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Abstract
Many distributed analytics applications offloaded to the

cloud operate on sensitive data. Even when the computations
for such analytics workloads are confined to trusted hardware
enclaves, and all stored data and network communications
are encrypted, several studies have shown that they are still
vulnerable to access pattern attacks. Prior efforts to prevent
access pattern leakage often incur network and compute over-
heads that are logarithmic in dataset size while also limiting
the functionality of supported analytics jobs.

We present Weave, an efficient, expressive, and secure
analytics platform that scales to large datasets. Weave em-
ploys a combination of noise injection and hardware memory
isolation to reduce the network and compute overheads for
oblivious analytics to a constant factor. Weave also employs
several optimizations and extensions that exploit dataset and
workload-specific properties to ensure performance at scale
without compromising functionality. Weave reduces the end-
to-end execution time for a wide range of analytics jobs on
large real-world datasets by 4–10× compared to prior state-
of-the-art while providing strong obliviousness guarantees.

1 Introduction

Public cloud platforms are increasingly used for storing and
processing large volumes of data through distributed analytics
frameworks [1–5]. MapReduce (MR) frameworks [1–3], in
particular, ensure flexibility, efficiency, and scalability for
analytics workloads but raise security concerns since they
require trusting the cloud provider with sensitive data.

Ensuring data confidentiality requires protecting the data at
rest (e.g., on persistent storage), in flight over the network, and
during processing. Early solutions [6, 7] addressed the first
two requirements via authenticated encryption, and the third
with trusted hardware enclaves (e.g., Intel SGX [8], ARM
TrustZone [9] and AMD SEV-SNP [10]). However, recent
works [11, 12] have shown that such systems can still reveal
sensitive information via memory and network access pattern

leakage. Specifically, during the execution of map-reduce
jobs, the volume of network traffic between pairs of workers
(i.e., mappers and reducers) and the memory access patterns
at each worker depends on the distribution of data items in
the input dataset. An honest-but-curious adversary observing
such access patterns can often identify individual data items
even when all traffic is encrypted. As such, confidentiality re-
quires secure MR frameworks to ensure these access patterns
are data oblivious.

While data confidentiality is important for applications
operating on sensitive data, security guarantees should not
come at the cost of the expressiveness of MR frameworks or
their performance at scale. We identify three main goals for
secure MR frameworks:

• Strong security, including data confidentiality and protec-
tion against access pattern attacks, i.e., obliviousness.

• Minimal performance overheads compared to an insecure
execution, especially at scale, i.e., for larger dataset sizes
and with many distributed workers.

• Little to no restrictions on functionality, i.e., on the types
of supported Map and Reduce functions.

We introduce a novel security definition to capture access pat-
tern attacks on distributed analytics platforms by an honest-
but-curious adversary in the cloud. The definition, named
Indistinguishability under Chosen Dataset and Job Attack (or
IND-CDJA, §2.2), informally requires that the distribution
of network communications between workers and memory
accesses inside workers observed during the execution of a
secure MR framework is independent of the distribution of
data items in the underlying input dataset. While this security
requirement introduces a (provably) hard trade-off between ar-
bitrary MR functionality and bounded performance overheads
achievable by any scheme (§2.3), a practical assumption on
the intermediate data generated by MR jobs (similar to prior
works in this space [11, 12]) permits bypassing this tradeoff
to achieve bounded overheads.

Unfortunately, existing approaches for mitigating access
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pattern leakage in MapReduce frameworks either limit func-
tionality beyond the assumptions required by IND-CDJA,
incur high performance overheads, or both, to achieve se-
curity (§2.4). These approaches fall into two categories —
sort-based (e.g., Opaque [12]) and load-balancing (e.g., Shuf-
fle & Balance [11]). While those in the former category rely
on cryptographic schemes like oblivious sort [13], those in
the latter rely on oblivious shuffle [14]. Unfortunately, both
schemes have well-known log-linear complexity, which trans-
lates to significant performance overheads in practice — often
increasing the end-to-end job execution times by an order of
magnitude or more than an insecure baseline (§5). Moreover,
both approaches limit functionality beyond what is required
to achieve obliviousness: the former on non-associative oper-
ations [12], and the latter on sort-based analytics [11].

We present Weave, an oblivious MapReduce framework
that meets all three goals for secure analytics. Weave uses
the load balancing approach as a starting point for network
obviousness, but leverages principles of noise-injection ex-
plored in the context of oblivious storage systems [15–19] to
achieve constant factor (∼ 3× or lower) overheads. Unlike
prior approaches that employ data-agnostic shuffle mecha-
nisms, our performance gains stem from Weave exploiting
the distribution of data in the input dataset itself (§3). Specifi-
cally, Weave’s shuffle phase estimates this distribution during
execution and uses it to inject just enough “fake” network
traffic so that the observable access pattern between pairs
of workers is independent of the underlying distribution, i.e.,
network communications are data oblivious. Indeed, we show
that Weave achieves the lowest network overhead achievable
by any noise-injection scheme for oblivious communications
in MapReduce frameworks. We also show that while the
data structures employed by our noise injection mechanism
can introduce memory access pattern leakage, judicious use
of hardware-protected Enclave Page Cache (EPC) can avoid
them with little to no overhead. We develop further opti-
mizations and extensions to Weave that exploit dataset and
workload-specific properties to improve its performance at
scale and ensure rich functionality.

We show that Weave is secure under IND-CDJA, achiev-
ing strong security guarantees with obliviousness even with
constant performance overheads (§4). We implement Weave
atop Apache Spark [2] and evaluate it on several real-world
workloads. Weave’s execution times for these workloads is
4–10× lower than state-of-the-art systems with comparable
security guarantees. Moreover, its performance scales linearly
with dataset size and the number of workers (§5). The code
for Weave, the datasets, and workloads used in our evaluation
are available at https://github.com/yale-nova/weave.

2 Background and Motivation

We begin by outlining the secure MapReduce execution and
threat model and demonstrating how sensitive information is

Fig. 1: System model for secure MapReduce execution. Tasks run
in TEEs while data is encrypted in flight and at rest.

leaked via network and memory access patterns even when
the data is encrypted. We then discuss shortcomings of
prior strategies in navigating the fundamental performance-
functionality tradeoff in secure MapReduce execution.

2.1 Secure Analytics Execution

We consider the secure execution of analytics jobs on a cloud-
hosted MapReduce (MR) platform [1–3], as depicted in Fig-
ure 1. The MR platform reads and writes data from a cloud-
hosted Distributed File System (DFS) [20, 21]. The client
uploads an encrypted dataset D containing n equally-sized
key-value pairs1 to the DFS and submits a job to be executed
on D using the MR framework. The MR framework runs
the computations required for the job in secure enclaves —
trusted containers of code and data isolated from the rest of
the system — to ensure data confidentiality [6, 11, 12]. Data
is only decrypted within the enclaves and re-encrypted before
network communications and other I/O operations.

MR Job execution. An MR job is specified using a pair
of map and reduce functions (Map,Reduce). Map takes a
key-value pair as input and outputs a list of intermediate key-
value pairs. Reduce takes as input an intermediate key and
a set of values for that key. It combines these values using
user-specified logic to output a new set of values.

MR frameworks comprise a centralized controller and mul-
tiple distributed workers. The controller receives job requests
and schedules their execution across the workers in three se-
quential phases: map, shuffle, and reduce. In the map phase,
the input dataset is divided into m splits, and a distinct worker
(“mapper”) processes each split in parallel. Each mapper exe-
cutes Map on every key-value pair in their split to generate the
intermediate key-value pairs. Next, the shuffle phase regroups
mapper-generated intermediate key-value pairs into r parti-
tions based on the intermediate key. The partitioning function
(e.g., hash or range-based) ensures that intermediate values
with the same key are grouped into the same partition. Each
partition is then processed in parallel by a distinct worker
(“reducer”) in the reduce phase, where each reducer executes
Reduce on groups of values with the same intermediate key.

Threat Model. Similar to prior work on secure MR exe-
cution [6, 11, 12], we consider an honest-but-curious adver-
sary that monitors the data at rest, the accesses to encrypted

1While plaintext datasets can have variably-sized records, we assume
encryption pads them to the same size to avoid leaking record sizes [12].
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memory pages inside MR workers, and the network commu-
nications between MR workers — the cloud provider is a
typical example of such an adversary. We next detail the key
components and assumptions of our threat model:

• Computations. All computations (e.g., Map, Reduce exe-
cutions) are assumed to run within Trusted Execution Envi-
ronments (TEEs). TEEs provide attestation mechanisms so
the adversary cannot deviate from the MR protocol. More-
over, the adversary cannot observe computations performed
within the TEE.

• Memory access patterns. While memory access patterns
within the TEE are generally visible to an adversary, each
TEE is equipped with a small amount of Enclave Page
Cache (EPC) [22] which ensures memory obliviousness,
i.e., hides access patterns to data placed within them from
the adversary. We defer the details of EPC security guaran-
tees and their practical implementation to §3.3 and §3.6.

• Network access patterns. The adversary can observe
worker communications (i.e., the size of traffic communi-
cated between worker pairs) throughout a job’s execution.

• Data and code. While the data handled by the MR frame-
work is always encrypted at rest and in flight, the adversary
can observe the size of the input dataset, the code for the
functions Map and Reduce, and the allocation of datasets to
workers. Polynomial-time computations can be performed
on the above data to extract information about the underly-
ing dataset.

• Other side-channels. Weave assumes enforced attestation
and access control (e.g., Azure CVMs [23, 24]), which con-
strain the attack surface and make sophisticated attacks
(e.g., hardware side-channel or physical access attacks) in-
feasible in practical cloud deployments [25]. Time and per
record size difference channel attacks are out of Weave’s
scope. We discuss these channels further in §6.

