of MQ to MQ+ and LPN over Zp (all problems
considered in the average-case). We assume that we have a solver for MQ+ with success
probability 2

p
+ α for a noticeable α. Additionally, we make the heuristic assumption that

the polynomials outputted by MQ+ are random and statistically independent of each
other.18 We assume further, that we have an LPN-oracle that can solve LPN instances

18Essentially, we assume that our MQ+-solver outputs a uniformly random degree-2 polynomial h(X)
with probability 1− 2

p − α (i.e. whenever it errs), and a uniformly random degree-2 polynomial h′(X)
conditioned on h′(x) = 0 with probability 2

p + α (i.e. whenever it computes a correct solution).
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with code-dimension k =
(

n+2
2

)
− 1 and error-rate τ = 1− 2

p
− α for some m ∈ poly(n)

large enough.
Given an MQ-instance (G0, G1) and (G0(x), G1(x)), our idea is to query the MQ+-

oracle on it multiple times and obtain many polynomials h1, . . . , hm ∈ Zp[X]≤2. Each
hi vanishes on x with probability 2

p
+ α. Denote by s ∈ Zk

p the vector that contains all
entries and all quadratic products of entries of x ∈ Zn

p . We can parse the noisy quadratic
system h1(x) = · · · = hm(x) = 0 as a noisy linear equation system As = b, where the
i-th row of A contains all coefficients of hi, except the constant term, and the i-th element
of b equals −hi(0). The error-rate of As = b is exactly 1− 2

p
− α. Since all coefficients of

each hi are uniformly random and independent (except the constant term), the matrix A
is uniformly random too. If we consider the linear system As + e = b (now with explicit
error-vector e← Bm

1− 2
p
−α

), we see that the secret vector s does not need to be uniformly
random. However, it is possible to rerandomize s, by sampling s′ ←$ Zk

p and considering
A(s + s′) + e = b + As′. (A, b + As′) is now a proper LPN-instance. If we give it to our
LPN-oracle, it will reply with s + s′, from which we can subtract s′ to get s. From s, we
can deduce all coordinates of x, which is the solution of our MQ problem.

Of course, this reduction is very heuristic, as we assume that our MQ+-solver outputs
random and statistically independent solutions to our queries. Additionally, it might
simply be possible that LPN in this parameter regime is so hard that one can directly
reduce MQ to it (without making use of an MQ+-solver). However, this would still surprise
us, as there is no obvious reduction of average-case MQ to average-case LPN known.

B On Fast Verification
We will explain here how we can significantly decrease the verification time of the CVRF
in § 3 while maintaining security. Currently, Verify needs to evaluate 2n+ℓn

(
n+2

2

)
pairings.

After optimizations, it will only need to evaluate (ℓ + 1)(n + 1) pairings. If we set
n = ℓ = 256, this amounts to 66049 pairings (which would take 1 minute and 6 seconds
evaluate, assuming each pairing takes 1 millisecond).

We achieve this by relaxing the unique provability requirement of Def. 5 and allowing
for a negligibly small statistical error at verification. This does not go against the spirit
of unique provability, as the event of Verify accepting a wrong output image will depend
solely on the random coins of Verify and is independent of its inputs. Simply put, we
randomize Verify such that it checks one random linear combination of quadratic equations
per proof step instead of checking n different equations.

Concretely, we will call these relaxed notions statistical unique provability and statistical
functionality binding. They are given by the following:

Definition 12 (Relaxed Unique Provability and Functionality Binding). Let CVRF′ =
(Setup, Constrain, Eval, Verify′, VerifyC′) be a tuple of probabilistic algorithms with public
parameter space P = P(λ), input domain X = X (λ), output codomain Y = Y(λ), and
set of constraints C = C(λ) ⊆ 2X where ∅ ∈ C. We say that CVRF′ is a relaxed CVRF if it
fulfills d-delegability and (t, q, µ)-Selective Pseudorandomness of Def. 5. Additionally, it
has to satisfy:

γ-Statistical Unique Provability: Let γ ∈ negl(λ). For all (even malformed) public
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parameters pp, verification keys vk, and proofs π, π′ as well as all inputs x ∈ X and
outputs y, y′ ∈ Y , it holds that

y ̸= y′ =⇒ Pr[Verify′pp(vk, x, y, π) = Verify′pp(vk, x, y′, π′) = ACCEPT] ≤ γ

where the probability is taken over the randomness of Verify′.

γ-Statistical Functionality Binding : Let γ ∈ negl(λ). For all (even malformed)
public parameters pp, verification keys vk, constraints C ∈ C, and proofs πC , π′C as
well as constrained keys skC , sk′C , it holds that

skC ̸= sk′C =⇒ Pr[VerifyC′pp(vk, C, skC , πC) = VerifyC′pp(vk, C, sk′C , π′C) = ACCEPT] ≤ γ

where the probability is taken over the randomness of VerifyC′.19

The new relaxed CVRF CVRF′ is almost identical with the one given in § 3. The only
modified algorithm is HelperVerify and, subsequently, the verification algorithms Verify
and VerifyC. Denote by Zp[X]≤1 and Zp[X]≤2 the space of all polynomials over X1, . . . , Xn

of degree ≤ 1 and ≤ 2, respectively. Further, Q denotes the space of quadratic maps
G : Zn

p → Zn
p . We detail the new verification algorithms in Fig. 10. To subdivide the anal-

ysis of HelperVerify, we introduced three new subroutines VerifyInit, VerifyStep, VerifyFinal,
presented in Fig. 6.

HelperVerify′pp(vk ∈ Gn
2 , x ∈ {0, 1}ℓ′

, πx ∈ (Gn
1 )ℓ′

, π̃(ℓ′) ∈ Gn
1 ):

01 Parse πx = (π̃(i))ℓ′−1
i=0 and pp = ((G(i)

0 , G
(i)
1 ))ℓ

i=1
02 If VerifyInitpp(vk, π(0)) = REJECT, output REJECT
03 For 1 ≤ i ≤ ℓ′:
04 If VerifySteppp(G(i)

xi
, π(i−1), π(i)) = REJECT, output REJECT

05 Output ACCEPT

CVRF. VerifyC′pp(vk ∈ Gn
2 , x ∈ {0, 1}ℓ′

, skx ∈ Zn
p , πx ∈ (Gn

1 )ℓ′):

01 If ℓ′ ≥ ℓ, output REJECT
02 Output HelperVerify′pp(vk, x, πx, gskx

1 )

CVRF. Verify′pp(vk ∈ Gn
2 , x ∈ {0, 1}ℓ, y ∈ Gn

2 , π = (πx ∈ (Gn
1 )ℓ, π̃(ℓ) ∈ Gn

1 )):

01 If HelperVerify′pp(vk, x, πx, π̃(ℓ)) = REJECT, output REJECT
02 Output VerifyFinal(π̃(ℓ), y)

Figure 5: Pseudocode of the new verification algorithms for CVRF′. All other algorithms
of CVRF′ are given in Fig. 2.

