
1

Trusted Hardware-Assisted Leaderless
Byzantine Fault Tolerance Consensus
Liangrong Zhao, Jérémie Decouchant, Joseph Liu, Qinghua Lu, and Jiangshan Yu∗

Abstract—Byzantine Fault Tolerance (BFT) Consensus protocols with trusted hardware assistance have been extensively explored for
their improved resilience to tolerate more faulty processes. Nonetheless, the potential of trust hardware has been scarcely investigated
in leaderless BFT protocols. RedBelly is assumed to be the first blockchain network whose consensus is based on a truly leaderless
BFT algorithm. This paper proposes a trusted hardware-assisted leaderless BFT consensus protocol by offering a hybrid solution for
the set BFT problem defined in the RedBelly blockchain. Drawing on previous studies, we present two crucial trusted services: the
counter and the collector. Based on these two services, we introduce two primitives to formulate our leaderless BFT protocol: a hybrid
verified broadcast (VRB) protocol and a hybrid binary agreement. The hybrid VRB protocol enhances the hybrid reliable broadcast
protocol by integrating a verification function. This addition ensures that a broadcast message is verified not only for authentication but
also for the correctness of its content. Our hybrid BFT consensus is integrated with these broadcast protocols to deliver binary
decisions on all proposals. We prove the correctness of the proposed hybrid protocol and demonstrate its enhanced performance in
comparison to the prior trusted BFT protocol.

Index Terms—Reliable broadcast, Byzantine fault tolerance, trusted services, trusted execution environment.

✦

1 INTRODUCTION

B YZANTINE fault tolerant (BFT) consensus algorithms
have been widely explored in blockchain networks for

their built-in finality and high throughput capacities [1], [2],
[3]. Nonetheless, most BFT protocols have been challenged
by their high communication complexity and limited scala-
bility [4]. To tackle these issues, an increasing number of BFT
protocols have been proposed aiming for improvements in
communication complexity and scalability [5]. The Practical
Byzantine Fault Tolerance (PBFT) protocol is considered
the first BFT algorithm for practical use [6]. PBFT forms
the basis of numerous permissioned consensus protocols
for blockchain networks, including Tendermint [7], Stream-
let [8], HotStuff [9], and Honeybadger [10]. Most of these
protocols operate under a leader-based system, executing in
a series of views, with each view being led by a designated
process as a leader responsible for coordinating all consen-
sus decisions. However, a faulty leader can effectively halt
leader-based BFT protocols, requiring a view-change mech-
anism to replace the defective leader and ensure continued
progress. Current techniques to implement view changes
tend to be redundant and bug-prone [11], [12].

To circumvent the single-point failure caused by the fault
of the leader, BFT protocols featuring a leaderless design
have emerged [13], [14], [15]. The leaderless design has
been extensively applied in asynchronous BFT protocols to

• Liangrong Zhao, Jiangshan Yu and Joseph Liu are with the Faculty of
Information Technology, Monash University, Australia.
Email: {liangrong.zhao, jiangshan.yu, joseph.liu}@monash.edu

• Jérémie Decouchant is with Delft University of Technology.
Email: j.decouchant@tudelft.nl

• Qinghua Lu is with the Data61, CSIRO, Australia.
Email: qinghua.lu@data61.csiro.au

• ∗Corresponding author

achieve an asynchronous common subset (ACS) [16]. Ben-
Or et al. set a standard for ACS by proposing a practical
common subset agreement protocol that includes both a
broadcast instance and an agreement instance for every
party in the network [17]. This ”broadcast+agreement”
paradigm is also applied in RedBelly, which is assumed
to be the first blockchain network based on a genuine
leaderless BFT algorithm [14]. RedBelly’s goal is to solve
the set BFT consensus problem, which is a variant of the
BFT consensus defined by RedBelly, to reach an agreement
on the ordered common subset. Each process is supposed to
broadcast a proposal before reaching a consensus on every
proposal through binary Democratic BFT (DBFT) [18].

RedBelly presents verified reliable broadcast (VRB), a
variation of the Byzantine reliable broadcast (BRB) that
incorporates verification within message dissemination to
effectively filter out any invalid transactions in a proposal
batch during broadcasting. However, this advancement still
preserves the message complexity inherent to the legacy
double-echo BRB protocol. It requires 2 rounds of all-to-
all communication, leading to a complex and extensive
message exchange pattern with N concurrent instances [19].
The potentially high system load is still an open challenge
in designing leaderless BFT protocols [20].

While leaderless designs offer solutions to the leader’s
single-point failure, approaches employing trusted hard-
ware to enhance resilience have also been explored. The
hybrid BFT protocols with trusted hardware assistance aim
to improve resilience by restricting Byzantine processes and
to reduce communication complexity through the simplifi-
cation of the protocol [21], [22], [23], [24], [25]. The use of
trusted hardware in BFT protocols is to circumvent the im-
possibility of an asynchronous or partially synchronous con-
sensus protocol to tolerate f Byzantine faults with less than
3f+1 total processes [26]. The trusted hardware provides so-

lutions to eliminate equivocation to prevent processes from
sending conflicting messages to different recipients. With
the non-equivocation mechanism and digital signatures, a
crash-fault protocol can be compiled into a Byzantine-fault
protocol with the same amount of faulty processes in the
asynchronous communication model [27], [28]. Efforts have
also been made to construct a trusted BRB primitive with N
≥ 2f+1 [24], [25], [29]. While hybrid solutions have been
extensively explored in the context of traditional leader-
based BFT protocols, aiming to mitigate the adverse effects
of an arbitrary leader, they have been less investigated in
the context of leaderless protocols.

