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Abstract—Distributed Randomness Beacons (DRBs) provide
secure, unbiased random numbers for decentralized systems.
However, existing protocols face critical limitations. Most
rely on cryptographic assumptions which are vulnerable to
quantum attacks, risking long-term security in asynchronous
networks where unbounded delays may allow attackers time to
exploit these weaknesses. Many achieve low beacon generation
rates, often below 100 beacons per minute in moderate-scale
networks (e.g., Spurt IEEE S&P’22), hindering their use in
applications requiring high-throughput randomness. Addition-
ally, traditional Verifiable Secret Sharing (VSS)-based DRBs,
using a share-consensus-reconstruct paradigm, are unsuitable
for asynchronous networks due to circular dependencies be-
tween beacon generation and consensus. Given these limita-
tions, we propose Rubato, the first provably post-quantum
secure DRB for asynchronous environments, incorporating a
lattice-based batched Asynchronous Verifiable Secret Sharing
scheme (bAVSS-PQ). Rubato supports batching of O(λ2) se-
crets with communication complexity O(λn3 logn) and toler-
ates Byzantine faults in up to one-third of the nodes. Integrated
with DAG-based consensus protocols like Bullshark or Tusk,
its epoch-staggered architecture resolves circular dependencies,
enabling efficient and secure randomness generation. Evalua-
tions across 10 to 50 nodes show Rubato generates 5200 to 350
beacons per minute with per-beacon latencies of 11.60 to 96.37
milliseconds, achieving a consensus throughput of 186,088
transactions per second with a latency of 16.78 seconds at 30
nodes. Rubato offers robust post-quantum security and high
performance for small-to-medium-scale decentralized systems.

1. Introduction

Distributed Randomness Beacons (DRBs) provide un-
predictable, bias-resistant random numbers in decentralized
systems, addressing the risks of single points of failure
and manipulation inherent in centralized sources like Ran-
dom.org [11]. By distributing trust across multiple nodes,
DRBs ensure resilience against Byzantine faults, making
them critical for applications such as fair validator selection
in Proof-of-Stake blockchains [12], [13], [14], secure elec-
tronic voting [15], randomized mechanisms in decentralized

finance (e.g., auctions and lotteries) [16], [17], secure multi-
party computation [18], [19], and maintaining liveness of
consensus protocols in asynchronous networks [20], [21],
[22], [23], [24]. These applications demand DRBs that are
secure, high-throughput, and robust across diverse network
conditions.

DRBs leverage various cryptographic primitives, each
with distinct trade-offs in efficiency, network assump-
tions, and security. Verifiable Delay Functions (VDFs) offer
low communication complexity (O(λn)) but require syn-
chronous networks with bounded delays, rendering them im-
practical for asynchronous environments [25], [26]. Thresh-
old signature schemes, such as BLS [27] and ECDSA
[28] variants, provide robust security in synchronous or
partially synchronous networks but rely on Distributed Key
Generation (DKG), which incurs significant communication
and computational overhead whenever nodes’ participation
changes [29], [30], [31], [32], [33]. In contrast, Verifiable
Secret Sharing (VSS) schemes [34], [35] require only a
Public Key Infrastructure (PKI) and a Common Reference
String (CRS) for setup, support asynchronous operation
through AVSS variants, and enable high-throughput batch-
ing, making them well-suited for generating randomness at
scale in asynchronous networks [4], [5], [7], [8], [9], [36].
These advantages motivate our focus on VSS-based DRBs
for achieving secure and efficient randomness generation.

VSS-based DRBs operate by having nodes share random
secrets via VSS, achieving consensus on t+ 1 secrets from
nodes whose VSS instances have terminated, reconstruct-
ing these secrets, and aggregating them into a beacon,
assuming n nodes with up to t < n/3 Byzantine faults.
Despite their flexibility, existing VSS-based DRBs face crit-
ical limitations. Many VSS protocols lack batching capa-
bilities, resulting in low beacon generation rates, limiting
their applicability in high-throughput scenarios [1], [2], [3],
[4], [8], [37]. Furthermore, the share-consensus-reconstruct
paradigm introduces circular dependencies in asynchronous
networks, as the FLP impossibility theorem necessitates ran-
domness for consensus, conflicting with the DRB’s reliance
on consensus [38]. Existing solutions mitigate this through
Monte-Carlo termination, ensuring deterministic termination
but risking inconsistent outputs with small probability [6],
[7], or Las Vegas termination, guaranteeing consistency but
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RandPiper [1] sync. 1/2 D ✓ ✗ O(λn3) O(n2) VSS q-SDH SRS
Optrand [2] sync. 1/2 D ✗ ✗ O(λn2) O(n2) PVSS q-SDH & SXDH SRS & PKI
RandFlash [3] sync. 1/3 D ✗ ✗ †O(n logn) O(n2) PVSS DDH CRS & PKI

Spurt [4] psync. 1/3 D ✗ ✗ O(λn2) ♭O(n) PVSS DBDH CRS & PKI
Rondo [5] psync. 1/3 D ✓ ✗ O(λn2 logn) O(n) bAVSS-PO DLog CRS & PKI
Freitas et al. [6] async. 1/3 MC ✗ ✓ O(λn3 logn) O(n3) APVSS DLog Secure channels
Hashrand [7] async. 1/3 MC ✓ ♯✓ ‡O(λcn2 logn) O(n logn) bAwVSS pRO ♮Secure channels
RandShare [8] async. 1/3 LV ✗ ✗ O(λn3) O(n3) PVSS DLog DKG
AsyRand [9] async. 1/3 LV ✗ ✗ O(λn2) O(n) PVSS DLog BRB

Rubato (This work) async. 1/3 LV ✓ ⋄✓✓ O(λn3 logn) ⋆O(n2) bAVSS-PQ SIS ♮CRS & PKI

TABLE 1: Comparison of VSS-based randomness beacon protocols. †RandFlash’s O(n log n) is the general case, with
a worst case of O(n2). ‡HashRand’s O(λcn2 log n) uses an AnyTrust sample of size c; with deterministic consensus, it
becomes O(λn3 log n). ♯HashRand uses a programmable Random Oracle (pRO), with post-quantum security reliant on the
pRO, achieving computational security. ♭Spurt elects a leader every n beacons, amortizing O(n2) computation to O(n).
⋄✓✓ indicates provably post-quantum secure. ♮Rubato and HashRand additionally assume reliable broadcast [10] for Merkle
root and DAG vertex dissemination. ⋆Verification complexity is O(n log n) Complexity: Complexities reflect per-beacon
generation. Termination Flavor: Deterministic (D) beacons terminate in deterministic time under synchronous or partially
synchronous networks; in asynchronous networks, Monte-Carlo (MC) beacons terminate deterministically but may output
inconsistent beacons with small probability (adjustable); Las Vegas (LV) beacons ensure consistency without deterministic
termination.

lacking deterministic termination [9], [39], [40].
Moreover, the quantum vulnerability of VSS-based

DRBs, coupled with their other limitations, underscores the
urgent need to address emerging quantum threats. Histor-
ically, DRBs relied on cryptographic assumptions robust
against classical adversaries, but the rise of quantum com-
puting introduces severe risks. Shor’s algorithm solves dis-
crete logarithm problems in polynomial time (O((logN)3))
using O(logN) qubits, rendering schemes based on thresh-
old signatures and most VSS protocols vulnerable [27],
[28], [34], [41]. Most VSS-based DRBs rely on assumptions
like Bilinear Diffie-Hellman or Discrete Logarithm, which
are susceptible to quantum attacks, compromising long-term
security in asynchronous networks where unbounded delays
exacerbate this risk. Advances like IBM’s 127-qubit Eagle
processor highlight the growing feasibility of quantum at-
tacks [42]. In contrast, classical algorithms like the General
Number Field Sieve require subexponential time, making
quantum threats imminent [43]. NIST’s post-quantum stan-
dardization underscores the need for quantum-resistant cryp-
tography [44]. Traditional DRBs, designed when quantum
computing was not a practical concern, are unprepared for
these emerging threats.

To mitigate these quantum vulnerabilities, post-quantum
VSS schemes have emerged, but their limitations reveal
the need for a more scalable and efficient approach. Early
lattice-based VSS schemes, grounded in Learning With
Errors (LWE) and Short Integer Solution (SIS) problems,
suffered from inefficient batch processing, high communi-
cation costs, and large proof sizes, with most lacking batch-
ing support [45], [46], [47]. Lightweight random oracle-

based schemes like bAwVSS [7] support batching but lack
provable security without Quantum Random Oracle Model
assumptions [48], [49], [50]. These limitations highlight the
need for scalable, batch-capable lattice-based VSS to ensure
robust post-quantum security [51].

These challenges—quantum vulnerabilities in VSS-
based DRBs, low beacon generation rates due to limited
batching, and circular dependencies in asynchronous net-
works—underscore the need for a DRB that combines post-
quantum security, high-throughput batching, and robust op-
eration in asynchronous networks. Addressing these require-
ments is essential to enable secure and scalable randomness
generation for decentralized systems facing diverse network
conditions and emerging cryptographic threats.

