
When Threshold Meets Anamorphic Signatures:
What is Possible and What is Not!

Hien Chu2,4, Khue Do1, Lucjan Hanzlik1, Sri AravindaKrishnan Thyagarajan3

1 CISPA Helmholtz Center for Information Security, Germany
2 Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

3 University of Sydney, Australia
4 TU Wien, Austria

Abstract. Anamorphic signatures allow covert communication through
signatures in environments where encryption is restricted. They enable
trusted recipients with a double key to extract hidden messages while the
signature remains indistinguishable from a fresh and regular one. However,
the traditional notion of anamorphic signatures suffers from vulnerabilities,
particularly when a single recipient or sender is compromised, exposing
all hidden messages and providing undeniable proof that citizens are part
of the anamorphic exchange.
To address these limitations, we explore a threshold-based approach
to distribute trust among multiple recipients, preventing adversaries
from decrypting anamorphic messages even if some recipients are com-
promised. Our first contribution is the formalization of the notion of
threshold-recipient anamorphic signatures, where decryption is possible
only through collaboration among a subset of recipients. We then explore
a stronger model where the dictator controls the key generation process
through which it learns all secret keys and how citizens store cryptographic
keys. A particular example of this model in the real world is a dictator
providing citizens with electronic identity documents (eIDs) and block-
ing all other usage of cryptography. We demonstrate that anamorphic
communication is still possible even in such a scenario. Our construction
is secure against post-quantum adversaries and does not rely on any
computational assumptions except the random oracle model. Finally, we
show an impossibility result for encoding anamorphic messages with a
threshold-sender model when using many existing threshold signature
schemes and the adversary is part of the signing group. Our work outlines
both the possibilities and limitations of extending anamorphic signatures
with threshold cryptography, offering new insights into improving the
security and privacy of individuals under authoritarian regimes.

1 Introduction
Anamorphic signature [28] is a cryptographic primitive designed to embed hidden
messages within digital signatures while preserving their authenticity. This mech-
anism is particularly useful in environments where encryption is restricted, such
as under authoritarian regimes. In such scenarios, anamorphic signatures allow a
sender to covertly include a hidden message (referred to as the anamorphic mes-
sage) within an otherwise standard signature. Crucially, this signature remains

indistinguishable from one without a hidden message, even to adversaries such as
governments that can demand access to cryptographic keys and messages. Only
trusted users, possessing a special double key, can extract the concealed message.

This cryptographic primitive builds on prior ideas but applies them to sig-
nature schemes. The first proposed anamorphic primitive was anamorphic en-
cryption [36], which allowed users to create an additional covert channel inside a
regular ciphertext. Therefore, even if the dictator requested access to the decryp-
tion key, it would only learn the benign and not the hidden message. A crucial
requirement for both anamorphic encryption and signatures is that standard
schemes support this mode of operation. The motivation behind this is that even
if a regime mandates users to disclose their encryption keys, these policies are
ineffective because there is always a way to implement an anamorphic covert com-
munication channel while relying on standardized (e.g., by NIST) cryptographic
encryption and signature schemes. Many follow-up works have further studied
and refined the notions of anamorphic encryption and signatures [2, 7, 8, 37,41].

In more detail, anamorphic signatures exploit the randomness inherent in the
signing process, allowing a secret message to be embedded without altering the
verification of the signature. Two methods of embedding anamorphic messages
into signatures were proposed in [28]. The first solution assumes that the signing
key is shared between the sender and the recipient. It also relies on a signature
scheme that, having access to the secret key and a signature, allows one to extract
the random coins used during signature generation. Examples of such signatures
include Schnorr signatures and (EC)DSA. For the former, given a signature
s = r + H(gr,m) · sk and signing key sk, it is possible to retrieve the randomness
r. The sender can then use any symmetric key encryption scheme (e.g., AES),
setting the resulting ciphertext as the randomness r. From the signature, the
recipient computes r and uses the double key to decrypt the AES ciphertext to
obtain the anamorphic message.

The second method is more versatile as it does not require the recipient to
know the sender’s signing key. This is especially relevant in scenarios where users
are provided with hardware components (e.g., electronic identity documents or
eIDs) by an authoritarian entity, which stores the key and generates signatures. In
this case, the sender can take advantage of the signing process’s randomness and
employ a technique similar to rejection sampling-sampling multiple signatures
for the same message until one satisfies a specific predicate. For example, the
predicate could be that the last bits of the signature match the anamorphic
message. Unfortunately, this approach allows the encryption of significantly fewer
bits than the first method for the same parameters of the signature scheme. To
overcome this limitation, the sender can use multiple signatures to encode a
single payload, which in this case is a symmetric encryption ciphertext.

A significant weakness of the current anamorphic signature model is its single
point of failure. If a dictator compromises either the sender or the recipient,
they can decrypt all exchanged anamorphic messages. Worse, if the sender is
compromised, the dictator can produce undeniable proof—the anamorphic double
key—to incriminate the recipient, as the key is symmetric. Additionally, existing

2

research on anamorphic cryptosystems has focused almost exclusively on peer-to-
peer communication, overlooking scenarios with multiple participants. However,
modern internet protocols frequently involve multi-party interactions, such as
group messaging, broadcast channels, and threshold cryptography. To ensure
security in real-world applications, anamorphic cryptosystems must be designed
and analyzed with these multi-party settings in mind.

A promising solution to the aforementioned single point of failure problem is
the distribution of “trust” among multiple parties similar to threshold encryption
[18,19] and signature schemes [34, 35]. In threshold encryption, a secret key is
shared among several users, and only a subset (or threshold) of them needs to
cooperate to decrypt a message, ensuring that no single entity has complete
control over the key. Similarly, in threshold signatures, the signing capability is
split across a group, where a minimum number of participants must collaborate to
produce a valid signature. This paper discusses trust distribution in anamorphic
signatures and employs the threshold primitives described above.

We explore a scenario where multiple recipients collaborate to decrypt an
anamorphic message, such as through threshold decryption. Unlike standard
anamorphic signatures, this approach prevents a dictator from targeting individual
recipients, even if the sender is compromised. Additionally, if some recipients are
compromised, the dictator still cannot access the message without cooperation
from the remaining recipients. A key question arises: how do these parties
coordinate, given that previous anamorphic communication models were strictly
peer-to-peer? Below, we present two practical use cases that address this challenge.

Multiple Decrypting Devices In a peer-to-peer setting, a recipient can dis-
tribute decryption across multiple devices it owns (e.g., smartphone, laptop,
hardware token). This eliminates a single point of failure—if one device is
compromised, the message remains secure, and the dictator cannot distin-
guish if the recipient participates in the anamorphic exchange. Moreover, the
recipient can involve the devices of trusted individuals (e.g., family members),
ensuring confidentiality even if some are compromised. This setup enhances
security by requiring multiple devices to collaborate for decryption.

Distributed Whistleblowing Mechanism This model applies when a sender
needs to securely communicate with multiple recipients who can organize
themselves, such as a whistleblower sharing information with journalists.
The sender publishes an anamorphic message as an anamorphic signature,
while recipients define their security policies for decryption, e.g., requiring
in-person meetings or secure data exchanges. This approach ensures:
– Sender anonymity, upheld by the anamorphic signature scheme.
– Data confidentiality, is enforced through a threshold-based access control

policy among recipients.
This framework is particularly relevant for whistleblowing, where sensitive
data must be securely shared while protecting sender and recipient identities.

In the second scenario, we tackle the challenge of a dictator using advanced
techniques to detect anamorphic signing. For instance, side-channel attacks could
expose anamorphic signatures by exploiting the fact that they take longer to

3

generate than standard signatures. To avoid detection, the sender could use a
multi-party protocol like threshold signatures, blending in with non-anamorphic
signers. In this setup, the dictator may identify the signers’ group but can not
pinpoint the specific anamorphic sender. This scenario is especially relevant given
the increasing importance of threshold signatures, which IETF and NIST are
currently standardizing. Concretely, our paper asks the following question.

Is it possible to distribute trust and improve the security of individuals in
anamorphic signatures? What can be done, and what is impossible?

We provide a positive answer to the first part of our research question by
introducing an extension of anamorphic signatures called threshold-recipient
anamorphic signatures, and show how to construct such schemes generically. We
then expand this notion to consider a powerful dictator who, for example, controls
the generation of all the keys in the system. Even in this extreme case, we show
that secure anamorphic message exchange remains possible, with post-quantum
security, independent of the keys held by the sender and recipients. However, on
the negative side, we show that anamorphic messages cannot be encoded in many
existing threshold signature schemes if the dictator is one of the signing parties.

1.1 Anamorphic Threshold Recipient

Formalization and generic construction.We formalize the notion of threshold-
recipient anamorphic signatures (in Section 3) as a natural extension of base
anamorphic signatures where recipients act as decryptors similar to the threshold
encryption scenario. In our model, we consider asymmetric double keys, i.e., the
double key held by the sender can be viewed as a public key corresponding to the
set of recipients while each recipient holds unique double key used for decryption.
The sender creates the signature using its signing and double keys, while the
recipient can use the signature and their double key to obtain so-called decryption
shares. We leave the actual way of exchanging decryption shares outside the
model (similar to threshold encryption) but discuss potential solutions.

In this model, we enhance the adversary’s capabilities compared to the stan-
dard anamorphic signature setting. Here, the adversary can choose the sender’s
signing key pair and can compromise the sender’s double key as well. Additionally,
the adversary has access to a corrupt oracle, from which it can obtain the double
keys of users— this models scenario where the dictator captures a recipient and
forcibly acquires their keys. Interestingly, unlike standard anamorphic signatures,
we observe that the indistinguishability of real and anamorphic signatures (i.e.,
anamorphic property) does not imply the CPA security of the anamorphic mes-
sage. We delve deeper into this observation in Section 6. We model the CPA-like
security via an experiment in which the adversary with access to the mentioned
corrupt oracle specifies two anamorphic messages, sees the anamorphic signature,
and needs to decide which message was encoded.

Finally, we show how to instantiate the threshold-recipient model generically,
using standard threshold encryption and a basic anamorphic encryption scheme.

4

Extended real-world setting. We extend the threshold recipient model with
an even more powerful adversary (in Section 4). We observe that in the real world,
a dictator can force citizens to rely on specialized hardware to create signatures,
generate and store cryptographic keys. Moreover, the dictator can also enforce that
no other keys outside of those stored inside the specialized hardware can be used
by regularly inspecting the device. While this might seem like a scenario limited
to authoritarian regimes, it’s not. An existing real-world example is electronic
identity documents (eIDs), which hold cryptographic keys. A regulatory body
could mandate that all digital signatures be created exclusively via these eIDs.
Even outside authoritarian contexts, device inspection is not uncommon—e.g.,
border control officers often have the authority to search personal devices capable
of storing data [9, 10]. Such a scenario is becoming increasingly realistic, as a
French scientist has been denied entry by border control due to the discovery of
oppositional information during personal device checks [29].

To formally capture this model, we assume that the sender and recipients
do not hold any other secret except the key pair generated and provided by the
adversary. Unfortunately, since no anamorphic double key exists in such a setting,
peer-to-peer anamorphic communication is impossible. Therefore, we explore
the threshold recipient setting, where multiple parties decrypt the anamorphic
message jointly. A real-world example of such a group could be a subset of
journalists who receive whistleblowing information. Other examples are private
group chats and secret societies.

The anamorphic message can be decrypted as part of an in-person ceremony,
using some external secure channel, or by implementing the threshold parties
as separate devices of one user. For the latter scenario, one could imagine that
the dictator allows multiple devices (e.g., eID, smartphone, laptop), but all are
equipped with pre-generated keys.

In the multi-recipient setting, a secret is unknown to the dictator, i.e., which
recipient is part of the decryption process, i.e.,
– which citizen is part of the anamorphic group,
– which subset of journalists received the leak,
– who is in the private group chat or secret society.

As it turns out, this information is quite powerful. We construct a scheme that
uses any non-deterministic signature scheme and the Diffie-Hellman (DH) key
exchange to exchange anamorphic messages in this setting. We assume that
the device allowed by the dictator provides a means to sign and create secure
channels via a basing DH key exchange. It is worth noting that these are simple
and widely supported requirements, mandated globally by ICAO and even met
by eID documents, thereby reinforcing the strength of the results due to the
non-restrictive nature of the proposed solution.

The security of our extended threshold recipient scheme cannot be based
on the security of the underlying signature scheme or Diffie-Hellman since the
adversary controls all keys and provides them to both the sender and recipient.
In other words, we show that even if the dictator forces citizens to use specialized

5

and simple devices for cryptography and can inspect other citizens’ devices, it is
still possible to exchange messages anamorphically. Moreover, since the scheme
does not rely on any classical computational assumption except the random
oracle model, it is also post-quantum secure.

1.2 Anamorphic Threshold Sender

Impossibility result for threshold sender. We explore anamorphic properties
in threshold signatures, a topic gaining traction among standardization bodies. A
positive result for this primitive would enhance sender privacy, allowing senders to
blend in with non-anamorphic users. To deepen the understanding of anamorphic
threshold signatures, we first establish a concrete syntax and formal security
definitions within the framework of anamorphic cryptography.

Unfortunately, we show impossibility results for a mainstream class of thresh-
old signatures, particularly the scheme considered by NIST, i.e., FROST [27] and
other schemes like MuSig2 [30], Sparkle [14], and TRacoon [38]. In Section 5, we
show that if the dictator is part of the signing group, no anamorphic message can
be encoded by any other participants. We cover the abovementioned schemes with
an encoding that uses the signature as the base (see Figure 1 for classification).
In other words, the impossibility results only hold for schemes that use the
non-determinism of the signature to create a subliminal channel. The results are
detrimental since a dictator can always argue that a 2 out of 2 threshold signing
was introduced to provide citizens more security by providing a service storing
a share of the signing keys. In fact, such systems were already considered and
proposed for practical use (see mediated RSA [4]).

Fig. 1. Random-coin embedding is a class of all construction approaches where the covert
message is embedded to the random coin of the signature, e.g., ct = E.Enc(k, amsg), r =
ct (with or without rejection sampling). The broader class, labeled Signature embedding,
encompasses approaches where amsg is embedded in any components of the signatures.
The outer region represents alternative approaches to anamorphic threshold signatures
that do not belong to the signature embedding class. Our impossibility results are
restricted to the signature embedding class.

To obtain the most substantial impossibility result, we consider the most
restricted and honest adversarial model. The rationale is that if the impossibility
holds even for a minimal and constrained adversary, it extends naturally to
stronger adversaries. The adversary is semi-honest, meaning it follows the protocol
correctly, ruling out trivial denial-of-service attacks. It can choose one single

6

corrupted signer at the start but not adaptively. Otherwise, a trivial distinguisher
can detect anamorphic keys from a signer running anamorphic signing. The
signing quorum’s size is strictly controlled: smaller than the threshold, and
signing is impossible; larger than the threshold, and honest signers can always
form a sub-quorum that excludes the adversary. This approach rules out trivial
failures of anamorphism by definition, allowing us to focus on more meaningful
limitations arising from properties inherent to standardized constructions.

The intuition is that for all the mentioned schemes, the final signature and
public key are those of the underlying standard digital scheme, which means that
signers also secretly share the random coins. Therefore, the final signature that
is output as part of the signing process looks like a uniformly sampled signature
from the space of signatures that are valid for the message. We show that a
dictator can always be the party that ensures this property, making it impossible
for the anamorphic sender to encode meaningful messages correctly into the final
signature. The only strategy left for the sender is to look at the final signature
and decide not to publish it, similar to rejection sampling. However, the dictator
can easily discover such a sender, making this approach impractical.

It is worth noting that schemes exist that do not fall into the impossibility
result, and in fact, it turns out to be hard to identify strict rules that could be
used as a simple litmus test for schemes. We leave this as an interesting open
problem. An example of a threshold signature that still allows for anamorphism
is a naive scheme where a threshold signature consists of t individual signatures
of the threshold parties. Since the signatures are independent, randomness is also
independent, and standard anamorphic signature techniques can be used even if
the dictator is responsible for one of the other signatures.

Concrete classification and analysis. Our work involved systematically classi-
fying the types of (threshold) signature schemes that allow or prevent embedding
anamorphic messages as well as the embedding techniques. Previous works have
focused on individual schemes, showing that certain specific constructions are
anamorphic by, for instance, replacing the randomness with a one-time pad of the
covert message. In contrast, we present (im)possibility results for entire classes
of schemes rather than specific cases. In particular, the results in Section 3 and
Section 4 are generic to any (randomized) signature scheme, while the former
is generic to any threshold encryption. Moreover, this classification clarifies the
scope of our impossibility results for threshold senders in two key ways:

– It categorizes anamorphic embedding approaches, as shown in Figure 1,
demonstrating that our results in Section 5 exclude a broader class than
traditional random-embedding methods.