Contributions. This paper proposes a trusted hardware-
assisted leaderless BFT consensus algorithm, enabling the
execution of parallel broadcast and consensus instances. We
highlight our main contributions as follows.

• We provide a trusted leaderless BFT consensus algorithm
by providing a hybrid solution for the set BFT consen-
sus problem. Essentially, the set BFT problem is for
each process to concurrently propose a proposal and
then decide on a commonly agreed subset of all
proposed proposals. Our approach incorporates two
main primitives: a hybrid verified reliable broadcast
(VRB) protocol and a hybrid binary consensus.

• We propose a hybrid verified reliable broadcast protocol
based on our implementation of a hybrid BRB protocol.
The VRB protocol is a verified variant of the reliable
broadcast protocol with a verification function, en-
suring each broadcast message is checked for both
authentication and the correctness of its content. Our
hybrid VRB leverages hardware assistance while still
positioning the verification function outside the TEE,
ensuring the trusted hardware remains lightweight.

• We introduce a hybrid BFT consensus to facilitate the
parallel binary consensus invocations in the leaderless
design framework. Our hybrid BFT consensus is struc-
tured following the broadcast protocols, providing
binary decisions on all proposals to determine their
inclusion in the final set.

• We provide security analysis and complexity eval-
uation to demonstrate the optimal resilience and
improved message complexity of the proposed lead-
erless consensus protocol. We show that our hybrid
approach attains optimal resilience with an overall
message complexity of O(2n2+2n3) for O(n) parallel
proposals, and O(2n+2n2) for each proposal. Addi-
tionally, we conduct a comparative simulation eval-
uation against the prominent open-source trusted
protocols MinBFT.

2 RELATED WORKS AND BACKGROUND

2.1 Related Works

2.1.1 Byzantine reliable broadcast

The original Bracha’s double-echo BRB protocol incurs a to-
tal communication cost of O(n2|M |) where |M | is the size of
the broadcast message. Multiple following works have en-
deavoured to reduce this communication cost. The original

TABLE 1: Comparison of BRB schemes

Protocols N
Communication Message

rounds complexity

Bracha [19] 3f + 1 3 O(n + 2n2)
Cachin-Tessaro [30] 3f + 1 4 O(n2 logn)

Patra [36] 3f + 1 11 O(n + n4 logn)
Das [33] 3f + 1 4 O(n + κn2)

EFBRB [32] 3f + 1 9 O(n + n2 logn)
Correia [29] 2f + 1 2 O(n + n2)

Aguilera [24], [25] 2f + 1 3 O(n + 2n2)

Hybrid BRB/VRB 2f + 1 2 O(n + n2)

BRB protocol does not impose computational bounds on ad-
versaries. The following works predominantly utilise cryp-
tographic primitives to simplify the message exchange pat-
tern or diminish the size of the messages being exchanged.
An improved version of BRB with a communication cost of
O(n|M | + κn2logn) assumes a computational bound limit-
ing the adversary’s capabilities to break a collision-resistant
hash function. κ is the hash function’s output size [30]. The
improvement is achieved by reducing the rounds of full-size
message propagation as the message size is typically much
larger than the total number of processes n.

An erasure coding scheme-assisted message exchange is
also explored where each element of a codeword can be
verified as proof of correctness for the transmitted mes-
sages. [31]. Limitations of the state-of-the-art BRB protocols
include unbalanced communication cost for broadcaster and
recipients [32], inefficiency in the computation for the mod-
els relying on mathematical coding algorithms [16], [33], and
practicality in a partially connected network [34].

While 3f+1 is the minimum number of processes for
Bracha’s BRB to operate with the presence of f faulty
processes, it has been shown that a reduction from 3f+1 to
2f+1 is attainable when equipped with a non-equivocation
mechanism [29], [35]. Correia et al. propose a prototype
for a reliable broadcast protocol designed to facilitate the
transformation of crash consensus algorithms into Byzan-
tine consensus algorithms. Their approach includes a hybrid
BRB protocol with 2f+1 processes, each having access to a
generalized trusted service wormhole. This wormhole service
allows each process to generate signatures with identifiers,
thereby preventing equivocation [29].

In a separate development, Remote Direct Memory Ac-
cess (RDMA) with SWMR registers is used to implement
a reliable broadcast protocol primitive. This approach en-
sures processes cannot equivocate by cross-referencing the
data preserved in shared memory [24]. A subsequent work
further improves this approach by providing a consistent
broadcast variant for the fast consensus path with fewer
amounts of signatures required. Notably, both of the two
shared memory-based reliable broadcast protocols rely on
an ”Init-Echo-Ready” structure with 2 all-to-all communica-
tion rounds [25]. A comparison of related works on reliable
broadcast protocols can be found in table 1.