We will now prove formally that CVRF′ is a relaxed CVRF:
19Note that we simplified the definition of statistical functionality binding in comparison to the more

general definition of Def. 5. This notion is stricter, as it requires the equality of constrained keys, while
the notion of Def. 5 only required them to be functionally equivalent. We did this purely to simplify the
following arguments.
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VerifyInit(vk ∈ Gn
2 , π̃ ∈ Gn

1 ):

01 Parse (ga1
2 , . . . , gan

2 ) = vk
02 Parse (gb1

1 , . . . , gbn
1 ) = π̃

03 Draw α1, . . . , αn ←$ Zp

04 Compute u2 = ∏n
i=1 (gai

2 )αi ∈ G2

05 Compute w1 = ∏n
i=1

(
gbi

1

)αi ∈ G1

06 If e(w1, g1) = u2, output ACCEPT
07 Otherwise, output REJECT

VerifyStep(G ∈ Q, π̃ ∈ Gn
1 , π̃′ ∈ Gn

1 ):

01 If G is not a degree-2 map, output REJECT
02 Parse (ga1

1 , . . . , gan
1 ) = π̃

03 Parse (gb1
1 , . . . , gbn

1 ) = π̃′

04 Parse (g1, . . . , gn) = G
05 Draw α1, . . . , αn ←$ Zp

06 Compute v1 = ∏n
i=1

(
gbi

1

)αi

07 Compute h(X) := α1 · g1(X) + · · ·+ αn · gn(X) ∈ Zp[X]≤2

08 Compute linear forms l0, · · · , ln ∈ Zp[X]≤1 s.t. h(X) = X1 · l1(X) + · · ·+ Xn · ln(X) +
l0(X)

09 For 0 ≤ i ≤ n:
10 Parse li(X) = β1 ·X1 + · · ·+ βn ·Xn + β0 with β0, . . . , βn ∈ Zp

11 Compute u(i)
1 = gβ0

1 ·
∏n

i=1 (gai
1 )βi

12 For 1 ≤ i ≤ n:
13 Compute w(i)

2 = e(u(i)
1 , gai

1 )
14 Compute w(0)

2 = e(u(0)
1 · v−1

1 , g1)
15 If ∏n

i=0 w(i)
2 = g0

2, output ACCEPT
16 Otherwise, output REJECT

VerifyFinal(π̃ ∈ Gn
1 , y ∈ Gn

2 ):

01 Parse (ga1
1 , . . . , gan

1 ) = π̃
02 Parse (gb1

2 , . . . , gbn
2 ) = y

03 For 1 ≤ i ≤ n:
04 If gbi

2 ̸= e(gai
1 , gai

1 ), output REJECT
05 Output ACCEPT

Figure 6: Pseudocode of additional auxiliary algorithms for HelperVerify.

Theorem 6. Let γ = ℓ+1
p

. Then, CVRF′ = (Setup, Constrain, Eval, Verify′, VerifyC′) is a
relaxed CVRF in the sense of Def. 12 and fulfills γ-statistical unique provability and
γ-statistical functionality binding.

The time complexity of Verify′ is dominated by evaluating (n + 1)(ℓ + 1) pairings.

Proof. Note that delegability, constraint-hiding and pseudorandomness for CVRF′ =
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(Setup, Constrain, Eval, Verify′, VerifyC′) with the modified verification algorithms follow
from Thms. 3 and 4, as those properties are independent of Verify and VerifyC.

We will prove here that CVRF′ is γ-statistical unique provable. (The proof for γ-
statistical functionality binding works analogously.) For this end, let vk = gs

2 for some
s ∈ Zn

p . Let G(i) = (G(i)
0 , G

(i)
1 ) ∈ Q2 for i ∈ [ℓ]. Let π̃(i) ∈ Gn

1 for i ∈ [0, ℓ]. Finally, let
x ∈ {0, 1}ℓ and y ∈ Gn

2 . We have to prove that Verify′pp rejects (vk, x, y, (π̃(i))ℓ
i=0)) with

probability at least 1− γ whenever y ̸= gGx(s)2

2 .
For this end, it suffices to analyze VerifyInit, VerifyStep and VerifyFinal:

1. On input vk = ga
2 and π̃ = gb

1, VerifyInit draws a uniformly random vector α←$ Zn
p

and computes the inner products ⟨a, α⟩ and ⟨b, α⟩ in the exponents of u2 and w1. It
uses one pairing to verify that we have

⟨a, α⟩ = ⟨b, α⟩.

If a = b, then the above equality will always hold. On the other hand, if a ̸= b, then,
by a Schwartz-Zippel argument, the above equality will not hold with probability
1− 1/p.
Hence, VerifyInit will reject inputs vk, π̃ with different exponents (with respect to g2
and g1) with overwhelming probability 1− 1/p.

2. On input G ∈ Q, π̃ = ga
1 and π̃′ = gb

1, we claim that VerifyStep always accepts if
b = G(a). On the other hand, it rejects with probability 1− 1/p if b ̸= G(a).
At start, VerifyStep samples α1, . . . , αn ←$ Zn

p and sets

h(X) := α1 · g1(X) + · · ·+ αn · gn(X).

Additionally, it computes ⟨α, b⟩ in the exponent of v1 = g⟨α,b⟩
1 . As next step, it

computes linear forms l0, . . . , ln ∈ Zp[X]≤1 such that

h(X) = X1 · l1(X) + · · ·+ Xn · ln(X) + l0(X).

Note that there is no unique choice for such linear forms, however, if h(X) =∑
1≤i≤j≤n ci,jXiXj +∑n

i=1 diXi + d0, a straightforward approach is given by

l1(X) =
n∑

i=1
c1,iXi,

l2(X) =
n∑

i=2
c2,iXi,

...
ln(X) = cn,nXn,

l0(X) =
n∑

i=1
diXi + d0.
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Whatever choices for l0, . . . , ln are made by VerifyStep, in the next step it computes
the values li(a) in the exponents of ui = gli(a)

1 , for i ∈ [0, n]. As next step, it uses n
pairings to compute

w(i)
2 = e(u(i)

1 , gai
1 ) = gai·li(a)

2

for i ∈ [n]. Finally, it uses one more pairing to set

w(0)
2 = e(u(0)

1 · v−1
1 , g1) = gl0(a)−⟨α,b⟩

2 .