1.1. Our Contribution

We propose Rubato, a post-quantum secure distributed
randomness beacon tailored for asynchronous networks. Ru-
bato integrates a lattice-based batched Asynchronous Ver-
ifiable Secret Sharing (bAVSS-PQ) scheme, based on the
SIS problem, with a high-throughput DAG-based consen-
sus protocol. Leveraging an SIS-based polynomial commit-
ment scheme [52], Rubato ensures provable post-quantum
security and supports efficient batching of O(λ2) secrets
with O(λn3 log n) communication complexity. Its epoch-
staggered design for the collaboration of DRB protocol
with DAG, certificate numbering, and waiting mechanisms
resolve circular dependencies and prevent deadlocks, achiev-
ing liveness with negligible failure probability. Table 1 com-
pares Rubato with other VSS-based protocols. This paper



is organized as follows: system model, protocol design,
security analysis, performance evaluation, discussion, and
conclusion.

2. System Model

This section formalizes the system model, threat model,
and problem definition for asynchronous distributed ran-
domness beacon protocol.

2.1. Network and Computational Model

We consider a distributed system comprising n nodes,
denoted N = {1, 2, . . . , n}. The network is asynchronous,
with no upper bound on message delivery delays, allowing
messages to arrive out of order. However, messages between
honest nodes are guaranteed to be delivered eventually
through reliable broadcast and point-to-point communica-
tion.

Nodes may exhibit heterogeneous computational capa-
bilities, affecting the performance of cryptographic opera-
tions, such as proof generation in bAVSS-PQ. We assume
sufficient network bandwidth to support reliable broadcast
with negligible message loss probability. The system oper-
ates under a probabilistic polynomial-time (PPT) adaptive
adversary, detailed in the threat model.

The protocol relies on the Short Integer Solution (SIS)
problem [53] for constructing post-quantum secure poly-
nomial commitments in bAVSS-PQ, ensuring resistance
against quantum adversaries. No additional cryptographic
assumptions are required unless explicitly stated for auxil-
iary components (e.g., Fiat-Shamir heuristic challenges).

2.2. Threat Model

An adaptive PPT adversary A may corrupt up to f <
n/3 nodes, dynamically choosing which nodes to corrupt at
any point during the protocol’s execution, controlling their
actions, and accessing their internal states. The remaining
n − f ≥ 2n/3 nodes are honest, strictly adhering to the
protocol. The adversary can:

• Introduce arbitrary delays or reorder messages, sub-
ject to the constraint that messages between honest
nodes are eventually delivered.

• Perform polynomial-time quantum computations,
necessitating post-quantum cryptographic primitives.

• Coordinate Byzantine nodes to send inconsistent
messages or deviate from the protocol.

The adversary aims to compromise Protocol’s security prop-
erties, including unpredictability, bias-resistance, agreement,
and liveness.

2.3. Distributed Randomness Beacon Definition

A distributed randomness beacon (DRB) protocol oper-
ates among n nodes in an asynchronous network, producing
a sequence of tuples ⟨e, i, be,i⟩, where:

• e ∈ N is the epoch index, representing a batch
processing period.

• i ∈ {1, 2, . . . , θ} is the intra-epoch index, with θ ≤
κm as the batch size per epoch, where κm is the
parameter in the commitment scheme.

• be,i ∈ D is a random value from a predefined domain
D.

Each epoch involves a single invocation of a secret
sharing scheme to share a batch of θ secrets, with a subset
of beacons reconstructed sequentially (i ∈ {1, 2, . . . , B},
B ≤ θ) within the epoch, supporting the consensus pro-
tocol’s leader election. The remaining beacon outputs (i ∈
{B + 1, . . . , θ}) are available for external applications.

A DRB protocol comprises two subprotocols:

• PREP(e, s): Invoked by each node to share a batch
of random numbers s = {s1, s2, . . . , sθ} for epoch e,
generating certificates Ce, each consisting of 2f +1
signatures from nodes verifying the shared secrets,
for consensus via the underlying consensus protocol.

• OPEN(e, i): Invoked to reconstruct and output the
beacon be,i for index i in epoch e, based on
consensus-agreed {Ce}.

A DRB satisfies the following properties, ensuring Las
Vegas-style agreement (guaranteed consistency with proba-
bilistic termination) despite asynchronous delays and batch
processing:

• Unpredictability: For any future beacon
⟨e′′, i′′, be′′,i′′⟩ (where e′′ > e′ or e′′ = e′

and i′′ > i′ relative to prior beacons
⟨e, 1, be,1⟩, . . . , ⟨e′, i′, be′,i′⟩), no PPT adversary
A can predict be′′,i′′ with probability exceeding
negl(λ):

Pr
[
b′e′′,i′′ = be′′,i′′ | ⟨e, 1, be,1⟩, . . . , ⟨e′, i′, be′,i′⟩

]
≤ negl(λ),

where b′e′′,i′′ is A’s guess.
• Bias-resistance: Each bit be,i(k) (for k ∈
{1, . . . , |be,i|}) of a beacon be,i is indistinguishable
from a uniform random bit. For any PPT adversary
A with access to prior beacons, the probability
of predicting be,i(k) deviates from 1

2 by at most
negl(λ):∣∣∣∣Pr [be,i(k) = 1 | ⟨e, 1, be,1⟩,

. . . , ⟨e, i− 1, be,i−1⟩

]
− 1

2

∣∣∣∣ ≤ negl(λ).

• Agreement: All honest nodes outputting ⟨e, i, be,i⟩
agree on the same be,i with probability 1− negl(λ).

• Liveness: If all honest nodes invoke PREP(e, s)
for epoch e, and then invoke OPEN(e, i), every
honest node eventually outputs ⟨e, i, be,i⟩ for each
i ∈ {1, . . . , θ} with probability 1− negl(λ).



2.4. Problem Definition

We aim to design an asynchronous distributed ran-
domness beacon protocol, satisfying the properties in Sec-
tion 2.3, addressing the following challenges:

• Circular Dependency: Beacon generation requires
the consensus protocol’s agreement on f+1 bAVSS-
PQ certificates C, while the consensus protocol’s
liveness depends on beacons for leader election. A
mechanism must resolve this dependency to ensure
protocol termination.

• Deadlock Prevention: bAVSS-PQ’s certificate gen-
eration may lag behind the consensus protocol’s
epoch progression, risking epoch without available
{C}. The protocol must ensure certificate availability
to prevent deadlocks.

• Strong Post-quantum Security: The protocol must
employ strong primitives to resist quantum adver-
saries, ensuring long-term security for beacon gen-
eration.

• High throughput Beacon Generation: The proto-
col must support high-throughput generation of bea-
cons per epoch, with B beacons for the consensus
protocol’s waves and θ−B for external applications.

TABLE 2: Notations for Rubato.

Notation Description

n Number of nodes.
f Maximum Byzantine faults, f < n/3.
t Polynomial degree, set to f .
λ Security parameter.
Ce Certificate for epoch e, 2f + 1 signatures.
pki, ski Node i’s key pair in bAVSS-PQ.
θ Max secrets per epoch.
{sj(·)}j∈[θ] Polynomials with the secret as the constant term.
sd,j j-th secret shard from dealer d.
A Random Matrix in Zm×L log q

q for SIS.
G Gadget matrix in ZL×L log q

q .
f Coefficient vector for polynomials.
t Commitment vector from PC.Commit.
ui Evaluation vector, ui[j] = sj(i).
πi Proof for node i, {(yk,vk)}k∈[0,ℓ].
xj Evaluation point vector in j-th iteration.
m Lattice matrix A row dimension.
ℓ Depth of r-ary tree in PC.
r Branching factor in PC tree.
κ Statistical security parameter.
q Modulus for Zq in lattice.
β Short vector norm bound in PC.
L Coefficient vector length, L = rℓ+1κm.
⊗ Kronecker product.
B Beacons for the consensus protocol, B ≤ θ.
D Beacon value domain.
be,i Beacon for epoch e,index i.

Our objective is to develop Rubato, integrating bAVSS-
PQ with a post-quantum secure consensus protocol (e.g.,
DAG-based Bullshark [23], Tusk [22]), achieving post-
quantum security, high throughput (comparable to Bull-
shark’s 125,000 transactions per seconds), and robust live-
ness in asynchronous networks. The protocol must ensure

negligible failure probabilities and support high-throughput
beacon generation scenarios.

3. Protocol Design

This section presents Rubato, our proposed protocol that
integrates a batched asynchronous verifiable secret sharing
(bAVSS-PQ) scheme with a DAG-based consensus protocol
to construct a post-quantum secure, high-throughput dis-
tributed randomness beacon. To illustrate its operation, we
describe the workflow of Rubato in Fig. 1. Table 2 sum-
marizes the notations used throughout this paper, covering
network parameters, protocol variables, and cryptographic
constructs for all components.