2

2.1.2 Hybrid BFT protocols with hardware assistance

Correia et al. introduce the Trusted Timely Computing
Base (TTCB), a tamper-proof distributed oracle. It delivers
authentication and ordering services by assigning order
numbers to messages, enabling the implementation of an
intrusion-tolerant atomic multicast service with 2f+1 pro-
cesses [37]. The Attested Append-Only Memory (A2M)
adopts an alternative approach to prevent equivocation by
providing a set of trusted, undeniable, ordered logs. A
message has to be logged in the A2M for a sequenced attes-
tation to be generated before transmission and to be verified
upon receipt. PBFT-EA leverages A2M to enhance Cor-
reia’s trusted service by transitioning it from a distributed
computing base to a tamperproof component at processes’
local devices [38]. TrInc is a lightweight trusted incrementer
designed to improve upon the trusted logs of A2M. TrInc
mitigates equivocation with great versatility in large-scale
distributed systems as TrInc’s core functional elements are
available in many modern PCs [39]. Hybster later introduces
a customized abstraction of TrInc, termed TrInx, which
incorporates the ability to generate diverse certificate types
for parallelization [40]. Different from TrInc, where counter
values are predefined during certificate creation, MinBFT
utilizes a simple trusted service named the ”Unique Sequen-
tial Identifier Generator” (USIG) to assign monotonic, and
sequential identifiers to messages at each certification. USIG
ensures non-equivocation and reduces three communication
rounds down to two during regular operations [23]. Cheap-
BFT employs a unique FPGA-based trusted subsystem to
prevent equivocation by issuing unique message certificates
for protocol messages. Specially, CheapBFT provides opti-
mistic operation with a lower number f+1 of active processes
while f other processes can choose to be passive without
hindering the normal operations [41]. FastBFT shares sim-
ilarities with CheapBFT in terms of the monotonic counter
setup as well as optimistic operations. Nonetheless, FastBFT
additionally incorporates a hardware-based secret-sharing
mechanism to reduce message complexity [42]. Damysus is
a hybrid streamlined BFT protocol that improves resilience
and communication overhead of streamlined HotStuff pro-
tocol with augmenting trusted counters with additional se-
cure storage as the authors demonstrate a simple monotonic
counter is inadequate to improve resilience for streamline
protocols [21].

Some protocols take a different path to adopt the
message-and-memory (M&M) model to ensure non-
equivocation. The M&M model is a generalization of both
message-passing and shared memory. RDMA is a hardware
technology that permits memory access to other hosts in the
network without involving their CPUs. It provides commu-
nication primitives for processes in M&M models to directly
write or read remote shared memory, facilitating cross-
checking to prevent non-equivocation [25]. Aguilera et al.
provide an algorithm with RDMA-based BRB we discussed
in the previous subsection. The algorithm considers both
crash and Byzantine fault tolerance and it can tolerate a
minority of Byzantine faults in shared-memory [24]. Frugal
Byzantine Computing advances the communication com-
plexity bounds off the fast path by presenting a consis-
tent broadcast primitive with cheaper signature cost com-

pared to the reliable broadcast [25]. uBFT relies on RDMA-
based trusted disaggregated memory, which is encapsulated
within a consistent broadcast primitive where the partial
order of the messages from a process is ordered. This broad-
cast primitive in uBFT improves upon Frugal Byzantine
Computing’s version by offering a signatureless fast-path
operation [43].

A prevalent trend in trusted protocols is to assign unique
identifiers to protocol messages, ensuring that conflicting
messages are either prevented or detectable. The foundation
of trusted services in distributed systems has undergone
transitions: from a tamperproof computing base to append-
only logs, and further to lightweight monotonic counters
and message-and-memory (M&M) models [21], [24]. In this
work, the minimal trusted services required for our design
align with Damysus’ configuration, including a monotonic
counter and a trusted log.

2.1.3 Leaderless BFT models
Most BFT algorithms involve a leader that helps processes
converge towards a decision in a fast manner, which makes
the correctness of the leader crucial for most of the BFT
models. When the leader is Byzantine, a leader-changing
procedure is required as most of the algorithms are unable
to proceed in the absence of a valid leader [44]. The time-
consuming leader-changing mechanisms inspire recent ef-
forts devoted to minimising the role of a leader, and one of
the ideas is to entirely eliminate the role of a leader [45]. Re-
cent advancements in Byzantine atomic broadcast protocols
involve directed acyclic graph (DAG) based approaches,
which achieve consensus by utilizing a shared DAG data
structure among the honest processes via reliable broadcast,
enabling the processes to agree on the order of transactions
in the DAG [46], [47], [48]. The role of a leader in DAG-
based BFT has been weakened due to the parallelizable
nature of DAG to deprecate the need for complex view-
change mechanisms [46], [47], [49]. Fewer efforts have been
made on the true leaderless BFT [14], [15], [50], and Dester
is the only leaderless hybrid BFT protocol with trusted com-
ponents [13]. However, the underlying leaderless consensus
protocol Dester is built on is challenged with safety and
consistency violations [51].

2.2 The Set Byzantine Consensus Problem and Red-
Belly’s Solution

The Set Byzantine consensus (SBC) problem is formalized
by the RedBelly blockchain for correct processes to reach
an agreement for parallel consensus instances [14]. In a
network where all processes are supposed to propose a
proposal, SBC allows all correct processes to eventually
agree on a common set merged from correct proposals.

SBC is significant for leaderless BFT models as it enables
a scheme for the execution of multiple BFT instances in par-
allel with transactions originating from different processes.
RedBelly’s solution incorporates a variant of double-echo
reliable broadcast, a binary BFT algorithm for parallel pro-
cessing, and a reconciliation protocol to merge the outputs
from parallel BFT instances into a final block. The main
focus of this work is to improve the broadcast protocol and
binary consensus algorithm by leveraging trusted hardware.