VerifyStep accepts if ∏n
i=0 w(i)

2 is the neutral element of the group. This is the case iff(
n∑

i=1
ai · li(a)

)
+ l0(a)− ⟨α, b⟩ = 0

⇐⇒ l0(a) + a1 · l1(a) + · · ·+ an · ln(a) = ⟨α, b⟩
⇐⇒ h(a) = ⟨α, b⟩
⇐⇒ ⟨α, G(a)⟩ = ⟨α, b⟩.

If G(a) = b, then the above inequality will always hold. On the other hand, if
G(a) ̸= b, then the equality ⟨α, G(a)⟩ = ⟨α, b⟩ will only hold with probability 1/p
over the randomness of α.

3. On input π̃ = ga
1 and y = gb

2, VerifyFinal uses n pairings to verify that each coordinate
of b is the square of the corresponding coordinate of a. VerifyFinal accepts if and
only if b = a2.

In total, VerifyInit and VerifyStep incur a statistical error of 1/p per execution, while
VerifyFinal is perfectly correct. As Verify′ induces ℓ calls to VerifyStep and one call to
VerifyInit, by a union bound its statistical error is bounded by γ = ℓ+1

p
. Hence, CVRF′ is

γ-statistical unique provable.
Further, the number of pairings executed of Verify′ is given by the number of parings

used by VerifyInit, VerifyFinal and ℓ times the number of pairings used by VerifyStep. Hence,
Verify′ needs 1 + n + ℓ · (n + 1) = (ℓ + 1)(n + 1) pairings.

C Constrained VRFs from Generic Assumptions
In this section, we extend the generic approach for VRFs based on non-interactive witness-
indistinguishability proofs (NIWI) [GHKW17, Bit20] to constrained VRFs. We stress
that this construction has two major disadvantages in comparison to our pairing-based
construction of § 3: first, it is not constraint-hiding in the sense of Def. 6. Hence, its
security in the selective pseudorandomness game does not model the capabilities of a
passive adversary in full complexity as explained in Remark 1. Second, it is not practical
mainly due to the large size of the involved NIWI proofs.

First, we recall the original20 construction of [GHKW17, Bit20]. We present a version
that is only selectively secure (omitting the partitioning scheme for adaptive security).

20To keep the paper concise, we use the notions of commitment schemes, non-interactive witness-
indistinguishable proofs and (normal) verifiable random functions without formal introduction. For
definitions, we refer to, e.g., [Bit20].
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Construction 1 (NIWI-Based VRF [GHKW17, Bit20]). Let COM be a non-interactive
commitment scheme. Let NIWI be a NIWI. Let PPRF be a puncturable PRF21. We present
the VRF VRF of [GHKW17, Bit20] in Fig. 7 using the statement

stmtvk,x,y :=


∃i ̸= j ∈ {1, 2, 3}, k̃i, k̃j, r̃i, r̃j :

y = PPRF. Eval(k̃i; x) = PPRF. Eval(k̃j; x)
∧ ci = COM.Com(k̃i; r̃i) ∧ cj = COM.Com(k̃j; r̃j)

 . (2)

VRF. Setup(1λ):

01 k ← PPRF.Gen(1λ)
02 r1, r2, r3 ← {0, 1}λ

03 c1 := COM.Com(k; r1)
04 c2 := COM.Com(k; r2)
05 c3 := COM.Com(k; r3)
06 vk := (c1, c2, c3)
07 sk := (k, r2, r3, vk)
08 return (sk, vk)

VRF. Eval(sk, x):

01 (k, r2, r3, vk) := sk
02 y := PPRF. Eval(k, x)
03 w := (2, 3, k, k, r2, r3)
04 π ← NIWI.Prove(stmtvk,x,y, w)
05 return (y, π)

VRF.Verify(vk, x, y, π):

01 return NIWI.Verify(stmtvk,x,y, π)

Figure 7: NIWI-based VRF.

The trick here is that the secret key k that allows evaluation of the PPRF is committed
to three times and whenever an evaluation needs to be proven correct, it is shown that
the evaluation is consistent with at least two out of the three committed keys. Given the
perfect binding of the underlying commitment and the perfect soundness of NIWI proofs,
this implies that there can never be two distinct provable outputs for any given input, as
a majority of the committed keys need to agree with the output.

Towards security, we explain how Bitansky [Bit20] achieved pseudorandomness in the
selective security setting. Once we know the challenge point x∗, the key k is carefully
replaced by a key kx∗ , which is punctured at that point. To facilitate this, we notice that
the first commitment is not used at all in the honest NIWI witness, so we can switch c1

21By puncturable PRF, we mean a CPRF which only needs to support the set of constraints C =
{{x}|x ∈ X}. I.e., it punctures out single points.
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to a commitment to kx∗ due to the hiding property of the commitment scheme. Then,
step-by-step, we apply witness indistinguishability of the NIWIs to switch all witnesses to
the commitments c1, c2 instead of c2, c3. This works because we evaluate only on points
that are not x∗, so the evaluation is still consistent with the punctured key committed to
by c1. Similarly, we repeat this until all commitments have been swapped to the key kx∗ .
From there, if the adversary could distinguish PPRF. Eval(k, x) from random, it can break
the pseudorandomness game of the underlying CPRF.

Now, if we want to build a CVRF for constraint class C, we replace the puncturable
PRF PPRF by a puncturable constrained PRF CPRF, which allows puncturing out single
points, but also more expressive constraints in C. In principle, we can repeat the same
logic we applied to Eval to the constraining algorithm. However, looking, ahead there will
be some caveats. We call the root secret key k0 and its verification key vk = (c0

1, c0
2, c0

3)
consists of commitments as above. When we constrain k0 with constraint C, we invoke
constraining of the underlying CPRF to get k1 = CPRF. Constrain(k0, C) and additionally
create a new commitment triplet (c1

1, c2
1, c3

1) of k1. The triplet (c1
1, c2

1, c3
1) can be seen as a

constrained version of the public key. Then, we give a proof π that at least two of the
new commitments c1

i contain keys that are directly received by constraining at least two
of the keys included in the base commitments c0

i with constraint C in a NIWI fashion. In
this way, by the functionality preserving property of the underlying CPRF, we know that
at least two keys in the new commitment must be functionally equivalent.

The full constrained key consists of k1, the commitments c1
i , the randomness r1

2, r1
3 used

to generate two of those commitments and the proof π. The receiver of these elements
can verify that c1

2, c1
3 indeed commit to k1 and k1 is received by constraining at least two

of the keys in the original vk.
Further, the structure of the constrained key plus these proof elements is essentially of

the same shape as holding a root key and commitments with associated randomness in
the base scheme. Thus, it allows the receiver to either further constrain k1 in the same
manner or evaluate on any point which is admissible for k1 while also providing a proof in
the same way as outlined above.