– It provides an implicit structural classification of threshold signature schemes.
Notably, most standardized candidates fall within this class.

It is important to note that, in contrast to the anamorphic user’s goal of ensuring
that anamorphism is supported by as many schemes as possible, the dictator’s ob-
jective is the opposite: it suffices for him to identify a single scheme that prohibits
anamorphic communication and enforce its mass adoption in public. Hence, it is

7

sufficiently interesting to show the impossibility of a state-of-the-art scheme such
as FROST, especially given the dictator’s incentives to make it standard. However,
our results go further, revealing that it is not the algebraic specifics of a scheme
but rather the signature-preserving property and distributed randomness, com-
mon to standardizing threshold signature candidates, that block anamorphism.
This approach reduces the complexity of determining whether a scheme supports
anamorphism by restricting the testing to its signature-preserving property rather
than conducting a full security analysis. This shift allows us to avoid the intricate
and often ad hoc analysis required for each individual scheme, which arises due
to variations in their algebraic structure and syntactic differences, such as the
number of rounds. Consequently, any scheme satisfying these structural proper-
ties is inherently unlikely to support anamorphism. Moreover, our classification
facilitates a more systematic identification of potential approaches to overcome
such limitations. As discussed later (in Appendix A.1), the only viable solution to
overcome this impossibility is to embed the anamorphic message directly within
the regular message, particularly in the use case of stealth addresses [13].

This paper is structured as follows. Section 2 provides the syntax and security
definitions of related primitives. The core of the paper is divided into two parts:
anamorphic signatures for threshold recipients (Section 3 and Section 4) and the
anamorphic threshold signature for senders (Section 5). Section 3 defines the
syntax and security model for threshold recipient anamorphic signatures and
proposes a generic construction meeting these security requirements. Section 4
strengthens these security models and presents a concrete scheme achieving the
proposed security guarantees. Finally, in Section 5, we establish the impossibility
of incorporating the anamorphic property within a threshold signature scheme.

2 Preliminaries

Let λ ∈ N be the security parameter, and for integer n we define [n] := {1, . . . , n}.
We use uppercase letters A,B to denote algorithms, and y ← A(x) denotes the
output of A on input x. For a randomized algorithm A, we use y ←$ A(x). To
derandomize the algorithm A, we write it explicitly as y ← A(x; st). We write
AB to denote that A has oracle access to B. We say a function is negligible and
denote it as negl(λ) if it vanishes faster than any polynomial.

2.1 Digital Signature Scheme

Definition 1. A digital signature scheme S = (S.KGen,S.Sign,S.Vf) consists of
the following p.p.t. algorithms:

(pk, sk)← S.KGen(1λ) : A key generation algorithm that on input security pa-
rameter 1λ, outputs a public key pk and a secret key sk.

σ ← S.Sign(sk,msg; st) : A signing algorithm that on input the secret key sk, the
message msg and a random coin st, outputs the signature σ.

{0, 1} ← S.Vf(pk,msg, σ) : A signature verification algorithm that on input the
public key pk, the message msg and the signature σ, outputs 1 if σ is the
valid signature and 0 otherwise.

8

The definitions for correctness and unforgeability are provided in Appendix B.2.

We also consider the extractor functionality of a digital signature scheme S,
which consists of the following p.p.t algorithms:
{st,⊥} ← RanExt(sk,msg, σ) : The random coin extract algorithm that on input

the secret key sk, the message msg and the signature σ, outputs the corre-
sponding random coin st and ⊥ otherwise.

{sk,⊥} ← SKExt(st,msg, σ) : The secret key extract algorithm that on input the
random coin st, the message msg and the signature σ, outputs the correspond-
ing secret key sk and ⊥ otherwise.

We say that S is random coin extractable if, for all public parameters 1λ, all
messages msg in the associated message space, the following event holds:

Pr

[
st = st′ σ ← S.Sign(sk,msg; st); st′ ← RanExt(sk,

& sk = sk′ msg, σ); sk′ ← SKExt(st,msg, σ)

]
= 1,

where the probability is over the random variable (pk, sk)← S.KGen(1λ) and the
random coins of S.Sign.

One can easily verify that certain standard signature schemes like [22, 32, 40]
or post-quantum candidates like [16,21] are random coin extractable.

2.2 Threshold Cryptosystems
Definition 2 (Threshold Encryption). A threshold encryption scheme TE =
(TE.KGen,TE.Enc,TE.Combine,TE.Dec) consists of the following p.p.t. algorithms:
(pk, sk1, . . . , skn)← TE.KGen(1λ, n, t) : A key generation algorithm that on input

security parameter 1λ, a number of participant n and a threshold t, outputs a
public encryption key pk and n secret decryption keys (sk1, . . . , skn).

ct← TE.Enc(pk, pt) : An encryption algorithm that on input a public encryption
key pk and a plaintext pt, outputs a ciphertext ct.

pdeci ← TE.Dec(ski, ct) : A partial decryption algorithm that on input a secret
decryption key ski and a ciphertext ct, outputs a partial decryption pdeci.

{pt,⊥} ← TE.Combine(pdeci1 , . . . , pdecit) : A partial decryption combination
algorithm that on input a set of partial decryption (pdeci1 , . . . , pdecit), outputs
either a plaintext pt or ⊥.
The definitions for the correctness, semantic security, and pseudorandom ci-

phertext property of a threshold encryption scheme are provided in Appendix B.4.
Multiple instantiations [3,5, 6, 20] are thresholdized versions of Cramer-Shoup,
LWE, or class group cryptosystems.

Definition 3 (Threshold Signature). A 2-round threshold signature TS =
(TS.KGen,TS.Sign,TS.Combine,TS.Vf) consists of the following p.p.t. algorithms:

(pk, sk1, . . . , skn)← TS.KGen(1λ, n, t) : A key generation algorithm that on input
security parameter 1λ, a number of participant n and a threshold t, outputs a
public key pk and n secret signing keys (sk1, . . . , skn).

(msgi,1,Sti,1) ← TS.Sign1(ski,msg,J) : a randomized algorithm on input a
secret key ski, a message msg, and a subset J of indices, returns a state Sti,1
and a first message msgi,1 to be sent during round 1 of the protocol to all
signers in J \ {i}.

9

si ← TS.Sign2(Sti,1, {msgj,1}j∈J\{i}) : a deterministic algorithm on input a
state Sti,1 and incoming messages {msgj,1}j∈J\{i}, outputs a share si.

{σ,⊥} ← TS.Combine(pk, si1 , . . . , sit) : A share combination algorithm that on
input a public key pk and a set of signature shares (si1 , . . . , sit), outputs
either a signature σ or ⊥.

{0, 1} ← TS.Vf(pk,msg, σ) : A signature verification algorithm that on input a
public key pk, a message msg and a signature σ, outputs 1 if σ is the valid
signature for msg and 0 otherwise.

The definitions for the correctness and unforgeability of a threshold signature
scheme are provided in Appendix B.5. We also consider the additional algorithms
of secret-key aggregation and state aggregation of a TS scheme .
sk← TS.SkAgg({ski}i∈I) : A secret-key aggregation algorithm that aggregates

any t-subset of secret keys {ski}i∈I to an aggregated secret key sk.
st← TS.StAgg({Sti,1}i∈I) : A state aggregation algorithm that aggregates any

t-subset of states {Sti,1}i∈I to an aggregated state st.

Definition 4 (Signature-preserving). We say that a TS scheme is signature-
preserving w.r.t. a digital signature scheme S if it shares a common message,
key, and state spaces with S and for all message msg and keys generated from
TS.KGen, the following holds:

TS.Combine(pkc, {TS.Sign2({TS.Sign1(skj ,msg, amsg,J)}j∈J\{i})}i∈J ,Sti,1)

= Sign(TS.SkAgg({ski}i∈J),msg;TS.StAgg({Sti,1}i∈J)) (1)

All threshold signature schemes we consider in Section 5 are signature-
preserving. We will provide corresponding secret-key and sate aggregation algo-
rithms then for easy verification of Equation (1). Clearly, a signature-preserving
threshold signature TS is w.r.t. a digital signature scheme S can always share
the same verification algorithm with S.

2.3 Anamorphic Signature Scheme

Motivated by [2], we modify the syntax of the anamorphic signature scheme
from [28] to decouple double key generation from signature key-pair generation.
This allows on-the-fly double-key setup for an already deployed public key,
supports multiple double keys for distinct covert channels, and strengthens the
security model by ensuring that the double key and the signing key pair are
uncorrelated. In this work, we focus on symmetric anamorphic signatures, where
the anamorphic decryption algorithm additionally requires the signing key as
input. As we mainly focus on the anamorphic communication application, where
both sender and recipient are non-malicious, we omit unforgeability. In this setting,
although the dictator holds the sender’s signing key and can produce signatures,
they cannot embed anamorphic messages, as the double key, uncorrelated with
the signing key pair, is unknown to the dictator.

Definition 5 (Anamorphic Signature Scheme [28]). An anamorphic signa-
ture scheme AS = (AS.KGen,AS.Sign,AS.Dec) associated with a digital signature
scheme S = (S.KGen,S.Sign,S.Vf), a pair of sender’s signing and verification
keys (pk, sk)← S.KGen(1λ) consists of the following p.p.t. algorithm:

10

(adk)← AS.KGen(1λ) : The anamorphic key generation algorithm on input secu-
rity parameter 1λ outputs the double key adk.

σa ← AS.Sign(sk, adk,msg, amsg) : The anamorphic signing algorithm on input
a signing key sk, a double key adk, a regular (benign) message msg, and an
anamorphic message amsg, outputs an anamorphic signature σa.

amsg← AS.Dec(sk, adk, σa) : The anamorphic decryption algorithm on input a
signing key sk, a double key adk and an anamorphic signature σa, outputs an
anamorphic message amsg.

The definitions for the correctness, anamorphism (ExpAnam− which ensures
indistinguishability of the anamorphic from the standard signature), and semantic
security (ExpA-CPA− which ensures protection for the embedded anamorphic
message) of an AS scheme can be found in [28]. Concrete descriptions are also
provided in Appendix B.6. For the unforgeability property, we refer to [28].

Theorem 1 (Theorem 10, [28]). Any random coin extractable signature
scheme (see Definition 1) is anamorphic.

3 Threshold-Recipient Anamorphic Signatures

In this section, we introduce the notion of recipient-threshold anamorphic signa-
tures. As mentioned in the introduction, one of the main bottlenecks of standard
anamorphic signature is that once the dictator learns the receiver’s double key
adk, the anamorphic message amsg leaks. In the case of multiple receivers, the
dictator can identify that someone is part of the anamorphic message exchange
and decrypt the message by compromising a single recipient. To overcome this
problem, we consider a multi-recipient scenario but assume that decryption is
now a thresholded process where a subset of recipients must cooperate to decrypt
amsg. We describe how such a system can work in more detail below.

We assume that all members of the anamorphic system went through a
setup phase that generates their double keys, i.e., we consider the function
TRAS.KGen(1λ, n, t) that defines the threshold t out of n and outputs n double
keys adki and a unique double key for the sender adkS . In our generic construction
of recipient-threshold anamorphic signatures, the sender’s double key will be the
public key for a threshold encryption scheme. Similar to the standard anamorphic
signature, we assume that the signer can compute a signature encoding the
anamorphic message amsg using σa ← TRAS.Sign(skS , adkS ,msg, amsg), where
skS is the sender’s signing key generated by (pkS , skS)← S.KGen(1λ), and msg
is an actual message. Once the anamorphic signature is provided to recipients,
they can, using the sender’s signing key skS , compute their decryption shares
as pdeci ← TRAS.Dec(skS , adki, σ

a). Note that we do not assume here how the
partial decryptions are exchanged. One strategy would be for users to join offline or
use other means of communication. Another one, as we will see in the next section,
would be to use standard anamorphic signatures that work without a double key to
broadcast the pseudorandom partial decryption pdeci to others. Given a quorum
set J of partial decryption that fulfills the threshold bound, the user can compute
the anamorphic message using {amsg,⊥} ← TRAS.Combine({pdeci}i∈J .

11

For security, we consider two properties: anamorphism and semantic security
(IND-CPA). The former property ensures that recipient-threshold anamorphic
signatures are indistinguishable from the underlying standard digital signatures,
i.e., the dictator is oblivious if an anamorphic message is sent. The latter property
ensures that an adversary cannot distinguish the anamorphic message from a
random one if it holds less than the threshold double keys, i.e., the dictator
learns that some users are exchanging anamorphic messages but still cannot
decrypt them. Contrary to anamorphic signature, IND-CPA security of TRAS
does not follow from anamorphism. The reason is that in our notion, we provide
the adversary with an additional corruption oracle that outputs the double key
adki of a given recipient i. With this oracle, we want to model the adversary
learning some double keys while still being below the threshold. We provide the
formal model for recipient-threshold anamorphic signatures below.

3.1 Syntax and Security

Definition 6 (Threshold-recipient Anamorphic Signature Scheme.).
A threshold-recipient anamorphic signature TRAS := (TRAS.KGen,TRAS.Sign,
TRAS.Dec,TRAS.Combine) associated with a digital signature scheme S = (S.KGen,
S.Sign,S.Vf) and a pair of sender’s signing and verification keys (pkS , skS) ←
S.KGen(1λ), consists of the following p.p.t. algorithm:

(adkS , adk1, . . . , adkn)← TRAS.KGen(1λ, n, t) : A anamorphic key generation al-
gorithm on input security parameter 1λ, the number of participants n and a
threshold t outputs the sender double key adkS and n recipient double keys
(adk1, . . . , adkn).

5

σa ← TRAS.Sign(skS , adkS ,msg, amsg) : A anamorphic signing algorithm on in-
put an signing key skS, a sender double key adkS, a regular message msg,
and an anamorphic message amsg, outputs an anamorphic signature σa.

pdeci ← TRAS.Dec(skS , adki, σ
a) : A partial anamorphic decryption algorithm

that, on input a secret key skS, a double key adki, and an anamorphic
signature σa, outputs a partial decryption pdeci.

{amsg,⊥} ← TRAS.Combine(pdeci1 , . . . , pdecit) : A partial anamorphic decryp-
tion combination algorithm that on input a set of partial decryption (pdeci1 , . . . ,
pdecit), outputs either the anamorphic message amsg or ⊥.

We say that a TRAS scheme is correct if, for all public parameters 1λ, all message
pairs (msg, amsg), the following event holds:

Pr

 |J | ≥ t σa ← TRAS.Sign(skS , adkS ,msg, amsg)

amsg = amsg′ {pdeci ← TRAS.Dec(skS , adki, σ
a)}i∈J

amsg′ ← TRAS.Combine({pdeci}i∈J)

 = 1,

where the probability is over (pkS , skS)← KGen(1λ) and (adkS , adk1, . . . , adkn)←
TRAS.KGen(1λ, t), and the random coins of TRAS.Sign.

5 The TRAS.KGen algorithm is performed in advance in a distributed manner across the
anamorphic set, similar to a distributed key generation protocol [23]. This eliminates
the need for a trusted setup, which is impractical in a totalitarian setting.

12

Definition 7 (Anamorphic). We say that a TRAS scheme is anamorphic if
for all parameter 1λ, for any polynomial time algorithm A, the following holds:

AdvA
TR-Anam(1

λ) ≤ negl(λ),

where AdvA
TR-Anam(1

λ) =

∣∣∣∣∣Pr [ExpTR-AnamA
AS(1

λ) = 1
]
−

1

2

∣∣∣∣∣ with the experiment

ExpTR-Anam defined in Figure 2. The experiment is defined similarly to the
experiment ExpAnam of an anamorphic signature scheme defined in [28], which
is also presented in Definition 23. We allow the adversary A to pick the threshold
parameter (n, t). We also allow the adversary A to select the sender’s signature
key pair (skS , pkS) while the anamorphic network generates the anamorphic
keys. The adversary then interacts with either an oracle producing a standard
signature or one producing an anamorphic signature. Eventually, its goal is to
determine which oracle it interacted with. The differences compared to ExpAnam,
defined in Definition 23, is that we allow the adversary to pick the threshold
parameter (n, t) and the signature key pair (skS , pkS), replace the anamorphic
key generation algorithm AS.KGen with the key generation algorithm TRAS.KGen
and the anamorphic signing algorithm AS.Sign in the oracle aSign1 with the
anamorphic signing algorithm TRAS.Sign of a TRAS scheme.

ExpTR-AnamA
AS(1

λ)

(n, t, skS , pkS)← A(1λ)

(adkS , adk1, . . . , adkn)← TRAS.KGen(1λ, n, t)

b←$ {0, 1}

b′ ← AaSignb(sk, pk)

return b = b′

aSign0(msg, amsg)

σ ← S.Sign(skS ,msg, st)

return σ

aSign1(msg, amsg)

σ ← TRAS.Sign(skS , adkS ,msg, amsg)

return σ

Fig. 2. Anamorphic experiment ExpTR-AnamA
AS.