3

2.2.1 Verified reliable broadcast
Verified reliable broadcast lets all processes in the set BFT
exchange their proposals with each other and get their
proposals verified at the same time prior to joining the
binary consensus instances. The VRB implementation is
derived from Bracha’s double-echo reliable broadcast pro-
tocol, augmented with an additional verification function
during the second round of all-to-all communication [19]. In
contrast to the Bracha protocol, RedBelly’s VRB mandates
that a proposal (which is equivalent to a message in BRB)
must undergo verification against blockchain rules before
being endorsed in a valid message along with verification
results. As a result, a proposal in the VRB is not only
checked for sender authentication but is also examined for
the correctness of the proposal’s content. Since a proposal in
the set BFT is a set of transactions, the attached verification
result verif for a proposal is set as a list where elements
indicate the indices of invalid transactions.

2.2.2 Binary BFT consensus
As mentioned above, all the proposals delivered via verified
reliable broadcast are free from undetected invalid transac-
tions. Before joining reconciliation to filter all the across-
proposal contradictory transactions, all verified proposals
are still required to go through parallel binary BFT instances
and only proposals with positive consensus outcomes are
allowed to be merged into the final block. Reaching a con-
sensus is crucial to ensure that all correct processes have the
same set of proposals for reconciliation. Otherwise, failure to
reach a consensus can result in different or even conflicting
outcomes for correct processes.

RedBelly leverages the DBFT binary consensus proto-
col [18] because it is optimal in resilience and time and
has been verified using model checking techniques [52].
Unlike most of the BFT consensus algorithms, DBFT has
a leaderless design and only requires a weak coordinator to
enable rapid consensus among correct processes.

2.2.3 Reconciliation protocol
The reconciliation protocol in RedBelly examines all valid
transactions in parallel binary BFT instances and establishes
a total order for those transactions. This protocol serves
a dual purpose: it resolves conflicts between parallel BFT
instances and establishes a total order for blockchain oper-
ations. However, if transactions from the same source are
confined to the same binary BFT instance, the latter task
may be unnecessary [53].

3 PRELIMINARIES

3.1 System Model
3.1.1 Process model
We consider a network Π = {p1, p2, ..., pN} of N processes
with identifiers known to all in the network. The non-ideal
nature of a process’s operations in real practice makes it
not practical to assume that all processes operate correctly
all the time. Up to f processes in a network of size N
can be faulty. Faulty processes might stay silent, or send
arbitrary or conflicting messages. We assume that processes
are authenticated, i.e., they can rely on a digital signature

scheme to authenticate each other’s messages. Processes are
equipped with trusted components (cf. Section 4). The fault
threshold f is known to all processes. Our proposed hybrid
BRB has a threshold of f <N/2. A process is regarded as
faulty if it crashes indefinitely or deliberately deviates from
the protocol. In this paper, the words arbitrary, faulty and
Byzantine are synonyms with the same meaning.

3.1.2 Communication link
Processes are connected in a distributed manner where each
process is able to communicate with any other process
via a direct connection. The communication link between
each pair of processes is a bidirectional perfect point-to-
point link, which enforces that no message from an honest
sender is lost, duplicated or indefinitely delayed [54]. The
network is partially synchronous, whereby messages can be
eventually delivered despite the delays in communication
links being constrained by an indeterminate upper bound.

3.1.3 Signature
In our work, we assume that the cryptographic primitives,
including the hash function and signature scheme, are se-
cure and reliable thus message validity is contingent upon
proper signature authentication. Each process is equipped
with a unique public/private key pair that is integrated into
its trusted hardware and consequently, restricting message
signing and verification within the trusted hardware. We
assume a signature contains the identity of the signing
process, and as such, a process’ trusted hardware must
verify a received message’s signature before any further
handling.

3.2 Problem Formulations
We aim to design a trusted hardware-assisted leaderless BFT
consensus protocol. Our approach is to provide a trusted
solution to the set BFT problem by designing a hybrid
broadcast protocol and a hybrid binary consensus protocol.
A protocol is a set BFT protocol if the following properties
hold:

• Termination: Every correct node eventually decides a
set of proposals.

• Agreement: No two correct processes decide different
sets of proposals.

• Validity: A decided set of transactions is a valid non-
conflicting subset of the union of the proposed sets.

• Nontriviality: If all nodes are correct and propose
an identical valid non-conflicting set of transactions,
then this set is the decided set.

The properties for the broadcast and consensus proto-
cols, along with their respective proofs, are presented in
Section 7.

4 TRUSTED SERVICES

A simple trusted configuration is required for each process
to implement the hybrid models, where all components are
subject to Byzantine failures except the ones in the TEE.
A trusted service consists of preconfigured functions that
remain secure in the presence of Byzantine faults. Previous

4

work has proven the simplest trusted design with merely a
counter is insufficient to enhance resilience or performance
for streamlined BFT protocols [21]. Our approach relies on
two main trusted services: a monotonic counter that assigns
unique immutable labels to messages, and a collector that
verifies the validity of the collected messages.

The two trusted services are responsible for executing
critical functions and producing verifiable outcomes encap-
sulated in messages. These messages can be signed and
authenticated using private/public keys stored within the
TEE. Each process keeps its own private key secret while
the public key is publicly accessible and linked to the pro-
cess’ unique identifier. A diagram outlining the comprehen-
sive operational structure of TEE in this work is provided
in fig. 1.

signing/verifying messagesPublic/Private key

external
storageHost process

Trusted Execution Environment

TEEbcast TEEecho TEEvote TEEcollect

COLLECTOR
monotonic
counter update

COUNTER log

proposal

counter
number

BCAST
msg

received
msg

ECHO
msg

vote VOTE
msg

f+1
msgs

Boolean

verified
msgs

large size data

Fig. 1: Operational structure of TEE in this work

4.1 Counter
The trusted counter is used to assign unique identifiers for
proposals that are broadcast by each process. To prevent any
equivocation, a monotonic counter is employed to certify
proposals in signed messages. As a result, any conflicting
proposals generated from equivocation are rejected by hon-
est processes since they lack valid identifiers.