For example, to show that a further constrained key k2 = CPRF. Constrain(k1, C ′) with
commitments c2

1, c2
2, c2

3 was generated correctly, one would hand out vk and the intermediate
commitments (c1

1, c1
2, c1

3), and show that two of {c1
1, c1

2, c1
3} are correctly derived with respect

to vk and constraint C and, then, show that two of {c2
1, c2

2, c2
3} are correctly derived with

respect to (c1
1, c1

2, c1
3) and constraint C ′.

It is obvious, that this simple construction is not constraint-hiding, as the history of
constraints is explicitly needed to verify the chain of proofs necessary to verify a multiply
constrained key. Moreover, this problem seems to be somewhat inherent with our general
approach of a layered proof system, as this intuitively leaks information at least about the
number of times that a key was punctured before. There are also some caveats concerning
a meaningful security definition for a CVRF that is not constraint-hiding, which will also
be discussed in Remark 3.

Let us now present the augmented construction with a constraining mechanism. To
simplify the presentation, we assume that the CPRF. Constrainpp algorithm is deterministic.
Construction 2 (NIWI-Based CVRF). Let COM be a non-interactive commitment
scheme. Let NIWI be a NIWI. Let CPRF be a puncturable constrained PRF. We present
the CVRF CVRF based on the VRF of [GHKW17, Bit20] in Figs. 8 and 9. It uses the
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statements

stmtc1,c2,c3,x,y :=


∃i ̸= j ∈ {1, 2, 3}, k̃i, k̃j, r̃i, r̃j :

y = CPRF. Eval(k̃i; x) = CPRF. Eval(k̃j; x)
∧ ci = COM.Com(k̃i; r̃i) ∧ cj = COM.Com(k̃j; r̃j)

 (3)

stmtC,c1,c2,c3,c′
1,c′

2,c′
3

:=


∃i ̸= j ∈ {1, 2, 3}, k̃i, k̃j, r̃i, r̃j, k̃′, r̃′i, r̃′j :

k̃′ = CPRF. Constrain(k̃i, C) = CPRF. Constrain(k̃j, C)
∧ ci = COM.Com(k̃i; r̃i) ∧ cj = COM.Com(k̃j; r̃j)
∧ c′i = COM.Com(k̃′; r̃′i) ∧ c′j = COM.Com(k̃′; r̃′j)

 . (4)

Now, we formally prove that Construction 2 is selectively secure, delegable, and
uniquely provable. As a minor technical detail, we need to require that the underlying
CPRF is puncture invariant:

Definition 13 (Puncture Invariance). A 2-delegable puncturable CPRF with set of
constraints C is called puncture invariant if we have for all C ∈ C and x ∈ C

Constrain(sk∅, C) = Constrain(sk{x}, C) (5)

where sk∅ ← Setup(1λ) and sk{x} ← Constrain(sk∅, {x}).

Theorem 7. Let COM be a (t, ϵCOM)-hiding non-interactive commitment scheme. Let NIWI
be a (t, ϵNIWI)-indistinguishable NIWI. Let CPRF be a puncturable, 2-delegable, puncture-
invariant, selectively (t, ϵCPRF)-pseudorandom CPRF. Then, for every q, the CVRF CVRF
in Construction 2 is selectively (t− t′, q, ϵ)-pseudorandom, where

t′ = poly(λ, q) (6)
ϵ(λ) = 6 · ϵCOM(λ) + 4 · q(λ) · ϵNIWI(λ) + ϵCPRF(λ) (7)

for some sufficiently large polynomial poly.

Proof. We prove the pseudorandomness of the CVRF CVRF via a sequence of hybrid
games. The proof essentially follows the strategy of [GHKW17, Bit20].

Game 0 (Original game with b = 0): This is the original game where the CVRF
CVRF is run as described in Construction 2 with challenge bit b = 0, i.e., (y∗, π∗) =
CVRF. Eval(sk, x∗). In particular, the adversary has to first supply the challenger with
the challenge preimage x∗. Recall that k0 ← CPRF. Setup(1λ) is the CPRF key of the
underlying CPRF.

Game 1 (Switch the first commitment to a punctured key): In this game, the
first commitment is generated as c0

1 := COM.Com(kx∗ ; r0
1) where kx∗ := CPRF. Constrain(k0, {x∗})

instead of c0
1 := COM.Com(k0; r0

1). The distinguishing advantage of the adversary between
this game and the previous is at most

|Pr[Game 1]− Pr[Game 0]| ≤ ϵCOM(λ) (8)

because the randomness r0
1 is not used in the NIWI proofs.
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CVRF. Setup(1λ):

01 k0 ← CPRF.Gen(1λ)
02 r0

1, r0
2, r0

3 ← {0, 1}λ

03 c0
1 := COM.Com(k0; r1), c0

2 := COM.Com(k0; r2), and c0
3 := COM.Com(k0; r3)

04 vk := (c0
1, c0

2, c0
3)

05 sk∅ := k0, pp := ε, and π∅ := (r0
2, r0

3, ε)
06 return (pp, sk∅, vk, π∅)

CVRF. Constrain(sk, π, C ∈ C):

01 kj := sk
02 (rj

2, rj
3, (Ci, ci

1, ci
2, ci

3, πi)i∈[j]) := π
03 kj+1 := CPRF. Constrain(kj, C)
04 rj+1

1 , rj+1
2 , rj+1

3 ← {0, 1}λ

05 cj+1
1 := COM.Com(kj+1; rj+1

1 ), cj+1
2 := COM.Com(kj+1; rj+1

2 ), and cj+1
3 :=

COM.Com(kj+1; rj+1
3 )

06 wj+1 := (2, 3, kj, kj, rj
2, rj

3, kj+1, rj+1
2 , rj+1

3 )
07 Cj+1 := C
08 πj+1 ← NIWI.Prove(stmtCj+1,cj

1,cj
2,cj

3,cj+1
1 ,cj+1

2 ,cj+1
3

, wj+1)
09 π′ := (rj+1

2 , rj+1
3 , (Ci, ci

1, ci
2, ci

3, πi)i∈[j+1])
10 sk′ := kj+1

11 return (sk′, π′)

CVRF. Eval(sk, π, x):

01 kj := sk
02 (rj

2, rj
3, (Ci, ci

1, ci
2, ci

3, πi)i∈[j]) := π
03 y := CPRF. Eval(kj, x)
04 wx := (2, 3, kj, kj, rj

2, rj
3)

05 πx ← NIWI.Prove(stmtcj
1,cj

2,cj
3,x,y, wx)

06 π′ := (πx, (Ci, ci
1, ci

2, ci
3, πi)i∈[j])