Definition 8 (Semantic security). For a threshold-recipient anamorphic sig-
nature scheme TRAS and a stateful, polynomial time adversary A, we define the
anamorphic IND-CPA experiment ExpTR-CPA as follows:

– Setup phase. The adversary A first specifies the number n of overall re-
cipients and the threshold t. This is followed by challenger sampling the
anamorphic keys using the TRAS.KGen algorithm of a TRAS scheme. We
also let the adversary A choose the sender’s signature key pair (skS , pkS).

– Query phase. The adversary A then interacts with the challenger using two
types of queries: key corruption queries and anamorphic signing queries.

• Corr(i) : This oracle reveals to A the secret decryption key of recipient
i who was not queried before and blocks further oracle access when the
number of corrupted recipients exceeds the predetermined threshold t.
• aSign(msg, amsg) : This oracle executes an anamorphic signing algorithm
TRAS.Sign on a given pair of regular-anamorphic message (msg, amsg).

13

– Challenge phase. The adversary A, given the sender double key adkS and
the list of corrupted recipient J , determines a message msg to be signed by
the challenger and two anamorphic messages (msg0,msg1). The challenger in
the experiment chooses a random bit b and executes the anamorphic signing
algorithm on the message msg and the corresponding anamorphic message
amsgb. Finally, the challenger sends the anamorphic signature σb to A.

– Output phase. The adversary A outputs a guess b′ on the chosen bit b.

We say that an TRAS scheme has anamorphic semantic security if, for all
parameter 1λ, for any polynomial-time algorithm A, the following holds:

AdvA
TR-CPA(1

λ) ≤ negl(λ),

where AdvA
TR-CPA(1

λ) =

∣∣∣∣∣Pr [ExpTR-CPAA
TRAS(1

λ) = 1
]
−

1

2

∣∣∣∣∣ with the experiment

ExpTR-CPA defined in Figure 3.

ExpTR-CPAA
TRAS(1

λ)

J ← ∅; (n, t, skS , pkS)← A(1λ)

(adkS , adk1, . . . , adkn)← TRAS.KGen(1λ, n, t)

(msg, amsg0, amsg1)← A
Corr,aSign(adkS ,J)

b←$ {0, 1}

σb ← TRAS.Sign(skS , adkS ,msg, amsgb)

b′ ← ACorr,aSign(σb)

return b = b′

Corr(i)

if i /∈ [n] or i ∈ J or |J | >= t− 1

then return ⊥
J ← J ∪ {i}
return adki

aSign(msg, amsg)

σ ← TRAS.Sign(skS , adkS ,msg, amsg)

return σ

Fig. 3. Threshold-recipient anamorphic IND-CPA security experiment ExpTR-CPAA
TRAS.

3.2 Generic construction

We propose a generic construction for TRAS. Our idea is straightforward and
relies on a threshold encryption scheme TE and a signature scheme S that allows
for random coin extraction from a signature while holding the signing key. The
idea is to set the double key of the sender as the threshold encryption public
key adkS = pkTE and give the threshold secret key to users as their double keys
adki = skTEi . To encrypt an anamorphic message, the sender first encrypts amsg
using the TE scheme for public key adkS and then uses this ciphertext as the
random coins. Here, we assume that the TE ciphertext is pseudorandom, and
the ciphertext space of the TE scheme coincides with the random coin space of
the signature, i.e., its representation “looks” like the random coin used in the
signing process of the signature scheme S. The recipients then use the extraction
algorithm and the sender’s signing key to get the TE ciphertext. They then apply
the TE partial decryption algorithm to get the partial decryptions that can be
combined using the TE combination algorithm. We give more details in Figure 4.

Definition 9 (Generic TRAS construction). A generic threshold-recipient
anamorphic signature scheme uses a threshold encryption scheme TE = (TE.KGen,

14

TE.Enc,TE.Combine,TE.Dec) that has pseudorandom ciphertext and an anamor-
phic signature AS = (AS.KGen,AS.Sign,AS.Dec) associates with a random coin ex-
tractable digital signature scheme S = (S.KGen,S.Sign,S.Vf) and a pair of anamor-
phic sender’s signature signing and verification keys (pkS , skS)← S.KGen(1λ) as
the main building blocks. Our generic TRAS scheme is then defined as follows.
We also give a high-level overview of the particular algorithms in Figure 4.

(adkS , adk1, . . . , adkn)← TRAS.KGen(1λ, n, t) : The anamorphic key generation
algorithm runs a threshold encryption key generation algorithm (pkTE, skTE1 , . . .
, skTEn)← TE.KGen(1λ, n, t). The algorithm then assigns (adkS , adk1, . . . , adkn)
:= (pkTE, skTE1 , . . . , skTEn) and outputs the key tuple.

σa ← TRAS.Sign(skS , adkS ,msg, amsg) : The anamorphic signing algorithm first
embeds the anamorphic message amsg into the random coin st by com-
puting st ← TE.Enc(adkS , amsg). It then executes the signing algorithm
σa ← S.Sign(skS ,msg; st) and outputs the anamorphic signature σa. Sim-
ilar to prior work, we assume the output space of TE.Enc is identical to
the randomness space of S.Sign. More precisely, we assume that the TE for
security parameter 1λ encrypts n(λ)-bit plaintexts into ℓ(λ)-bit ciphertexts,
with ℓ(λ) be the bit-size of the random coin space in the signature scheme.
This can be enforced with appropriate encoding.

pdeci ← TRAS.Dec(skS , adki, σ
a) : The partial anamorphic decryption algorithm

first extracts the random coin st from the anamorphic signature σa by com-
puting st ← S.RanExt(skS ,msg, σa). The algorithm then computes pdec ←
TE.Dec(adki, st) to retrieves the partial decryption pdeci.

{amsg,⊥} ← TRAS.Combine({pdeci}i∈J) : The partial decryption combination
algorithm checks if the threshold t is met. It then runs amsg← TE.Combine(
{pdeci}i∈J) to reconstruct the anamorphic message amsg.

TRAS.KGen(1λ, n, t)

(pkTE, skTE1 , . . . , skTEn)← TE.KGen(1λ, n, t)

adkS := pkTE

for i = 1 to n do : adki := skTEi

return (adkS , adk1, . . . , adkn)

TRAS.Sign(sk, adkS ,msg, amsg)

st← TE.Enc(adkS , amsg)

σa ← S.Sign(sk,msg; st)

return σa

TRAS.Dec(sk, adki,msg, amsg)

st← S.RanExt(skS ,msg, σa)

pdec← TE.Dec(adki, st)

return pdeci

TRAS.Combine({pdeci}i∈J)

if |J | < t then return ⊥
amsg← TE.Combine({pdeci}i∈J)

return amsg

Fig. 4. A generic construction for threshold-receiver anamorphic signature scheme.

Theorem 2. The construction in Figure 4 is correct and anamorphic.

Theorem 3. For any p.p.t. A, it holds: AdvA
TR-CPA(1

λ) ≤ AdvA1

TE-CPA(1
λ).

We deferred the proof of Theorem 2 and Theorem 3 to Appendix C.

15

4 Anamorphic Signatures under Strong Dictatorship

We consider a strong model for anamorphic signature. We assume that the
dictator can control not only the cryptographic keys of the citizen but also
limits the citizen’s power only to use basic cryptography, i.e., a signature scheme
and a Diffie-Hellman(DH) key exchange. One might think that this is a very
strong setup; however, a dictator can issue electronic identity cards (eIDs) with
pre-generated signing and DH keys. The dictator can then regulate that only
signatures and key exchanges using the eID are allowed. It is important to note
that the majority of government-regulated eID systems support DH or ECDH
keys as part of the Password Authenticated Connection Establishment (PACE)
protocol within their public key infrastructure. Furthermore, support for DH
or ECDH keys is mandated by the International Civil Aviation Organization
(ICAO) standard for ePassports [25], which all 193 member states are required to
follow [26]. Therefore, it is reasonable to assume that an eID issued by the dictator
supports DH or ECDH keys. We show that even in this model, a (sufficiently
large) subgroup of citizens can exchange anamorphic messages, and the only
“secret” information the dictator does not know is the group member’s identities.
The exciting part is that security will hold without relying on specified classical
computational assumptions, providing a post-quantum secure solution.

To formally define this strong model, we reuse a significant part of the syntax
from the previous section, since we also assume here that we have a recipient-
threshold scheme. The main difference is that in all algorithms, we eliminate
the double keys (since those do not exist here), and the sender’s signing key is
also not given to the recipient (e.g., it is hardware-protected on the eID). The
only secret information used in the signing algorithm is a public key for the
anamorphic subgroup of citizens, which we can compute using the algorithm
adkJ ← eTRAS.KCombine({pki}i∈J). Note that we assume citizens are allowed
to exchange their public keys. Another difference is in the IND-CPA experiment
for this new notion. We enable the adversary to specify the number of all citizens
n, the size of the anamorphic subgroup ℓ, the number Qcr ≤ ℓ of anamorphic
subgroup members it is allowed to compromise, and the number Qch ≤ n of
citizens it can investigate. Since the only “secret” is the anamorphic group J ,
the corruption query reveals a “global identifier” for one of the ℓ members, i.e.,
it gives a pointer for the adversary to the secret key of that member. On the
other hand, Qch that relates to a checking oracle allows the adversary to check if
a citizen identified via an index from 1 to n is part of the anamorphic subgroup.

Since we allow the adversary to pick the parameters (n, ℓ,Qcr, Qch), the
experiment checks if the adversary can trivially break CPA security. Note that
since we assume that all keys are known to the adversary, we need to assume
that the secret J has enough entropy. In other words, from the perspective of
the adversary, there need to be enough potential subgroup for the security to
hold. In the experiment, the adversary is also is allowed to pick message msg
and two challenge anamorphic messages amsg0 and amsg1 that the challenger
of the IND-CPA experiment uses to generate the challenge signature σb ←

16

eTRAS.Sign(skS , adkJ ,msg, amsgb). The rest of the experiment is similar to a
standard IND-CPA, i.e., the adversary must guess bit b.

Another significant difference is that because no secret can be shared between
group members, the only way to exchange information between the sender and
group members is to use rejection sampling, i.e., check that the signature encodes
the correct amsg (e.g., the last bits of signature match the amsg) by first creating
and then running Check(σa, amsg) = 1 and repeating the signing process otherwise.
To make this work, constructions of such a strong primitive need to ensure that
amsg can be viewed as pseudorandom bits; otherwise, an adversary can easily
distinguish the anamorphic signatures. This process only allows encoding short
messages amsg since to encode k bits we have to reject around 2k signatures.
We, therefore, extend the signing algorithm “sign” many messages {msg}i∈[κ]

at once, i.e., signers use {σi}i∈[κ] ← eTRAS.Sign(skS , adkJ , {msg, }i∈[κ], amsg) to
sign. The parameter κ will be scheme specific.

Interestingly, since the secret we use is the J , if all group members know
it, then a very efficient scheme exists without needing multiple recipients and
a threshold. Recipients can hash the J together with some random bits and
then let the sender transfer the anamorphic message xor-ed with the output of
the random oracle. The reason we define this primitive with multiple receives
is because, this way, the sender can be the only party knowing the entire group
J . Members can independently generate partial decryptions and later exchange
them by meeting in person or using other means of propagation. We provide
more details on the syntax and the security definitions below.

4.1 Syntax and Security

Below we introduce the syntax of an extended threshold-recipient anamorphic
signature scheme that differs from a TRAS scheme associated with a digital
signature scheme S = (S.KGen,S.Sign,S.Vf) and a pair of sender’s signing and
verification keys (pkS , skS)← S.KGen(1λ) in Definition 6.
J ← eTRAS.Select(1λ, n, ℓ) : The quorum selecting algorithm on input security

parameter 1λ the number of participants n and subgroup size ℓ, first verifies
that n > λ to ensure the security requirement is met and then outputs the
quorum J := {jk}ℓk=1 of size ℓ that specifies members of the group.

adkJ ← eTRAS.KCombine({pki}i∈J) : The quorum public key combine algo-
rithm that on input the public keys of members in quorum J , outputs
the combined sender double key adkJ that correspond to the quorum J .

pdeci ← eTRAS.Dec(ski, pk
S , σa) : A partial anamorphic decryption algorithm

that on input a secret key ski, the sender’s public key pkS , and an anamorphic
signature σa, outputs a partial decryption pdeci.

We say that an eTRAS scheme is correct if, for all public parameters 1λ, all
message pairs (msg, amsg), the following event holds:

Pr

 |J | = ℓ σa ← eTRAS.Sign(skS , adkJ ,msg, amsg)

amsg = amsg′ {pdeci ← eTRAS.Dec(ski, pk
S , σa)}i∈J

amsg′ ← eTRAS.Combine({pdeci}i∈J)

 = 1,

17

where the probability is over (pkS , skS) ← KGen(1λ) , and {(ski, pki)}ni=1 ←
KGen(1λ), and J ← eTRAS.Select(1λ, n, ℓ), and the random coins of eTRAS.Sign.

Definition 10 (Anamorphic). We say that an eTRAS scheme is anamorphic
if for all parameter 1λ, for any polynomial time algorithm A, the following holds:

AdvA
eTR-Anam(1

λ) ≤ negl(λ),

where AdvA
eTR-Anam(1

λ) =

∣∣∣∣∣Pr [ExpeTR-AnamA
AS(1

λ) = 1
]
−

1

2

∣∣∣∣∣ with the experi-

ment ExpeTR-Anam defined in Figure 5. The adversary first selects the parame-
ters (n, ℓ) and generates all keys (sender and recipient) for the citizen. We abort
the experiment when the guessing probability

(
n
ℓ

)
is trivial. The anamorphic sender

then chooses an anamorphic quorum J of size ℓ and computes the corresponding
double key for the quorum by executing adkJ ← eTRAS.KCombine({pki}i∈J).
The rest of the experiment is defined similarly as in ExpTR-Anam.

ExpeTR-AnamA
AS(1

λ)

(n, ℓ)← A(1λ)

if

(
n

ℓ

)
< 2λ then return ⊥

{(ski, pki)}
n
i=1 ← A(1λ, n, ℓ); (skS , pkS)← A(1λ)

J ← eTRAS.Select(1λ, n, ℓ)

adkJ ← eTRAS.KCombine({pki}i∈J)

b←$ {0, 1}

b′ ← AaSignb(sk, pk)

return b = b′

aSign0(msg, amsg)

σ ← S.Sign(skS ,msg, st)

return σ

aSign1(msg, amsg)

σ ← eTRAS.Sign(skS , adkJ ,msg, amsg)

return σ

Fig. 5. Anamorphic experiment ExpeTR-AnamA
AS.

Definition 11 (Semantic security). For an extended threshold-recipient
anamorphic signature scheme eTRAS and a stateful, polynomial time adversary
A, we define the anamorphic IND-CPA experiment ExpeTR-CPA as follows:
– Setup phase. The adversary A first specifies the number n of overall par-
ticipants and the size ℓ of the anamorphic group as well as the number of
queries Qcr, Qch to the Corr,Check oracles respectively. The challenger checks
whether the correct anamorphic group guessing probability for the adver-
sary is negligible. This is followed by the challenger forming the anamorphic
group J := {jk}ℓk=1 using the eTRAS.Select algorithm and computing the

group anamorphic key adkJ ← eTRAS.KCombine({pki}i∈J). We also let the
adversary A choose the signature key pair of every participant in the network.

– Query phase. The adversary A then interacts with the challenger using two
types of queries: key corruption queries and anamorphic signing queries.
• Corr(i) : This oracle reveals to A the identity of a member in the de-
termined anamorphic group and blocks further oracle access when the
number of corrupted members exceeds the predetermined threshold Qcr.

18

• Check(i) : This corruption oracle reveals to the adversary A whether the
user i belongs to the anamorphic group or not. The oracle blocks access
when the number of queries reaches Qch.
• aSign(msg, amsg) : This oracle is defined as in the ExpTR-CPA.

– Challenge phase. The adversary A, given the list of corrupted group mem-
ber Jcr, determines a message msg to be signed by the challenger and two
anamorphic messages (msg0,msg1). The challenger in the experiment chooses
a random bit b and executes the anamorphic signing algorithm on the message
msg and the corresponding anamorphic message amsgb using the anamorphic
key adkJ . Finally, the challenger sends the anamorphic signature σb to A.

– Output phase. The adversary A outputs a guess b′ on the chosen bit b.

We say that an eTRAS scheme has anamorphic semantic security if, for all
parameter 1λ, for any polynomial-time algorithm A, with Qcr queries to the oracle
Corr and Qch queries to the oracle Check, the following holds: AdvA

eTR-CPA(1
λ) ≤

negl(λ), where AdvA
eTR-CPA(1

λ) =

∣∣∣∣∣Pr [ExpeTR-CPAA
TRAS(1

λ) = 1
]
−

1

2

∣∣∣∣∣ with the

experiment ExpeTR-CPA defined in Figure 6.