In each execution, a process interacts with its counter to
allocate a unique counter number to the proposal it aims to
broadcast. The monotonic counter increments every time a
broadcast message is generated, which ensures that all allo-
cated numbers are distinct and unchangeable. The highest
counter numbers that have been received from all processes
are recorded in a trusted secure log, which guarantees that
messages from the same broadcaster with counter numbers
smaller than the recorded one will not be handled.

It is possible for messages to be delivered in a different
order than they were sent. Therefore, if a process receives
a new message from the same broadcaster with a higher
counter number than the one it is currently working on, it
will prioritize the message with the highest counter num-
ber and abandon the old one. Additionally, each process’s
secure log maintains the current status (ongoing/finalized)
of the latest proposal it broadcasts. The process can only

broadcast a new proposal after the previous one has been
finalized in the consensus instance.

A random process processi records all processes’ highest
counter numbers as well as the status of its own proposal.
As long as processi’s proposal status remains ongoing, it
cannot broadcast a proposal as the trusted counter is unable
to assign a new counter number for the new proposal unless
the status of the current proposal is updated to finalised.

The following interfaces are provided for a process to
access the counter in its TEE:

• TEEbcast(proposal) allows a process to generate a
message to broadcast a proposal. It takes the proposal
the process intends to broadcast and returns a BCAST
message with a counter number included.

• TEEecho(message) allows a process to rebroadcast
a message after receiving a proposal. It takes the
received BCAST message and returns a ECHO message.

Apart from interfaces, internal functions are also provided
to facilitate the interfaces. Following functions can only be
called inside TEE:

• tsign(message) signs a message in TEE. It takes the
message and returns the signature.

• tcheck(message) checks whether the message has a
valid counter number attached. If the counter num-
ber in message has not been received before, a Boolean
value TRUE is returned, otherwise FALSE is returned.

• tupdate(proposal) updates the record of a proposal in
the secure log. It will be called once the proposal
has been received and has a higher counter number
than its predecessors. Additionally, the broadcaster
will call this function when its proposal has been
finalized in the consensus instance.

4.2 Collector

The trusted collector serves the purpose of counting the
input messages from the external storage. Typically, a pro-
cess retrieves messages from external storage and carries out
the verification process within the TEE before accumulating
verified messages in the collector. The collector returns a
positive Boolean value if a minimum threshold amount
(f+1 in this work) of messages have been collected. In
particular, the collector can ensure the required minimum
amount of messages have to be received for further han-
dling and malicious processes are unable to proceed unless
the received messages have been verified by the trusted
collector. The collector is to ensure that faulty processes are
unable to falsify the type or quantity of messages that have
been received. To ensure that malicious behaviours can be
easily detected, messages’ validity has been checked against
predetermined standards and the collector only collects the
legitimate ones.

The collector necessitates an additional interface in con-
junction with the aforementioned interfaces and functions.
This new interface is defined as follows:

• TEEcollect(messages, value) is designed to collect mes-
sages from a quorum of f+1 distinct processes, all of
which should contain the same value. If the input
messages has been successfully verified and collected,

5

TRUE is returned. It is worth mentioning the collector
only checks and collects messages without storing
them inside TEE.

5 HYBRID RELIABLE BROADCAST PROTOCOLS

In this section, we introduce the first main primitive in our
approach, the hybrid verified reliable broadcast. Prior to
entering the consensus phase for binary decisions, proposals
must be disseminated as votes in the consensus phase
depend on their delivery status. It’s crucial to ensure that
the broadcast protocol aligns with the subsequent consensus
algorithm in terms of resilience and message complexity;
otherwise, the broadcast part could become the system’s
bottleneck. Correia et al. present a transformation method-
ology that leverages trusted hardware to enable crash con-
sensus algorithms to tolerate Byzantine faults. The authors
outlined a BRB that achieves a reduction from a Byzantine
reliable broadcast with 3f+1 processes to a regular reliable
broadcast with 2f+1 processes with a generalized trusted
service termed wormhole [29]. The authors demonstrate that
Byzantine reliable broadcast can adopt the simple message
exchange pattern inherent to regular reliable broadcast, ef-
fectively reducing one round of all-to-all communication.
Since VRB augments BRB by integrating verification, we
adopt Correia’s design paradigm for BRB, implementing
a hybrid BRB and further extending it to a hybrid VRB
protocol, without introducing extra message complexity or
compromising resilience, and avoid overburdening the TEE.

5.1 Hybrid Byzantine Reliable Broadcast Protocol
The broadcaster first sends its proposal in a BCAST message
generated in TEE to all other processes. A process delivers
a proposal upon receiving the BCAST message and after
checking its correctness inside TEE. Before the proposal
is delivered, the process generates an ECHO message with
the proposal included and sends it to all processes. Other
processes that have not received the BCAST message can
therefore deliver it when they receive an ECHO message.

We implement our algorithm in an event-triggered ap-
proach. The operations of a process can be triggered by a
total of four triggering events:

• Broadcast: this event is triggered when the process
(broadcaster) intends to broadcast a proposal.