Although secure analytics execution outlined above en-
sures that data is never stored or processed in plaintext during
job execution, prior work [11, 12] has shown that worker
communication patterns can still reveal sensitive data to an
honest-but-curious adversary, as we detail next.

2.2 Access Pattern Leakages
Even in secure MapReduce frameworks, the communication
patterns between workers for a given job can be related to
the contents of the encrypted input, which an adversary can
leverage to learn sensitive information about the input. We
characterize this leakage using a simple MR job on chrono-
logically ordered patient datathat counts cases per disease:

Map(patientID, (disease, date)):

Emit (disease, 1)

Reduce(disease, {c1,c2, · · · ,c j}):

Emit (disease, ∑ci)

Fig. 2: Example detailing mapper-to-reducer communication
volume for an analytics job execution over medical records (§2.2).
The execution suffers from both split- and distribution-based leakage.

In the above job, Map extracts the disease and case count per
record, and Reduce aggregates all case counts for a disease.

Figure 2 shows the access pattern leakage when executing
this query on a medical dataset of patient records. We assume
that the adversary knows the nature of the input: chronolog-
ically ordered medical records from 2019–2021, and wants
to correctly label the communicated records between specific
mapper-reducer pairs with the associated disease.

Split-based leakage. The set of intermediate key-value pairs
generated by different mappers is often tied to how the key-
value pairs may have been divided across input splits of the
dataset. Since mappers split the chronologically ordered data,
only some of the mappers’ (M3 in Figure 2) splits contain
COVID-19 records, as cases were only diagnosed after 2019.
While the adversary may not know which mappers will pro-
cess COVID-19 cases, it knows that only a few mappers
will process them. Since MapReduce semantics require all
COVID-19 records to be processed on the same reducer, the
adversary can identify which records correspond to COVID-
19 cases based on the distinct communication pattern between
mappers and reducers. Specifically, by noting that reducer R3
receives records only from mapper M3, even when all com-
munications are encrypted, an observer can deduce that R3 is
most likely processing COVID-19 records.

Distribution-based leakage. The distribution of key-value
pairs across reducers is tied to the distribution of intermediate
keys generated during the map phase. If the adversary in
Figure 2 knows the relative frequency of disease cases, then it
can identify patients’ diseases based on the number of records
received by each reducer, e.g., knowing Flu is ∼ 1.5× more
frequent than Asthma, the adversary can deduce that records
sent to R1 are for Flu, and those sent to R2 are for Asthma.

In both examples, the adversary leverages public knowl-
edge about the dataset to infer information about records sent
between mapper-reducer pairs. While our examples are sim-
plified for elucidation, prior work has shown that such attacks,
combined with other side channels, can accurately reconstruct
sensitive fields like age, marital status, and birthplace for in-
dividuals in US census data [11].

IND-CDJA. To capture the security of a MR framework
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against such access pattern leakage-based attacks, we intro-
duce a formal notion of security: Indistinguishability under
Chosen Dataset and Job Attack or IND-CDJA. While we
defer formal security definitions to §4, informally, a system is
secure under IND-CDJA if the adversary cannot distinguish
between the execution of a MR job on two different datasets
of the same input size. In the context of access pattern leak-
age, the adversary cannot correlate the observed patterns of
memory access inside workers and network communications
among workers during execution to the distribution of data
in the underlying private input dataset, i.e., an IND-CDJA-
secure system ensures that the data distribution in the input
(private) is independent of the access patterns (observable).

2.3 Performance-Functionality Tradeoff
A secure MR framework should support three main properties
(§1): (i) security under IND-CDJA, (ii) minimal performance
overheads relative to an insecure execution, and, (iii) minimal
restrictions on functionality, i.e., the jobs that the framework
can support. Unfortunately, IND-CDJA security exposes
a hard trade-off between functionality and the performance
overheads that must be incurred to achieve this security.
Theorem 2.1 No IND-CDJA-secure scheme can support ar-
bitrary MapReduce jobs with bounded bandwidth overheads.

Proof. Consider a MapReduce job, where the map function
emits C intermediate key-value pairs (C > 1) if it encounters a
particular key k∗ and outputs one key-value pair otherwise. It
is easy for an adversary to distinguish between two executions
of the job, one on a dataset D∗ that contains k∗ and the other on
a dataset D that does not (note, |D∗|= |D|= n). Specifically,
while D∗ causes C + n− 1 intermediate key-value pairs to
be exchanged between mappers and reducers, D results in n
key-value pairs being exchanged.

To make the two executions indistinguishable, an IND-
CDJA-secure must ensure both executions exchange at least
C+n−1 records; exchanging fewer records will cause the
output of the first execution (on D∗) to be incorrect. In other
words, the bandwidth overhead of an IND-CDJA-secure
scheme is at least C+n−1

n . However, since C can be
arbitrarily large (i.e.,C→ ∞), the bandwidth overhead of an
IND-CDJA-secure scheme will also be unbounded. ■

We note that the unbounded overhead in our proof’s coun-
terexample stems from the map function’s ability to gener-
ate arbitrary number of intermediate key-value pairs. If the
number of intermediate key-value pairs generated by a map
function, c, is upper-bounded to a fixed constant C, then an
IND-CDJA-secure scheme could achieve bounded perfor-
mance overheads. Indeed, prior works in this space [11, 12]
implicitly assume a bound C and achieve security that is se-
mantically similar to IND-CDJA2. While we will discuss

2Details on differences in security guarantees are deferred to §4.

how prior approaches support c = 1 soon, we summarize their
approach to supporting c ̸= 1 below.

c< 1. These are common jobs that filter a subset of the dataset
using some predicate. A simple approach for supporting such
operations in an IND-CDJA-secure scheme is for Map to
output exactly one intermediate key-value pair for every input
record but append a ‘valid’ bit to the output. This approach
requires the Reduce function to ignore invalid key-value pairs
but always ensures n̂ = n and allows IND-CDJA-secure to
support this class with the same property as the c = 1 case.

c > 1. Theorem 2.1’s proof leveraged a Map function in this
class. With an upper-bound C on c, a secure scheme can
add “filler” key-value pairs to the Map outputs (with invalid
bits) to ensure exactly C intermediate key-value pairs per
input record. Again, the Reduce function filters invalid key-
value pairs. An adaptation of IND-CDJA-scheme for the
c > 1 case can achieve bounded bandwidth, albeit with an
additional C

cavg
× overhead, where cavg is the average Map

output size.
In Appendix A, we provide a detailed analysis of various

operations supported by MapReduce schemes, SQL frame-
works built atop them, and typical MapReduce patterns that
use them, along with the value of c they use. Our key takeaway
is that commonly used operations and application patterns
employ (c≤ 1), which can be supported with low overheads
(§3). Since the approach for supporting all of the above cases
reduces to an IND-CDJA-secure scheme that can support
c = 1, we restrict our focus to c = 1 case (with n̂ = n) for the
rest of the paper, unless explicitly mentioned.

2.4 Prior Approaches
Prior schemes for mitigating access pattern leakage in
MR frameworks employ security semantically similar to
IND-CDJA, and are either sort- or load-balancing-based.

Sort-based schemes use oblivious sort algorithms [13, 26]
for intermediate key-value pairs exchanged between map
and reduce phases. As a result, each reducer receives an
equally sized contiguous segment of the sorted intermediate
key-value pairs. Unfortunately, practical realizations of obliv-
ious sort in MR frameworks suffer from two main shortcom-
ings. First, they incur high compute and network overheads.
Opaque [12], a representative sort-based approach, employs
column-sort [13], which requires several rounds of processing
and network shuffles, often resulting in long execution times
(§5). Second, the use of oblivious sort makes the support for
non-associative Reduce (e.g., median) non-trivial. As such,
systems like Opaque only support associative Reduce (e.g.,
count), limiting functionality beyond the minimum restric-
tions for IND-CDJA-secure approaches.

Load-balancing schemes prevent distribution-based leak-
age by assigning equal numbers of intermediate key-value
pairs to reducers. To this end, intermediate key-value pairs
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generated by mappers are first bin-packed using a first-fit
decreasing approach [27] across reducers (with random as-
signment of bins to reducers). Then, all bins are padded to the
same size, which depends on the frequency of the most popu-
lar intermediate key. To avoid split-based leakage, these ap-
proaches require the dataset to be obliviously shuffled before
the map phase, e.g., Shuffle & Balance [11], a representative
load-balancing approach, uses Melbourne shuffle [14]. Unfor-
tunately, these schemes also observe two shortcomings. First,
while bin-packing is more efficient than oblivious sort (both in
theory and in practice), oblivious shuffle observes log-linear
network complexity [14, 28] and still presents a performance
bottleneck (§5). Second, the bin-packing approach assigns
intermediate key-value pairs to reducers based on key fre-
quencies, obviating support for sort-based or any user-defined
partitioning function — again, imposing more restrictions on
functionality than an IND-CDJA-secure scheme must.

Other approaches include differential obliviousness [29,
30] and secure multi-party computations [31]. Although the
former approach incurs overheads comparable to Weave, it
employs significantly weaker security and remains susceptible
to practical attacks like Figure 2’s example. The latter ap-
proach, unfortunately, incurs impractically high performance
overheads, making them unsuitable for MapReduce frame-
works. We do not consider these approaches in our work.

3 Weave Approach

Weave builds on the load-balancing approach and lever-
ages principles of noise-injection employed in oblivious stor-
age [15–18] to improve its performance and reduce its re-
strictions on MapReduce functionality. Weave decomposes
analytics job execution into two parts:

Initialization. Weave first initializes worker nodes to be used
as mappers, reducers, and for additional required processing
to prevent access pattern leakage. It then generates secret
keys for encryption and the pseudorandom generator (PRG),
sharing them among the workers via secure channels. These
are stored in each worker’s secure enclave during the secure
analytics job execution.