ExpeTR-CPAA
eTRAS(1

λ)

Jcr ← ∅; cnt← 0; (n, ℓ,Qcr, Qch)← A(1λ)

if

(
n−Qcr −Qch

ℓ−Qcr − λ

)
< 2λ then

return ⊥

{(ski, pki)}
n
i=1 ← A(1λ, n, ℓ)

(skS , pkS)← A(1λ)

J ← eTRAS.Select(1λ, n, ℓ)

adkJ ← eTRAS.KCombine({pki}i∈J)

({msg, }i∈[κ], amsg0, amsg1)← A
Corr,Check,aSign(Jcr)

b←$ {0, 1}

{σb,i}i∈[κ] ← eTRAS.Sign(skS , adkJ , {msg, }i∈[κ], amsgb)

b′ ← ACorr,Check,aSign({σb,i}i∈[κ])

return b = b′

Corr(i)

Parse:{jk}ℓk=1 := J
if i /∈ [ℓ] or |Jcr| >= Qcr − 1 then return ⊥
Jcr ← Jcr ∪ {ji}
return ji

Check(i)

if cnt > Qch then return ⊥
cnt← cnt+ 1

if i ∈ J then return 1

else return 0

aSign(msg, amsg)

σ ← eTRAS.Sign(skS , adkJ ,msg, amsg)

return σ

Fig. 6. IND-CPA security experiment ExpeTR-CPAA
eTRAS for eTRAS.

4.2 Strongly Secure Recipient-Threshold Anamorphic Signatures

We show how to instantiate this strong model with simple cryptographic prim-
itives. The construction relies on a non-deterministic signature scheme S =
(S.KGen,S.Sign,S.Vf) that allows for the mentioned rejection sampling technique.

In the key generation algorithm eID.KGen of the eID, we assume that user is
given a keypair (skS, pkS) for the scheme S and receives a DH keypair (skDH, pkDH =
gskDH). To align with the model, we permit (skS, pkS) to be generated by A. How-
ever, given that DH key generation is a supported functionality within the eID

19

and is required for correct operation, we allow these DH keys to be generated
honestly by the sender rather than by the dictator.

To send an anamorphic message to the anamorphic subgroup J , the signer
first computes the public key adkJ =

∏
i∈J pki,DH. Given this public key, it

computes random bits r ←$ {0, 1}ℓq+λ, where ℓq is the bit size of the order
q of the DH group. The signer then computes rq = r mod q and the share

key K = (adkJ)rq·skS,DH . Note that we use the DH keys in a key encapsulation
mechanism for K, where the recipients will share their partial decapsulation
values. The key K is the hashed using a random oracle and used as a one-time
pad for the anamorphic message ct = H(K)⊕ amsg. The message encoded in the
signature S is amsg′ = (r, ct).

Each recipient decodes amsg′ from the sender’s message and computes its
share as pdeci = ((pkS,DH)

rq·ski,DH , ct). The recipients also include the ciphertext
ct in the partial decryptions. Note that this is only for the consistency of the
algorithms. In an actual implementation, the ciphertext ct would be retained by
each recipient and later used together with all other partial decryptions. The
anamorphic group member can then use the same rejection sampling technique
to broadcast pdeci to others. Once all partial values are known, the members can
compute the key K =

∏
i∈J sharei, where pdeci = (sharei, ct) and decrypt the

anamorphic message of the sender by computing amsg = ct⊕ H(K).

Before we go into the details in Figure 7 we define three algorithms Encode,
Decode, Check. We first define the Check function that takes as input a signature
σa
i and short anamorphic message amsgi and checks if amsgi corresponds to

some bit on predetermined positions. By re-signing the actual message msgi, we
receive a fresh σa

i , and the Check function can be used to implement the rejection
sampling idea [36]. Note that the number of bits checked in this function influences
the number of re-signing we have to do, i.e., the size of ℓaσ = σa

i needs to be small
so that 2ℓ

a
σ is feasible computation for the sender. Unfortunately, the anamorphic

message amsg′ = (r, ct) in our scheme is long and cannot directly be encoded
into a single signature. We, therefore, will use the function Encode(amsg′) to
decompose amsg′ into smaller chunks amsg1, . . . , amsgκ. The decoding algorithm
Decode will take as input all amsgi chunks and output the full anamorphic
message amsg′. Encode and Decode are functions that truncate and combine bits.
This is possible since, contrary to the original idea of rejection sampling [36],
the anamorphic message in our scheme consists of a bit string indistinguishable
from a uniformly random string in the adversary’s view. The original rejection
sampling idea used a keyed PRF to “encode” a bit string with non-uniform
distribution into an indistinguishable from uniform one. However, in our scheme,
citizens do not share additional keys (i.e., double keys); we can only use this
technique with amsg′ distributed indistinguishable from uniform bit strings.

Theorem 4. The construction in Figure 7 is correct and anamorphic.

Theorem 5. The construction in Figure 7 is IND-CPA secure according to Def-
inition 11. More formally, for any polynomial-time adversary A making at most

20

Let H be a random oracle with output space {0, 1}ℓm with ℓm(λ). The anamorphic
message space is defined as {0, 1}ℓm . Let S = (KGen, Sign,Vf) be a digital signature
scheme for which rejection sampling and truncating with (Check,Encode,Decode)
works. Moreover, let us define a Diffie-Hellman group G (in multiplicative notation)
with generator g or order q with bit size ℓq. We denote the number of chunks
generated by Encode for a message amsg′ ∈ {0, 1}ℓq+2·λ as κ.

eID.KGen(1λ, n, t)

for i = 1 to n do :

(ski,S, pki,S)← S.KGen(1λ)

ski,DH ←$ Z∗
q

pki,DH = gski,DH

(ski, pki) = ((ski,S, ski,DH), (pki,S, pki,DH))

return {(ski, pki)}i∈[n]

eTRAS.Sign(skS , adkJ , {msgi}i∈[κ], amsg)

r ←$ {0, 1}ℓq+λ

rq = r mod q

K = (adkJ)rq·skS,DH

ct = H(K)⊕ amsg

amsg′ = (r, ct)

amsg1, . . . , amsgκ ← Encode(amsg′)

for i = 1 to κ do :

do

σa
i ← S.Sign(skS ,msgi)

while Check(σa
i , amsgi) = 0

return σa = (σa
1, . . . , σ

a
κ)

eTRAS.Dec(ski, pk
S , σa)

(σa
1, . . . , σ

a
κ) = σa

for i = 1 to κ do :

amsgi ← Decode(σa
i)

(r, ct) = (amsg1, . . . , amsgκ)

rq = r mod q

return pdeci =
(
(pkS)rq·ski,DH , ct

)
eTRAS.KCombine({pki}i∈J)

if |J | < ℓ then return ⊥

adkJ =
∏
i∈J

pki,DH

return adkJ

eTRAS.Combine({pdeci}i∈J)

if |J | < ℓ then return ⊥
for i = 1 to ℓ do

(sharei, ct) = pdeci

K =
∏
i∈J

sharei; amsg← ct⊕ H(K)

return amsg

Fig. 7. Strongly Secure Threshold-Receiver Anamorphic Signature Scheme.

qh queries to oracle H, the following holds:

ExpeTR-CPAA
eTRAS(1

λ) ≤ qh · (1/bino+ 1/q) + q2h/2
ℓm ,

where bino =
(
n−Qcr−Qch

ℓ−Qcr−λ

)
, (n, ℓ,Qcr, Qch) are the parameters output by A in the

ExpeTR-CPA experiment and assuming Qch · (ℓ−Qcr)/(n−Qcr −Qch) < 1 and
q is the order of the group G generated by g.

We deferred all omitted proofs to Appendix E.
Remark 1. Let us assume that the number of citizens is n = 220 (≈ 1 mln) and
the dictator can check around 1/4 of the whole population n, i.e., Qch = n/4, and
can corrupt the same amount of anamorphic members Qcr = ℓ/4. We then have

bino =
(
n−n/4−ℓ/4
ℓ−ℓ/4−λ

)
=
(
3n/4−ℓ/4
3ℓ/4−λ

)
. For λ = 128 and qh = 2λ, 512-bit anamorphic

message, the group must only be of size ℓ = 192 to achieve 128-bit security.

5 Threshold-Sender Anamorphic Signatures

We investigate the concept of a threshold-sender anamorphic signature scheme,
or in other words, a primitive that seeks to embed a secret anamorphic message
within a threshold signature framework. The motivation for adding anamorphism

21

to a threshold signature setting is that anamorphic users can hide their identities,
even if the signature is suspected of containing such a message. Since a group
of signers produces a threshold signature, any user embedding the anamorphic
message can hope to remain anonymous within that group. However, embedding
a hidden message in a threshold signature introduces significant challenges. In
addition to making the signature appear ordinary to outsiders, the anamorphic
message must remain secure and correctly embedded, even in the presence of
corrupted signers who could compromise the signing process.

A key challenge in formalizing the concept of a threshold-sender anamorphic
signature (TSAS) lies in dealing with signer corruption. Threshold signatures are
inherently designed to tolerate the corruption of signers up to a certain threshold,
and this property should extend to TSAS. However, in TSAS, the corruption of
the sender immediately compromises the anamorphic message, particularly in
symmetric schemes where the same double key is used for both encryption and
decryption. To address this, we propose a model where corrupted signers can
still use the ordinary signing algorithm, while honest signers use the anamorphic
signing algorithm to inject the anamorphic message. This model is designed to
preserve the confidentiality of the anamorphic message even in the presence of
corrupt signers. We next present the syntax of TSAS in Section 5.1, followed by
a detailed discussion of the security requirements in Section 5.2.

In the end, we come up with a conclusion that constructing such a TSAS
scheme is impossible within a broad class of efficient, standardizing-candidate
threshold signature schemes: the two-round FROST (see Section 5.3), the three-
round Sparkle (see Appendix D.3), a multi-signature MuSig2 (see Appendix D.2)
and even the three-round lattice-based TRaccoon (see Appendix D.4).

5.1 Threshold-sender Anamorphic Signature Syntax

Let n be the number of users in the network and t be the threshold. The formal
syntax and correctness definition of TSAS is given in Definitions 12 and 13.

Definition 12 (Threshold-sender Anamorphic Signature Scheme). A
two-round threshold-sender anamorphic signature scheme TSAS = (TSAS.KGen,
TSAS.Sign1,TSAS.Sign2,TSAS.Combine,TSAS.Dec) associated with a threshold
signature scheme TS = (TS.KGen,TS.Sign,TS.Combine,TS.Vf) and a list of sign-
ing and verification keys (pk, sk1, . . . , skn)← TS.KGen(1λ, n, t) of the threshold
signature scheme, consists of the following p.p.t. algorithms:
(adkS , adk)← TSAS.KGen(1λ, n, t) : A key generation algorithm that on input

security parameter 1λ, a number of participants and a threshold t, outputs a
double key adkS for the sender and a double key adk for the recipient.

(msgi,1,Sti,1)← TSAS.Sign1(ski,msg, amsg,J , adkS) : on input a secret key ski,
a message msg, an anamorphic message amsg, a subset J of indices and a
sender double key adkS, returns a state Sti,1 and a first message msgi,1 to be
sent during round 1 of the protocol to all signers in J \ {i}.

si ← TSAS.Sign2(Sti,1, {msgj,1}j∈J\{i}) : a deterministic algorithm on input a
state Sti,1 and incoming messages {msgj,1}j∈J\{i}, outputs a share si. Since

22

amsg and adkS were already stored in the state Sti,1 during the execution of
TSAS.Sign1, the algorithm is permitted to omit these values as explicit inputs
and instead provide them implicitly through Sti,1.

{σa,⊥} ← TSAS.Combine(pk, si1 , . . . , sit) : A share combination algorithm that
on input the public key pk of the threshold signature scheme and a set of
signature shares (si1 , . . . , sit), outputs either a signature σ or ⊥. For the
anamorphic setting, TSAS.Combine and TS.Combine should be identical and
can be used interchangeably.

amsg ← TSAS.Dec(adk, σa) : an anamorphic decryption algorithm on input a
signing key sk, a recipient’s double key adk and an anamorphic signature σa,
outputs an anamorphic message amsg.

Remark 2. Since both TSAS.Sign1,2 are executed locally by the anamorphic sender,
it is permitted to embed the anamorphic message in both algorithms. This syntax
maximizes the sender’s capacity for anamorphic embedding.
Definition 13. We say that a TSAS scheme is correct if for all public parameters
1λ, all message pairs (msg, amsg) in the associated message space, all positive
integers n, t such that t ≤ n, the following event holds:

Pr

msgi,1 ← TSAS.Sign1(sk,msg, amsg,J , adkS),∀i ∈ J

|J | ≥ t si ← TSAS.Sign2(Sti,1, {msgj,1}j∈J\{i}),∀i ∈ J
amsg = amsg′ σa ← TSAS.Combine(pk, {sj}j∈J)

amsg← TSAS.Dec(sk, adk, σa)

 = 1,

where the probability is over (pk, sk1, . . . , skn)←$ TS.KGen(1λ, n, t), (adkS , adk)←
TSAS.KGen(1λ, n, t) and the random coins of TSAS.Sign.

5.2 TSAS Indistinguishability with Corruptions

Adversary Model. In our setting, we examine an adversarial model in which
we establish an impossibility result. To strengthen this impossibility result to the
greatest extent, we limit the power and the malicious behaviors of the adversary
as much as possible. The motivation is that, even when the dictator acts solely as
a passive signer (who signs any given message), the anamorphic sender still cannot
embed the anamorphic message within the signature without being noticed.

The adversary is allowed to choose one secret key skk and specifies a signing
quorum J at the beginning. We model the case in which it actively participates
in the signing protocol. We highlight some insights for the adversary as follows.

Predefined Corruption . We stress that it must declare the index of the corrupted
signer beforehand. Otherwise, it leads to a trivial attack where the adversary
could corrupt a signer running an anamorphic signing algorithm, extract the
double key, and distinguish it from those using the normal signing algorithm.

Semi-honest Adversary . We follow the semi-honest adversary model introduced
in [24]. In this setting, we consider only a semi-honest adversary who follows
the protocol (e.g., using the standard signing algorithm). This rules out trivial
denial-of-service attacks on the standard threshold signature, i.e., preventing the
protocol from outputting a valid signature.

23

Rushing Adversary . We follow the rushing adversary model introduced in [14,38].
In the same round, A waits for the other signers to send their respective responses
before sending its own. By responding afterward, A is able to act adaptively
based on the other signers’ messages.

Quorum size is strictly controlled . In this setting, we enforce the size of the
signing quorum to be exactly equal to the threshold t of the TS scheme. If the
quorum’s size is smaller than the threshold, the quorum trivially is incapable
of signing. On the other hand, if the quorum’s size is larger than the threshold,
the honest signers can always form a sub-quorum that excludes the adversary
while still issuing a valid signature. This setup ensures that the adversary must
actively participate in the signing protocol to have an influence.

Security Model. We formalize two properties: malicious correctness and anamor-
phic indistinguishability in Definition 14 and Definition 15. To add more details,
both experiments are parameterized by (n, t), and the threshold key generation
is executed honestly. The sender then executes TSAS.KGen to retrieve the double
keys and send the other double key to the receiver (only in the anamorphic
experiment for the indistinguishability model). Also, similar to a requirement in
most of the threshold signature schemes [30,39], we only allow at most one query
to signer i in the second round, enforcing by using the set Si,1. Finally, oracle
access remains the same as in the standard setting, except that in anamorphic
oracles, we replace TS.Signj with its corresponding TSAS.Signj variant.

Definition 14 (Malicious correctness). We say that an TSAS scheme has
malicious correctness (or correctness with corruptions) if for all 1λ, for any p.p.t
A, for all threshold parameter (n, t), the following holds: AdvA

TS-Correct(1
λ, n, t) ≤

negl(λ), where AdvA
TS-Correct(1

λ, n, t) =
∣∣∣Pr [ExpTS-CorrectATSAS(1λ, n, t) = 1

]∣∣∣
with the experiments ExpTS-Correct defined in Figure 8.

ExpTS-CorrectATSAS(1
λ, n, t)

(pk, sk1, . . . , skn)← TS.KGen(1λ, n, t)

(Cor, k,msg∗, amsg∗)← A(pk);

(adkS , adk)← TSAS.KGen(1λ, n, t)

if Cor ̸⊂ [n] or |Cor| ≠ t or k /∈ Cor then :

Abort

for i ∈ [n] \ Cor do

msgi,1, Sti,1 ← TSAS.Sign1(ski,msg, amsg,J , adkS)
{msgi,1}i∈Cor ← A({msgi,1}i∈[n]\Cor)

for i ∈ [n] \ Cor do
si ← TSAS.Sign2(Sti,1, {msgj,1}j∈J\{i})

{σa,⊥} ← TSAS.Combine(pk, si1 , . . . , sit)

return TSAS.Dec(adk, σa) ̸= amsg∗

Fig. 8. Malicious correctness experiment ExpTS-CorrectATSAS for TSAS .