• Receive: this event is triggered when the process
receives a message (it is either a BCAST message or
ECHO message).

• Send: this event is triggered when the process in-
tends to send a message to another process via the
link pl. The broadcast operation is completed by
triggering the Send event to all the processes.

• Deliver: this event is triggered when the process
successfully delivers a proposal.

When a process (broadcaster) broadcasts a proposal, the
Broadcast event is triggered. Upon this event, the process
will input its proposal into TEE via TEEbcast to generate a
BCAST message and send it to all processes in the network
by triggering the Send event. When generating a BCAST
message, the proposal is wrapped with an incremented
counter number along with its identifier and signature.

After a process receives a message, the Receive event is
triggered and the process will attempt to echo (rebroadcast)
the received message in a new ECHO message via TEEecho.
When TEEecho is invoked, the received message undergoes
verification before the process’s secure log is updated with
the received counter number and broadcaster ID. Upon suc-
cessful verification and updates, TEEecho returns an ECHO
message. If the signature is valid and the counter value has
not been received before, an ECHO message is successfully
generated, and the process will send it to all processes and
deliver the proposal by triggering the Deliver event. The
message to trigger the Receive event can be a BCAST
message or an ECHO message, whichever is received first.

5.2 Hybrid Verified Reliable Broadcast Protocol

Compared with the hybrid Byzantine reliable broadcast pro-
tocol, the hybrid VRB requires an extra proposal-verifying
function that is integrated with the broadcast protocol. In
the verified BRB, the verification results are generated by
a selection of processes, called verifiers, and the results verif
are attached to READY messages propagated in the second
round of Bracha’s double-echo protocol.

To keep the trusted setup lightweight, we use a function
verify that is executed outside of the trusted hardware to per-
form the verification for messages while the authentication
verification still remains inside TEE. The message exchange
pattern remains identical to the hybrid Byzantine reliable
broadcast. Although the message exchange pattern remains
the same with the hybrid BRB, a quorum is necessary for
proposal delivery in the hybrid VRB. Therefore, a TEE
interface TEEecho is used to collect f+1 valid ECHO messages
for a proposal to be delivered.

BCAST ECHO w/

verify deliverbroadcast

verif

process1

process2

process3

process4

Fig. 2: Hybrid verified reliable broadcast workflow

In our hybrid BRB protocol, as depicted in Figure 2,
a proposal is delivered upon receiving a BCAST or ECHO
message, and an ECHO message is generated and broadcast
when the proposal is delivered. In hybrid VRB, ECHO mes-
sages have an extra field verif, which is a list that contains
verification results. Processes verify a received message
before sending their ECHO message. Since the verification
is put outside of the TEE, the correctness of verif cannot
be unconditionally trustworthy like the outputs from TEE’s
interfaces or functions. It is possible for a Byzantine process
to send a correctly generated message with an incorrect verif.
To tackle this, f+1 messages with the same verif are required
for a proposal to be delivered.

A process keeps a record of all the verified ECHO mes-
sages with the same verif (including its own) and waits for
a quorum to be collected. Note that those messages are kept
in the external storage outside the process’s TEE. The size of

6

the required quorum is f+1 in our settings to guarantee the
correctness of a proposal’s verif.

Details of the implementations are stated in Algorithm 1.
The broadcaster sends a proposal in a BCAST message
by following the same procedures required for the hybrid
BRB. After receiving a message, the recipient process gen-
erates an ECHO message after checking the received BCAST
message’s signature and counter number. When generating
an ECHO message in TEE, the process needs to verify the
message’s proposal and attach the verification results verif
to the message content. Each process needs to store all
the legal ECHO messages for any future feasible quorum
to deliver a proposal. The storage for all the verified ECHO
messages is outside TEE’s secure log due to their relatively
large sizes. Although ECHO messages are stored outside the
trusted hardware, TEE provides an interface TEEcollect for
a process to form a quorum from adequate ECHO messages.
Only after a quorum is successfully collected via TEEcollect,
a process can finally deliver this proposal.

6 HYBRID BINARY BFT CONSENSUS

Since proposals delivered via VRB are all considered valid
and the potential conflicts between proposals (if any) can be
sorted out in the final merging after the consensus, we con-
sider that all delivered proposals from the verified reliable
broadcast can be accepted. The corresponding binary BFT
instances should produce a positive decision for a delivered
proposal via VRB. The challenge is to ensure all honest
processes always accept the same set of proposals. Thus,
the goal of the binary consensus is to provide a simple and
reliable method for all correct processes to end up with the
same set of proposals.

In RedBelly, the binary value broadcast protocol has been
piggybacked with the verified reliable broadcast for commu-
nication optimization. Similarly, the proposed hybrid BFT
algorithm is integrated with the hybrid VRB we introduced
previously. All processes are supposed to send a proposal to
the network via the hybrid VRB and a binary BFT instance is
set for each proposal to decide whether it shall be included
for further handling. The potential conflicts between pro-
posals (if any) can be sorted out in the reconciliation after the
consensus as long as honest processes have the same set of
decided proposals. A diagram can be found in Figure 3. For
each binary BFT instance, processes must vote via TEEvote.
We consider N parallel binary BFT instances representing N
total processes that are all required to send a proposal. All
processes should also participate in each instance to reach a
consensus for the corresponding proposal.

• TEEvote(bID, bv) allows a process to generate a VOTE
message, bID is the identifier for the broadcaster as
well as its proposal’s instance. The bv is the binary
vote the process intends to cast.