Job execution. Similar to secure analytics execution on prior
MR frameworks [6, 11,12] (§2.1), Weave’s job execution still
comprises the map and reduce phases, where workers run the
Map and Reduce functions within TEEs with secure enclaves
and memory oblivious accesses inside EPC sections. How-
ever, since the key source of access pattern leakage stems
from an observer analyzing the communication volumes be-
tween mapper-reducer pairs (§2.2) during the shuffle phases,
Weave replaces this phase with three new phases that pre-
vent such leakage, namely the random-shuffle, histogram, and
balanced-shuffle phases (Figure 3(a)). While random-shuffle
only involves network communications, the histogram and
balanced-shuffle phases involve both computations performed

by workers and network communications. We refer to the w
workers in these phases as weavers (Wi).

At a high level, random-shuffle ( 1⃝) prevents any split-
based leakage by randomly distributing intermediate key-
value pairs generated by mappers to weavers in the next phase,
effectively making the volume of network traffic between
mapper-weaver pairs independent of how the data was dis-
tributed across splits (§3.1). The histogram ( 2⃝) and balanced-
shuffle ( 3⃝) phases, on the other hand, collectively prevent
distribution-based leakage by making the volume of network
traffic between weaver-reducer pairs independent of the distri-
bution of intermediate keys generated during the map phase
(§3.2). Finally, while these phases ensure no access pattern
information is revealed via network communications between
workers, any leakage due to the memory accesses performed
within the TEEs during these phases is prevented by placing
the associated state within the Enclave Page Cache (EPC), an
isolated memory region inside the TEE (§3.3). The following
subsections describe these three phases in detail.

3.1 Preventing Split-based Leakage
As noted in §2.2, split-based leakage stems from intermediate
key-value pairs generated by different mappers being tied to
how input records may have been divided across input splits of
the dataset. To prevent such leakage, Weave’s random-shuffle
phase requires each mapper Mi to route each intermediate
key-value pair to a pseudorandomly chosen weaver Wj. Since
the choice of the weaver processing a key-value pair is inde-
pendent of how records were divided across the input dataset
splits, Weave avoids split-based leakage (formal proof in §4).

An important consequence of such a shuffle is that each
weaver receives a proportionate distribution of intermediate
keys. In particular, if the map phase generates a total of n̂
intermediate key-value pairs and n̂k intermediate key-value
pairs with key k̂, then random shuffle ensures that each weaver
receives, in expectation, n̂k̂

w key-value pairs with key k̂. Fig-
ure 3(b) illustrates this on the simple example from §2.2.

3.2 Preventing Distribution-based Leakage
Distribution-based leakage, on the other hand, stems from
the number of key-value pairs received by each reducer being
tied to the distribution of intermediate keys generated during
the map phase. Our approach for achieving both goals draws
inspiration from prior literature on noise-injection [15–18]
for oblivious storage, which employs principled use of fake
queries to a storage system to make the observable access
pattern across data items indistinguishable from a uniform
random one. The histogram and balanced-shuffle phases in
Weave realize a form of noise injection where the weavers
leverage the histogram of intermediate keys to transfer fake
and real intermediate key-value pairs to reducers. This al-
lows Weave to ensure the volume of network traffic between
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(a) Weave Overview (b) Random-shuffle phase (c) Histogram phase (d) Balanced-shuffle phase

Fig. 3: Secure analytics execution in Weave. (a) Weave replaces the shuffle phase with three new phases: 1⃝ random-shuffle, 2⃝ histogram
and 3⃝ balanced-shuffle (§3). (b-d) demonstrates Weave’s execution on the example from Figure 2. (b) Random-shuffle distributes intermediate
key-value pairs from mappers randomly across weavers: in our example, each weaver receives the same number of Flu, Asthma, and COVID-19
records. (c) Each weaver broadcasts a histogram of its received intermediate key-value pairs, informing all weavers of the global histogram of
Flu, Asthma, and COVID-19 records (d) Balanced-shuffle assigns Flu records to reducer R1, asthma to R2, and COVID-19 to R3. To ensure
that each reducer receives kv_tot= 45 key-value pairs (α = 1.5), each weaver sends fake key-value pairs (key f ) to each reducer.

weaver-reducer pairs is roughly equal and independent of the
distribution of intermediate keys. We detail these phases next.

Histogram phase. This phase aims to construct a global
histogram of intermediate keys generated by each mapper
at every weaver without leaking any information about the
distribution of keys in the dataset.

To this end, each weaver Wi first creates a local histogram
hi over the n̂i intermediate keys it receives from mappers in
the random-shuffle phase. Since the random-shuffle phase
ensures that n̂i is independent of the underlying data distri-
bution in the input dataset, the histogram hi is padded to n̂i
entries to prevent any leakage based on histogram sizes. The
padded histogram is then encrypted and broadcasted to all
other weavers Wj ̸=i. As such, weaver Wi also receives his-
tograms h j from all other weavers Wj ̸=i, which it combines
to construct a global histogram ĥ over all intermediate keys.
By the end of this phase, every weaver has the same global
histogram ĥ. Figure 3(c) illustrates the histogram phase by
continuing the example from Figure 3(b).

Balanced-shuffle phase. Having computed the global his-
togram, the weavers ultimately need to decide on the desti-
nation reducer (among all r reducers) for each intermediate
key-value pair while satisfying two constraints. First, cor-
rectness requires all key-value pairs with the same key to be
sent to the same reducer. Second, obliviousness requires the
number of key-value pairs sent between each weaver-reducer
pair to be independent of the data distribution in the input
dataset.

The balanced-shuffle phase in Weave employs a form of
noise injection; Algorithm 1 details this approach. Weave
first fixes the number of intermediate key-value pairs (kv_tot)
any reducer receives to a value independent of the interme-
diate key distribution. We set kv_tot to α · n̂

r , where α > 1
is independent of the key distribution. Weave then sends a
combination of real and fake key-value pairs from the weavers
to meet the fixed quota per reducer.

Assigning real key-value pairs: Weave first leverages the

Algorithm 1 BalancedShuffle(ĥ)

At each weaver Wi:
1: kv_tot← α·n̂

r
2: k← first intermediate key in ĥ
3: for j = 1 to r do
4: kv_real[ j]← 0
5: while kv_real[ j]+ ĥ[k]< kv_tot do
6: Assign all KV pairs for key k at Wi to R j

7: kv_real[ j]← kv_real[ j]+ ĥ[k]
8: k← next intermediate key in ĥ

9: for j = 1 to r do
10: kv_fake[ j]← kv_tot−kv_real[ j]
11: for each l = 1 to kv_fake[ j] do
12: d← Roll a w-sided unbiased die
13: if d = i then
14: Assign a fake KV pair from Wi to R j

15: Send all fake+real KV pairs from Wi to their assigned reducers

global histogram ĥ to greedily assign real key-value pairs
with the same key across as few reducers as possible while
ensuring (i) each reducer receives no more than kv_tot real
key-value pairs, and (ii) intermediate key-value pairs with
the same key are assigned to the same reducer (lines 2–8).
Note that since all weavers have a roughly equal proportion of
key-value pairs for each intermediate key ( n̂i

w key-value pairs
with key ki in expectation) due to the random shuffle phase
(§3.1), each reducer R j receives, in expectation, kv_real[ j]w of
the total kv_real[ j] real key-value pairs from each weaver.

Assigning fake key-value pairs: After assigning real key-
value pairs, the remaining space in each reducer’s fixed-quota
(kv_tot) is filled using randomly generated fake key-value
pairs (lines 9–14). Hiding distribution-based leakage requires
that roughly the same number of intermediate key-value pairs
are sent between each weaver-reducer pair. Since the pro-
portion of real key-value pairs sent from various weavers to
each reducer is already roughly equal, all that remains is to
ensure that the proportion of fake key-value pairs sent from
various weavers to a reducer is also roughly equal. This is
realized via the Bernoulli trials in lines 12–14 — a w-sided
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die is cast for each fake key-value pair, and the value of the
roll decides which weaver gets to send that fake key-value
pair. This ensures that each of the weavers generates, in ex-
pectation, kv_fake[ j]w of the total kv_fake[ j] fixed number of
fake key-value pairs received by reducer R j. Combined with
the real key-value pairs, each weaver sends, in expectation,
kv_fake[ j]+kv_real[ j]

w = kv_tot
w key-value pairs to each reducer

R j, ensuring obliviousness. Note that each reducer R j receives
exactly kv_tot records.

A subtle issue in the above approach is that all weavers
must agree upon the die roll values — otherwise, multiple
weavers may send the same fake key-value pair at the same
time, or no weaver may send it. One approach is to perform
all die rolls at a centralized entity (e.g., the centralized con-
troller or a designated weaver) and disseminate their values
to all weavers. However, this approach adds a potential scal-
ability bottleneck. Weave opts for an even simpler solution
— it distributes the same PRG to each of the weavers during
initialization (§3), ensuring that each of the weavers indepen-
dently generates the same die roll values and avoiding any
runtime communication overheads for this purpose.

Finally, each weaver sends the real and fake intermediate
key-value pairs to the reducers determined by the bin-packing
and noise-injection approaches outlined above. The reduc-
ers, in turn, collect the intermediate key-value pairs from
the weavers, decrypt them, and drop the fake entries. They
then proceed with the reduce phase similar to traditional MR:
applying Reduce to groups of intermediate key-value pairs
with the same key and adding the results to the output with
requisite padding and encryption.

Figure 3(d) continues the example from Figures 3(b)
and 3(c) to show how the data records from a weaver are
distributed across different reducers in the balanced-shuffle
phase to prevent distribution-based leakage.