07 return (y, π′)

Figure 8: NIWI-based CVRF, evaluation algorithms.
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CVRF.Verify(vk, x, y, π):

01 (c0
1, c0

2, c0
3) := vk

02 (πx, (Ci, ci
1, ci

2, ci
3, πi)i∈[j]) := π

03 require x ̸∈ Cj

04 for all i ∈ {1, ..., j − 1}
05 require Ci ⊆ Ci+1
06 for all i ∈ {0, ..., j − 1}
07 require NIWI.Verify(stmtCi+1,ci

1,ci
2,ci

3,ci+1
1 ,ci+1

2 ,ci+1
3

, πi+1) = 1
08 return NIWI.Verify(stmtcj

1,cj
2,cj

3,x,y, πx)

CVRF. VerifyC(vk, C, sk′, π′):

01 (c0
1, c0

2, c0
3) := vk

02 kj+1 := sk′
03 (rj+1

2 , rj+1
3 , (Ci, ci

1, ci
2, ci

3, πi)i∈[j+1]) := π′

04 require cj+1
2 = COM.Com(kj+1; rj+1

2 ) ∧ cj+1
3 = COM.Com(kj+1; rj+1

3 )
05 for all i ∈ {1, ..., j − 1}
06 require Ci ⊆ Ci+1
07 for all i ∈ {0, ..., j − 1}
08 require NIWI.Verify(stmtCi+1,ci

1,ci
2,ci

3,ci+1
1 ,ci+1

2 ,ci+1
3

, πi+1) = 1
09 return Cj = C

Figure 9: NIWI-based CVRF, verification algorithms.
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Game 2.i (Switch evaluation proof witnesses for i ∈ [0, q2(λ)]): For each evaluation
in query ι < i with preimage xι, we use the witness wx := (1, 3, kx∗ , k, r0

1, r0
3) in-

stead of wx := (2, 3, k, k, r0
2, r0

3). Note that both witnesses are valid for the statement
stmtc0

1,c0
2,c0

3,x,y due to the 2-delegability of CPRF. This is analogous to the original proof
in [GHKW17, Bit20]. Consequently, the distinguishing advantage of the adversary between
this game and the previous is at most

|Pr[Game 2.i]− Pr[Game 2.(i− 1)]| ≤ ϵNIWI(λ) (9)

by the witness indistinguishability of NIWI. Overall, we find

|Pr[Game 2.0]− Pr[Game 2.q2(λ)]| ≤ q2(λ) · ϵNIWI(λ) . (10)

Moreover, Game 2.0 is the same game as Game 1.

Game 3.j (Switch constrained proof witnesses for j ∈ [0, q1(λ)]): For each constrain
query ȷ < j with constraint Cȷ, we use the witness wCȷ

:= (1, 3, kx∗ , k0, r0
1, r0

3, k1, r1
1, r1

3)
instead of wCȷ

:= (2, 3, k0, k0, r0
2, r0

3, k1, r1
1, r1

3) where k1 := CPRF. Constrain(k0, Cȷ). Note
that both witnesses are valid for the statement stmtCȷ,c0

1,c0
2,c0

3,c1
1,c1

2,c1
3
. This follows crucially

from the puncture invariance of CPRF because x∗ ∈ Cȷ =⇒ CPRF. Constrain(k0, Cȷ) =
CPRF. Constrain(kx∗ , Cȷ). Consequently, the distinguishing advantage of the adversary
between this game and the previous is at most

|Pr[Game 3.j]− Pr[Game 3.(j − 1)]| ≤ ϵNIWI(λ) (11)

by the witness indistinguishability of NIWI. Overall, we find

|Pr[Game 3.0]− Pr[Game 3.q1(λ)]| ≤ q1(λ) · ϵNIWI(λ) . (12)

Moreover, Game 3.0 is the same game as Game 2.q2(λ).

Game 4 (Switch the second commitment to a punctured key): In this game the
second commitment is generated as c0

2 := COM.Com(kx∗ ; r0
2) where kx∗ := CPRF. Constrain(k0, {x∗})

instead of c0
2 := COM.Com(k0; r0

2). The distinguishing advantage of the adversary between
this game and the previous is at most

|Pr[Game 4]− Pr[Game 3.q1(λ)]| ≤ ϵCOM(λ) (13)

because the randomness r0
2 is not used in the NIWI proofs.

Game 5.i (Switch evaluation proof witnesses for k ∈ [0, q2(λ)]): For each evalua-
tion query ι < i with preimage xι, we use the witness w := (1, 2, kx∗ , kx∗ , r0

1, r0
2) instead of

w := (1, 3, kx∗ , k0, r0
1, r0

3). Note that both witnesses are valid for the statement stmtc0
1,c0

2,c0
3,x,y

due to the puncture invariance of CPRF. Consequently, the distinguishing advantage of
the adversary between this game and the previous is at most

|Pr[Game 5.i]− Pr[Game 5.(i− 1)]| ≤ ϵNIWI(λ) (14)

by the witness indistinguishability of NIWI. Overall, we find

|Pr[Game 5.0]− Pr[Game 5.q2(λ)]| ≤ q2(λ) · ϵNIWI(λ) . (15)

Moreover, Game 5.0 is the same game as Game 4.
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Game 6.j (Switch constrained proof witnesses for j ∈ [0, q1(λ)]): For each constrain
query ȷ < j with constraint Cȷ, we use the witness wCȷ

:= (1, 2, kx∗ , kx∗ , r0
1, r0

2, k1, r1
1, r1

2)
instead of wCȷ

:= (1, 3, kx∗ , k0, r0
1, r0

3, k1, r1
1, r1

3) where k1 := CPRF. Constrain(k0, Cȷ). Note
that both witnesses are valid for the statement stmtCȷ,c0

1,c0
2,c0

3,c1
1,c1

2,c1
3
. Again, this follows

from the puncture invariance of CPRF. Consequently, the distinguishing advantage of the
adversary between this game and the previous is at most

|Pr[Game 6.j]− Pr[Game 6.(j − 1)]| ≤ ϵNIWI(λ) (16)

by the witness indistinguishability of NIWI. Overall, we find

|Pr[Game 6.0]− Pr[Game 6.q1(λ)]| ≤ q1(λ) · ϵNIWI(λ) . (17)

Moreover, Game 6.0 is the same game as Game 5.q2(λ).

Game 7 (Switch the third commitment to a punctured key): In this game, the
third commitment is generated as c0

3 := COM.Com(kx∗ ; r0
3) where kx∗ := CPRF. Constrain(k, {x∗})

instead of c0
3 := COM.Com(k0; r0

3). The distinguishing advantage of the adversary between
this game and the previous is at most

|Pr[Game 7]− Pr[Game 6.q1(λ)]| ≤ ϵCOM(λ) (18)

because the randomness r0
3 is not used in the NIWI proofs.