We can trivially send anamorphic messages by adding ciphertext to threshold
signatures, but then the dictator can distinguish such an anamorphic signature

24

from “real” ones. Therefore, we need to formalize the concept of anamorphism in
the threshold setting into the indistinguishability of the two following games. First,
a real game in which the adversary receives keys generated by and interactively
signs within algorithms of a TS scheme. Second, an anamorphic game in which
algorithms of TSAS generate additional double keys and signing messages.

We refer to the beginning of Section 5.2 for the adversary model.

Definition 15 (Threshold-sender anamorphic indistinguishability). We
say that an TSAS scheme has anamorphic indistinguishability if for all 1λ, for
all threshold parameter (n, t), for any p.p.t. algorithm D, the following holds:

AdvD
TS-Anam(1

λ, n, t) ≤ negl(λ),

where AdvD
TS-Anam(1

λ, n, t) =
∣∣∣Pr [ExpTS-RealDTSAS(1λ, n, t) = 1

]
− Pr

[
ExpTS-AnamD

TSAS(1
λ, n, t) = 1

]∣∣∣
with the experiments ExpTS-Real and ExpTS-Anam defined in Figure 9.

ExpTS-RealDTSAS(1
λ, n, t)

(pk, sk1, . . . , skn)← TS.KGen(1λ, n, t)

(Cor, k)← D(pk);
if Cor ̸⊂ [n] or |Cor| ̸= t or k /∈ Cor then :

Abort

d← DOSign1,OSign2(pk, skk)

OSign1 (i,msg, amsg,J)

sidi ← sidi + 1; k ← sidi; Si,1 ← Si,1 ∪ {sidi}
(Sti,1,msgi,1)← TS.Sign1(ski,msg,J)
return msgi,1

OSign2(i, k′, {msgj,1}j∈J\{i})

if k′ ̸∈ Si,1 then return 0

Si,1 ← Si,1 \ {k′};

sk
′

i ← TS.Sign2(Sti,1, {msgj,1}j∈J\{i})

return sk
′

i

ExpTS-AnamD
TSAS(1

λ, n, t)

(pk, sk1, . . . , skn)← TS.KGen(1λ, n, t)

(Cor, k)← D(pk);
if Cor ̸⊂ [n] or |Cor| ≠ t or k /∈ Cor then :

Abort

(adkS , adk)← TSAS.KGen (1λ, n, t)

d← D
OSigna1 ,OSigna2 (pk, skk)

OSigna1 (i,msg, amsg,J)

sidi ← sidi + 1; k ← sidi; Si,1 ← Si,1 ∪ {sidi}

(Sti,1,msgi,1)← TSAS.Sign1 (ski,msg, amsg ,J , adkS)

return msgi,1

OSigna2 (i, k′, {msgj,1}j∈J\{i})

if k′ ̸∈ Si,1 then return 0

Si,1 ← Si,1 \ {k′};

sk
′

i ← TSAS.Sign2 (Sti,1, {msgj,1}j∈J\{i})

return sk
′

i

Fig. 9. TSAS security experiments ExpTS-RealDTSAS and ExpTS-AnamD
TSAS.

In Sections 5.3, D.2 - D.4, we present the impossibility of constructing TSAS
schemes associated with multiple state-of-the-art threshold signature schemes.
Our results rule out an entire class of anamorphic embedding techniques that
embed anamorphic messages within the output signatures, thereby excluding the
random-coin embedding subclass (Figure 1) as well.

25

5.3 FROST

FROST is a Schnorr threshold signature scheme initially proposed by Komlo
and Goldberg. It is currently undergoing standardization by the IETF [12] and
NIST [33], with multiple independent implementations already done. FROST’s
signature protocol is semi-interactive and has well-studied optimizations.

We choose the FROST3 [39] variant for presentation, but in fact, the results in
this subsection immediately work for other variants of FROST as well. A concrete
description for FROST3 is provided in Figure 16.Briefly, the scheme consists
of two rounds in which signers distributedly compute: (1) D and E that later
combines to the nonce R = DEb with some binding coefficient b; and (2) the
response s of the final Schnorr signature (R, s).

Theorem 6. FROST3 is not anamorphic. In particular, there is no threshold-
sender anamorphic signature scheme associated with FROST3 as in Definition 12
that is maliciously correct and has anamorphic indistinguishability.

The theorem holds for any choice of (n, t), in which the dictator only needs to
compromise only ONE single party (|Cor| = 1). For the sake of simplicity, WLOG,
we only present the case n = t = 2; however, the proof extends straightforwardly
to any parameters (n, t) of a FROST3 threshold signature scheme.

Sketch proof. We outline the proof intuition as follows: assuming FROST3
satisfies anamorphic indistinguishability, we subsequently demonstrate that it fails
to achieve malicious correctness, thereby preventing the sender from embedding
the anamorphic message in the final signature. We consider a semi-honest, rushing
adversary A. Assuming anamorphic indistinguishability, the malicious correctness
of the anamorphic FROST3 can be deduced solely by analyzing the structure of
the standard version, as the two schemes must behave similarly. The impossibility
arises from the fact that the final signature σ appears to be a valid Schnorr
signature under the joint public key, making its output distribution unpredictable
to the honest signer (Lemma 2). Since the signer must assign each signature to
a decryption label (e.g., 0 or 1), and these labels must partition the signature
space, any such labeling maps at most half of the signatures to a given message.
But because the signer cannot predict the final signature, since a rushing A
can always add a signature share that acts as random noise on the combined
anamorphic shares, it must abort with probability at least 1/2 to maintain
decryption correctness - a behavior noticeable to the dictator. It is worth noting
that this strategy may be viewed as a general framework for assessing the
feasibility of transforming a threshold signature scheme into its sender-anamorphic
counterpart. The evaluation relies solely on analyzing whether the signature
output distribution of the underlying standard scheme is unpredictable or not.

Lemma 1. FROST3 is signature-preserving as in Definition 4.

Proof of Lemma 1. Define the following algorithms TS.SkAgg and TS.StAgg

TS.SkAgg({ski}i∈J) :=
∑
i∈J

Λiski; TS.StAgg({(di, ei)}i∈J) :=
∑
i∈J

di + b
∑
i∈J

ei

26

where Λi = Lagrange(J , i) and b ← Hnon(X,J , (g
∑

i∈J di , g
∑

i∈J ei),msg). A
simple calculation shows that Equation (1) holds.

Lemma 2. There exists D in the real experiment ExpTS-RealDTSAS(1
λ, n, t) de-

fined in Definition 15 such that, for every security parameter 1λ, for every quorum
J , and for all messages msg and anamorphic messages amsg, the resulting sig-
nature σ has a distribution Dist0, which is perfectly indistinguishable from the
distribution of Schnorr signatures Dist1 = {σ | r ←$ Zq} under the joined key
x = TS.SkAgg({ski}i∈J), where σ ← r + cx and c← H(gx, gr,msg).

Proof. From Lemma 1, the final signature σ can be rewritten as a standard
Schnorr signature σ ← r+cx where r = d1+d2+(e1+e2)b, b← Hnon(X,J , ρ,msg)
and x is the DL of the combined public key X. As (d2, e2) is uniform over Zq

and only known after (d1, e1) is fixed, (d1 + d2) and (e1 + e2) are uniform over
Zq. As Hnon is modeled as a random oracle, b is uniform over Zq and so is r.

Intuitively, this lemma tells us that only a rushing adversary can make the
threshold signature unpredictable to honest signers. In the proof of Theorem 6
below, we show that the adversary can similarly influence the distribution of the
anamorphic signature.

Proof of Theorem 6. Let TSAS be a threshold sender anamorphic signature
scheme associated with FROST3. Assume that TSAS has anamorphic indis-
tinguishability. We prove this theorem by constructing an adversary A against
the malicious correctness of TSAS. A controls signer S2, while S1 is honest, act-
ing as an anamorphic sender. S2 starts two signing executions on (msg1, amsg1)
and (msg2, amsg2) even chosen by honest signer S1. A controls S2 to follow the
protocol almost perfectly, except that it always sends its first-round message after
S1 does. We will show that the only possibility for the correctness equation to
hold for both executions is that S1 aborts at least one execution, with probability
at least 1/2.

Fix one execution among the two above. Let (ma
1,1,m

a
1,2) be the first-round

and second-round messages of S1 using TSAS.Sign1 and TSAS.Sign2. Assuming
anamorphic indistinguishability, we deduce that (ma

1,1,m
a
1,2) must be of the

form: (i) ma
1,1 = (D1, E1) where D1, E1 ∈ G close to uniform distribition; and

(ii) ma
1,2 = s1 ∈ Zq satisfying partial verification (gs1 = D1E

b
1pk

cΛ1
1). In other

words, these messages from anamorphic signing oracles are computationally
indistinguishable from those output from TS.Sign1 and TS.Sign2.

Therefore, if we construct A exactly as D in Lemma 2, but acting in
ExpTS-AnamD

TSAS(1
λ, n, t), the lemma holds for the resulting anamorphic sig-

nature σa as well, i.e.,

Pr[amsgi ← TSAS.Dec(σa
i) |σa

i ← A]

=Pr
[
amsgi ← TSAS.Dec(σa

i)
∣∣σa

i ← Sign(sk,msg; ri), ri ←$ Zq

]
+ negl(λ)

27

for i = 1, 2 and S = (KGen,Sign,Vf) being the Schnorr digital signature scheme.
Define the right-hand side by Pr[Ei] for i = 1, 2. As E1 and E2 are mutually
exclusive events w.r.t. two distinct amsg1 and amsg2. Then we have either
Pr[E1] < 1/2 + negl(λ) or Pr[E2] < 1/2 + negl(λ). Assume the former holds, σa

does not decrypt to amsg1 with probability at least 1/2− negl(λ), except that S1

aborts.

6 Discussion

Anamorphism Implies CPA. One of the observations made in the original
anamorphic signature paper [28] is that anamorphism implies CPA security. In
the CPA experiment, the adversary provides two anamorphic messages, and while
given the anamorphic signature, the adversary must decide which signatures are
hidden inside the signature. It is easy to see that CPA uses hybrid arguments
based on the anamorphism property. In other words, one can first replace the
signature in the CPA experiment with a standard one without anamorphism.
The adversary cannot notice this change since otherwise, it would be able to
distinguish standard from anamorphic signatures. In the next step, we replace
the standard signature with an anamorphic one, hiding the other message.

Unfortunately, the same argumentation does not work for TRAS. The main
reason is that in the CPA experiment, we now provide the adversary with a
corruption oracle that leaks double keys. While the above idea works for standard
anamorphic signatures, it might be the case for some schemes that an adversary
can distinguish a standard signature from an anamorphic signature with just one
double key. A different view on this could be to look at a standard anamorphic
signature as a threshold scheme with one recipient, and then the corruption oracle
cannot work since the threshold is one user. In other words, if we did not provide
a corruption oracle in the CPA definition of threshold-recipient anamorphic
signatures, then CPA would directly be implied by anamorphism.

Potential Side Channel Attack for TRAS. A potential threat to TRAS
is side-channel attack. While the security analysis assumes the adversary has
access to the output signature and keys, it overlooks the fact that, in real-world
scenarios, the adversary may exploit metadata to compromise the anamorphism.
A key observation is that the computational workload of the TRAS signing
algorithm is substantially more than that of a standard signature, resulting in a
significant increase in signing time. This arises from the need for the sender to
encrypt the anamorphic message amsg using primitives like threshold encryption,
which is more computationally expensive than generating fresh random coins.
Thus, a powerful dictator with a mass oversight system or malware devices can
benchmark citizens’ signing times, enabling a breach of the anamorphic property.
To address this issue, one can precompute the anamorphic ciphertext or utilize
efficient symmetric primitives while shifting the workload to the recipient’s side.

7 Conclusion

Anamorphic signatures let users use signatures to communicate covertly when
there are restrictions placed on encryption technologies. Prior solutions let signers

28

transmit covert messages to individual recipients which is prone to failures
when an authoritarian entity compromises the recipient. This work studies how
threshold cryptography might address the problem and explores different settings,
presenting an initial characterization of the feasibility regime. In doing so, we
also present stronger adversarial models where even the secret keys of users are
fully controlled by the adversary. However, a full characterization of anamorphic
threshold signatures remains open as we only consider a restricted class of
techniques that embed messages in the randomness of signatures. Going beyond
signatures, an interesting direction of research is to study other cryptographic
objects in daily use that offer support for anamorphic messaging.

References

1. Atzei, N., Bartoletti, M., Lande, S., Zunino, R.: A formal model of bitcoin trans-
actions. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 541–
560. Springer, Berlin, Heidelberg (Feb / Mar 2018). https://doi.org/10.1007/
978-3-662-58387-6_29

2. Banfi, F., Gegier, K., Hirt, M., Maurer, U., Rito, G.: Anamorphic encryption,
revisited. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024, Part II. LNCS,
vol. 14652, pp. 3–32. Springer, Cham (May 2024). https://doi.org/10.1007/
978-3-031-58723-8_1

3. Bendlin, R., Damg̊ard, I.: Threshold decryption and zero-knowledge proofs for
lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 201–218. Springer, Berlin, Heidelberg (Feb 2010). https://doi.org/10.1007/
978-3-642-11799-2_13

4. Boneh, D., Ding, X., Tsudik, G., Wong, C.M.: A method for fast revocation of
public key certificates and security capabilities. In: Wallach, D.S. (ed.) USENIX
Security 2001. USENIX Association (Aug 2001)

5. Braun, L., Damg̊ard, I., Orlandi, C.: Secure multiparty computation from thresh-
old encryption based on class groups. In: Handschuh, H., Lysyanskaya, A. (eds.)
CRYPTO 2023, Part I. LNCS, vol. 14081, pp. 613–645. Springer, Cham (Aug 2023).
https://doi.org/10.1007/978-3-031-38557-5_20

6. Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem secure
against adaptive chosen ciphertext attack. In: Stern, J. (ed.) EUROCRYPT’99.
LNCS, vol. 1592, pp. 90–106. Springer, Berlin, Heidelberg (May 1999). https:
//doi.org/10.1007/3-540-48910-X_7

7. Catalano, D., Giunta, E., Migliaro, F.: Anamorphic encryption: New constructions
and homomorphic realizations. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024,
Part II. LNCS, vol. 14652, pp. 33–62. Springer, Cham (May 2024). https://doi.
org/10.1007/978-3-031-58723-8_2

8. Catalano, D., Giunta, E., Migliaro, F.: Limits of black-box anamorphic encryption.
In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024, Part II. LNCS, vol. 14921, pp. 352–
383. Springer, Cham (Aug 2024). https://doi.org/10.1007/978-3-031-68379-4_
11

9. CBP: Border search of electronic devices at ports of entry. United
States Customs and Border Protection (2024), https://www.cbp.gov/travel/

cbp-search-authority/border-search-electronic-devices

29

https://doi.org/10.1007/978-3-662-58387-6_29
https://doi.org/10.1007/978-3-662-58387-6_29
https://doi.org/10.1007/978-3-031-58723-8_1
https://doi.org/10.1007/978-3-031-58723-8_1
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-031-38557-5_20
https://doi.org/10.1007/3-540-48910-X_7
https://doi.org/10.1007/3-540-48910-X_7
https://doi.org/10.1007/978-3-031-58723-8_2
https://doi.org/10.1007/978-3-031-58723-8_2
https://doi.org/10.1007/978-3-031-68379-4_11
https://doi.org/10.1007/978-3-031-68379-4_11
https://www.cbp.gov/travel/cbp-search-authority/border-search-electronic-devices
https://www.cbp.gov/travel/cbp-search-authority/border-search-electronic-devices

10. CBSA: Examining personal digital devices at the canadian border. Canada
Border Services Agency (2024), https://www.cbsa-asfc.gc.ca/travel-voyage/
edd-ean-eng.html

11. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO’92. LNCS, vol. 740, pp. 89–105. Springer, Berlin, Heidelberg (Aug 1993).
https://doi.org/10.1007/3-540-48071-4_7

12. Connolly, D., Komlo, C., Goldberg, I., Wood, C.A.: Two-Round Threshold
Schnorr Signatures with FROST. Internet-Draft draft-irtf-cfrg-frost-15, Inter-
net Engineering Task Force (Sep 2023), https://datatracker.ietf.org/doc/

draft-irtf-cfrg-frost/15/, work in Progress

13. Cremers, C., Loss, J., Wagner, B.: A holistic security analysis of Monero trans-
actions. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024, Part III. LNCS,
vol. 14653, pp. 129–159. Springer, Cham (May 2024). https://doi.org/10.1007/
978-3-031-58734-4_5