Choice of α. Clearly, larger values of α incur larger network
bandwidth overhead, and therefore, the end-to-end execution
time for MR jobs in Weave. While α > 1 is a trivial lower
bound, correctness mandates a larger α value:
Theorem 3.1 For any α < 2r

r+1 , there exist n̂ intermediate
key-value pairs that cannot be assigned into r reducers such
that each reducer processes exactly α·n̂

r key-value pairs.

Proof. Consider n̂ intermediate key-value pairs with r+ 1
distinct keys, each with an equal number of intermediate key-
value pairs, i.e., ∀k, ĥ[k] = n̂

r+1 . If α < 2r
r+1 , each reducer

processes exactly kv_tot= α× n̂
r < 2n̂

r+1 key-value pairs.
A single reducer must process all intermediate key-value

pairs with the same key for correctness. As such, no reducer
can be assigned intermediate key-value pairs for two or more
distinct keys since 2× n̂

r+1 > kv_tot. Accommodating all
r+1 keys requires at least r+1 reducers, a contradiction. ■

Fortunately, α = 2r
r+1 is achievable, and can indeed be

achieved by Algorithm 1 as we show next:

Theorem 3.2 If α≥ 2r
r+1 , n̂ intermediate key-value pairs can

be always assigned to r reducers such that each reducer pro-
cesses exactly α·n̂

r key-value pairs, provided maxk ĥ(k)≤ α·n̂
r .

Proof. Consider a modified Algorithm 1 that permits interme-
diate key-value pairs for the same key to be split across two
reducers in lines 2–8; note that since maxk ĥ(k)≤ α·n̂

r , the in-
termediate key-value pairs associated with the same key may
be split across at most two reducers. This assignment ensures
all the key-value pairs will be assigned to r1 = n̂

2n̂
r+1

= r+1
2

reducers, regardless of the key distribution.
Let Ks be the set of intermediate keys whose values

are split across two reducers. Note that |Ks| is at most
r1− 1 = r−1

2 . For each key k ∈Ks, the modified algorithm
then reassigns all of k’s key-value pairs to one of the
r− r1 =

r−1
2 reducers that have not been assigned any keys

yet. This is a feasible assignment, completing the proof3. ■

Note that α= 2r
r+1 still ensures that the traffic volume between

weaver-reducer pairs is independent of the key distribution.
However, as noted in Theorem 3.2’s statement, this value of
α requires the maximum number of intermediate key-value
pairs associated with the same key (i.e., maxk ĥ(k)) must not
exceed α·n̂

r . Intuitively, this constraint captures Weave’s re-
quirement of the maximum intermediate key popularity being
less than a single reducer’s capacity (kv_tot) — a reasonable
assumption in any MR job. Indeed, the maximum intermedi-
ate key popularity is much smaller than the reducer capacity
in practice — no more than ∼ 5% in our evaluations (§5).
However, since α (and therefore, kv_tot) is a configurable
parameter in Weave, it is possible to increase α (i.e., reducer
capacity) to support a larger maximum key popularity — we
analyze Weave’s sensitivity to α in §5.4.

3.3 Avoiding Memory Access Pattern Leakage

While the random-shuffle, histogram, and balanced-shuffle
phases prevent distribution-based leakage and split-based
leakage, we note that memory access patterns during these
phases can still leak sensitive information about data distribu-
tion. Similar to prior work [8,10,32–34], Weave leverages the
Enclave Page Cache (EPC) [35, 36], a limited pool of oblivi-
ous memory that hides access patterns using a combination
of hardware isolation and lightweight side-channel defenses
(§3.6). We confine all memory-dependent sensitive states to
this region and structure the design to minimize its footprint
for scalability.

To facilitate this, Weave classifies memory accesses during
the three phases into two classes: data-independent and data-
dependent. Data-independent accesses (e.g., scanning the
entire dataset) do not reveal any distribution-dependent infor-
mation about the dataset and can be kept outside EPC regions

3Algorithm 1 can always achieve the same overhead.
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without affecting security (§4.1). In contrast, data-dependent
accesses must use protected EPC memory:

Random-shuffle. Since random-shuffle scans through and
pseudo-randomly assigns key-value pairs to different weavers,
it performs no data-dependent memory accesses. As such,
Weave does not use EPC memory during this phase.

Histogram. Since the histogram phase aggregates key counts
in separate memory locations, the frequency of accesses to
each location reveals the distribution of key-value pairs. Thus,
each weaver stores its local histogram (hi) and global his-
togram (ĥ) in the EPC.

Balanced-shuffle. In Algorithm 1, the buffers needed for the
aggregation of the real and fake key-value pairs for reducer
R j at weaver Wi, and the kv_real and kv_fake counters that
track Wi’s real and fake key-value pair counts per reducer have
data-dependent accesses and are kept inside EPC memory.

3.4 Weave Optimizations & Extensions

Sampled histogram for scalability. During Weave’s his-
togram phase, each weaver broadcasts a local histogram con-
taining ∼ ⌈ n̂

w⌉ entries to all other weavers; this presents a
non-trivial overhead for large datasets, limiting Weave’s scal-
ability. To avoid this overhead, we observe that Weave’s
security against distribution-based leakage stems from the
indistinguishability of traffic volume between weaver-reducer
pairs. As such, weavers do not require precise knowledge of
the global histogram ĥ; an estimate of ĥ can be used as long
as it can still ensure the indistinguishability guarantee. Weave
thus builds the global histogram at each weaver using random
samples of the intermediate key-value pairs. As noted in §3.3,
histogram aggregations occur inside EPC; thus, sampling also
reduces EPC memory requirement during histogram phase.

Specifically, each weaver only computes a local histogram
over s = β · n̂

w random samples out of the total n̂
w intermediate

key-value pairs it receives, where β < 1 is the sampling factor.
It then pads each local sampled histogram to ⌈β·n̂

w ⌉ entries and
broadcasts it to other weavers. Each weaver aggregates the
sampled histograms from other weavers and scales the key
counts by 1/β to get an approximate global histogram.

We note that the approximation for the histogram can
introduce variations in the weaver-reducer traffic during
the balanced-shuffle phase that an adversary can observe.
This requires additional noise (i.e., fake key-value pairs) to
be added to weaver-reducer traffic to hide such variations.
If we increase the traffic by a factor of (1 + δ), then the
Chernoff bound [37] allows us to ensure that the probabil-
ity ε of successfully distinguishing the traffic volumes is
ε < exp(−βn̂δ2

2 ), as captured in the following theorem:
Theorem 3.3 For any polynomial-time adversary A, if
Weave’s histogram phase samples βn̂ intermediate key-value
pairs and its balanced-shuffle phase sends (1+δ)×more fake

key-value pairs for some β and δ, A’s advantage Advind-cdja
Weave

is negligible.

Proof. Let the random variable Xi denote the number of sam-
pled queries received by reducer Ri; since the sampled key-
value pairs are each sent to a random reducer, Xi ∼ B(βn̂,ρ)
where ρ is the probability that a sampled intermediate key-
value pair is sent to reducer Ri.

Given some small δ > 0, the Chernoff bound [38] shows
that the probability of ρ falling outside the bound of [ 1

r −
δ, 1

r +δ] is an exponentially decreasing function of n̂,β, and
δ. Specifically, we obtain an upper-bound on the probability
that our estimate α

r is off from ρ by more than δ if the sample
size is βn̂:

Pr

[
ρ≥ α(1+δ)

n̂

]
< exp(− n̂βδ2

2
) (1)

Now, let us modify the balanced-shuffle phase (Algo-
rithm 1) to send (1+δ)× more fake intermediate key-value
pairs to each reducer. Then, the advantage that a polyno-
mial computation-bounded adversary has in distinguishing
between the traffic distributions between weavers and reduc-
ers and a uniform random distribution is exponentially small,
specifically, the probability of ρ being outside the bound given
by Inequality 1.

Therefore, Weave is still IND-CDJA-secure if its
histogram phase uses sample size βn̂ ∈ O(n̂). ■

Our implementation uses a sampling factor β of 1% dur-
ing the histogram phase and additional noise 5% (δ) during
balanced-shuffle while still ensuring negligible ε.

Efficient support for associative reduce. Under our threat
model, an adversary is aware of the nature of the analytics job
being executed (§2.2). We can, therefore, employ targeted op-
timizations for associative reduce functions since this reveals
no additional information to the adversary.

To this end, we modify the balanced-shuffle algorithm to
eliminate any noise injection for associative reduce functions.
Specifically, instead of moving on to the next reducer if all the
key-value pairs for a particular intermediate key cannot be pro-
cessed by a single reducer (line 5 in Algorithm 1), we permit
splitting the key-value pairs associated with a key (‘boundary
key’) across two or more reducers, similar to sort-based ap-
proaches [12]. This modification requires boundary process-
ing to aggregate partial Reduce outputs for the boundary keys,
where each reducer Ri must pass its boundary key and the
corresponding aggregated Reduce output to the next reducer
Ri+1, which computes the final aggregate for the boundary
key. This allows us to use α = 1 since no fake key-value pairs
are required, with execution times comparable to insecure
executions while preventing access pattern leakage (§5).

Supporting sort-based and user-defined partitioning. In
Algorithm 1, intermediate keys are assigned to reducers in
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the order in which they appear in the global histogram, ĥ.
This makes the histogram a straightforward place to support
sort-based and arbitrary user-defined partitioning functions.
In particular, we order the keys in the histogram based on
the user-specified partitioning function, overcoming a key
functionality limitation in load balancing schemes (§2.4). If
no partitioning function is specified, Weave still requires all
weavers to agree on ordering keys in ĥ so that they agree on
the real/fake key-value allocations across reducers. As such,
Weave uses a hash table with the same parameters (e.g., hash
function, load-factor, etc.) for ĥ at all weavers.