Game 8 (Switch the challenge image to random): In this game, we sample the
challenge image y∗ ← Y instead of setting it as the real evaluation (y∗, π∗) = CVRF. Eval(sk, x∗).
Note that the previous hybrid game does not use the actual CPRF key k0 anymore, but
only the punctured key kx∗ . Hence, the distinguishing advantage of the adversary between
this game and the previous is at most

|Pr[Game 8]− Pr[Game 7]| ≤ ϵCPRF(λ) . (19)

Overall, we find that the distinguishing advantage of the adversary in the original
game and the last hybrid game is at most

|Pr[Game 0]− Pr[Game 8]| (20)
≤ 3 · ϵCOM(λ) + 2 · q1(λ) · ϵNIWI(λ) + 2 · q2(λ) · ϵNIWI(λ) + ϵCPRF(λ) (21)
≤ 3 · ϵCOM(λ) + 2 · q(λ) · ϵNIWI(λ) + ϵCPRF(λ) . (22)

By reverting all previous game hops, we can get back the original pseudorandomness game
(with challenge bit b = 1). Hence, we need to double the terms 3 ·ϵCOM(λ)+2 ·q(λ) ·ϵNIWI(λ)
to bound the final advantage of the adversary.

Theorem 8 (Unique Provability). Let COM be a perfectly binding non-interactive com-
mitment scheme. Let NIWI be a perfectly sound NIWI. Let CPRF be a 1-delegable CPRF.
Then the CVRF CVRF in Construction 2 is unqiuely provable.
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Proof. Let vk be any (possibly malformed) verification key. Let x be an arbitrary preimage,
y ̸= y′ images and π = (r2, r3, (Ci, ci

1, ci
2, ci

3, πi)i∈[j]), π′ = (r′2, r′3, (C ′i, c′i1 , c′i2 , c′i3 , π′i)i∈[j]) be
any (possibly malformed) proofs. The perfect binding property of COM fixes k0

1, k0
2, k0

3
that are committed to in vk. Suppose for contradiction that

CVRF.Verify(vk, x, y, π) = ACCEPT ∧ CVRF.Verify(vk, x, y′, π′) = ACCEPT . (23)

This implies that x ̸∈ Cj and x ̸∈ C ′j . Moreover, y is the first output of CPRF. Eval(k0
i , x)

and CPRF. Eval(k0
j , x) for some i ̸= j and y′ is the first output of CPRF. Eval(k0

i′ , x) and
CPRF. Eval(k0

j′ , x) for some i′ ̸= j′. Hence, there exists some κ ∈ {1, 2, 3} such that y and
y′ are both the first output of CPRF. Eval(k0

κ, x) which contradicts y ̸= y′.

Theorem 9 (Delegability). Let NIWI be a perfectly complete NIWI. Let CPRF be a
d-delegable CPRF. Then the CVRF CVRF in Construction 2 is d-delegable.

Proof. For any (honestly generated) (pp, sk∅, vk, π∅)← CVRF. Setup(1λ), any constraints
C0 ⊆ · · · ⊆ Cd, any preimage x ∈ X \Cd (outside all constraints), any (honestly generated)
constrained keys (skCi

, πCi
)← CVRF. Constrain(skCi−1 , Ci), any (honestly generated) im-

ages and proofs (yi, πi)← CVRF. Eval(skCi−1 , x), it follows from the perfect completeness
that all NIWI proofs verify. Moreover, the condition C0 ⊆ · · · ⊆ Cd in line 6 of VerifyC
and line 5 of Verify is fulfilled by definition. Hence, all checks in both Verify and VerifyC
pass.

Theorem 10 (Functionality Binding). Let COM be a perfectly binding non-interactive
commitment scheme. Let NIWI be a perfectly sound NIWI. Then the CVRF CVRF in Con-
struction 2 is functionality binding.

Proof. For contradiction suppose there exist public parameters pp, verification key vk,
secret keys skC = k, sk′C = k′, preimage x, image-proof-pairs (y, π)← CPRF. Eval(skC , x)
and (y′, π′)← CPRF. Eval(sk′C , x) such that

CVRF. VerifyCpp(vk, C, skC , πC) = CVRF. VerifyCpp(vk, C, sk′C , π′C) = ACCEPT
and y ̸= y′ .

Since y = CPRF. Eval(skC , x) and CPRF. Eval is deterministic, it follows that skC ̸= sk′C .
Let k0

1, k0
2, k0

3 be the keys that are contained in the verfication key (by perfect binding of
COM). Because CVRF. VerifyCpp(vk, C, sk, πC) = 1 and CVRF. VerifyCpp(vk, C, sk′, π′) = 1
the perfect soundness of NIWI, it follows that k = CPRF. Constrain(k0

i , C) = CPRF. Constrain(k0
j , C)

for some i ≠ j and k′ = CPRF. Constrain(k0
i′ , C) = CPRF. Constrain(k0

j′ , C) for some i′ ̸= j′.
Consequently, there exists some κ ∈ {1, 2, 3} such that skC = k = CPRF. Constrain(k0

κ, C) =
k′ = sk′C which contradicts skC ̸= sk′C .

Remark 3 (Limits of the NIWI-Based CVRF). The NIWI-based construction does not
fulfill constraint-hiding in the sense of Def. 6. This is because the proofs generated by
Constrain or Eval leak the full history of constraints. If a CVRF is not constraint-hiding,
then the selective security game as stated in Def. 5 does not capture all adversarial behavior
(as discussed in more detail in Remark 1).

In fact, the NIWI-based CVRF as stated in Construction 2 cannot support more
elaborate adversarial queries. The issue is that the construction overcommits to the secret
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key when given, e.g., the elaborate, yet valid query “Constrain with ∅, do not output the
constrained key, but use the key to evaluate at some point x ̸= x∗ and give me the output.”
Constraining with ∅ results in another commitment to the secret key by which the above
proof strategy breaks down, and we cannot replace this key by a punctured one.

One can conjecture ways to circumvent this issue (e.g., using NIWI proofs of past
constraints as witnesses to later NIWI proofs). However, due to the perfect soundness of the
NIWI, it seems that the proof size (at least when adapting the blueprint of [GHKW17, Bit20]
to produce new commitments for constrained keys) must unavoidably leak the number of
prior constraints, thereby violating constraint-hiding. Thus, one cannot directly appeal to
constraint-hiding and would have to prove that such leakage is not an issue.

The main takeaway is that NIWI-based CVRFs tolerating elaborate queries seemingly
require non-trivial effort and do not follow immediately from [GHKW17, Bit20]. We leave
it as an open question to construct such a CVRF using NIWIs.