Guaranteed by the hybrid VRB, a delivered proposal is
considered valid, and a corresponding VOTE message will
be generated and broadcast to all processes. If the proposal
has not been delivered to pi yet but has already been re-
ceived (waiting to collect f+1 VOTE messages in VRB before
being delivered), pi will not generate any VOTE message
until the proposal is delivered or a VOTE message 1 from

other processes is received. The very first VOTE message 1
can only be generated after a proposal has been delivered.
As a result, an honest process will directly follow along to
vote 1 upon receiving a valid VOTE message 1 from the
others. In the binary BFT instance for a proposal, process pi
generates a VOTE message and broadcasts to the network if
one of the following events is triggered:

• Vote 1 if the proposal has been received and delivered
to the process pi.

• Vote 1 if a valid VOTE message 1 has been received
from another process, meaning the proposal has been
delivered to others.

• Vote 0 if the proposal is verified to be invalid.
• Vote 0 if the proposal has not been received after N-

f instances output 1 and an oldest-transaction-based
timer has expired.

The conditions for process pi to vote 0 are relatively
limited. In general, pi votes 0 for a proposal only if the
proposal is invalid or extremely slow. pi votes 0 if the
proposal is received and verified to be invalid (no valid
transaction contained). Due to the partial synchrony setting,
the time bound to receive all correct processes’ messages is
unknown. It is essential to establish a mechanism to period-
ically produce a set of proposals for further handling, rather
than relying on the delivery of a proposal for unpredictable
time. Therefore, a process pi will generate a VOTE message
0 for a proposal only if the three conditions are met: 1) the
proposal has not been received via the VRB, 2) N-f other
proposals have been decided, and 3) the timer has expired.

from
processn

from
process4

from
process3

from
process2

Verified
Reliable

Broadcast

binary BFT
instance 1

from
process1proposal1

...

binary BFT
instance 2

proposal2

binary BFT
instance 3

proposal3
vote 0

binary BFT
instance n

proposaln
no vote

delivered to processi

not received in a while

received not delivered

vote 1

vote 1

proposal4
binary BFT
instance 4

vote 0received but invalid

deliver to others
(vote 1 received)

Fig. 3: Hybrid Binary BFT workflow for processi
It is important to keep in mind that receiving a proposal

is different from delivering it. A proposal is delivered to
process pi when pi has successfully collected f+1 valid ECHO
messages in hybrid VRB and the corresponding Deliver
event is triggered. On the other hand, a proposal is received
when pi has received the proposal for the first time, usually
from a BCAST message or a ECHO message, and starts to
collect f+1 valid ECHO messages for this proposal to be
delivered.

There might be some undecided instances whose pro-
posals have already been received but not delivered, which
means they are still waiting for a f+1 quorum in VRB before
being delivered. The proposals in those instances can be
considered to be valid as they have been verified by TEE
when received. However, they cannot be directly delivered
due to the quorum requirements in VRB, which guarantees
the proposal has been verified by at least f+1 processes

7

Algorithm 1 Hybrid Verified Reliable Broadcast

1: Implements:
2: HybridVerifiedByzantineReliableBroadcast, instance hvrb.

3: Properties:
4: Validity: If a correct process p broadcasts a message m, then

every correct process eventually delivers m.

5: No duplication: No correct process delivers message m more
than once.

6: Integrity: If a correct process delivers a message m from the
correct sender p, then m is previously broadcast by p.

7: Agreement: If some correct process delivers a message m, then
every correct process eventually delivers m.

8: Uses:
9: PerfectPointToPointLinks, instance pl.

10: Variables:
11: prop: the proposal a process intends to broadcast
12: bID: broadcaster’s ID, the process broadcasting the proposal
13: cNo: counter number attached to a proposal
14: sID: sender’s ID, the process sending this message
15: sig: signature generated by the sender
16: echos: collection of ECHO messages

17: upon event ⟨hvrb,Broadcast | prop⟩ where prop ̸= ∅ do
18: msg← TEEbcast(prop)
19: forall q ∈ Π do
20: trigger ⟨pl,Send | q,msg⟩

21: upon event ⟨pl,Receive |msg⟩where msg contains (BCAST, prop,
bID, cNo, sig) do

22: //no duplicate messages can be generated from TEEecho
23: echo← TEEecho(msg)
24: forall q ∈ Π do
25: trigger ⟨pl,Send | q, echo⟩
26: echos← echos ∪ echo
27: if size(echos)← f+1 then

28: trigger ⟨hvrb,Deliver | prop⟩

29: upon event ⟨pl,Receive | msg⟩ where msg contains (ECHO, prop,
bID, cNo, verif, sig) do

30: if verif is valid then
31: echos← echos ∪ echo
32: if TEEcollect(echos, verif) then
33: trigger ⟨hvrb,Deliver | prop⟩
34: else
35: //in case this message hasn’t been echoed before
36: echo← TEEecho(msg)
37: forall q ∈ Π do
38: trigger ⟨pl,Send | q, echo⟩
39: echos← echos ∪ echo

40: //broadcaster generates BCAST message
41: interface TEEbcast(prop) where prop ̸= ∅:
42: cNo++
43: sig← tsign([BCAST, prop, bID, cNo])
44: return [BCAST, prop, bID, cNo, sig]

45: interface TEEecho(msg) where msg contains (prop, bID, cNo, sig):
46: if tcheck(msg)← FALSE then
47: break
48: //this function is outside TEE, included for simplicity
49: verif ← verify(msg.prop)
50: if verif ← ∅ then
51: break
52: sig← tsign([ECHO, prop, bID, cNo, verif])
53: //store this echoed broadcaster’s value
54: tupdate(prop)
55: return [ECHO, prop, bID, cNo, verif,sig]

56: interface TEEcollect(echos, verif) where echos are ECHO messages:
57: if ∃ f+1 different echo in echos: echo.verif ← verif then
58: return TRUE
59: else
60: return FALSE

before joining the consensus instance. The process will not
cast a vote for a proposal like this until it is delivered
or a valid VOTE 1 message has been received, meaning
the proposal has been successfully delivered to others. A
process pi decides in a binary BFT instance by triggering
the Decide event if f+1 VOTE message with the same binary
vote value are received and collected via TEEcollect.