3.5 Weave Overheads

Network bandwidth. An insecure MR framework uses O(n̂)
network bandwidth during the shuffle phase. In contrast,
Weave’s network bandwidth usage is O(n̂) during the random-
shuffle phase, O(w(w−1) ·β · n̂) during the histogram phase,
and O((1+δ) ·α · n̂) during the balanced-shuffle phase. Note
that the histogram phase only broadcasts sampled key counts,
which are much smaller than actual intermediate key-value
pairs. With Weave’s default parameters, its network band-
width overheads are ∼ 3.1× (constant factor) of an insecure
baseline: 1× overhead due to the random-shuffle phase and
∼ 2.1× overhead due to the histogram and balanced-shuffle
phases (with δ = 0.05 and α≈ 2). These overheads are fur-
ther reduced to negligible for jobs with associative reduce
functions. In contrast, prior sort-based and load-balancing
schemes incur log(n̂) factor network overhead relative to an
insecure baseline, with even higher overheads in practice (§5).

Compute. Compared to an insecure MR framework, Weave
incurs additional computations at the weavers during the
histogram and balanced-shuffle phases. The computational
complexity for the histogram phase is O(β · n̂) and O(n̂) for
the balanced-shuffle phase. Again, the added computational
complexity for sort-based and load-balancing approaches is
O(n̂ log(n̂)), with overheads being higher in practice (§5).

EPC Memory Overhead. Weave adds O(βn̂) of EPC usage
during the histogram phase to store ĥ, O(δn̂) for padding
records after sampling in the histogram phase, and O(w) to
hold kv_real and kv_fake during the balanced-shuffle phase.
For non-associative workloads, an additional O

( r
r+1 n̂

)
is in-

curred to generate and keep fake records on weavers. We
note that collectively, this remains a tiny fraction of the to-
tal dataset size. In our largest scale experiment with over
a billion records, Weave consumes < 5% of EPC capacity
(§5.2) — 0.1% for storing ĥ, kv_real, and kv_fake, 1.3% for
padding records during the histogram phase, and 2.1% for
storing the fake records. While Weave ensures datasets of
virtually any size can be analyzed without exceeding EPC
capacity in practical settings, Weave can also employ algo-
rithmic techniques to provide memory obliviousness through
software-based solutions when EPC capacity is exhausted

(discussed in Supplementary Materials).

3.6 Weave Implementation

Weave is implemented in Apache Spark [2] with an additional
1,500 lines of Scala code. To prevent access pattern leakage
in MapReduce jobs, Weave’s shuffle phases (random-shuffle,
histogram and balanced-shuffle) replace Spark’s default shuf-
fle implementation, requiring no modifications to user code.

Weave leverages Gramine LibOS [39–41] for transparent
execution atop Intel SGX enclaves. Gramine ensures execu-
tion integrity by (i) signing the enclave code, (ii) performing
attestation, and (iii) encrypting/decrypting all memory ac-
cesses and network communications.

Handling MR jobs with c > 1. As noted in §2.4, to meet
IND-CDJA security, Weave assumes an upper bound C for
the number of intermediate key-value pairs c generated by
a Map function. To support jobs with c > 1, Weave pads
every Map function’s output to C key-value pairs by injecting
“filler” key-value pairs. The balanced-shuffle phase processes
these filler key-value pairs as fake key-value pairs, i.e., they
are distributed evenly among the reducers, where they are
dropped without being processed. In our implementation,
we assume the user provides this upper-bound C (e.g., for
functions like flatMap). While most MR jobs have c≤ 1, we
evaluate the performance impact of c > 1 on Weave in §5.4.

Secure EPC design. While EPCs are designed to prevent
leakage of memory access patterns, recent works have shown
that current commodity TEEs such as SGX, SEV, or Trust-
Zone [8–10] are vulnerable to side channel leakages like page-
fault monitoring, cache contention, interrupt timing, branch
prediction, and speculative execution [42–45].

To protect against such leakages, secure systems built atop
publicly available TEEs leverage a proxy-based design, where
a proxy encapsulates the “leaky” TEE and implements the
mitigation of these attacks [32–36, 46–48], retaining mem-
ory obliviousness. In Weave, we adopt this proxy-based
design, leveraging AEX-Notify [32] to mitigate single-step
and interrupt-based attacks and core isolation (similar to
Varys [33]) to limit cache timing attacks, all with constant
overhead (less than 20%). Moreover, we rely on SGXv2’s
increased EPC size to minimize page faults for performance.

For more rigorous security guarantees, it is possible to use
a formally verified TEE architecture with EPCs that guarantee
zero leakage by design e.g. [49–51]. We leave the implemen-
tation of Weave atop such TEEs to future work.

4 Security Guarantees

This section describes our IND-CDJA security definition
(§4.1), contrasts it against prior security models (§4.1), and
shows Weave is secure under IND-CDJA (§4.2).
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IND-CDJAA
b,α,C:

n,w,mem←A1

W← Init(n,w,mem)

D0,D1,Map,Reduce←A2(W)

o,τN ,τM ← Execute(Db,Map,Reduce,W)

b′←A3(o,τN ,τM)

Return b′

Fig. 4: IND-CDJAA
b with adversary A and random bit b.

4.1 IND-CDJA

The IND-CDJA game, defined in Figure 4, is parameterized
by an adversary A, the constant α (which determines kv_tot),
the maximum Map output size C, and a bit b. The bit b is kept
secret from A; the security of a scheme under IND-CDJA is
contingent on an adversary not being able to guess b correctly.

In the game, the adversary A first chooses the input dataset
size (n), the number of workers (w), and an array of fixed-
size memory cells mem. Based on these parameters, the
framework initializes a set W of w workers, each with the
specified mem configuration. A then picks two challenge
datasets D0 and D1 of size n, along with a MR job defined
by (Map,Reduce). The framework executes the adversary’s
chosen MR job on Db (determined by the random bit b) and
generates o, the (partitioned) encrypted output of the job, and
a pair of transcripts τN and τM , where τN contains all network
communications sent between each worker throughout the
job and τM contains all reads and writes to memory addresses
in mem on each worker; these outputs represent the informa-
tion that A can observe from the execution. Finally, given
(o,τN ,τM), the adversary A runs a polynomial-time algorithm
to guess b, i.e., which challenge dataset was chosen, and out-
puts this guess as b′. The adversary “wins” if its guess is
correct; conversely, if the guess is no better than a random
coin flip, the execution framework is secure.

Prior security definitions. IND-CDJA provides a practical
tradeoff between the two main definitions introduced in prior
work for secure MapReduce execution. Intuitively, Opaque’s
obliviousness guarantee is requires the volume of network
traffic between all worker pairs to be exactly equal. Our IND-
based definition aims for more practical guarantees based
on the observation that we do not need network traffic to be
identical for different datasets, only indistinguishable. As
long as the network traffic distribution is independent of the
input data distribution, the adversary cannot infer any use-
ful information. This allows IND-CDJA to cover a larger
solution space of schemes, including Weave, without sacri-
ficing security. Although we use a game-based definition in
the main text for simplicity, we also provide a composable
simulation-based version of IND-CDJA in Appendix B.

Meanwhile, the notion of ‘strong hiding’ in the Shuffle &
Balance [11] is based on an indistinguishability game, not un-
like ours. However, strong hiding allows the MR framework

to leak the number of intermediate key-value pairs correspond-
ing to the most popular key, which the adversary can use to
infer the key skew of the underlying data and even identify
the most popular key [52]. In contrast, IND-CDJA requires
this information to be hidden, offering more robust security.

4.2 Proof of Weave Security
We establish the IND-CDJA security of Weave in the theo-
rem below. Weave’s security reduces to the pseudorandom
security of the PRG shared by its workers, the real-or-random
security of its encryption scheme, and the indistinguisha-
bility of the memory transcripts generated by its memory
access mechanism. As noted in §3.3, Weave uses an obliv-
ious memory pool within the TEE’s EPC to secure its data-
dependent computations4; we assume that the EPC ensures
any sequence of accesses to this pool not visible to an adver-
sary (i.e., τM

EPC = /0).
Theorem 4.1 For any polynomial-time adversary A against
Weave, there exist poly-time adversaries B,C,D such that

Advind-cdja
Weave (A)≤ Advprg

F (B)+Advror
E (C)+Advind

T (D),

where F, E, and T are Weave’s PRG, encryption, and memory
access schemes, respectively.

We defer the formal proof of security for Weave with opti-
mizations to Supplementary Materials but provide an intuitive
proof sketch for Weave without optimizations here. Our proof
relies on each worker’s network traffic and non-EPC memory
accesses following the same distribution regardless of the
dataset. We outline how each phase achieves this below:

Random-shuffle. Each mapper assigns its intermediate key-
value pairs to a weaver uniformly at random, ensuring that the
number of key-value pairs sent from each mapper to weaver is
uniformly distributed. Also, mappers sequentially access in-
termediate key-value pairs regardless of their contents, result-
ing in indistinguishable memory transcripts between datasets.

Histogram. Each weaver broadcasts a histogram padded to
the same ⌈ n̂

w⌉-sized entries, ensuring that the same communi-
cation volume is seen for any dataset with the same number
of intermediate key-value pairs. Also, since each weaver Wi
keeps the histograms hi and ĥ in EPC (§3.3), the memory
transcript only contains accesses for scanning through the
weaver’s received key-value pairs for counting. Again, these
are sequential and indistinguishable between datasets.

Balanced-shuffle. Consider the distribution of key-value
pairs from each weaver across the reducers, where kv_real[ j]
is the number of real key-value pairs assigned to reducer
R j. The random-shuffle and balanced-shuffle phase together
ensure that the number of real key-value pairs R j receives

4Similar to prior work [12], the EPC also ensures obliviousness of Map
and Reduce function executions.