We elaborate on Rubato in three subsections: Subsection
3.1 describes the Beacon Protocol, Subsection 3.2 elaborates
on the bAVSS Workflow, and Subsection 3.3 details how
to integrate DAG Consensus Mechanism to our beacon
protocol.

3.1. Beacon Protocol

Rubato operates in epochs, using bAVSS-PQ to share
and reconstruct secret batches and the DAG-based consensus
protocol to agree on a common core of certificates. An
epoch-based structure decouples random number genera-
tion from consensus, while a certificate epoch-numbering
mechanism and waiting strategy prevent deadlock due to
mismatched bAVSS-PQ and consensus speeds.

The protocol’s workflow, formalized in Algorithm 1,
is event-driven, handling certificate generation, consensus
decisions, and beacon requests asynchronously. We describe
its workflow through three core functional components:
Secret Sharing, Certificate Agreement, and Beacon Gen-
eration. Each component responds to specific events, and
their interactions produce random beacons across epochs.
While a single beacon’s lifecycle logically progresses from
sharing to agreement to reconstruction, the system processes
multiple epochs and requests in a pipelining manner. Below,
we detail each component and its role in the protocol.

• Secret Sharing: At the start of the protocol, each
node, acting as a dealer, calls Rubato.PREP(0, s) to
share a batch of θ ≤ κm secrets chosen randomly
among Zq for epoch e = 0 (Line 2), enabling beacon
and global coin for the first DAG epoch (e = 1).
Upon receiving a certificate Ce (containing 2f + 1
signatures) gathered from bAVSS-PQ, the node re-
lays it to the DAG-based consensus protocol for
agreement, or to an auxiliary consensus mechanism
for epoch e = 0 (Lines 3–4), since DAG has not
been booted yet.

• Certificate Agreement: Upon receiving a decided
certificate Ce from consensus for epoch e, the node
stores it and checks if f + 1 certificates in this
epoch have been collected (Lines 5–6). Once this
threshold is met, epoch e is marked as decided, and



Figure 1: Overview of a node’s protocol view in Rubato, abstracted into three conceptual layers for clarity. The bottom
layer, illustrated with a 4-round-per-wave DAG, handles consensus, where nodes submit bAVSS certificates Cd,e (dealer d,
epoch e) via vertices. The middle layer performs bAVSS (share, reply, confirm) and certificate consensus, committing µ
sets of f + 1 C per epoch. The top layer reconstructs randomness using the prior epoch’s C, in each wave’s last round,
selecting the leader vertex from the first round via global coin requests.

Algorithm 1 Rubato: Asynchronous Distributed Randomness Beacon Protocol

1: Initialize: n nodes, f < n/3, epoch e← 0, θ ≤ κm beacons/epoch, B ≤ θ for DAG consensus waves
2: Dealer d: PREP(0, s): Start bAVSS-PQ SHARING for epoch e = 0 with θ random numbers {sd,j}j∈[θ] ∈ Zq ▷

Initiate secret sharing for epoch 0 to support DAG epoch 1
3: Upon receiving certificate Ce from bAVSS-PQ for epoch e ▷ Handle certificate generated by bAVSS-PQ
4: Send Ce to the DAG-based consensus protocol (or auxiliary consensus if e = 0) ▷ Forward certificate for

agreement; use auxiliary consensus for e = 0

5: Upon receiving decided Ce from consensus protocols for epoch e ▷ Process decided certificate from consensus
6: Store Ce for epoch e; if f + 1 Ce collected, mark e as decided ▷ Ensure f + 1 certificates for epoch decision
7: PREP(e+ 1, s): Start bAVSS-PQ SHARING for epoch e+ 1 with {sd,j}j∈[θ] ∈ Zq ▷ Trigger sharing for next

epoch
8: Upon calling OPEN(e, i) ▷ Handle global coin or beacon request for epoch e using epoch e− 1 certificates
9: if e− 1 not decided then

10: Reply: “No common core” ▷ Indicate epoch e− 1 not ready
11: else
12: Return cached beacon or request bAVSS-PQ ⟨RECON, Ce−1, i⟩ for f + 1 decided Ce−1

13: end if
14: Upon receiving f + 1 reconstructed secrets {sd,i}d∈{dealers of({Ce−1})} for (e− 1, i) from bAVSS-PQ
15: Cache

∑
d sd,i as beacon be,i ▷ Aggregate f + 1 secrets to form beacon

16: Send be,i to the consensus protocol if i ≤ B, else to consumer

Rubato.PREP for epoch e+1 is triggered to maintain
protocol progress (Line 7).

• Beacon Generation: This component produces ran-
domness in response to Rubato.OPEN(e, i) from the
consensus protocol (for global coins) or external
consumers, using certificates from epoch e − 1.
If epoch e − 1 is not decided, the node replies
“No common core” (Lines 9–10); otherwise, it re-
turns a cached beacon be,i or initiates reconstruc-
tion by requesting bAVSS-PQ with decided certifi-
cates {Ce−1}f+1 (Line 12). The node aggregates
f + 1 reconstructed secrets {sd,i}d∈{dealer of(Ce−1)}
from bAVSS-PQ to form the beacon be,i, which is

cached and sent to the consensus protocol (if i ≤ B)
or the consumer (Lines 14–16). Actually, to optimize
computational efficiency, we concatenate g beacons,
denoted as b̂e,j , and apply a hash function to produce
the final output: be,i = H(b̂e,(i−1)g+1, . . . , b̂e,ig),
where the modulus q satisfies log q = λ/g. The
security of this mechanism is shown in Section 4.

The Rubato protocol resolves the circular dependency
between beacon generation and consensus by using epoch
e − 1 certificates to produce beacons for epoch e. Beacon
generation for wave (e, i) relies on epoch e − 1’s decided
certificates (Lines 11–13), while the consensus protocol uses
these beacons for liveness (e.g., fallback leader election in



Bullshark). For the initial epoch e = 1, epoch e = 0 cer-
tificates are decided via an auxiliary consensus mechanism,
since the DAG is not booted yet. Although the commu-
nication complexity of the auxiliary consensus is typically
high (e.g., [54]), it is executed only once. This epoch-offset
design maintains the logical progression of a single beacon’s
lifecycle (sharing in epoch e − 1 → agreement in epoch
e− 1 → generation for epoch e) while enabling concurrent
processing of multiple epochs to support high throughput.

3.2. Batched Asynchronous Verifiable Secret Shar-
ing

Algorithm 2 bAVSS-PQ: Post-quantum Batched AVSS Pro-
tocol

1: Parameters: n ≥ 3t+1, public keys {pki}i∈[n], polynomial
commitment scheme PC, reliable broadcast channel RBC

2: Input: Dealer d’s secret set Sd = {sd,j}j∈[θ], node i’s signing
key ski

3: SHARING PHASE
4: Dealer d: Sample θ t-degree polynomials {sj(·)}j∈[θ] with

sj(0) = sd,j
5: t← PC.Commit(sj(·)) for j ∈ [θ] ▷ Commit to

polynomials
6: for i ∈ [n] do
7: (ui, πi)← PC.Open(i) ▷ Generate shares and proofs
8: Build Merkle tree over {uk,j}k∈[n]

9: Get rootL,j , proofi,j for j ∈ [θ]
10: Send ⟨SHARE, t, ui, πi, {proofi,j}j∈[θ]⟩ to node i
11: end for
12: Broadcast {rootL,j}j∈[θ] via RBC ▷ Ensure share

consistency
13: REPLY PHASE
14: Node i: On ⟨SHARE, t, ui, πi, {proofi,j}j∈[θ]⟩, rootL,j :
15: if PC.Verify(t, i, ui, πi) = 1
16: and Merkle.Verify(rootL,j , ui,j , proofi,j) = 1, ∀j ∈ [θ] then
17: Send ⟨REPLY, sign(ski, t)⟩ to dealer d
18: end if
19: CONFIRM PHASE
20: Dealer d: Collect 2t+ 1 valid signatures into C, output C
21: RECONSTRUCTION PHASE
22: Node i: On ⟨RECON, C, j⟩
23: Select shares {ui,j} from dealer d of C ▷ Use shares from

certified dealer
24: Broadcast ⟨RECON, d, j, ui,j , proofi,j⟩
25: Upon receiving ⟨RECON, d, j, uk,j , proofk,j⟩ from node k
26: if Merkle.Verify(rootd,j , uk,j , proofk,j) = 1 then
27: Collect uk,j ▷ Verify and store valid share
28: end if
29: Interpolate sd,j from t+ 1 valid shares uk,j

We present the workflow of our batched asynchronous
verifiable secret sharing (bAVSS-PQ) scheme, the crypto-
graphic core of Rubato. bAVSS-PQ enables robust secret
sharing with strong commitment, supporting up to θ ≤ κm
secrets per batch with deterministic outputs.