14. Crites, E.C., Komlo, C., Maller, M.: Fully adaptive Schnorr threshold signa-
tures. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part I. LNCS,
vol. 14081, pp. 678–709. Springer, Cham (Aug 2023). https://doi.org/10.1007/
978-3-031-38557-5_22

15. Dao, Q., Miller, J., Wright, O., Grubbs, P.: Weak fiat-shamir attacks on modern
proof systems. In: 2023 IEEE Symposium on Security and Privacy. pp. 199–216.
IEEE Computer Society Press (May 2023). https://doi.org/10.1109/SP46215.
2023.10179408

16. De Feo, L., Delpech de Saint Guilhem, C., Fouotsa, T.B., Kutas, P., Leroux, A.,
Petit, C., Silva, J., Wesolowski, B.: Séta: Supersingular encryption from torsion
attacks. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS,
vol. 13093, pp. 249–278. Springer, Cham (Dec 2021). https://doi.org/10.1007/
978-3-030-92068-5_9

17. del Pino, R., Katsumata, S., Prest, T., Rossi, M.: Raccoon: A masking-friendly sig-
nature proven in the probing model. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024,
Part I. LNCS, vol. 14920, pp. 409–444. Springer, Cham (Aug 2024). https:

//doi.org/10.1007/978-3-031-68376-3_13

18. Desmedt, Y.: Society and group oriented cryptography: A new concept. In: Pomer-
ance, C. (ed.) CRYPTO’87. LNCS, vol. 293, pp. 120–127. Springer, Berlin, Heidel-
berg (Aug 1988). https://doi.org/10.1007/3-540-48184-2_8

19. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO’89. LNCS, vol. 435, pp. 307–315. Springer, New York (Aug 1990).
https://doi.org/10.1007/0-387-34805-0_28

20. Devevey, J., Libert, B., Nguyen, K., Peters, T., Yung, M.: Non-interactive CCA2-
secure threshold cryptosystems: Achieving adaptive security in the standard model
without pairings. In: Garay, J. (ed.) PKC 2021, Part I. LNCS, vol. 12710, pp. 659–690.
Springer, Cham (May 2021). https://doi.org/10.1007/978-3-030-75245-3_24

21. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: Crystals-dilithium: A lattice-based digital signature scheme. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2018, 238–268 (2018), https://api.semanticscholar.
org/CorpusID:3593118

22. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196,
pp. 10–18. Springer, Berlin, Heidelberg (Aug 1984). https://doi.org/10.1007/
3-540-39568-7_2

30

https://www.cbsa-asfc.gc.ca/travel-voyage/edd-ean-eng.html
https://www.cbsa-asfc.gc.ca/travel-voyage/edd-ean-eng.html
https://doi.org/10.1007/3-540-48071-4_7
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/15/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/15/
https://doi.org/10.1007/978-3-031-58734-4_5
https://doi.org/10.1007/978-3-031-58734-4_5
https://doi.org/10.1007/978-3-031-38557-5_22
https://doi.org/10.1007/978-3-031-38557-5_22
https://doi.org/10.1109/SP46215.2023.10179408
https://doi.org/10.1109/SP46215.2023.10179408
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-031-68376-3_13
https://doi.org/10.1007/978-3-031-68376-3_13
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/978-3-030-75245-3_24
https://api.semanticscholar.org/CorpusID:3593118
https://api.semanticscholar.org/CorpusID:3593118
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/3-540-39568-7_2

23. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation
for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT’99. LNCS,
vol. 1592, pp. 295–310. Springer, Berlin, Heidelberg (May 1999). https://doi.org/
10.1007/3-540-48910-X_21

24. Hazay, C., Lindell, Y.: A note on the relation between the definitions of security for
semi-honest and malicious adversaries. Cryptology ePrint Archive, Paper 2010/551
(2010), https://eprint.iacr.org/2010/551

25. ICAO: Part 11: Security mechanisms for mrtds. Doc 9303: Machine Read-
able Travel Documents (2021), https://www.icao.int/publications/pages/

publication.aspx?docnum=9303

26. ICAO: Member states (2025), https://www.icao.int/about-icao/pages/

member-states.aspx

27. Komlo, C., Goldberg, I.: FROST: Flexible round-optimized Schnorr threshold
signatures. In: Dunkelman, O., Jr., M.J.J., O’Flynn, C. (eds.) SAC 2020. LNCS,
vol. 12804, pp. 34–65. Springer, Cham (Oct 2020). https://doi.org/10.1007/
978-3-030-81652-0_2

28. Kutylowski, M., Persiano, G., Phan, D.H., Yung, M., Zawada, M.: Anamorphic
signatures: Secrecy from a dictator who only permits authentication! In: Handschuh,
H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part II. LNCS, vol. 14082, pp. 759–790.
Springer, Cham (Aug 2023). https://doi.org/10.1007/978-3-031-38545-2_25

29. Mackey, R.: French scientist denied us entry after phone messages critical of trump
found. The Guardian (2025), https://www.theguardian.com/us-news/2025/mar/
19/trump-musk-french-scientist-detained

30. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: Simple two-round Schnorr multi-signatures.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp.
189–221. Springer, Cham, Virtual Event (Aug 2021). https://doi.org/10.1007/
978-3-030-84242-0_8

31. NIST: Nist call for additional digital signature schemes for the post-quantum cryp-
tography standardization process (2022), https://csrc.nist.gov/csrc/media/
Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.

pdf

32. NIST: National institute of standards and technology: Digital signature standard
(dss) - fips 186-5. Tech. rep., U.S. Department of Commerce (2023), https://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf

33. NIST: Nist first call for multi-party threshold schemes (2023), https://csrc.nist.
gov/pubs/ir/8214/c/ipd

34. Pedersen, T.P.: A threshold cryptosystem without a trusted party (extended ab-
stract) (rump session). In: Davies, D.W. (ed.) EUROCRYPT’91. LNCS, vol. 547,
pp. 522–526. Springer, Berlin, Heidelberg (Apr 1991). https://doi.org/10.1007/
3-540-46416-6_47

35. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable se-
cret sharing. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp.
129–140. Springer, Berlin, Heidelberg (Aug 1992). https://doi.org/10.1007/

3-540-46766-1_9

36. Persiano, G., Phan, D.H., Yung, M.: Anamorphic encryption: Private communication
against a dictator. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022,
Part II. LNCS, vol. 13276, pp. 34–63. Springer, Cham (May / Jun 2022). https:
//doi.org/10.1007/978-3-031-07085-3_2

37. Persiano, G., Phan, D.H., Yung, M.: Public-key anamorphism in (CCA-secure)
public-key encryption and beyond. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024,

31

https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/3-540-48910-X_21
https://eprint.iacr.org/2010/551
https://www.icao.int/publications/pages/publication.aspx?docnum=9303
https://www.icao.int/publications/pages/publication.aspx?docnum=9303
https://www.icao.int/about-icao/pages/member-states.aspx
https://www.icao.int/about-icao/pages/member-states.aspx
https://doi.org/10.1007/978-3-030-81652-0_2
https://doi.org/10.1007/978-3-030-81652-0_2
https://doi.org/10.1007/978-3-031-38545-2_25
https://www.theguardian.com/us-news/2025/mar/19/trump-musk-french-scientist-detained
https://www.theguardian.com/us-news/2025/mar/19/trump-musk-french-scientist-detained
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/978-3-030-84242-0_8
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://csrc.nist.gov/pubs/ir/8214/c/ipd
https://csrc.nist.gov/pubs/ir/8214/c/ipd
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-031-07085-3_2
https://doi.org/10.1007/978-3-031-07085-3_2

Part II. LNCS, vol. 14921, pp. 422–455. Springer, Cham (Aug 2024). https://doi.
org/10.1007/978-3-031-68379-4_13

38. Pino, R.D., Katsumata, S., Maller, M., Mouhartem, F., Prest, T., Saarinen,
M.J.O.: Threshold raccoon: Practical threshold signatures from standard lattice
assumptions. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024, Part II. LNCS,
vol. 14652, pp. 219–248. Springer, Cham (May 2024). https://doi.org/10.1007/
978-3-031-58723-8_8

39. Ruffing, T., Ronge, V., Jin, E., Schneider-Bensch, J., Schröder, D.: ROAST: Robust
asynchronous schnorr threshold signatures. In: Yin, H., Stavrou, A., Cremers, C.,
Shi, E. (eds.) ACM CCS 2022. pp. 2551–2564. ACM Press (Nov 2022). https:
//doi.org/10.1145/3548606.3560583

40. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO’89. LNCS, vol. 435, pp. 239–252. Springer, New York (Aug
1990). https://doi.org/10.1007/0-387-34805-0_22

41. Wang, Y., Chen, R., Huang, X., Yung, M.: Sender-anamorphic encryption reformu-
lated: Achieving robust and generic constructions. In: Guo, J., Steinfeld, R. (eds.)
ASIACRYPT 2023, Part VI. LNCS, vol. 14443, pp. 135–167. Springer, Singapore
(Dec 2023). https://doi.org/10.1007/978-981-99-8736-8_5

A Discussion

A.1 A possible way to overcome the limitation in real-world setting

Embedding anamorphic messages within the signature is infeasible in the context
of threshold signatures. A similar challenge arises when attempting to embed the
message within the sender’s public key. This is primarily due to the distributed
nature of threshold signature’s key generation, where no single party has complete
control over the final public key. Instead, the dictator can influence the process in
ways that make the final public key unpredictable to the user, preventing reliable
encoding of hidden information. Given these constraints, the only practical
approach is to embed the anamorphic message in the regular message.

A possible real-world setting. We begin by analyzing whether an anamorphic
message can be embedded within a regular message in the context of a standard
digital signature scheme. This approach requires incorporating an auxiliary
bit string into the message to facilitate the embedding process. However, this
introduces a fundamental challenge: the dictator—who has significant influence
over the system—can easily detect the presence of the auxiliary bit string. If
the dictator identifies this irregularity, they may reject or request to modify the
message, compromising the anamorphic property and rendering this approach
ineffective. To circumvent this issue, we seek real-world scenarios where non-
linguistic strings can naturally be appended to a message without raising suspicion.
Specifically, we focus on two settings: signature schemes utilizing the Fiat-Shamir
transformation and cryptocurrency transactions, both of which inherently allow
for the inclusion of additional structured data.

Many widely used signature schemes, such as those in [11] and [40], rely on
the transformation of an interactive proof system into a non-interactive one via

32

https://doi.org/10.1007/978-3-031-68379-4_13
https://doi.org/10.1007/978-3-031-68379-4_13
https://doi.org/10.1007/978-3-031-58723-8_8
https://doi.org/10.1007/978-3-031-58723-8_8
https://doi.org/10.1145/3548606.3560583
https://doi.org/10.1145/3548606.3560583
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-981-99-8736-8_5

the Fiat-Shamir transformation [15]. In the original interactive protocol, the
signing process follows these steps:

1. Commitment: The prover generates and sends a commitment to the verifier.
2. Challenge: The verifier responds with a randomly chosen challenge.
3. Response: The prover computes a response for the challenge and their secret

key.

To eliminate the need for interaction, the Fiat-Shamir transformation replaces
the verifier’s challenge with a deterministic hash function. Instead of relying
on a third-party verifier, the prover generates the challenge by hashing the
commitment and the message. The prover then computes the response based on
this challenge and their private key. Recent research [15] has identified a crucial
security weakness in this transformation, termed Weak Fiat-Shamir Attacks.
To mitigate this risk, it is recommended that the hash function incorporate
not only the commitment and message but also additional public parameters,
including the public key. This refinement enhances security and has been widely
adopted in deployed-proof systems. This adjustment is particularly relevant
for embedding anamorphic messages. Since public parameters (e.g., public key)
are now incorporated into the hash commitment, they allow encoding hidden
information within the signing process without disrupting the scheme’s integrity.

Cryptocurrency transactions are another setting where auxiliary information
can be naturally embedded into a message—without dictator interference. Un-
like standard digital signatures, cryptocurrency transactions inherently involve
structured metadata, offering a channel for including additional data. While we
do not assume the presence of an explicit auxiliary bit string in the transaction
metadata, we observe that at least the recipient’s public key remains outside the
dictator’s control. This is particularly important because the dictator generally
does not dictate the recipient’s choice of public key as it might be outside the
dictator’s jurisdiction. Additionally, many cryptocurrencies implement multi-user
accounts, requiring payment transactions to be confirmed using multi-signature or
threshold signature schemes. These mechanisms involve multiple parties, further
diluting the dictator’s ability to control every aspect of the signing process.

Both Fiat-Shamir-based signature schemes and cryptocurrency transactions
provide structured opportunities to embed anamorphic messages within a reg-
ular message. These approaches enable the sender to append an additional bit
string—either within the public key hashing process or within transaction meta-
data—without raising suspicion. However, these methods come with limitations:

– Single message embedding: They allow for embedding only a single anamor-
phic message within the public key, restricting the amount of hidden infor-
mation that can be transmitted.

– Dependence on key control: If the dictator controls key generation, even these
approaches become infeasible, as they can manipulate the keys to disrupt the
embedding process.

Despite these constraints, these settings provide valuable mechanisms for enabling
undetected anamorphic communication.

33

Stealth address to the rescue. In cryptocurrency transactions, the sender signs
the transaction details, including the transfer amount and recipient’s public key
(address) [1]. The recipient then uses the corresponding private key to authorize a
new transaction. To ensure privacy, Monero proposes their signature with stealth
addresses as a privacy-enhancing feature that ensures transaction recipients
remain untraceable on the blockchain. As described in [13], when a payee initiates
a transaction, they generate a unique, one-time public address P = gH(Ar) ·B (a
stealth address) derived from the recipient’s public key (A,B) = (ga, gb) and a
random value R = gr generated on the fly. This ensures that each transaction
appears as though it is sent to a new, unlinkable address, even though the
recipient’s wallet (holding the master secret key (a, b)) ultimately controls all
funds. Given a so-called view key(a,B), anyone can scan the blockchain to
detect stealth addresses, but only the holder of (a, b) can spend those funds.
This prevents observers from linking multiple transactions to a single recipient,
significantly enhancing anonymity and fungibility.

Senders can exploit the randomness of R to encode amsg via rejection sampling,
i.e., repeatedly generating R until it satisfies a predefined predicate. For example,
senders can enforce that the first ℓ bits of R match the encryption of amsg.
However, in practice, ℓ is limited, allowing only a modest payload of approximately
30–40 bits, making this inefficient for larger messages.

Another approach is to encode the anamorphic message amsg directly within
the public key P by modifying its computation as follows: P = gH(Ar) ·B · gamsg.
This effectively ”shifts” P by gamsg, rendering the standard view key obsolete.
However, if the recipient already knows the expected stealth address (e.g., it
was communicated by the sender), they can reconstruct the original address:
P ′ = gH(Ar) ·B and extract amsg by computing: X = P/P ′ = gamsg. The recipient
can efficiently recover amsg by solving the discrete logarithm of X using the
baby-step giant-step algorithm. Crucially, the modified address P remains fully
spendable by the recipient, ensuring that the embedded message and embedding
process remain undetectable to an external observer, including the dictator.

Integrating anamorphic messages into signature schemes involving stealth
addresses introduces several technical challenges that require a more rigorous
and formalized framework. A comprehensive analysis must address security guar-
antees, such as ensuring that the embedding process does not compromise the
anonymity and unlinkability properties of Monero transactions. Additionally,
formal definitions are needed to characterize the indistinguishability of anamor-
phic message embedding from standard transaction generation. Given these open
questions, we leave the concrete formalization and rigorous security analysis of
anamorphic message embedding in stealth-address-based signature schemes as
an open problem for future research.

34

B Background

B.1 Chernoff Bound

Theorem 7. For i = 1, . . . , n let Xi be independent random variables that take
the value 1 with probability pi and the value 0 with probability 1− pi. Suppose at
least one pi is non-zero. Let X =

∑
i∈[n] Xi and let µ = E[X] =

∑
i∈[n] pi. For

δ > 2 · e− 1 and the Euler’s number e, we then have:

Pr[X > (1 + δ) · µ] < 2−δ·µ.

B.2 Digital Signature Scheme

Definition 16 (Correctness). We say that a digital signature scheme S is
correct if, for all public parameter 1λ and all message msg in the associated
message space, the following event holds:

Pr
[
S.Vf(pk,msg, σ) σ ← S.Sign(sk,msg; st)

]
= 1,

where the probability is over the random variable (pk, sk)← S.KGen(1λ) and the
random coins of S.Sign.