D Generalizing CVRF With Respect to Any Algebraic
PRG

We explain here how to generalize our CVRF construction for any family of quadratic
PRG functions. This may be practical if one wants to use PRGs that can be evaluated
very fast, or if one wants to use a special PRG candidate with (hypothetically) higher
security than uniformly random quadratic polynomials.

As far as it concerns the construction of CVRF, it suffices to replace the uniformly
random polynomials (G(i)

0 , G
(i)
1 ) sampled by our CVRF in § 3 in its setup algorithm with

polynomials of special distributions, without changing any other of its algorithms. When
doing so, one only has to adapt the recursive DDH assumption to the corresponding family
of PRGs. To prove the soundness of recursive DDH assumptions that are with respect
to special distributions of (G0, G1) ∈ Q2

p,n, we need to distill essential properties a PRG
candidate needs to have to guarantee security in the generic group model. We call these
properties Pseudorandomness, Separability and Resistance and list them in App. D.1.

We give the modified CVRF construction with respect to any candidate of quadratic
PRG functions in App. D.2, and derive a modified recursive DDH assumption with respect
to special PRGs, from which the security of the modified CVRF can be proven. The
security proof of the modified CVRF is then identical to the proof of Thm. 4.

In App. D.3, we prove the correctness of the modified recursive DDH assumption in
the generic group model assuming that the underlying PRG family is pseudorandom,
resistant and separable.

D.1 Resistant and Separable PRGs
Definition 14. Let Q be an (efficiently computable) distribution over Q2

p,n. I.e., each
(G0, G1) ← Q is a pair of two maps G0, G1 : Zn

p → Zn
p whose outputs are computed by

degree-2 polynomials over Zp.

1. We call Q symmetric if we have for all G0, G1 ∈ Q2
p,n

Pr[(G0, G1)← Q] = Pr[(G1, G0)← Q].
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2. For 0 ≤ η ≤ 1, we call Q η-separable if we have

Pr[∃s, w ∈ Zn
p ,∃f ∈ spanZp [G0(X)− s, G1(X)−w] | f ̸= 0, deg f ≤ 1] ≤ 1− η.

(Note that the above requirement is equivalent to

Pr[dimZp

(
spanZp [g1, . . . , g2n, X1, . . . , Xn, 1]

)
= 3n + 1] ≥ η

where g1, . . . , g2n are polynomials computing (G0, G1).)

3. For µ ≥ 0 and t > 0, we call Q (t, µ)-pseudorandom if we have for each adversary A
running in time t

|Pr[A((G0, G1), (G0(x), G1(x))) = 1]− Pr[A((G0, G1), y) = 1]| ≤ µ

where (G0, G1)← Q, x←$ Zn
p and y ←$ Z2n

p .

4. For µ ≥ 0 and t > 0, we call Q (t, µ)-resistant if we have for each adversary A
running in time t

Pr
[
h ∈ Zp[X1, . . . , Xn]≤2, h(x) = 0,

h /∈ spanZp [G0(X)−G0(x), G1(X)−G1(x)]

]
− 2

p
≤ µ

where (G0, G1)← Q, x←$ Zn
p and h← A((G0, G1), (G0(x), G1(x))).

In § 5, we studied the case whereQ is the uniform distribution over Q2
p,n. In this case, Q

is naturally symmetric, and we showed that it is (1− 2n/p)-separable. Pseudorandomness
of the uniform distribution over Q2

p,n is equivalent to the MQ assumption, and resistance
of it is equivalent to the MQ+ assumption.

D.2 Construction for General PRGs
As in § 3, we denote for x = x1 · · ·xℓ′ ∈ {0, 1}ℓ′ , ℓ′ ≤ ℓ, and G = ((G(1)

0 , G
(1)
1 ), . . . , (G(ℓ)

0 , G
(ℓ)
1 ))←

Qℓ

Gx := G(ℓ′)
xℓ′ ◦ · · · ◦G(1)

x1 .

The new CVRF construction is almost identical with the one given in § 3, with the
minor difference that Setup now samples G from Qℓ instead of Qℓ×2

p,n . We detail this in
Fig. 10.

To prove the security of the modified CVRF CVRF, we need to modify the underlying
recursive DDH assumption as well.

Assumption 4 (Recursive DDH for General PRGs). Fix n, m1, m2 ∈ poly(λ), a prime
p ≤ 2poly(λ) and a bilinear pairing e : G1 ×G1 → G2 of groups of order p with generators
g1 ∈ G1, g2 ∈ G2.

Fix a distribution Q over Q2
p,n that is symmetric, separable, pseudorandom and

resistant in the sense of Def. 14.
Let Samp be an algorithm that on input 1λ, p, n, outputs descriptions of

54



CVRF. Setup(1λ):

01 Sample s←$ Zn
p ; Set skϵ = s

02 Set vk = gs
2

03 Sample degree-2 maps G ←$ Qℓ ; Set pp = G
04 Output (pp, skϵ, vk, πϵ = ∅)

Figure 10: Pseudocode of the new Setup algorithm for CVRF with general PRG distribution
Q. The only difference to the CVRF construction in Fig. 2 has been put in a gray box.

1. an efficiently computable function c : Zn
p → Zn

p ,

2. an efficiently computable function h0 : Zn
p → Zm0

p ,

3. an efficiently computable function h1 : Zn
p → Zm1

p ,

4. and an efficiently computable function h2 : Zn
p → Zm2

p .

For an adversary Aif , we define its advantage in the if-challenge by

AdvAif
if = |Pr[Aif(c, h0, h1, h2, h0(s), gh1(s)

1 , gh2(s)
2 , gs

2, gc(s)
2 ) = 1]

− Pr[Aif(c, h0, h1, h2, h0(s), gh1(s)
1 , gh2(s)

2 , gs
2, gr

2) = 1]|

where the probabilities are taken over (c, h0, h1, h2) ← Samp(1λ, p, n), s ←$ Zn
p and

r ←$ Zn
p . For an adversary Athen, we define its advantage in the then-challenge by

AdvAthen
then = |Pr[Athen(c, h0, h1, h2, G0, G1, h0(s), gh1(s)

1 , gh2(s)
2 , gs

2, gx
1 , G1(x), gc(s)

2 ) = 1]
− Pr[Athen(c, h0, h1, h2, G0, G1, h0(s), gh1(s)

1 , gh2(s)
2 , gs

2, gx
1 , G1(x), gr

2) = 1]|

where s = G0(x), and the probabilities are taken over (c, h0, h1, h2) ← Samp(1λ, p, n),
x←$ Zn

p , (G0, G1)← Q and r ←$ Zn
p .