The bAVSS-PQ workflow, formalized in Algorithm 2,
operates in four phases: sharing, where the dealer dissem-
inates secret shares; reply, where nodes validate shares;

confirm, where the dealer collects signatures; and recon-
struction, where nodes recover secrets.

3.2.1. bAVSS-PQ Workflow. Algorithm 2 outlines the
bAVSS-PQ protocol, inspired by the structure of Rondo’s
Breeze. It proceeds as follows:

• Sharing Phase (Lines 3–12): The dealer d samples
θ t-degree polynomials {sj(·)}j∈[θ] with constant
terms sd,j , commits to them using the polynomial
commitment scheme (PC) to produce commitment
t, and generates evaluation shares ui,j = sj(i)
and proofs πi for each node i. To ensure share
consistency, a Merkle tree is built over shares,
with roots {rootL,j}j∈[θ] broadcast via a reliable
broadcast channel (RBC). Each node i receives
⟨SHARE, t, ui, πi, {proofi,j}j∈[θ]⟩ and the corre-
sponding roots.

• Reply Phase (Lines 13–18): Upon receiving a share
message and Merkle roots, node i verifies the poly-
nomial commitment using PC.Verify and checks
Merkle proofs. If valid, it signs t with its secret key
ski and sends a reply to the dealer, enforcing strong
commitment.

• Confirm Phase (Lines 19–20): The dealer collects
2t+1 valid signatures to form a certificate C, which
serves as validation data proving the secret’s fixation.
The certificate is output for consensus in Rubato
(Algorithm 1 Line 3).

• Reconstruction Phase (Lines 21–29): Upon a re-
construction request for secret sd,j , node i selects
share ui,j from the dealer who proposed C, and
broadcasts it with Merkle proof. Nodes collect t+1
valid shares, verified via Merkle proofs, and recon-
struct sd,j using Lagrange interpolation.

3.2.2. Polynomial Commitment Workflow. Building upon
the framework of [52], Algorithm 3 presents a lattice-based
non-interactive polynomial commitment scheme tailored for
our bAVSS-PQ protocol. In contrast to discrete logarithm-
based commitments, this scheme leverages the hardness
of the Shortest Integer Solution (SIS) problem to achieve
post-quantum security with transparent setup. The scheme
supports the commitment of θ ≤ κm univariate polynomials,
each of degree at most t + 1 ≤ rℓ+1, represented as
coefficient vectors f ∈ Zrℓ+1κm

q . For succinct proofs, it
employs FRI-style folding techniques [55], as adopted by
[52], which extend the folding approach of Bulletproofs
[56] to the lattice setting through lattice homomorphism.
The workflow of the scheme is detailed below:

• Commitment (Lines 4–12): The dealer transforms
θ t-degree polynomials into the coefficient vector
f using TRANSFORMPOLYNOMIALS (Algorithm 3
Line 5), padding with zeros to length rℓ+1κm if
θ < κm or t+1 < rℓ+1. The PC.Commit function
recursively folds the input through ℓ levels, starting
with the initial f . In each level, it computes a short



Algorithm 3 Polynomial Commitment Scheme for bAVSS-PQ

1: Public Parameters: m, ℓ, r, κ, q, β, A ∈ Zm×L log q
q , G ∈ ZL×L log q

q , L = rℓ+1κm, H : {0, 1}∗ → {0, 1}rκ×κ

2: Notations: Batch size θ, f ∈ ZL
q , t ∈ Zκm

q , ui ∈ Zκm
q , πi = {(yk,vk)}k∈[0,ℓ], xj ∈ Zr

q

3:
4: Algorithm PC.Commit({sj(·)}j∈[θ]) Output: t
5: f ← TRANSFORMPOLYNOMIALS({sj(·)}j∈[θ]), {s(i) ← None}i∈[0,ℓ] ▷ Initialize coefficient vector and short vectors
6: function FOLDCOMMITMENT(f , depth, {s(i)})
7: if depth < 0 then return f
8: end if
9: s← solution to G · s = f mod q with ∥s∥∞ ≤ β, s(depth) ← s, t← (Irdepthκ ⊗A) · s mod q ▷ Compute folded

commitment
10: return FOLDCOMMITMENT(t, depth− 1, {s(i)}) ▷ Recursively fold until depth 0
11: end function
12: return t← GENERATEPROOF(f , ℓ, {s(i)}), Store← (f , {s(i)}i∈[0,ℓ]) ▷ Store for opening, return commitment
13:
14: Algorithm PC.Open(i) Output: (ui, πi)
15: (f , {s(k)}k∈[0,ℓ])← Store, {xj}j∈[0,ℓ] ← TRANSFORMEVALUATIONPOINT(i, ℓ, r) ▷ Retrieve stored data, generate evaluation

vectors
16: ui ←

∏ℓ
j=0(Irjκm ⊗ x⊤

ℓ−j) · f , πi ← ∅ ▷ Compute polynomial evaluations ui,j = sj(i)

17: function GENERATEPROOF(f , {s(k)}, {xj}, t,ui, depth)
18: if depth = ℓ then
19: πi ← πi ∪ {(s(0), f)}, return ▷ Final round
20: end if
21: y← s(0),v←

∏ℓ−depth
k=1 (Irkκm ⊗ x⊤

ℓ−depth−k) · f , πi ← πi ∪ {(y,v)} ▷ Compute proof components
22: C← H(t,ui, {xj}ℓ−depth

j=0 ,y,v) ▷ Fiat-Shamir challenge for non-interactivity
23: for k ∈ [0, ℓ− depth− 1] do
24: s(k) ← (C⊤ ⊗ Irk+1m log q) · s(k+1) ▷ Update short vectors via folding
25: end for
26: t′ ← (C⊤⊗ Im) ·Grκm ·y,u′

i ← (C⊤⊗ Im) ·v, f ← (C⊤⊗ Irℓ−depthm) · f ▷ Compute new folded commitment and evaluation
27: GENERATEPROOF(f , {s(k)}, {xj}, t′,u′

i, depth + 1) ▷ Recurse to next depth
28: end function
29: GENERATEPROOF(f , {s(k)}, {xj}, t,ui, 0) return (ui, πi) ▷ Generate and return proof
30:
31: Algorithm PC.Verify(t,ui, i, πi) Output: Boolean
32: {xj}j∈[0,ℓ] ← TRANSFORMEVALUATIONPOINT(i, ℓ, r)
33: function VERIFYPROOF(t,ui, {xj}, πi, depth)
34: (ydepth,vdepth)← πi ▷ Extract proof components
35: if ∥ydepth∥∞ > (rκ)depthβ or (Iκ ⊗A) · ydepth ̸= t or (Iκm ⊗ x⊤

ℓ−depth) · vdepth ̸= ui then
36: return false ▷ Check norm, commitment, and evaluation
37: end if
38: if depth = ℓ then return true ▷ Accept in final round
39: end if
40: C← H(t,ui, {xj}ℓ−depth

j=0 ,ydepth,vdepth) ▷ Fiat-Shamir challenge
41: t′ ← (C⊤ ⊗ Im) ·Grκm · ydepth,u

′
i ← (C⊤ ⊗ Im) · vdepth ▷ Compute next folded commitment and evaluation

42: return VERIFYPROOF(t′,u′
i, {xj}ℓ−depth−1

j=0 , πi, depth + 1) ▷ Recurse to next depth
43: end function
44: return VERIFYPROOF(t,ui, {xj}, πi, 0) ▷ Return verification result

vector s satisfying G · s = f ′ mod q, where f ′ is
the output of the previous level (or the initial f for
the first level), and produces a folded commitment
t.

• Opening (Lines 14–29): For an evaluation point
i, PC.Open computes evaluations ui ∈ Zκm

q ,
where ui[j] = sj(i) for j ∈ [θ], and generates
a proof πi. Note that the evaluation point i is
transformed into vectors xj ∈ Zr

q for j ∈ [0, ℓ]
by TRANSFORMEVALUATIONPOINT to support uni-
variate polynomial evaluation. For example, when
ℓ = 2, r = 3, the vectors are x0 = (1, i, i2),

x1 = (1, i3, i6), x2 = (1, i9, i18). The proof is
constructed recursively via FRI-style folding: in each
round, the prover sends a short vector y using the
opening s(ℓ−depth) updated in the former round and
an evaluation vector v, then computes a fiat-shamir
heuristic challenge C. The challenge C randomly
folds the commitment t, evaluation ui, and coeffi-
cient vector f for the next round. In the final round,
the prover sends s(0) and f .

• Verification (Lines 31–44): PC.Verify recursively
validates the commitment, evaluation, and norm con-
straints. For each round, it checks the norm of ydepth,



the commitment consistency (Iκ ⊗A) · ydepth = t,
and the evaluation correctness (Iκm ⊗ x⊤

ℓ−depth) ·
vdepth = ui. It generates the same challenge C as
in PC.Open with identical inputs, ensuring consis-
tency across rounds. The folded commitment t′ and
evaluation u′

i are computed for the next round.