Definition 17 (Unforgeability). We say that a digital signature scheme S
scheme achieves unforgeability security if for all parameter 1λ, for any polynomial
time algorithm A, the following holds:

AdvA
Unf(1

λ) ≤ negl(λ),

where AdvA
Unf(1

λ) = Pr
[
ExpUnfAAS(1

λ) = 1
]
with the experiment ExpUnf defined

in Figure 10.

ExpUnfAS (1λ)

M← {∅}; (sk, pk)← S.KGen(1λ)

(msg∗, σ∗)← AoSign(sk, pk)

b1 ← S.Vf(pk,msg∗, σ∗)

b2 ← msg∗ /∈M
return b1 ∧ b2

oSign(msg)

if msg ∈M then

return ⊥
M←M∪ {msg}
σ ← S.Sign(sk,msg, st)

return σ

Fig. 10. Unforgeability security experiment ExpUnfAS .

35

B.3 Symmetric Encryption Scheme

We say that a symmetric encryption scheme is correct if for all public parameters
1λ, all plaintext pt in the associated plaintext space, and all ct← E.Enc(sk, pt),
the following event holds:

Pr [pt← E.Dec(sk, ct)] = 1,

where the secret key is generated from sk← E.KGen(1λ).

Definition 18 (Semantic security). We say that symmetric encryption scheme
E has semantic security (or IND-CPA secure) if for all parameter 1λ, for any
polynomial-time algorithm A, the following holds:

AdvA
CPA(1

λ) ≤ negl(λ),

where AdvA
CPA(1

λ) =

∣∣∣∣∣Pr [Exp-CPAA
E (1

λ) = 1
]
−

1

2

∣∣∣∣∣ with the IND-CPA experi-

ment Exp-CPA defined in Figure 11.

Definition 19 (Pseudorandom ciphertext). We say that symmetric encryp-
tion scheme E has pseudorandom ciphertext if for all parameter 1λ, for any
polynomial-time algorithm A, the following holds:

AdvA
PRC(1

λ) ≤ negl(λ),

where AdvA
PRC(1

λ) =

∣∣∣∣∣Pr [Exp-PRCA
E (1

λ) = 1
]
−

1

2

∣∣∣∣∣ with the pseudorandom ci-

phertext experiment Exp-PRC defined in Figure 11. Here, we assume that the
encryption scheme E for security parameter 1λ encrypts n(λ)-bit plaintexts into
ℓ(λ)-bit ciphertexts.

B.4 Threshold Encryption Scheme

We say that a threshold encryption scheme is correct if for all public parameters
1λ, all plaintext pt in the associated plaintext space, all positive integers n, t such
that t ≤ n, and all subsets J ⊆ [n] with |J | ≥ t where ct← TE.Enc(pk, pt), the
following event holds:

Pr [pt← TE.Combine(pk, ct, {TE.Dec(pk, skj , ct)}j∈J)] = 1,

where the probability is over random variables (pk, sk1, . . . , skn)←$ TE.KGen(1λ, n,
t) and the random coins of TE.Enc.

36

Exp-CPAA
E (1λ)

sk← E.KGen(1λ)

(pt0, pt1)← A
Enc0(1λ)

b←$ {0, 1}
ctb ← E.Enc(sk, ptb)

b′ ← AEnc0(ctb)

return b = b′

Exp-PRCA
E (1λ)

sk← E.KGen(1λ)

b←$ {0, 1}

b′ ← AEncb(pk, ctb)

return b = b′

Enc0(pt)

ct← E.Enc(sk, pt)

return ct

Enc1(pt)

ct←$ {0, 1}ℓ(λ)

return ct

Fig. 11. The IND-CPA and pseudorandom ciphertext security experiments of a sym-
metric encryption scheme E.

Definition 20 (Semantic security). We say that an TE scheme has semantic
security (or IND-CPA secure) if for all parameter 1λ, for any polynomial-time
algorithm A, the following holds:

AdvA
TE-CPA(1

λ) ≤ negl(λ),

where AdvA
TE-CPA(1

λ) =

∣∣∣∣∣Pr [ExpTE-CPAA
TE(1

λ) = 1
]
−

1

2

∣∣∣∣∣ with the IND-CPA

experiment ExpTE-CPA defined in Figure 12.

ExpTE-CPAA
TE(1

λ)

J ← ∅; (n, t)← A(1λ)

(pk, sk1, . . . , skn)← TE.KGen(1λ, n, t)

(pt0, pt1)← A
Corr(pk,J)

b←$ {0, 1}
ctb ← TE.Enc(pk, ptb)

b′ ← ACorr(ctb)

return b = b′

Corr(i)

if i /∈ [n] or i ∈ J or |J | ≥ t− 1

then return ⊥
J ← J ∪ {i}
return ski

Fig. 12. Threshold encryption IND-CPA security experiment ExpTE-CPAA
TE.

Definition 21 (Pseudorandom ciphertext). We say that an TE scheme
has pseudorandom ciphertext if for all parameter 1λ, for any polynomial-time
algorithm A, the following holds:

AdvA
TE-PRC(1

λ) ≤ negl(λ),

37

where AdvA
TE-PRC(1

λ) =

∣∣∣∣∣Pr [ExpTE-PRCA
TE(1

λ) = 1
]
−

1

2

∣∣∣∣∣ with the pseudoran-

dom ciphertext experiment ExpTE-PRC defined in Figure 13. Here, we assume
that the TE for security parameter 1λ encrypts n(λ)-bit plaintexts into ℓ(λ)-bit
ciphertexts.

ExpTE-PRCA
TE(1

λ)

J ← ∅; (n, t)← A(1λ)

(pk, sk1, . . . , skn)← TE.KGen(1λ, n, t)

b←$ {0, 1}

b′ ← AEncb(pk, ctb)

return b = b′

Enc0(pt)

ct← TE.Enc(pk, pt)

return ct

Enc1(pt)

ct←$ {0, 1}ℓ(λ)

return ct

Fig. 13. The pseudorandom ciphertext experiment ExpTE-PRCA
TE of a threshold en-

cryption scheme.

B.5 Threshold Signature Scheme

We say that a threshold signature scheme is correct if for all public parameters
1λ, all messages msg in the associated message space, all positive integers n, t
such that t ≤ n, and all subsets J ⊆ [n] with |J | ≥ t, the following event holds:

Pr

[
TS.Vf(pk, σ ← TS.Combine(pkc, {sj}j∈J)
msg, σ) = 1 sj ← TS.Sign(skj ,msg)

]
= 1,

where the probability is over the random variables (pk, sk1, . . . , skn)←$ TS.KGen(
1λ, n, t) and the random coins of TS.Sign.

Definition 22 (Unforgeability). We say that a threshold signature scheme TS
achieves unforgeability security if for all parameter 1λ, for any polynomial time
algorithm A, the following holds:

AdvA
TS-UF(1

λ) ≤ negl(λ),

where AdvA
TS-UF(1

λ) = Pr
[
ExpTS-UFA

TS(1
λ) = 1

]
with the experiment ExpTS-UF

defined in Figure 14.

38

ExpTS-UFA
TS(1

λ)

Jcr ← ∅; (n, t)← A(1λ)

(pk, sk1, . . . , skn)← TS.KGen(1λ, n, t)

(m∗, σ∗)← ACorr,OSign1,OSign2(pk,Jcr)

b1 ← TS.Vf(pk,msg∗, σ∗)

b2 ← |Sigs[m∗]| = 0

return b1 ∧ b2

Corr(i)

if i /∈ [n] or i ∈ Jcr or |Jcr| ≥ t then

return ⊥
Jcr ← Jcr ∪ {i}
return ski

OSign1 (i,msg, amsg,J)

sidi ← sidi + 1; k ← sidi

Si,1 ← Si,1 ∪ {sidi}

Stki,1,msgki,1 ← TS.Sign1(ski,msg,J)

return msgki,1

OSign2(i, k′,msg′i1,1, . . . ,msg′iℓ,1)

if k′ ̸∈ Si,1 then return 0

Si,1 ← Si,1 \ {k′};

sk
′

i ← TS.Sign2(St
k
i,1,msg′i1,1, . . . ,msg′iℓ,1)

Sigs[m]← Sigs[m] ∪ {i}

return sk
′

i

Fig. 14. Threshold signature unforgeability experiment ExpTS-UFA
TS.

B.6 Anamorphic Signature Scheme

We say that an anamorphic signature scheme AS is correct if, for all public
parameters 1λ, all message pairs (msg, amsg), the following event holds:

Pr

[
amsg = amsg′ σa ← AS.Sign(sk, adk,msg, amsg)

amsg′ ← AS.Dec(sk, adk, σa)

]
= 1,

where the probability is over (pk, sk) ← S.KGen(1λ) and adk ← AS.KGen(1λ),
and the random coins of AS.Sign.

The following security definitions are borrowed from [28].

Definition 23 (Anamorphic). We say that an AS scheme is anamorphic if
for all parameter 1λ, for any polynomial time algorithm A, the following holds:

AdvA
Anam(1

λ) ≤ negl(λ),

where AdvA
Anam(1

λ) =

∣∣∣∣∣Pr [ExpAnamA
AS(1

λ) = 1
]
−

1

2

∣∣∣∣∣ with the experiment ExpAnam

defined in Figure 15.

Definition 24 (Semantic security). We say that an AS scheme has anamor-
phic semantic security (or anamorphic IND-CPA secure) if for all parameter 1λ,
for any polynomial-time algorithm A, the following holds:

AdvA
A-CPA(1

λ) ≤ negl(λ),

39

where AdvA
A-CPA(1

λ) =

∣∣∣∣∣Pr [ExpA-CPAA
AS(1

λ) = 1
]
−

1

2

∣∣∣∣∣ with the IND-CPA ex-

periment ExpA-CPA defined in Figure 15.

ExpAnamA
AS(1

λ)

(sk, pk)← S.KGen(1λ)

adk← AS.KGen(1λ)

b←$ {0, 1}

b′ ← AaSignb(sk, pk)

return b = b′

ExpA-CPAA
AS(1

λ)

(sk, pk)← S.KGen(1λ)

adk← AS.KGen(1λ)

(msg, amsg0, amsg1)← A
aSign1(sk, pk)

b←$ {0, 1}
σb ← AS.Sign(sk, adk,msg, amsgb)

b′ ← AaSign1(σb)

return b = b′

aSign0(msg, amsg)

σ ← S.Sign(sk,msg, st)

return σ

aSign1(msg, amsg)

σ ← AS.Sign(sk, adk,msg, amsg)

return σ

Fig. 15. Anamorphic experiment ExpAnamA
AS and CPA security experiment

ExpA-CPAA
AS.

C Threshold-Recipient Anamorphic Signatures

Theorem 2. The generic TRAS construction in Figure 4 is correct and anamor-
phic.

Proof. The correctness of the generic TRAS scheme directly follows from the
correctness of the underlying TE scheme. We observe that the only difference
between a real signature and an anamorphic signature created in TRAS is the
random coin used in the signing process. Hence, as the threshold encryption
scheme TE has pseudorandom ciphertext and the random coin space of the
signature coincides with the ciphertext space of the threshold encryption scheme,
using the same argument as in [28], we conclude that the generic TRAS scheme
presented in Figure 4 is anamorphic.

Theorem 3. For any polynomial-time adversary A, the following holds:

AdvA
TR-CPA(1

λ) ≤ AdvA1

TE-CPA(1
λ).

40

Proof. We will show that if there exists a PPT adversaryA against the ExpTR-CPA
experiment, then we can construct an adversary A1 against the ExpTE-CPA of
the underlying threshold encryption scheme TE.

– In the setup phase, A1 start by interacting with A and receives the public
parameter (n, t) as well as the sender’s key pair (skS , pkS) from A. On
receiving the public key of the TE scheme in the ExpTE-CPA experiment, A1

assigns its sender double key as adkS ← pkTE.
– To answer queries for the oracle Corr, A1 queries to the oracle Corr in the

ExpTE-CPA experiment with the same input and outputs what this oracle
outputs. On the other hand, to answer queries for the oracle aSign, A1 runs
the algorithm TRAS.Sign with the secret key skS and the double key adkS

and uses the outputs as the oracle’s answer.
– When receiving the tuple (msg, amsg0, amsg1) from A, A1 assigns msg0 ←

amsg0, msg1 ← amsg1 and let the pair (msg0,msg1) be the challenge in the
ExpTE-CPA experiment.

– On the receiving the ciphertext ct from the ExpTE-CPA experiment, A1

computes the anamorphic signature as σa ← S.Sign(skS ,msg; ct) by using the
ciphertext ct as the random coin and forwards the signature to A. It then
outputs what A outputs.

It is clear that A1 wins whenever A wins. Therefore, we have: AdvA
TR-CPA(1

λ) ≤
AdvA1

TE-CPA(1
λ).

D Threshold-Sender Anamorphic Signatures

D.1 FROST

FROST3 is the most efficient variant thanks to the ability to aggregate protocol
messages before broadcasting them to the signers. In more detail, one can easily
add an PreAgg algorithm that aggregates the presignatures shares {Di, Ei}i∈J
from first round into a compact presignature ρ, which consists only of the two
products (D,E) = (

∏
i∈J Di,

∏
i∈J Ei). This presignature can later be input

to the second round instead of the entire list of {Di, Ei}i∈J . We omit this
optimization in Figure 16 for consistency with the syntax of threshold signatures
in Definition 3. A concrete description for FROST3 is provided in Figure 16.

D.2 MuSig2

MuSig2 [30] is the first Schnorr multi-signature scheme that incorporates key
aggregation and achieves security under concurrent signing sessions. MuSig2 has
a semi-interactive signing protocol that resembles FROST very closely. It also
shares the ability to aggregate pre-signature shares with FROST3. Therefore,

41

KGen(i)

for i ∈ [0 . . . t− 1] do

ai ←$ Zp

for i ∈ [1 . . . n] do

xi ←
t−1∑
j=0

ijaj

X ← ga0

(pk, {ski}ni=1)← (X, {xi}ni=1)

return (pk, {ski}ni=1)

Sign1(pk)

X ← pk

di,←$ Zp ; ei,←$ Zp

Di ← gdi ; Ei ← gei

Sti ← (di, ei)

ρi ← (Di, Ei)

return (Sti, ρi)

Sign2(ski, pk,J , Sti, {ρi}i∈J ,msg)

// called at most once per secret state Sti

xi ← ski ; X ← pk

{(Di, Ei)}i∈J ← {ρi}i∈J

D ←
∏

i∈J Di

E ←
∏

i∈J Ei

(di, ei)← Sti

b← Hnon(X,J , ρ,msg)

R← DEb

c← Hsig(X,R,msg)

Λi ← Lagrange(J , i)
si ← di + bei + cΛixi

return si

Lagrange(J , i)

Λi ←
∏

j∈J\{i} j/(j − i)

return Λi

Combine(pk, {ρi}i∈J , {si}i∈J ,msg)

X ← pk

{(Di, Ei)}i∈J ← {ρi}i∈J

D ←
∏

i∈J Di

E ←
∏

i∈J Ei

b← Hnon(X,J , ρ,msg)

R← DEb

s←
∑
i∈J

si

σ ← (R, s)

return σ

Vf(pk,msg, σ)

X ← pk

(R, s)← σ

c← Hsig(X,R,msg)

return (gs = RXc)

Fig. 16. Threshold Signature Scheme FROST3.

despite the slightly different context of n-out-of-n multi-signatures from t-out-of-n
threshold signatures, we can obtain a similar result for MuSig2. That is to say, if
defined malicious correctness and anamorphic indistinguishability for a n-out-of-n
multi-sender anamorphic signatures (MSAS) similar to those in Section 5.2, we
rule out a class of such an MSAS associated with MuSig2.

Theorem 8. (Informal) MuSig2 is not anamorphic. In particular, there is no
multi-sender anamorphic signature scheme associated with MuSig2 that is mali-
ciously correct and has anamorphic indistinguishability.

Proof. As MuSig2 shares the same forms of nonce and pre-signature shares
((Di, Ei) and si) with FROST3, we can show that MuSig2 is not anamorphic
by similarly applying the proof of Theorem 6. Note that the argument using
anamorphic indistinguishability holds similarly due to the common partial verifi-
cation.

D.3 Sparkle and three-round Schnorr threshold signatures

Sparkle [14] is a practical threshold Schnorr signature scheme that allows one
round of pre-processing and two online signing rounds.

Theorem 9. The threshold scheme in Figure 17 is not anamorphic. In particular,
there is no threshold-sender anamorphic signature scheme associated with the
above threshold scheme as in Definition 12 that is maliciously correct and has
anamorphic indistinguishability.