10



Dataset Properties Supported Workloads

Enron Email 137M records, 1.7M distinct keys
20B keys and 24B values

HistogramCount, Sort,
InvertedIndex

NY Taxi 148M records, 262 distinct keys
4B keys and 4–10B values

HistogramCount, Sort,
Median

Pokec Network 31M records, 1.1M distinct keys
4B keys and 4–10B values PageRank

Table 1: Our evaluated datasets and workloads

from weaver Wi is a binomial random variable, n̂real
i j ∼

B(kv_real[ j],1/w). Moreover, Algorithm 1 (lines 12–14) en-
sures that the number of fake key-value pairs R j receives from
Wi is also a binomial random variable, n̂ f ake

i j ∼ B(kv_tot−
kv_real[ j],1/w). The total number of key-value pairs R j re-
ceives from Wi is then n̂real

i j + n̂ f ake
i j ∼ B(kv_tot,1/w), the

same distribution across all weaver-reducer pairs. For mem-
ory access patterns, each weaver keeps kv_real, kv_fake, and
buffered key-value pairs destined for reducers inside its EPC,
hiding any data-dependent accesses. Buffering in the EPC
also allows the weaver to send all its key-value pairs at once in
a random order, ensuring that the timing and order of transmit-
ted key-value pairs are independent of the data distribution.

Security-correctness tradeoff and α. The game parameter
α, which is visible to the adversary, determines the number of
key-value pairs that Weave’s Execute function sends to each
reducer. Theorem 3.2 shows that α must be large enough
to ensure correctness. In the unlikely event that maximum
key popularity exceeds 2r

r+1 , Weave avoids leaking this infor-
mation by sacrificing correctness. Specifically, it completes
execution with incorrect results (securely notified to the user)
by dropping the popular key’s real key-value pairs. Weave
can subsequently be reconfigured with a larger α. While this
reveals that a highly popular key exists in the dataset, our
threat model assumes that the adversary already knows the
key distribution, i.e., no new information is revealed to it.
IND-CDJA’s key requirement instead is that the popularity
of individual keys remains hidden, i.e., the adversary cannot
determine which key is most popular. Weave thus preserves
security as the IND-CDJA adversary cannot distinguish be-
tween executions on datasets of the same size and α.

5 Evaluation

We now evaluate Weave against state-of-the-art systems on
real-world datasets and workloads.

Compared Systems. We evaluate Weave against three ap-
proaches: (i) Insecure baseline that runs tasks within TEEs
but provides no network obliviousness guarantees and forms
our no-overhead baseline, (ii) Opaque [12], a state-of-the-
art oblivious sort-based approach, and (iii) Shuffle & Bal-
ance [11], a state-of-the-art load-balancing approach. We im-
plement all approaches in Spark [2] atop Gramine LibOS [40]
and make the entire EPC region available for all approaches,
with enough memory to ensure memory obliviousness for all

their data shuffling requirements. Our ported implementations
of prior work closely match the respective system’s reported
performance results, ensuring a fair comparison.

Experimental setup. Our experiments are conducted on Mi-
crosoft Azure cluster with 3 to 20 Standard DC8s v3 instances,
each with 8 vCPUs and 32GB of EPC memory. We run all sys-
tems inside Gramine LibOS with hardware memory isolation,
encryption/decryption, and attestation. We use 10 workers
and one controller (11 nodes) as our default configuration,
except in our scalability study (§5.2).

Datasets and workloads. We use three real-world datasets:
the Enron Email dataset [53], a corpus of corporate emails
commonly employed in privacy research [54–57], the NY
Taxi dataset, comprising extensive real-world taxi trip records
from New York City [58], and Pokec graph dataset [59], com-
prising the graph for the Pokec social network. All datasets
contain privacy-sensitive information with discernible distri-
butions (e.g., email keywords, trip destinations/times, and
user profile data like gender and age in the social network)
and are known to be vulnerable to access pattern attacks [11].

We employ five analytics workloads across these datasets,
although only a subset applies to each dataset (Table 1). The
HistogramCount query from the Puma benchmark [60] counts
the frequencies of different keys. The InvertedIndex workload
maps values in text data to their document occurrences for
full-text search efficiency. The Sort job orders records by
key. The Median job computes the median of the numerical
values for key-grouped records. PageRank is a multistage
graph processing workload. Our chosen workloads are rep-
resentative of practical analytical jobs in privacy-sensitive
settings and span diverse complexity ranges and functionality
requirements from the MR framework (e.g., non-associative
Reduce in InvertedIndex and Median, sorting in Sort, etc.).

5.1 Weave Efficiency

Figure 5 compares the end-to-end execution time for all com-
pared schemes across the various workload and dataset combi-
nations outlined in Table 1 on a 10 node cluster. We note that
non-associative jobs (Median and InvertedIndex) and sort-
based jobs are not supported by Opaque and Shuffle & Bal-
ance, respectively (marked NA in the figure). As a baseline,
TEE execution incurs a 1.9 to 2.8× overhead (compare Inse-
cure Baseline with No-TEE Baseline), with the highest cost
observed for the associative HistogramCount. The dominant
overhead contributors are network and I/O operations, which
involve enclave exits and data copies over enclave boundaries.
However, these overheads are a necessary minimum for any
secure solution.

Weave’s execution times are within 1.65–2.83× of the in-
secure baseline, while the execution times for Opaque and
Shuffle & Balance are 2.8–11.2× and 1.5–5.9× higher than
Weave. At a high level, most of Weave’s performance gains
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Fig. 5: Execution time across compared systems & workloads (§5.1). Jobs that an approach cannot support are marked NA. For PageRank,
the solid bars show the time for the first round, while the hatched bars show the time taken for the subsequent 10 rounds.
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Fig. 7: EPC memory overhead (§5.2)w for secure shuffling relative
to the insecure baseline scales linearly with data size for all schemes.

are due to its constant factor bandwidth and compute over-
heads relative to log-linear overheads seen in compared sys-
tems (§3.5). Analyzing the results further yields three inter-
esting observations.

First, the major contributor to execution overheads across
all compared systems for almost all workload-dataset combi-
nations is their shuffle approach. Specifically, Weave sees the
lowest overhead since Weave’s random-shuffle, histogram,
and balanced-shuffle phases permit a constant factor overhead
relative to the insecure baseline’s shuffle phase (1.5–2.7×;
not shown in Figure 5). In contrast, Shuffle & Balance’s sin-
gle round of log-linear Melbourne shuffle incurs 3.9–8.3×
overhead to insecure shuffles, while Opaque’s four-round
column sort observes an even higher overhead (7.2–20.2×;
not shown in Figure 5). For PageRank, while the first round
(solid bars) is dominated by the shuffle required for comput-
ing the graph’s adjacency matrix, subsequent rounds only
require broadcasting without any data shuffle in all systems.
Thus, while Weave, Opaque, and Shuffle & Balance are 2.3×,
19.1×, and 9.8× slower than the insecure baseline in the first
round, they take the same time for the remaining rounds.

Second, the associative Reduce optimization in Weave per-
mits a 50% reduction in network overheads for associative

jobs like HistogramCount. While Opaque employs a similar
optimization, the end-to-end execution time remains domi-
nated by its shuffle overheads. We also used mapper-side
combiners for the insecure baseline for fairness, although
Shuffle & Balance cannot use them since they break oblivi-
ousness.

Finally, a balanced distribution of intermediate key-value
pairs across reducers in the secure systems, Weave, Opaque
and Shuffle & Balance, results in fewer straggling reducers
due to a more uniform work distribution across them, com-
pared even to the insecure baseline.

5.2 Weave Scalability

We restrict our focus to the NY Taxi and Pokec datasets since
they are much larger than the Enron dataset and permit larger-
scale performance analysis. We omit Sort-variants for Inverte-
dIndex and Median jobs since prior secure systems do not
support them. For PageRank, we restrict our focus to one
single round of rank aggregation on the Pokec dataset since
subsequent rounds do not involve any data shuffle.

Scaling with dataset size (Figure 6). We fix the worker
count to 10 and vary the number of records in the datasets,
from 50 to 500 million records for NY Taxi data and from 31
to 310 million records for the Pokec graph data. As expected,
the execution time for Weave and the insecure baseline scale
linearly with dataset size across all jobs, since Weave incurs
at most constant factor overhead relative to the baseline. The
log-linear scaling for Shuffle & Balance and Opaque is also
expected due to their shuffle approaches; Opaque’s overheads
are somewhat higher due to the additional shuffle rounds
required for column sort, which gets worse at larger dataset
sizes due to memory thrashing during column sort in Spark.
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Across various jobs, the computationally light Histogram-
Count’s scaling primarily depends on the shuffle overheads,
resulting in a larger relative performance gap between Weave
and compared systems. On the other hand, for the more com-
putationally intense Median and Sort jobs, the gap between
Weave and compared systems is smaller since the impact of
shuffle is overshadowed by the time spent executing the Map
and Reduce tasks. At 300 million records, Opaque and Shuf-
fle & Balance observe execution times 9.3× and 2.7× longer
than Weave on average, respectively.

Scaling with worker count (Figure 6). We fix the size of the
dataset to 200 million records for the NY Taxi dataset and 310
million records for the Pokec social network graph data and
vary the cluster size from 6 to 20 nodes. As expected, all four
systems scale similarly to the number of workers, i.e., their
execution time is reduced proportionally to the number of
workers since each of them can split work and network traffic
roughly equally among workers. As we saw for scaling with
dataset size, the more computationally intensive jobs (Median,
Sort) observe a lower performance gap between Weave and
other systems in various worker counts, mainly because the
impact of shuffle-based compute and network overheads is
dwarfed by the time spent in tasks Map and Reduce. At
20 nodes, Opaque and Shuffle & Balance observe execution
times 6.7× and 2.3× longer than Weave, respectively.