3.3. DAG-based Consensus

Our Byzantine Fault Tolerance State Machine Replica-
tion (BFT-SMR) protocol adapts a Directed Acyclic Graph
(DAG)-based consensus protocol to integrate with Rubato.
This section provides a comprehensive overview of the
consensus mechanism, detailing its operation, and how it
ensures the liveness of Rubato. The protocol constructs a
DAG to disseminate transactions and certificates, achiev-
ing consensus without extra communication beyond DAG
construction, as described in [57]. We embed bAVSS-PQ
certificates Ce from Rubato into DAG vertices, leveraging
randomness for leader selection while retaining the con-
sensus protocol’s optimal O(n) amortized communication
complexity, fairness, and liveness.

3.3.1. DAG Structure and Operation. The consensus pro-
tocol operates by constructing a DAG, where each vertex
represents a message broadcast by a node via reliable broad-
cast (r bcast). The DAG is maintained locally by each node
pi as DAGi, an array of vertex sets jed by round number
r ∈ N, i.e., DAGi[r] contains vertices associated with round
r. The structure and operation of the DAG are as follows:

Vertex Structure: Each vertex v contains:

• Transactions: A block of transactions proposed by
the source node.

• Metadata: The round number (v.round), the source
node (v.source), and, in our adaptation, a bAVSS-
PQ certificate Ce (or ∅ if none).

• Edges: References to parent vertices.

DAG Advancement: As described in Algorithm 4, the
DAG progresses in rounds, driven by two key events in
Algorithm 4:

• Vertex Delivery (Lines 8–22): When a node pi
receives a valid vertex v via reliable broadcast
(r deliveri(v, r, pj)), if all referenced parent vertices
(strong and weak edges) are in DAGi, the vertex is
added to DAGi[r]; otherwise, it is stored in a buffer.
After each addition, the node checks the buffer for
vertices whose parents are now available, adding
them to DAGi.

• Round Advancement (Lines 24–39): When
|DAGi[r]| ≥ 2f + 1, the TRYADVANCEROUND
procedure is triggered, indicating a quorum of
vertices in round r. The node checks if the current
epoch e has an available certificate (Ce) in the
queue. In the first round of every epoch, if the
queue is empty and ec ≤ e (latest certificate epoch
is behind), the node waits until a certificate is

enqueued (Line 27). This mechanism ensures the
latest certificate will be committed in this epoch.
The node then creates a new vertex for round r+1,
embedding a dequeued Ce if available, updates ec,
and broadcasts the vertex via r bcasti.

Consensus Mechanism: Consensus is achieved through
leader election and vertex ordering:

• Leader Election: The DAG is organized into waves,
each consisting of four rounds (or two rounds in
case of Tusk [22]). Each wave has a leader vertex,
selected via a global perfect coin (provided by Ru-
bato’s beacons), ensuring liveness and unpredictabil-
ity. The leader is chosen from vertices in the first
round of the wave, with a probability of at least 2/3
of selecting an honest node’s vertex, as there are
at least 2f + 1 honest nodes out of 3f + 1 total
nodes [57].

• Vertex Ordering: Once a leader is committed, nodes
order its causal history (all vertices reachable via
strong or weak paths) deterministically. To ensure
total order, nodes retroactively check for prior lead-
ers (in earlier waves) with strong paths from the
current leader, committing them in reverse order.
This process (invoked after adding vertices, Line 13)
guarantees that all honest nodes deliver the same
sequence of vertices.

3.3.2. Integration with Rubato. Our adaptation extends the
DAG to handle bAVSS-PQ certificates. Key modifications
include:

• Certificate Queue: Rubato certificates Ce are en-
queued, triggering round advancement when un-
blocking the queue.

• Vertex Creation: New vertices embed a dequeued
Ce if available, updating the latest certificate epoch
ec; otherwise, Ce = ∅.

• Synchronization: If ec ≤ e and the queue is empty,
the node waits for a certificate, aligning bAVSS-PQ
certificate production with DAG progression.

The fast production rate of bAVSS-PQ ensures continu-
ous certificate broadcasts, while slower rates trigger waiting,
preserving certificate order. The protocol retains the consen-
sus’s liveness, achieving high throughput and fairness, as all
honest vertices are eventually ordered.

4. Security Analysis

This section analyzes the security of Rubato against an
adaptive probabilistic polynomial-time (PPT) quantum ad-
versary corrupting up to f < n/3 nodes in an asynchronous
network. Detailed proofs of the following theorems are
provided in Appendix.

Theorem 1 (Security of bAVSS-PQ). The bAVSS-PQ pro-
tocol (Algorithm 2) satisfies the following properties:



Algorithm 4 Modified DAG-based Consensus with Rubato for Party pi

1: Local variables:
2: DAGi[], round← 1, e← 0, ec← −1, queue← ∅, buffer← ∅ ▷ DAG, round, epoch, queue, buffer
3: Struct vertex:
4: source, transactions, Ce ▷ Vertex with certificate
5:
6: Upon receive Ce from Rubato for epoch e ▷ Get Rubato certificate
7: queue← queue ∪ {Ce} ▷ Enqueue Ce
8: Upon r deliveri(v, r, pj) ▷ Receive vertex
9: if v.source = pj ∧ v.round = r then

10: If v’s parents in DAGi, add to DAGi, else to buffer ▷ Add to DAG
11: for v′ ∈ buffer do
12: Check if v′’s parents in DAGi; if yes, add to DAGi, remove from buffer ▷ Retry and order
13: Order Vertex v′ ▷ Choose leader via global coin request and call a deliver(v′)
14: end for
15: if |DAGi[r]| ≥ 2f + 1 then
16: TRYADVANCEROUND ▷ Advance round
17: end if
18: end if
19: Upon a deliveri(v) ▷ Output ordered vertex
20: if v.Ce ̸= ∅ then
21: Send Ce to Rubato ▷ Feedback decided certificate
22: end if
23:
24: procedure TRYADVANCEROUND
25: e← get epoch(round) ▷ Update epoch
26: if ec ≤ e ∧ is first round of epoch(round) ∧ queue = ∅ then ▷ Wait for certificate from bAVSS
27: Poll queue until non-empty ▷ Wait for certificate
28: end if
29: round← round + 1
30: v ← CREATEVERTEX(round) ▷ New vertex
31: if queue ̸= ∅ then
32: Ce ← queue.dequeue() ▷ Dequeue Ce
33: v.Ce ← Ce
34: ec← epoch of Ce ▷ Update epoch
35: else
36: v.Ce ← ∅ ▷ Empty certificate
37: end if
38: r bcasti(v, round) ▷ Broadcast vertex
39: end procedure

• Liveness: If the dealer d is honest during the shar-
ing phase, all honest nodes eventually complete the
reply phase, a certificate C is formed; if at least
t + 1 honest nodes have validated their shares and
initiated the reconstruction phase, all honest nodes
eventually complete reconstruction, producing some
output.

• Strong Commitment: Upon formation of a valid
certificate C for dealer d, whether it is honest or not,
once all honest nodes complete the reconstruction
phase, they reconstruct consistent secrets sd,j ∈ Zq.

• Privacy: If the dealer d remains honest throughout
the protocol and no honest node initiates reconstruc-
tion, an adversary corrupting at most f nodes gains
no information about the secret set {sd,j}j∈[θ].

Theorem 2 (Security of Polynomial Commitment). The
lattice-based polynomial commitment scheme (Algorithm 3)
satisfies the following properties for univariate polynomials
of degree at most t + 1 ≤ rℓ+1, with probability at least

1− negl(λ):

• Completeness: For an honest prover committing to
polynomials {sj(·)}j∈[θ] and generating a proof πi

for evaluation at point i, the verification procedure
PC.Verify(t,ui, i, πi) accepts.

• Binding: Under the Short Integer Solution (SIS)
assumption, no probabilistic polynomial-time (PPT)
adversary can produce two distinct polynomial sets
{sj(·)}j∈[θ] ̸= {s′j(·)}j∈[θ] that yield the same com-
mitment t.

• Knowledge Soundness: Under the SIS assumption,
no PPT adversary can forge a proof πi for an eval-
uation ui at point i without knowing the polynomial
coefficients, except with soundness error at most
ℓrκ
2κ ≤ negl(λ).

• Hiding: For any polynomial vector f ∈ Zrℓ+1κm
q , the

commitment t and proof {πi} reveals no information
about f , .



Theorem 3 (Liveness of DAG-based Consensus and In-
tegration). The consensus protocol (Algorithm 4) and its
integration with Rubato satisfy liveness: for each epoch e,
honest nodes eventually output f + 1 certificates {Ce} with
probability 1−negl(λ), provided at least f+1 honest nodes
invoke PREP(e, s).

Theorem 4 (Indistinguishability). For any PPT adaptive
adversary A corrupting at most f < n/3 nodes in an asyn-
chronous network with n ≥ 3f+1, A cannot distinguish the
Rubato beacon output be,i (Algorithm 1) from a uniformly
random element in Zq with advantage greater than negl(λ).