42

KGen(i)

for i ∈ [0 . . . t− 1] do

ai ←$ Zp

for i ∈ [1 . . . n] do

xi ←
t−1∑
j=0

ijaj

X ← ga0

(pk, {ski}ni=1)← (X, {xi}ni=1)

return (pk, {ski}ni=1)

Sign1(pk)

X ← pk

ri ←$ Zp

Ri ← gdi

Sti,1 ← (Ri, ri)

Cmi ← Hcom(Ri)

return (Sti,1,Cmi)

Sign2(ski, pk,J , Sti,1, {Cmi}i∈J ,msg)

(Ri, ri)← Sti,1

Sti,2 ← ri

return (Ri, Sti,2)

Sign3(Sti,2, {Ri}i∈J)

// called at most once per secret state Sti

xi ← ski ; X ← pk

{Ri}i∈J ← {ρi}i∈J

R←
∏

i∈J Ri

ri ← Sti,2

c← Hsig(X,R,msg)

Λi ← Lagrange(J , i)
si ← di + bei + cΛixi

return si

Combine(pk, {Ri}i∈J , {si}i∈J ,msg)

X ← pk

R←
∏

i∈J Ri

s′ ←
∑
i∈J

si

σ ← (R, s)

return σ

Lagrange(J , i)

Λi ←
∏

j∈J\{i} j/(j − i)

return Λi

Vf(pk,msg, σ)

X ← pk

(R, s)← σ

c← Hsig(X,R,msg)

return (gs = RXc)

Fig. 17. Three-round Schnorr Threshold Signature Scheme Sparkle.

The proof of Theorem 9 follows the same approach as Theorem 6, leveraging
two components: the signature-preserving property of Sparkle and an adversary
that can randomize the final signature. Also, the argument using anamorphic
indistinguishability holds due to partial verification of Sparkle. We refer the reader
to that proof for details, and here, we present only the two core lemmas that
substantiate these components.

Lemma 3. The threshold scheme in Figure 17 is signature-preserving w.r.t.
Schnorr signature scheme as in Definition 3.

Proof of Lemma 3. Define the following algorithms TS.SkAgg and TS.StAgg

TS.SkAgg({ski}i∈J) :=
∑
i∈J

Λiski

TS.StAgg({(Ri, ri)}i∈J) :=
∑
i∈J

ri,

where Λi = Lagrange(J , i). Simple calculation shows that Equation (1) holds.

Lemma 4. Let Hcom be a collision-resistant hash function, and Hsig be modeled
as a random oracle. There exists an adversary A such that, for every security
parameter 1λ, and for all messages msg and anamorphic messages amsg, where
the adversary participates in the signing process, the final signature σa is, with
all but negligible probability, determined as a standard single-signer Schnorr
signature, i.e., σa = r + cx, where r is uniformly distributed over Zq.

43

Proof of Lemma 4. It suffices to consider the case n = t = 2. First, let us show
that with all but a negligible probability, r1 is fixed right after S1 sends out
Cm1 during the first round. Indeed, we can assume that the output state Sti,1 S1

obtain when running TSAS.Sign1(ski,msg, amsg,J , adkS) contains some r′1. Let
bad1 and bad2 be the events that r′1 ̸∈ Zq and that r′1 ∈ Zq ∧ r′1 ̸= r1, respectively.
Note that if either occurs, we break the preimage or collision resistance of Hcom.
Therefore, r′1 = r1 with all but a negligible probability.

By Lemma 3, the final signature σa is determined as a standard single-signer
Schnorr signature σa = r+ cx, where r = r1+ r2 and x is the DL of the combined
public key X.

As r2 is uniform over Zq and only known after r1 is fixed, (r1 + r2) is uniform
over Zq.

D.4 TRacoon

TRaccoon [38] is the first practical three-round threshold signature scheme from
the standard lattice at EC’24. It is a thresholdized version of Raccoon [17], a
lattice-based signature scheme by del Pino et al., a candidate for the additional
NIST call for proposals [31].

KGen(i)

A←$Rk×ℓ
q

(s, e)←$ Dt
ℓ ×Dt

k

t← ⌊A · s+ e⌉νt
pk := (A, t)

P←Rℓ
q[X] with deg(P) = t− 1, P(0) = s

(si)
n
i=1 := (P(i))ni=1

for i ∈ [1 . . . n] do

for j ∈ [1 . . . n] do

seedi,j ← {0, 1}κ

for i ∈ [1 . . . n] do

ski := (si, {seedj,i}nj=1)

return (pk, {ski}ni=1)

Sign1(pk, ski,J ,msg)

(rj , e
′
j)←$ Dℓ ×Dk

wj ← A · rj + ej

Cmj ← Hcom(sid,J ,msg,wj)

(sj , {seedj,i}i∈J)← skj

mj ←
∑
i∈J

PRF(seedj,i, sid)

Stj,1 ← (sid,J ,msg, skj ,

{rj ,wj ,Cmj ,mj}, ∅)
return (Sti,1, (Cmj ,mj))

Sign2(pk, Sti,1, {Cmi}i∈J)

(sid,J ,msg, skj ,

{rj ,wj ,Cmj ,mj}, ∅)← Stj,1

Stj,2 ← (sid,J ,msg, skj ,

{rj ,wj ,Cmj ,mj}, {Cmi,mi}i∈J)

return (wj , Stj,2)

Sign3(Sti,2, {wi}i∈J)

// called at most once per secret state Sti

(sid,J ,msg, skj , {rj ,wj ,Cmj ,mj}
{(Cmi,mi)}i∈J ← Sti,2

for i ∈ J do

Assert Hcom(sid,msg,J ,wi) = Cmi

w←

⌊∑
i∈J

wi

⌉
νw

c← Hsig(pk,msg,w)

m∗
j ←

∑
i∈J

PRF(seedi,j , sid)

Λi ← Lagrange(J , i)
zj ← c · Λi · sj + rj +m∗

j

return zj

Lagrange(J , i)

Λi ←
∏

j∈J\{i} j/(j − i)

return Λi

Combine(pk, {wi}i∈J , {zi}i∈J ,msg)

pk← (A, t)

w←

⌊∑
i∈J

wi

⌉
νw

z←
∑
i∈J

(zi −mi)

c← Hcom(pk,msg,w)

y← ⌊A · z− 2νtt · c⌉νw
u← w − y

σ ← (c, z,u)

return σ

Vf(pk,msg, σ)

(c, z,u)← σ

c′ := Hsig(vk ,msg, ⌊A · z− 2νt · c · t⌉νw + u)

if (c = c′) then

if ∥(z, 2νw · u)∥2 ≤ B2 then

return 1

return 0

Fig. 18. TRaccoon Threshold Signature Scheme.

The following result holds for TRaccoon.

44

Theorem 10. TRaccoon threshold scheme in Figure 18 is not anamorphic. In
particular, there is no threshold-sender anamorphic signature scheme associated
with TRaccoon as in Definition 12 that is maliciously correct and has anamorphic
indistinguishability.

The threshold signature scheme TRaccoon follows the folklore construction
of a three-round threshold signature from Schnorr’s signature scheme as in
Appendix D.3. Therefore, the proof of Theorem 10 works similarly to Theorem 9,
except for differences in the argument of anamorphic indistinguishability.

The key difference is that the third-round message zi no longer satisfies partial
verification w.r.t. the commitment wi, as TRaccoon has no partial public key.
Instead, we base our argument on the verification of the combined (anamorphic)
signature σa, which must have the same form as the threshold signature: σa =
(c, z,u). Once the honest signer outputs w1, the adversary can control the
combined commitment by adding w = w1 +w2, which is close to uniform from
the honest signer’s view. The full signature σa is then uniquely determined,
assuming the underlying assumptions for security of TRaccoon from [38] with
appropriate parameters.

We refer the reader to the proof of Theorem 9 for the remaining details and
present below only the two core lemmas that substantiate the corresponding
components.

Lemma 5. The threshold scheme in Figure 18 is signature-preserving w.r.t.
Raccoon signature scheme as in Definition 3.

Proof of Lemma 5. Define the following algorithms TS.SkAgg and TS.StAgg

TS.SkAgg({ski}i∈J) :=
∑
i∈J

Λiski; TS.StAgg({Sti,1}i∈J) :=
∑
i∈J

ri,

where Λi = Lagrange(J , i) and Sti,1 = (sid,J ,msg, ski, {ri,wi,Cmi,mi}, ∅). A
simple calculation shows that Equation (1) holds.

Lemma 6. Let Hcom be a collision-resistant hash function, and Hsig be modeled
as a random oracle. There exists an adversary A such that, for every security
parameter 1λ, and for all messages msg and anamorphic messages amsg, where
the adversary participates in the signing process, the final signature σa is, with all
but negligible probability, determined as a single-signer Raccoon signature, i.e.,
σa = (c, z,u), z = r+ cs, where r is closely distributed to Dt

ℓ.

The proof of Lemma 6 follows that of Lemma 4 but additionally leverages
the convolution of discrete Gaussian distribution, due to the fact that w is a sum
of discrete Gaussian vectors as explained in [38].

45

E Anamorphic Signatures under Strong Dictatorship

Theorem 4. The construction in Figure 7 is correct and anamorphic.

Proof. Our first observation is that the anamorphic message amsg′ consists of
a uniformly random string of ℓq + λ bits r and the ciphertext ct. To show
anamorphism, we need to argue that ct is a uniformly distributed string {0, 1}ℓm
in the view of the adversary. Our arguments follow by simply observing that
the only way for the adversary to distinguish ct from a random string is in case
it queries the random oracle H with the key K. There are two ways for the
adversary to do it: either to try to hash group elements and succeed or to guess
the anamorphic subgroup correctly and reconstruct the key K using the steps in
eTRAS.Combine. We will use a similar argument in the proof of CPA security,
so we leave the formal steps for later and describe the intuition here. Note that
since rq is uniformly distributed over Zq (this follows from picking r with enough
additional bits), it follows that the key K is also uniformly distributed over
G. Therefore, for the first case, the adversary’s chance is qh/q to query the
correct key K, where qh is the upper bound on the number of hash queries of the
adversary. The chances are qh/

(
n
ℓ

)
in the second case. However, since we assume(

n
ℓ

)
< 2λ, it follows that in both cases, the chances of the adversary querying K

are negligible. Therefore, the ciphertext ct is indistinguishable from a uniformly
random bit string for the adversary. We conclude that Figure 7 is anamorphic.
Correctness follows by inspection.

Theorem 5. The construction in Figure 7 is IND-CPA secure according to Def-
inition 11. More formally, for any polynomial-time adversary A making at most
qh queries to oracle H, the following holds:

ExpeTR-CPAA
eTRAS(1

λ) ≤ qh · (1/bino+ 1/q) + q2h/2
ℓm ,

where bino =
(
n−Qcr−Qch

ℓ−Qcr−λ

)
, (n, ℓ,Qcr, Qch) are the parameters output by A in the

ExpeTR-CPA experiment and assuming Qch · (ℓ−Qcr)/(n−Qcr −Qch) < 1 and
q is the order of the group G generated by g.

Proof. The idea behind the proof is as follows. We first notice that since the
adversary is allowed to generate all keys, it follows that IND-CPA security
cannot follow from any scheme that would use those keys. In particular, the
Diffie-Hellman keys. Instead, we want to argue that the adversary never asks the
random oracle for the key K. The rationale here is that because the quorum J
is unknown to the adversary, even if it can compute all decryption shares for
anamorphic group members, they are hidden among the “fake” decryption shares
of regular citizens. The adversary must guess the group, i.e., the correct J , to
get K and ask it to the random oracle. The adversary guesses the correct K with
probability bino, which is negligible due to the experiment’s conditions. While
H(K) is not specified and there are no collisions in the hash function, we can

46

replace ct with a random bit string. We will show this proof using the game-based
approach more formally below. Let us use AdvHi

(1λ) to denote the probability:∣∣∣∣∣Pr [ExpeTR-CPAA
TRAS(1

λ) = 1 | Hi

]
−

1

2

∣∣∣∣∣.
Hybrid H0: This is the original experiment ExpeTR-CPAA

eTRAS(1
λ). We have

AdvH0
(1λ) = AdvA

eTR-CPA(1
λ)

Hybrid H1: Similar to the previouse experiment, but we abort it in case there
is a collision in the random oracle H.

Hybrid H2: Similar to the previous experiment, we abort if the adversary queries
the key K to the oracle H.

Hybrid H3: We now replace the ciphertext ct by a uniformly random string
from {0, 1}ℓm .

Lemma 7. We have |AdvH0
(1λ)−AdvH1

(1λ)| ≤ q2h/2
ℓm .

Proof. The bound follows since the adversary A makes at most qh queries to the
random oracle, and collisions happen with probability at most q2h/2

ℓm .

Lemma 8. We have |AdvH1
(1λ)−AdvH2

(1λ)| ≤ qh ·

(
1(

n−Qcr−Qch

ℓ−Qcr−λ

)+ 1/q

)
.

Proof. We observe that the only information that the adversary does not learn is
the J . We also notice that the only way for A to compute the correct key K is to
exactly guess J , i.e., in case it uses a “fake” decryption share for one citizen that
is outside of the group, it will receive an invalid key K. An alternative way to
compute the correct key K is to pick a random element of the group G. We will
now show that the probability of guessing such an element directly is 1/q and
focus on the first case later. We argue that the key K is uniformly distributed
over G to show this probability. While the adversary can pick the public keys of
citizens and influence the value (adkJ)skS,DH the sender uses rq to compute the

key K, i.e., K =
(
(adkJ)skS,DH

)rq
. Assuming rq is uniformly samples over Zq,

the uniformity of key K in G follows. Finally, notice that we pick r as a random
bit string of size ℓq + λ, and thanks to that, it follows that rq are statistically
close to a uniform distribution over Zq, which we assumed. Thus, we showed that
using one query to the random oracle, the adversary can query the correct key
K with probability 1/q if its strategy is to pick random elements from G.

We now focus on the case where A randomly picks the subgroup and computes
K based on its choice. Without access to Corr and Check oracles, there would
be
(
n
ℓ

)
potential ℓ-size subgroups, so the changes would be qh/

(
n
ℓ

)
to query the

correct K. Access to those oracles increases A chances. In particular, the chances
are maximized by first issuing all Corr and following with all Check queries.

47

After the adversary A issues all Corr queries, there are still ℓ−Qcr unknown
anamorphic members and n−Qcr candidates. So the probability of guessing a
correct anamorphic member using the first Check query is (ℓ−Qcr)/(n−Qcr),
which is maximized when the adversary guesses wrong all times pc = (ℓ −
Qcr)/(n−Qcr −Qch) (i.e.,

a
b < a

b−1 and a−1
b < a

b for all a, b > 1). Let us denote
by Yi the Bernoulli random value that the Check oracle outputs 1 on the i-th
query. All those variables are dependent, and we cannot apply the Chernoff bound.
However, we also know that for all i ∈ [Qch] Pr[Yi = 1] ≤ pc. Thus, let us consider
independent Bernoulli random values Xi for which Pr[Xi = 1] = pc. It follows
that Pr[Yi = 1] ≤ Pr[Xi = 1]. Consequently, the expected value E[Y] for the sum
Y of all variables is smaller than the corresponding expected value for the sum of
all X values. Note here that E[Y] corresponds to the expected number of times
the Check will return 1, i.e., A guesses correctly a member of the group using
the Check oracle. We will bound this number using the independent variables Xi

and the Chernoff bound. The expected number is µ = E[X] = Qch · pc. Assuming
µ < 1 and using Theorem 7, we can bound the correct guesses of A by λ. We set
δ = λ · 1/µ in the Chernoff bound. Note that then:

Pr[X > (1 + λ · 1/µ) · µ] = Pr[X > (µ+ λ)] < 2−λ·1/µ·µ = 2−λ

and since we assumed µ < 1 and X is the number of times Check will return 1, it
follows that Pr[X > λ] < 2−λ.It follows that after all the Corr and Check queries,
there are still

(
n−Qcr−Qch

ℓ−Qcr−λ

)
potential subsets.

So the probability that the adversary guesses the correct subset to get key K

is upper bounded by qh ·

(
1(

n−Qcr−Qch

ℓ−Qcr−λ

)+ 1/q

)
. The claim follows.

Lemma 9. We have AdvH2
(1λ) = AdvH3

(1λ).

Proof. Because of the change in H2, we observe that the adversary never queries
the random oracle for K. Moreover, we know that there are no collisions in H.
Therefore, the value H(K) is not specified, and the adversary cannot notice the
change of ct to a uniformly random string.

Lemma 10. The advantage of adversary A in H3 is 0, i.e., AdvH3
(1λ) = 0.

Proof. Since the only element in the anamorphic signature that depends on the
anamorphic message amsg is the ciphertext ct = H(K) ⊗ amsg and with the
changes in H3, we replaced ct with a uniformly random string. It follows that
the only strategy of the adversary is to guess bit b. Therefore, the advantage of
A is 0.

48

	When Threshold Meets Anamorphic Signatures: What is Possible and What is Not!