Finally, fix non-negative functions t = t(λ), q = q(λ), µ = µ(λ). The recursive
Decisional Diffie-Hellman assumption with respect to the PRG family Q, denoted by
(t, q, µ)-rDDHQ, states that for all samplers of the above form that run in time t and for
all then-adversaries Athen, there exists an if-adversary Aif s.t.

AdvAif
if (λ) ≥ AdvAthen

then (λ)− µ(λ) and time(Aif) ≤ time(Athen) + q.

We will show in App. D.3 that (t′′, t′′ + O(qn6), qµres + µprg + µsep + q/p)-rDDHQ
holds in the GGM if Q is (1− µsep)-separable, (t + t′′ + O(qn6), µprg)-pseudorandom and
(t + t′′ + O(qn6), µres)-resistant (and if the number of group queries and bit operations of
adversaries is bounded by q and t, respectively).

Note that delegability, unique provability, functionality binding and constraint-hiding
for CVRF with the modified setup algorithm follows from Thm. 3, as those properties are
independent of the underlying PRG.

The proof of security of CVRF is identical to the corresponding proofs of our construction
based on uniformly random polynomials in § 3. The only difference appears in replacing
the distribution of (G(i)

0 , G
(i)
1 ). Note that we require that Q is symmetric. This allows us
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to always assume—without loss of generality—that the adversary challenges us on the
point x∗ = 0ℓ.

Hence, we can recollect:

Corollary 1. 1. CVRF is a Prefix-Constrained Verifiable Function as in Def. 5, i.e.,
it satisfies Delegability, Functionality Binding and Unique Provability. Additionally,
it is Constraint-Hiding.

2. Under (t+ℓq+ℓntpair, µ)-DSDH and (O(ℓtQ), q, µ′)-rDDHQ the function CVRF : {0, 1}ℓ →
Gn

2 is a (t, µ + µ′ℓ)-CVRF, where tQ and tpair are the time complexities to sample
from Q and to evaluate e : G2

1 → G2 once, respectively.

D.3 Proving rDDHQ in the Generic Group Model
The following theorem is analogous to Thm. 5:

Theorem 11. Let t, t′, t′′ > 0. Let Samp be a sampling algorithm with time complexity t′′

for Ass. 4 that outputs functions h0, h1, h2, c that can be evaluated in time t′′.
Let Q be a distribution over Q2

p,n that is symmetric, (1 − µsep)-separable, (t′, µprg)-
pseudorandom and (t′, µres)-resistant for t′ = t + t′′ + O(qn6).

Let Athen be a generic adversary against the then-challenge of Ass. 4 with advantage
µ + qµres + µprg + µsep + 3q/p and time complexity t that makes q group-queries.

Then, there exists an adversary Aif on the if-challenge of Ass. 4 that makes q group-
queries and has an advantage of µ and a time complexity of t′.

Proof. To prove Thm. 11, we consider the hybrids given in Fig. 11. Note that the hybrids
of Fig. 11 are identical to the hybrids of Fig. 4, used in the proof of Thm. 5, with the
only exception how (G0, G1) is sampled by the game setup. Consequently, the proof of
Thm. 11 is analogous to the proof of Thm. 5. We only need to address in which game
hops we use which property of Q:

1. By the resistance of Q, we have

|Pr[GAthen
i−1 (1λ) = 1]− Pr[GAthen

i (1λ) = 1]| ≤ µres + 2
p

for i = 1, . . . , q. Indeed, Gi−1 and Gi only differ in how they handle the i-th group
query of Athen. If there would exist some noticeable difference, one could proceed as
in the proof of Lem. 1 and reduce the resistance-game of Q to distinguishing GAthen

i−1
and GAthen

i .

2. By the pseudorandomness of Q, we have

|Pr[GAthen
q (1λ) = 1]− Pr[GAthen

q+1 (1λ) = 1]| ≤ µprg.

Indeed, Gq and Gq+1 only differ in how they generate s and w. Analogous to the
proof of Lem. 2, one can reduce the pseudorandomness game of Q to the problem of
distinguishing GAthen

q and GAthen
q+1 .
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Game GAthen
i (1λ), i ∈ {0, . . . , q + 2}, with adversary Athen:

01 Initialize generic groups G1 = ⟨g1⟩, G2 = ⟨g2⟩
02 Set j = 0
03 Sample b←$ {0, 1}
04 Sample (c, h0, h1, h2)← Samp(1λ, p, n)
05 Sample x←$ Zn

p , (G0, G1)←$ Q
06 If i ≤ q, set s = G0(x) and w = G1(x)
07 If i ≥ q + 1, sample s, w ←$ Zn

p

08 If b = 1, sample c←$ Zn
p ; else, set c = c(s)

09 Run b′ ← AR
then(c, h0, h1, h2, G0, G1, h0(s), gH(1)

1 , gH(2)
2 , gS

2 , gX
1 , w, gC

2 )
10 Return 1, if b = b′; else, return 0

Group Query Subroutine R(f ∈ Zp[H(1), H(2), X, S, C]):

01 Increase j = j + 1
02 If f is not admissible or j > q, return ⊥
03 If j > i ≤ q + 1, do the following:
04 If f(h1(s), h2(s), x, s, c) = 0, return 1; else, return 0;
05 If j ≤ i ≤ q + 1, do the following:
06 If f(h1(s), h2(s), X, s, c) ∈ spanZp [G0(X)− s, G1(X)−w], return 1
07 Else, return 0
08 If i = q + 2, do the following:
09 Compute f ′ ∈ B s.t. f − f ′ ∈ spanZp [G0(X)− S, G1(X)−w]
10 If such an f ′ does not exist, return 0
11 Draw x′ ←$ Zn

p

12 If f ′(h1(s), h2(s), x′, s, c) = 0, return 1; else, return 0

Figure 11: Hybrid Games for the proof of Thm. 11. The only difference to the hybrids of
Fig. 4 is marked in gray.

3. By the separability of Q, we have

|Pr[GAthen
q+1 (1λ) = 1]− Pr[GAthen

q+2 (1λ) = 1]| ≤ µsep + q/p.

For this, note that we have with probability (1− µsep) that there are no s, w ∈ Zn
p

and f ∈ spanZp [G0(X)− s, G1(X)−w] s.t. f is non-zero and of degree ≤ 1. From
this point on, the proof of Lem. 4 is independent of the distribution of (G0, G1) and,
hence, can also be applied here.

It follows that Athen’s advantage at winning Gq+2 is at least µ. From here on, the
distribution of (G0, G1) is again not relevant, and we can use the same reduction R as in
the proof of Thm. 5 (with the only difference that R samples (G0, G1) from Q).
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