Note that Rubato remains secure against an adaptive
adversary in the no-erasures model [58], where A can access
the entire tape (i.e., the complete historical state, including
all secrets, shares, and messages) of up to f corrupted nodes.
The proof shows that even with this access post-sharing,
A gains no advantage. In contrast, HashRand [7] achieves
adaptive security only in the secure erasures model.

Theorem 5 (Unpredictability, Bias-resistance, Agreement
and Liveness of Beacon Protocol). The Rubato beacon
protocol satisfies all the properties in Section 2.3 with
probability 1− negl(λ).

Theorem 6 (Hash-Based Domain Randomness). Let H :
Zg
q → D be a cryptographic hash function modeled as a

random oracle, where q is a prime such that log2 q ≈ λ/g,
and λ is the security parameter. Let b̂ ∈ Zq be inde-
pendently and uniformly random elements. Then, be,i =
H(b̂e,(i−1)g+1, . . . , b̂e,ig) is indistinguishable from a uni-
formly random element in D.

5. Evaluation

We evaluate the performance of our Rubato protocol, in-
tegrated with bAVSS-PQ and Consensus protocols, focusing
on beacon generation, consensus throughput, and latency.
Our experiments compare the post-quantum secure lattice-
based scheme against Rondo’s non-post-quantum Breeze
[5], which relies on discrete logarithm assumptions. We
assess scalability across 10, 20, 30, and 50 nodes, measur-
ing beacon output rate, amortized beacon latency, consen-
sus throughput, and latency, alongside bAVSS-PQ’s crypto-
graphic overhead.

5.1. Experimental Setup

Our experiments are conducted on Amazon Web Ser-
vices (AWS) using c4.4xlarge instances (16 vCPUs, 30 GB
memory, high network performance) in a geo-distributed
setup with nodes deployed across multiple regions to sim-
ulate realistic network conditions (ap-northeast-1, us-west-
1, eu-north-1, sa-east-1, ca-central-1). We evaluate com-
mittee sizes of 10, 20, 30, and 50 nodes. The implemen-
tation is in Rust, leveraging tokio as the asynchronous
runtime. For bAVSS-PQ, we use DiLithium for sig-
natures, rs-merkle for Merkle trees, nalgebra for

algebraic operations, and rayon for parallel computa-
tion, with polynomial commitments implemented in-house.
For Breeze, we use ed25519-dalek for signatures and
curve25519-dalek for commitments. Cryptographic
overhead measurements for bAVSS-PQ are performed on
an Intel i9 CPU (2.50 GHz, 32 GB memory). Forking
from Bullshark1, we have made the source code of our
experiments publicly available.2

5.2. Beacon Generation Performance

Figure 2a shows the beacon output rate (beacons/min)
for our DRB protocol, Rubato, integrated with Bullshark
and Tusk, using post-quantum bAVSS-PQ (pq) and non-
post-quantum Breeze (npq), compared to baselines AsyRand
and Spurt. Rubato achieves 4100–5200 beacons/min at 10
nodes, decreasing to 350–560 beacons/min at 50 nodes
due to coordination overhead. Rubato sustains high rates
through batched AVSS, efficiently sharing multiple secrets
for on-demand reconstruction, with Bullshark and Tusk
enabling fast consensus on certificate sets and clients’
transactions. The npq variants slightly outperform pq due
to Breeze’s lower cryptographic overhead (ECDSA vs.
DiLithium), but bAVSS-PQ’s post-quantum security incurs
minimal rate reduction (e.g., 14% for Bullshark at 50 nodes),
ensuring robust secure applications. AsyRand and Spurt’s
lower rates reflect simpler protocols, less suited for high-
frequency beacon generation. The rate decline with node
count stems from increased communication overhead, par-
ticularly for Rubato’s O(λn3 log n) complexity compared to
AsyRand/Spurt’s O(λn2). For larger committees (n > 100),
AsyRand/Spurt may surpass Rubato due to better scalability.

Figure 2b presents the amortized beacon latency (mil-
lisecond/beacon), measuring the time per beacon from shar-
ing to reconstruction for 1232 output beacons (out of 2432
total beacons per epoch). Rubato, using batched AVSS,
achieves low latency, with Tusk-pq at 11.60 ms/beacon
for 10 nodes, increasing to 89.14 ms/beacon at 50 nodes,
and Bullshark-pq reaching 96.37 ms/beacon at 50 nodes.
Breeze’s npq variants exhibit higher latency, estimated at 76
ms/beacon for Bullshark-npq at 50 nodes. Rubato’s bAVSS-
PQ, supported by fast Bullshark/Tusk consensus, ensures
low latency, ideal for high-frequency beacon generation.

5.3. Consensus Performance

Figures 2c and 2d illustrate the consensus throughput
(tx/s) and latency (s) of Bullshark and Tusk, integrated with
Rubato’s beacon, using bAVSS-PQ (pq) and Breeze (npq),
at a fixed input rate of 200,000 tx/s with nodes and workers
co-deployed on the same host. The throughput peaks at 20–
30 nodes (e.g., Tusk-npq: 186,088 tx/s at 30 nodes), driven
by batched AVSS and low beacon latency, but declines at 50
nodes (e.g., Bullshark-pq: 93,628 tx/s) due to increased bea-
con latency slowing leader commits. Latency is low at small

1. https://github.com/asonnino/narwhal.git.
2. https://github.com/linghe-yang/narwhal.git



(a) Beacon output rate (beacons/min, log scale) (b) Amortized beacon latency (ms/beacon)

(c) Consensus throughput (tx/s) (d) Consensus latency (s)

Figure 2: Performance metrics for Beacon and Consensus.

TABLE 3: Performance Metrics of BAVSS-PQ

Metric Number of Nodes
10 20 30 50

Commit Time/Beacon (ms) 0.61 1.63 2.99 4.35
Proof Time/Beacon (ms) 0.32 2.45 7.12 16.17
Verify Time/Beacon (ms) 0.52 0.83 1.20 1.41
Commit Size/Beacon (kB) 0.313 0.625 0.938 1.563

Proof Size/Beacon (kB) 4.125 6.188 8.250 10.313

committee, with Bullshark-pq at 3.59 s for 10 nodes, rising
to 93.92 s at 50 nodes. Rubato’s efficiency, balancing post-
quantum security and performance, suits high-throughput
applications.

5.4. bAVSS-PQ Cryptographic Overhead

Table 3 summarizes the performance metrics of bAVSS-
PQ across varying node counts, using polynomial commit-
ments with coefficients n = 128, security parameter κ = 76,
log q = 32, and reconstruction parameter g = 4, producing
2432 beacons per epoch. Polynomial degrees are 3, 8, 15,

and 24 for 10, 20, 30, and 50 nodes, respectively. Commit
time per beacon increases linearly from 0.61 ms at 10 nodes
to 4.35 ms at 50 nodes. Proof generation time exhibits
a quadratic increase, growing from 0.32 ms to 16.17 ms,
driven by the complexity of polynomial commitments as
node count and polynomial degree rise. Verification time
scales linearly and remains low, from 0.52 ms to 1.41
ms, demonstrating efficient proof checking. Commit size
scales linearly from 0.313 KB to 1.563 KB, and proof size
increases from 4.125 KB to 10.313 KB, both remaining
manageable for network bandwidth. Compared to Breeze’s
Bulletproofs-based commitments (e.g., 8 KB proof size at
50 nodes), bAVSS-PQ incurs higher overhead but achieves
post-quantum security, a critical advantage for long-term
resilience.



6. Discussion

6.1. Comparison with related works

We compare Rubato with three recent DRB proto-
cols—HashRand [7], AsyRand [9], and Rondo [5].

Termination: HashRand employs Monte-Carlo (MC)
termination with Approximate Agreement, ensuring fixed-
round completion but permitting disagreement with prob-
ability p = 1 − δ. This contrasts with AsyRand, which
adopts Las Vegas (LV) termination via Byzantine Reliable
Broadcast, guaranteeing consistent outputs but at the cost of
variable termination times, leading to higher coordination
overhead. Building on the LV approach, Rubato resolves
circular dependencies through an epoch-staggered design,
using secrets from epoch e − 1 to generate beacons for
epoch e, integrated with DAG-based consensus. This en-
sures deterministic consistency and liveness with probabil-
ity 1 − negl(λ), avoiding Approximate Agreement’s trade-
offs. In contrast, Rondo, designed for partially synchronous
networks, leverages Global Stabilization Time (GST) and
Rondo-BFT (a dynamic Hotstuff [59]) for deterministic
termination, sidestepping FLP impossibility but sacrificing
robustness in fully asynchronous settings due to GST de-
pendence.