EPC memory overhead scaling (Figure 7). Our 10-node
cluster hosts a total of 320GB of EPC memory. We see that
the normalized EPC memory overhead for Weave, Opaque,
and Shuffle & Balance — due to additional data structures
that must be stored in EPC for each scheme — scales linearly
with the number of records in the dataset. For Weave, de-
spite linear scaling, the EPC overhead remains under 1.4%
for HistogramCount and 3.6% for Sort on the NY Taxi dataset
containing 500 million records, demonstrating that EPC over-
head does not pose a scalability bottleneck for Weave.

5.3 Understanding Weave Performance

Weave execution breakdown (Figure 8(a)). The overhead
incurred by the random-shuffle phase is purely due to net-
work transfers and is linear in the dataset size. With our
sampled histogram optimization, the network and computa-
tional overheads of histogram phase are negligible (< 1%).
This leaves the balanced-shuffle phase, where the overheads
vary by the job’s nature and the dataset size. In particular,
the balanced-shuffle phase overheads for non-associative jobs
(InvertedIndex, Sort, Median) is much higher (up to 40% of
the entire overhead) than for associative queries, where our
associative reduce optimization all but eliminates compute
overheads, and only incurs a network overhead linear in data
size.

Impact of Weave optimizations (Figure 8(b)). We evaluate

the impact of Weave optimizations for the InvertedIndex and
HistogramCount jobs on the Enron Email dataset, using the
same setup as §5.1. For the Enron Email Dataset, a sampling
factor of 0.01 in the sampled histogram optimization reduces
the communication time for the histogram phase by 220 sec-
onds. As such, it reduces the execution time for InvertedIndex
by 18% and HistogramCount by 30%. The associative reduce
optimization only applies to HistogramCount, reducing its
execution time further by 33% for a total of 63% reduction.

5.4 Sensitivity Analysis

Impact of α (Figure 8(c)). The choice of α ( 2r
r+1 by default)

in Weave imposes a limit of α·n̂
r on the the maximum key pop-

ularity (§3.1). While all of our evaluated real-world datasets
exhibit a maximum key popularity of < 5% (a small fraction
of the threshold set by our default α), we artificially inflate the
maximum key popularity in the NY Taxi dataset and evaluate
the Median job execution on it to study Weave’s sensitivity
to larger α values. We use LocationID as the intermediate key,
inflating the most popular key’s popularity while keeping the
total dataset size constant.

Figure 8(c) shows that as maximum key popularity (as
a % of the entire dataset) increases from 4% to 99% (and
consequently, the number of unique keys decreases), Weave’s
execution time increases by 7.9×. The two vertical lines are
added for reference in the figure. The first line shows the
maximum degree of skew (3%) in real-world social network
datasets for Twitter follower network [61, 62]. The second
line, at maximum key popularity of ∼ 14%, shows the point
until which Weave’s default value α (≈ 1.85) does not need
to be increased; beyond this, the minimum viable α required
to preserve IND-CDJA security increases linearly up to 13.
Interestingly, at the point when Weave’s default α needs to be
increased, a single reducer ends up processing all intermediate
key-value pairs associated with that key — nearly 14% of the
entire dataset, and 45% more (real) key-value pairs than any
other reducer — an unlikely scenario in real-world settings.

Impact of C (Figure 8(d)). For MR jobs where Map outputs
1 < c <C records, Weave (or any other IND-CDJA-secure
scheme) must add C− c “filler” intermediate key-value pairs
to the Map output (§2.4), increasing its overhead by a factor
by C

cavg
(§2.4). We evaluate this impact on a Word Count

job on the Enron Email dataset, where Map breaks down
each sentence into multiple constituent words. We vary the
required C by filtering out sentences with word counts over C
and scaling up the rest of the dataset to the same size while
preserving data distribution. Figure 8(d) shows that as C
increases from 4 to 48, Weave’s performance overhead rela-
tive to the insecure baseline increases from 1.32× to 5.34×.
Moreover, an insecure variant of Weave (purple line) that
does not insert filler records maintains a consistent 1.32×
overhead as C increases.
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Fig. 8: Weave performance and sensitivity analysis (§5.3, §5.4). (a) Random-shuffle phase overhead is linear in dataset size, histogram phase
has negligible overheads and balanced-shuffle phase overheads are higher for non-associative jobs. (b) The sampled histogram optimization
reduces Weave execution time by 18%–30%; associative reduce optimization reduces it further by 29%. (c) Highly skewed input distributions
increase Weave overheads – the red vertical line shows the maximum skew (3%) we observed in real-world social network datasets for Twitter
follower network [61, 62]. (d) Increasing C Word Count from 4 to 48 increases Weave runtime by up to 4.1×.

6 Discussion and Future Work

We now discuss areas of future research.

Processing in batches. The complexity of random-shuffle
in Weave is O(n̂), a key factor in Weave’s ability to provide
IND-CDJA-security with constant overhead. This, however,
requires all of the data generated by the map phases to be
randomly shuffled all at once. If the data were instead sent
in batches, an adversary with prior knowledge of how the
input data is divided across them could identify specific data
items sent to a weaver based on the batch they were sent
in. This is particularly relevant to applications in streaming
analytics [63, 64], where MapReduce jobs are executed on
micro-batches of data. This requires adaptation of random-
shuffle phase in Weave to ensure security even when applied
to a series of such micro-batches. A possible approach to
facilitate this is to adapt the dynamic distribution adapta-
tion schemes and security models explored in prior work on
oblivious storage [15, 18] to Weave for obliviousness per
micro-batch.

Other communication patterns. Our work focuses on
shuffle-based all-to-all worker communications in MapRe-
duce analytics. Other analytics frameworks, such as dis-
tributed ML training or deep learning, employ different com-
munication patterns, especially in collective operations such
as broadcast, all-reduce, gather, all-gather, etc. These com-
munications also suffer from similar access pattern leak-
ages [65,66] and can benefit from noise-injection-based obliv-
iousness for efficiency and privacy.

Other side channels. While our work focuses on oblivious
analytics execution by hiding network and memory access
patterns, we consider two additional side channels outside our
scope. The first is length-based leakage — similar to prior
works [11, 12], we assume the key-value pairs in map-reduce
communications are all fixed-sized or can be padded to the
same fixed size. However, in real-world datasets, key-value

pairs can have sizes that vary by several orders of magnitude,
and padding can be prohibitively expensive [67]. Second,
we do not consider timing-based attacks, where the duration
of the computation can reveal information about the nature
of the processing and the data to an adversary. While our
security model assumes that the adversary already knows
the job being executed, securing such timing-based channels
becomes even more crucial when the jobs are secret. We leave
the exploration of efficient schemes that can prevent leakage
via both side channels to future work.

7 Conclusion

Weave is an efficient and expressive secure analytics platform
that scales to large datasets. Weave applies the principles of
noise injection to reduce the network and compute overheads
for oblivious analytics to a constant factor. Weave reduces the
oblivious execution time for analytics jobs on large real-world
datasets by 4–10× compared to the prior state-of-the-art.
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Appendix

A Spark Transformations Output Sizes

In §2.4, we discussed the impracticality of achieving IND-
CDJA security with bounded overhead for arbitrary map func-
tions without limiting the number of output records per input
record, denoted as c to a maximum value of C. Fortunately,
this cap is c ≤ 1 for most MapReduce jobs — including
Apache spark transformations [2], relational operations in
Spark SQL [68] and commonly used Map-Reduce design pat-
terns [69], as shown in Table 2. As such, while IND-CDJA
requires that the output be padded to C records per input
during the Map phase, in most cases, C = 1 suffices.

B Simulation-based Security Definition

In this section, we briefly describe the simulation-based ver-
sion of our security definition and provide its pseudocode
in Figure 9. The SIM-CDJA security game defines two
worlds: the real world SIM-CDJAA

0,α,C and the ideal world

SIM-CDJAA,S
1,α,C. The real world is identical to IND-CDJA,

except the adversary selects a single dataset D. The ideal
world introduces the simulator algorithm S and replaces
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c = n̂
n

Apache Spark
Transformations

Relational
Operators

MapReduce
Design Patterns

c = 1

map
join
cogroup Project Partitioning
crossProduct OrderBy Shuffling
mapValues Product Total Order Sorting
sort Join Join Patterns
partitionBy Cross Product
groupByKey

c < 1

Divide Distinct
filter Select Filtering
sample Set Operations Distinct
union (e.g.Union)

c > 1 flatMap —
Binning
(One to Many)

Table 2: The c ratio, representing output size relative to input size
for various Map functions, achieves IND-CDJA security by setting
C as the upper bound of c and fixing the output size through padding.
For most Apache Spark transformations [2], relational operations in
Spark SQL [68], and commonly used MR design patterns [69], we
find that c≤ 1 and C = 1. Within this framework, an IND-CDJA
secure scheme can achieve bounded overhead and exclusively reveal
the size of the input, ensuring no additional data leakage.

Weave ’s execution with a call to S, which generates net-
work and memory transcripts independent of the real-world
dataset’s contents. We also make explicit the creation of
the PRG F during initialization and pass it as input for both
Execute and S to sample.

Intuitively, if S can produce memory and network tran-
scripts that are indistinguishable from those observed in
the real world without knowing the inputs to Execute, then
Weave’s memory and network accesses are independent of
the chosen job and data distribution. To prove the security of
Weave under this definition, S produces transcripts following
the same network communication and memory access distri-
butions as described in the IND-CDJA-security proof sketch
(§4.2), ensuring that they are indistinguishable from the real
world.

SIM-CDJAA
0,α,C:

n,w,mem←A1

W,F ← Init(n,w,mem)

D,Map,Reduce←A2(W)

o,τN ,τM ←
Execute(D,Map,Reduce,W,F)

b′←A3(o,τN ,τM)

Return b′

SIM-CDJAA,S
1,α,C:

n,w,mem←A1

W,F ← Init(n,w,mem)

D,Map,Reduce←A2(W)

o,τN ,τM ← S(W,F)

b′←A3(o,τN ,τM)

Return b′

Fig. 9: SIM-CDJA security game.

C Proof of Weave’s IND-CDJA Security

Preliminaries. For completeness, we provide the pseudocode
for Weave’s Init and Execute algorithms, as Algorithms 2
and 3 respectively. Execute outputs not only the result of the

MapReduce job input to Weave, but also builds a transcript τN

of worker-to-worker network communications, i.e., for each
data transfer from some worker Wi to worker Wj, τN [Wi][Wj]
gives the encrypted data transferred across the network link
between them. We define the chance of success of an adver-
sary A in attacking Weave as the advantage it has in guessing
the input dataset in the game IND-CDJA (Algorithm 4) as
follows:

Advind-cdja
Weave (A) = |Pr[IND-CDJAA

1 ⇒ 1]

−Pr[IND-CDJAA
0 ⇒ 1]|.

Having given the game description in §4.1, we are ready to

Algorithm 2 Weave.Init(n,w)

1: Initialize each worker {W1, · · · ,Ww}
2: return {W1, · · · ,Ww}

prove the security of Weave under IND-CDJA.

Algorithm 3 Weave.Execute(D,Map,Reduce,W)

At each mapper Mi:
1: D̂i← result of Map on Mi’s split of D
2: RandomShuffle(D̂i,W)
3: τM

1 [Mi]← scan of KV pairs in D̂i
4: for j = 1 to w do
5: τN

1 [Mi][W j]← KV pairs assigned to W j by RandomShuffle

At each weaver Wi:
6: ĥ← Histogram(W)
7: τM

2 [Wi]← scan of received KV pairs
8: for j = 1 to w do
9: τN

2 [Wi][W j]← hi, Wi’s local histogram

10: BalancedShuffle(ĥ)
11: τM

3 [Wi]← scan of received KV pairs
12: for j = 1 to r do
13: τN

3 [Wi][R j]← KV pairs assigned to R j by BalancedShuffle

At each reducer Ri:
14: Oi← result of Reduce on Ri’s received KV pairs
15: return o← O1, ...,Or, τN ← τN

1 ,τ
N
2 ,τ

N
3 , τM ← τM

1 ,τM
2 ,τM

3

Theorem 4.1 For any polynomial-time adversary A against
Weave, there exist poly-time adversaries B,C,D such that

Advind-cdja
Weave (A)≤ Advprg

F (B)+Advror
E (C)+Advind

T (D),

where F, E, and T are Weave’s PRG, encryption, and memory
access schemes respectively.

Proof. We prove this using a sequence of standard crypto-
graphic game transitions. We start with the IND-CDJA game
as defined in Figure 4, where the Init and Execute algorithms
are as defined for Weave (§3). Now let G1 be the same as thi
except we replace the PRG F with a truly random function.
The difference between the success of adversary A in these
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two games can be upper bounded by the advantage of a PRF
adversary B against the PRG scheme F :∣∣∣ Pr

b∼{0,1}
[IND-CDJAA

b ⇒ b]−Pr[G1Ab ⇒ b]
∣∣∣≤ Advprg

F (B)

Then, let G2 be the same as G1, except we replace the
authenticated encryption function E with a random function
that outputs strings in the ciphertext space. The difference
between the success rate of A in G2 compared to G1 is up-
per bounded by the real-or-random adversary C against the
encryption scheme E:∣∣Pr[G1Ab ⇒ b]−Pr[G2Ab ⇒ b]

∣∣≤ Advror
E (C)

Finally, let G3 be the same as G2 except we omit each
memory access protected by T in the transcripts τM

1 ,τM
2 ,τM

3 .
The difference between the success rate of A in G3 compared
to G2 is upper bounded by the advantage of adversary D in
distinguishing between memory access sequences T :∣∣Pr[G2Ab ⇒ b]−Pr[G3Ab ⇒ b]

∣∣≤ Advind
T (D)

Overall, the difference between the success of A in G3 and
IND-CDJA is upper bounded by the sum of the advantages
of B, C, and D:∣∣∣ Pr

b∼{0,1}
[IND-CDJAA

b ⇒ b]−Pr[G3Ab ⇒ b]
∣∣∣≤

Advprg
F (B)+Advror

E (C)+Advind
T (D)

We now argue that Weave’s outputs o,τN ,τM given to the
adversary depending on bit b are indistinguishable under
game G3:

Pr[G3A0 ⇒ 1] = Pr[G3A1 ⇒ 1]

G2 replaces all communicated data with random strings and
G3 omits all accesses to T in τM , leaving only accesses out-
side of protected memory. Following from Algorithm 3,
τM

1 [Mi] contains for each mapper Mi the same number of se-
quential memory accesses whether D0 or D1 is chosen. Sim-
ilarly, in τM

2 and τM
3 , the number and order (sequential) of

key-value pairs received by each weaver Wi are the same
across both D0 or D1. Therefore, the adversarial advantage
in distinguishing between the two datasets based on memory
access transcripts is zero.

Now we only need to show that the communication vol-
ume between each pair of workers in each phase of Weave—
captured in τN

1 , τN
2 , and τN

3 — follow the same distribution
regardless of Db. Recall that the challenge datasets have the
same number of key-value pairs n and, given the constraints
on Map stated in §4.1, the same number of intermediate key-
value pairs n̂. We can conclude the following about τN by
Weave’s construction:

• For τN
1 (the random-shuffle phase), each mapper assigns

each of its intermediate key-value pairs a weaver uniformly

at random. This ensures that the number of key-value
pairs in τN

1 [Mi][Wj] across all mapper-weaver pairs (Mi,Wj)
follow a uniform distribution, making τN

1 identically dis-
tributed between b = 1 and b = 0.

• For τN
2 (histogram phase), each local histogram histogrami

is padded to the same number of entries ⌈ n̂
w⌉, so the same

volume of data is transferred regardless of b.

• For τN
3 (balanced-shuffle phase), we consider the distri-

bution of key-value pairs in τN
3 [Wi][R j] across all weaver-

reducer pairs Wi,R j. Let kv_real[ j] be the number of real
key-value pairs in τN

3 [Wi][R j]. The random-shuffle and
balanced-shuffle phase together ensure that the number of
real key-value pairs R j receives from weaver Wi is a bino-
mial random variable, n̂real

i j ∼ B(kv_real[ j],1/w). More-
over, Algorithm 1 (lines 12–14) ensures that the num-
ber of fake key-value pairs in τN

3 [Wi][R j] is also a bino-
mial random variable, n̂ f ake

i j ∼ B(kv_tot− kv_real[ j],1/w).
The total number of key-value pairs in τN

3 [Wi][R j] is then
n̂real

i j + n̂ f ake
i j ∼ B(kv_tot,1/w), an identical distribution

across all weaver-reducer pairs regardless of b.

We have shown that under G3Ab , the volume of traffic
transferred between mapper-weaver (during random-shuffle),
weaver-weaver (during histogram), and weaver-reducer
(during balanced-shuffle) is independent of the distribution
of both intermediate keys and keys in the underlying data
Db. Since the distributions of communication volumes in
G3A0 and G3A1 are indistinguishable to the adversary A,
its advantage in IND-CDJA is bounded by the summed
advantages of B, C and D, which completes the proof. ■

D Software-based Memory Obliviousness

We discussed the data-dependent structures that Weave stores
within the EPC in §3.3. Our analytical evaluation (§3.5) and
empirical validation (§5.2) demonstrate that the current EPC
storage capacity in SGX v2 [22] is sufficient to maintain the
necessary states for virtually any dataset size without becom-
ing a bottleneck in execution. This section outlines potential
algorithmic extensions to Weave that could accommodate
execution under more constrained EPC memory conditions.
However, the implementation and evaluation of these exten-
sions lie outside the scope of this paper.

Memory oblivious histogram phase. Accesses to ĥ are data-
dependent. To address this, Weave can employ a memory-
oblivious version of histogram by first obliviously sorting a
small data sample and then aggregating the counts through a
sequential pass over the sorted data, computing the running
counts per key. Sorting the sampled keys organizes them into
contiguous memory segments, enabling oblivious running
counts without requiring additional data movement.
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If EPC memory is unavailable, an oblivious sorting net-
work [70] can be used for the initial sorting step. Alternatively,
if EPC memory is limited, a hybrid approach can be employed
by combining a butterfly sorting network [71, 72] outside the
EPC and QuickSort inside the EPC. While sorting introduces
a deviation from the constant overhead of Weave, the practical
impact remains minimal since the sample size is significantly
smaller than the overall dataset size (our sampling factor is
1%). Moreover, unlike prior sort-based approaches [12], all
of our sorts are confined to a single worker rather than over
the network.

Memory oblivious balanced-shuffle phase. In balanced-
shuffle, accesses to ĥ, kv_real, kv_fake, and the buffers used
to store real and fake key-value pairs for each reducer are
data-dependent. Algorithm 1 can be made memory-oblivious
with a few simple modifications, as histogram, kv_real, and
kv_fake are relatively small.

To make the buffers memory-oblivious, each record can be
sequentially tagged with its destination reducer, followed by
an oblivious sort of the records based on their tags using a but-
terfly sorting network [71, 72], which has a time complexity
of O(n̂× log(r)). This sorting step groups records destined
for the same reducer together, enabling their transmission
without introducing data-dependent accesses.

Additionally, with this sorting approach, the generation of
fake records can be moved outside the EPC, as the records
can be created sequentially and obliviously merged with the
real data before sorting. This adjustment simplifies memory
management while maintaining obliviousness.
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