Efficiency: HashRand achieves the state-of-the-art high-
est beacon rate, exceeding 104 beacons/min at 10 nodes
and 78 at 136 nodes, driven by fast hash-based commit-
ments and AnyTrust sampling, which reduces communica-
tion complexity to O(λcn2 log n) by selecting c dealers,
though risking unpredictability with probability

(
f
c

)
/
(
n
c

)
when c < f . Rubato matches HashRand’s performance in
small committees but sees faster rate declines in medium-
sized committees, due to its O(λn3 log n) complexity from
deterministic LV termination and batching of O(λ2) secrets.
Rondo’s lower rates stem from coupling beacon reconstruc-
tion with blockchain consensus. AsyRand, despite the state-
of-the-art lowest communication complexity of O(λn2) in
asynchronous settings, has lower beacon rate due to its non-
batched PVSS design.

VSS Scheme: HashRand’s bAwVSS uses weak com-
mitment, producing either a valid value or a consistent ⊥,
which suffices for DRBs but falls short for applications
like multi-party computation requiring strong guarantees.
In contrast, Rondo’s Breeze employs strong commitment
but constructs Merkle trees over polynomial commitments,
hindering single-share verification during reconstruction.
Addressing this, Rubato’s bAVSS-PQ ensures strong com-
mitment by verifying all θ shares in the Reply Phase using
polynomial commitment and Merkle proofs, and individ-
ual shares during reconstruction, enhancing security despite
higher O(λn3 log n) complexity.

Post-quantum Security: While AsyRand and Rondo
rely on quantum-vulnerable primitives, HashRand mitigates
this with hash functions modeled as programmable Ran-
dom Oracles, offering computational post-quantum security
but lacking provable guarantees due to idealized assump-
tions. Rubato, however, leverages its bAVSS-PQ scheme,

grounded in the Short Integer Solution (SIS) problem [53],
to provide provably post-quantum security with transparent
setups, eliminating trusted initialization and establishing a
future-proof foundation compared to HashRand’s idealized
model or the quantum-susceptible designs of AsyRand and
Rondo.

6.2. Limitations of Our Study

Rubato provides robust post-quantum security and high-
throughput randomness generation in asynchronous net-
works but faces scalability limitations, making it best suited
for small-to-medium committees.

The primary bottleneck is the computational complexity
of the bAVSS-PQ polynomial commitment scheme. The
commitment phase, executed once per batch of θ poly-
nomials, has a fixed cost, but the opening phase scales
linearly with committee size n. Lattice-based security re-
quires m = O(λ), and knowledge soundness demands
κ = O(λ). The folding parameters r (multiplicity) and ℓ
(depth) determine the maximum polynomial degree rℓ+1−1,
which must exceed the fault tolerance threshold f . For a
50-node system with f = 17, r = 5 and ℓ = 1 suffice,
but larger committees require higher r or ℓ, increasing
folding operations. Consequently, proof computation scales
as O(n2) due to the linear increase in evaluation points and
polynomial degree, with matrix multiplications dominating.
This prolongs share generation, and the DAG’s waiting
mechanism exacerbates delays, reducing consensus through-
put. Commitments over Cyclotomic Rings [52] could lower
parameters (e.g., κ = O(1)) and computational costs, but
optimized implementations are not yet mature.

The communication complexity of bAVSS-PQ, at
O(λn3 log n) due to Merkle tree-based share verification
across n nodes, further limits scalability. Reed-Solomon
(RS) codes could reduce this to O(λn3), correcting up to
⌊(n − k)/2⌋ errors (e.g., k = n − 3f for n ≥ 4f + 1),
requiring n − f shares. However, this increases latency
in asynchronous networks due to unbounded delays and
reduces Byzantine fault tolerance to n/4, better suited
for synchronous or partially synchronous settings. Alterna-
tively, using Monte-Carlo termination with AnyTrust, as in
HashRand, could lower complexity to O(λcn2 log n), but
sacrifices perfect consistency.

Reconfiguration for dynamic node changes poses an-
other challenge. While bAVSS-PQ can support larger com-
mittees by pre-selecting parameters for higher Byzantine
fault tolerance, reserving “empty seats” for new nodes, the
DAG-based consensus (e.g., Bullshark, Tusk) lacks robust
reconfiguration mechanisms. Supporting node joins or de-
partures requires new protocols to manage DAG updates,
ensuring beacon generation and consensus remain synchro-
nized. This increases complexity, limiting Rubato to static
or slowly changing committees. Extending Rubato for dy-
namic, large-scale deployments remains an open challenge.



7. Conclusion

We presented Rubato, a post-quantum secure distributed
randomness beacon for asynchronous networks. Rubato in-
tegrates a lattice-based batched Asynchronous Verifiable
Secret Sharing (bAVSS-PQ) scheme, using the SIS problem,
with DAG-based consensus protocols. It achieves provable
post-quantum security, efficient secret batching, and robust
liveness through an epoch-staggered design and waiting
mechanisms that resolve circular dependencies and pre-
vent deadlocks. Rubato efficiently supports applications for
small-to-medium committees.
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Appendix

This appendix provides detailed proofs for the security
theorems presented in Section 4 and the complexity analysis
of the Rubato protocol.

1. Security Proofs

Proof of Theorem 1. Consider the bAVSS-PQ protocol with
n ≥ 3f +1, polynomial degree t = f , and an adaptive PPT
adversary A corrupting up to f nodes.

Liveness: If the dealer d is honest, all honest nodes
eventually complete the reply phase, as they receive and
validate shares, enabling d to collect 2t + 1 signatures to
form C. If t + 1 honest nodes initiate reconstruction, each
honest node receives at least f+1 validated shares, allowing
interpolation and output generation, satisfying liveness.

Strong Commitment: Upon formation of C with 2t+1
signatures on commitment t, at least t+1 honest nodes have
validated shares consistent with t. The polynomial commit-
ment’s binding property (Theorem 2) ensures t uniquely
determines {sd,j}j∈[θ]. In reconstruction, share consistency
is enforced, and t + 1 shares yield consistent secrets via
interpolation, even against a malicious dealer.

Privacy: If d is honest and reconstruction is not initiated,
A, corrupting at most f = t nodes (except the dealer),
obtains f shares per secret. Since t+1 shares are required to
reconstruct each sd,j , Shamir’s secret sharing [60] ensures
A gains no information about {sd,j}j∈[θ].

Proof of Theorem 2. The properties of completeness, bind-
ing, and knowledge soundness follow from similar argu-
ments established in [52] (Theorems 2, 3, and 4). We focus
on proving the hiding property.

The commitment is defined as:

t = (Iκ ⊗A) · s0 = (A · s(1)0 , . . . ,A · s(κ)0 ) ∈ Zκm
q ,

where A ∈ Zm×L log q
q is uniformly random and s0 is a short

vector with ∥s0∥∞ ≤ 1. Per [61], t is an SIS-hash of s0,
and the uniformity of A ensures t is uniformly distributed
over Zκm

q , revealing no information about s0. Since s0 =
G−1

rκm(f1), f1 = (Irκ ⊗ A) · s1, and recursively to f , the
uniformity holds, so t reveals no information about f .

The proof πi = {(yi,vi)}i∈[0,ℓ], for each round i ∈
[0, ℓ]:

• y0 = s
(0)
0 , for i ∈ [1, ℓ], yi = s

(0)
i = (C⊤

i ⊗
Irm log q) · s(1)i−1, where Ci ∈ {0, 1}rκ×κ is a uni-
formly random challenge, and s

(1)
i−1 = G−1(fi−1).

Since fi−1 is uniform (due to recursive folding and
A’s uniformity), s

(1)
i−1 is uniform. Combined with

Ci’s randomness, yi is uniform.
• vi =

∏ℓ−i
k=1(Irkκm ⊗ x⊤

ℓ−i−k) · fi, and for i ∈ [1, ℓ]
fi = (C⊤ ⊗ Irℓ−im) · fi−1 is uniform. Thus, vi is
uniform.

In the non-interactive setting, Fiat-Shamir generates Ci =
H(t,u,x0, . . . ,xℓ−i,yi,vi). Since t,u,v are uniform, Ci

remains random, preserving hiding.

Proof of Theorem 3. The protocol organizes vertices into
rounds and waves (4 rounds per wave in Bullshark, 2 in
Tusk), with leader election driven by Rubato’s global coin
requests. Liveness requires honest nodes to output at least
one set of f +1 certificates {Ce} per epoch e, resolving the
circular dependency between beacon generation and consen-
sus, and preventing deadlocks due to certificate availability.

The DAG’s liveness depends on global coin requests,
which rely on the previous epoch’s f+1 certificates {Ce−1}
(Algorithm 1, Lines 8–13). For epoch e, at least f+1 honest
nodes invoke PREP(e, s), generating f+1 certificates Ce via
bAVSS-PQ (Theorem 1). Each wave selects a leader vertex
via a global coin, with probability at least 2/3 of choosing
an honest node, since n−f ≥ 2f+1 of n ≥ 3f+1 nodes are
honest [57]. An honest leader proposes a vertex containing



Ce, which is ordered (Line 14). An epoch contains B ≥ λ
waves, so the probability of no honest leader in an epoch
is:

Pr[all malicious leaders] ≤
(
1

3

)B

≤
(
1

3

)λ

= negl(λ).

Thus, with probability 1−negl(λ), at least one honest leader
commits f + 1 certificates {Ce}.

The circular dependency is resolved by the epoch-
staggered design: epoch e’s global coin requests use {Ce−1}.
For epoch 1, {C0} is decided by an auxiliary consensus
protocol, assumed to terminate with probability 1 in the
asynchronous network. By induction, if epoch e − 1 out-
puts {Ce−1} (base case: epoch 0 via auxiliary consensus),
epoch e’s global coins are available, enabling leader election
and certificate ordering. Since bAVSS-PQ ensures certificate
generation (Theorem 1), the process continues indefinitely.

Deadlock prevention is achieved by the waiting mech-
anism (Algorithm 4 Line 26). At the first round of epoch
e, nodes check the maximum epoch of proposed certificates
(ec). If ec ≤ e, indicating insufficient certificates for epoch
e + 1’s beacons, nodes pause until a new Ce is enqueued.
Since f + 1 honest nodes generate Ce (Theorem 1), and
reliable broadcast ensures delivery, the queue becomes non-
empty with probability 1. This mechanism provides B ≥ λ
waves to commit {Ce} before epoch e + 1, with failure
probability (1/3)B ≤ negl(λ).

Agreement, total order, and fairness are inherited
from [57]: reliable broadcast ensures consistent vertex recep-
tion, deterministic ordering based on leader causal history
guarantees agreement and total order, and honest vertices
are eventually included. Thus, liveness, including circular
dependency resolution and deadlock prevention, holds with
probability 1− negl(λ).

Proof of Theorem 4. Let A be an adaptive PPT quantum
adversary corrupting up to f < n/3 nodes in an asyn-
chronous network with n ≥ 3f+1. We prove that A cannot
distinguish the Rubato beacon be,i (Algorithm 1) from a
random element in Zq with advantage greater than negl(λ),
using the following game:

1) Challenger C generates public parameters and
public-private key pairs, sending public keys
{pki}i∈[n] to A.

2) A may provide public keys for nodes it later cor-
rupts.

3) For epoch e, C runs PREP(e, s) for honest nodes,
sending bAVSS-PQ messages. A observes and re-
orders messages, runs DAG consensus, and may
corrupt up to f nodes, accessing their full history.

4) C waits until an honest node decides f +1 certifi-
cates {Ce}.

5) C samples b ∈ {0, 1}. If b = 0, it sends be,i =
H(b̂e,(i−1)g+1, . . . , b̂e,ig), where b̂e,j =

∑
d∈D sd,j

and D is the set of f +1 dealers in {Ce}; if b = 1,
it sends a random r ∈ D.

6) A guesses b′.

The advantage is Advindist
A (λ) =

∣∣Pr[b = b′]− 1
2

∣∣.
Assume A corrupts f nodes F after {Ce} is decided,

maximizing information. For each dealer d ∈ D, A knows
secrets {sd,j}j∈[θ] if d ∈ F , shares {ui,j = sj(i)}i∈D,j∈[θ],
commitment td, and proofs {πi}i∈F . Since |D| = f+1 and
|F | = f , there exists an honest dealer d∗ ∈ D \ F .

For j ∈ {(i− 1)g + 1, . . . , ig}, the intermediate beacon
is b̂e,j =

∑
d∈F sd,j + sd∗,j , where d∗ ∈ D \ F . Since

sd∗,j ∼ Zq is uniform and independent, b̂e,j ∼ Zq by the
bijection x 7→ x + a mod q in Zq. Thus, be,i is uniform
over D = {0, 1}λ (Theorem 6).

By Theorem 1 (Privacy), f shares {ui,j}i∈F reveal no
information about sd∗,j , as t+1 = f +1 shares are needed.
By Theorem 2 (Hiding), the commitment td∗ is uniformly
random over Zκm

q , and every (y,v) in the proofs {πi}i∈F

is uniformly random, leaking no information about sd∗,j .
Thus, A gains no information about be,i, and its ad-

vantage in distinguishing be,i from a random element in D
is at most 1

2λ
, which is negligible: Advindist

A (λ) ≤ 1
2λ
≤

negl(λ).

Proof of Theorem 5. We prove each property, leveraging
Theorems 1, 2, 3, and 4.

1) Unpredictability: A guesses b′e′′,i′′ for a future
beacon be′′,i′′ (e′′ > e′ or e′′ = e′, i′′ > i′). By
Theorem 4, be′′,i′′ is indistinguishable from a ran-
dom element in D, with advantage Advindist

A (λ) ≤
negl(λ). Since |D| = 2λ, the probability of guess-
ing correctly is:

Pr[b′e′′,i′′ = be′′,i′′ ] ≤
1

2λ
≤ negl(λ).

bAVSS-PQ’s privacy (Theorem 1) ensures no in-
formation about sj,i′′ leaks before OPEN(e′′, i′′),
satisfying unpredictability.

2) Bias-resistance: By Theorem 4, be,i is indistin-
guishable from a random element in D = {0, 1}λ.
Since at least one honest dealer’s contribution of
be,i is uniformly random, each bit of be,i is uniform
with deviation at most negl(λ).

3) Agreement: By Theorem 3, DAG consensus en-
sures all honest nodes agree on the same f + 1
certificates {Ce}. Each certificate Ce fixes a unique
secret set {sd,j}j∈[θ] (Theorem 1), and bAVSS-
PQ’s correctness ensures honest nodes reconstruct
identical secrets sd,j . If A attempts to cause in-
consistency by forging shares, Merkle verification
detects invalid shares. Since H is deterministic,
all honest nodes compute the same be,i, satisfying
agreement.

4) Liveness: If honest nodes invoke PREP(e, s) and
OPEN(e, i), they output ⟨e, i, be,i⟩. By Theorem 1,
f + 1 honest dealers generate certificates {Ce}.
Theorem 3 ensures DAG consensus outputs {Ce−1}
with probability 1 − negl(λ), enabling OPEN(e, i)
to reconstruct f + 1 secrets. bAVSS-PQ’s liveness
guarantees reconstruction, and be,i is computed,
satisfying liveness.



Proof of Theorem 6. Each b̂e,j has entropy:

H(b̂e,j) = log q = λ/g.

For g independent beacons, the spliced input
(b̂e,(i−1)g+1, . . . , b̂e,ig) ∈ (Zq)

g has total entropy:

H(b̂e,(i−1)g+1, . . . , b̂e,ig) = g · λ/g = λ.

Since Zq
∼= {0, 1}λ/g, the input space (Zq)

g ∼= {0, 1}λ
is equivalent to a λ-bit random number. The hash function
H : {0, 1}λ → {0, 1}λ is indistinguishable from a random
function, so be,i is uniformly random over D = {0, 1}λ.

2. Complexity Analysis

The communication complexity of generating a single
beacon be,i in Rubato (Algorithm 1) is dominated by the
bAVSS-PQ reconstruction phase (Algorithm 2, Lines 21–
29). To form a beacon, f + 1 = O(n) secrets are recon-
structed, each requiring t+1 = f +1 = O(n) valid shares,
as t = f < n/3. Each node broadcasts a share ui,j ∈ Zq of
size O(1) and a Merkle proof of size O(λ log n), totaling
O(λ log n) bits per message. For one secret, approximately
n nodes broadcast shares to n nodes to ensure t + 1 valid
shares despite Byzantine faults, costing O(n · n · λ log n) =
O(λn2 log n) bits. With f + 1 = O(n) secrets, the recon-
struction phase incurs O(n ·λn2 log n) = O(λn3 log n) bits,
dominating the overall communication cost. Other bAVSS-
PQ phases contribute less: the sharing phase, where f + 1
dealers send commitments, shares, proofs, and broadcast
θ = O(λ2) Merkle roots via RBC, costs O(λ3n2 log n) bits,
amortized to O(λn2 log n) per beacon. The total communi-
cation complexity is thus O(λn3 log n).

The computational complexity of the bAVSS-PQ proto-
col is primarily driven by the sharing phase, where a single
dealer generates commitments and proofs for a polynomial
commitment with L = rℓ+1κm, where rℓ+1 = O(n),
κ = O(λ), and m = O(λ). The dealer’s cost per com-
mitment and proof is O(L ·λ) = O(nλ3) [52]. For n nodes,
the total sharing phase complexity for a single dealer is
O(n · nλ3) = O(n2λ3). With θ = O(λ2) secrets, the amor-
tized complexity per beacon is O(n2λ3)/O(λ2) = O(n2λ).
For a single verifier, the per-share validation complexity is
O(logL · λ2) = O(log(nλ2) · λ2). Validating shares from
n dealers, the total verification cost is O(n · log(nλ2) · λ2),
amortizing to O(n · log(nλ2)) per beacon. The Reply, Con-
firm, and Reconstruct phases are negligible, yielding an
overall computational complexity of O(n2λ) for the dealer
and O(n · log(nλ2)) for the verifier per beacon, dominated
by the sharing phase for the dealer.