Details of the implementations are stated in Algorithm 2.
The hybrid binary BFT is set as an event-triggered scheme
where a process’ operations are triggered upon several
events. There is a total of three possible triggering events
in the model: Deliver, receive and N-f instances
decide 1 and timer expires.

• Propose: propose a binary vote in a VOTE message.
• Receive: receives a VOTE message.
• Deliver: a proposal is delivered via VRB.
• Decide: decides the consensus outcome based on

the VOTE message.
• N-f instances decide 1 and timer

expires: N-f parallel instances have decided
and a timer has also expired.

7 EVALUATION

7.1 Security Analysis
7.1.1 Hybrid Byzantine reliable broadcast
A secure Byzantine reliable broadcast protocol ensures that
the correct processes always agree on the proposal they

receive with the presence of Byzantine processes. The re-
silience against Byzantine processes is significantly im-
proved in the proposed BRB protocol due to the TEE’s
trusted capabilities. We provide proof showing the proposed
hybrid BRB has satisfied the required properties [54].

Lemma 1 (BRB-Validity). If a correct process p broadcasts a
message m, then every correct process eventually delivers m.

Proof. We prove this by contradiction. Assume there is a
correct process q that fails to deliver a message from a
correct process p, q must fail to receive m either as a BCAST
message from p or a ECHO message from all others. There
are three cases to consider:

• Case 1: m has been sent to q but is not delivered.
• Case 2: p has never sent a BCAST message m to q.
• Case 3: Other processes have never sent an ECHO

message m to q.

Case 1: this case contradicts the properties of the under-
lying links pl.

Case 2: this case contradicts the assumption that process
p is correct, which guarantees p sends a BCAST message m
to all other processes.

Case 3: there are two subcases to consider: (3-1) no
process has sent an ECHO m to q after receiving a BCAST
message m from p; (3-2) no process has received a BCAST
message m from p.

In subcase 3-1, this subcase contradicts the assumption
that at least half of the total processes are correct.

8

Algorithm 2 Hybrid binary BFT

1: Implements:
2: HybrifBinaryByzantineFaultTolerance, instance hbbft.

3: Uses:
4: HybridVerifiedByzantineReliableBroadcast, instance hvrb.

5:
6: Variables:
7: bv: binary vote
8: votes: collection of VOTE messages

9: upon event ⟨hvrb,Deliver | bID, prop⟩ do
10: vote← TEEvote(bID, prop, 1)
11: trigger ⟨hbbft,Propose | vote⟩

12: upon event ⟨hbbft,Propose | vote⟩ do
13: forall q ∈ Π do
14: trigger ⟨pl,Send | q, vote⟩
15: votes← votes ∪ vote

16: upon event ⟨pl,Receive | vote⟩ where vote is [VOTE, bID, prop, bv,
sig] do

17: //include the received VOTE message
18: votes← votes ∪ vote

19: if vote.bv← 1 and no vote proposed yet then
20: vote← TEEvote(1, prop, vote.bv)
21: trigger ⟨hbbft,Propose | vote⟩
22: //include its own VOTE message
23: votes← votes ∪ vote
24: if TEEcollect(votes, prop)← TRUE
25: trigger ⟨hbbft,Decide | vote⟩
26: //only if the process is the broadcaster
27: tupdate(prop)

28: upon event ⟨N-f instances decide 1⟩
29: vote← TEEvote(bID, prop, 0)
30: trigger ⟨hbbft,Propose | vote⟩

31: //generate a VOTE message
32: interface TEEvote(bID, prop, bv):
33: sig← tsign([VOTE, bID, prop, bv])
34: return [VOTE, bID, prop, bv, sig]

35: interface TEEcollect(votes, prop) where votes are VOTE messages:
36: if ∃ f+1 different vote in votes: vote.prop← prop then
37: return TRUE
38: else
39: return FALSE

In subcase 3-2, this subcase contradicts the assumptions
given in Case 1 and Case 2.

The proof of the lemma is concluded.

Lemma 2 (BRB-No duplication). No correct process delivers
message m more than once.

Proof. This is inherently met by the trusted components as
they ensure each message to be attached with a unique
counter number, which is generated by a monotonic counter
inside TEE. Processes will keep a record of all received
messages’ counter numbers. Any redundant message with
the same counter number will be ignored. The proof of the
lemma is concluded.

Lemma 3 (BRB-Integrity). If a correct process delivers a message
m from the correct sender p, then m is previously broadcast by p.

Proof. We prove this by contradiction. Assume a correct
process q delivers a message m from the correct sender p
while p never broadcast m. There are two cases to consider:

• Case 1: m is delivered after the Deliver event is
triggered upon q receiving a BCAST message.

• Case 2: m is delivered after the Deliver event is
triggered upon q receiving a ECHO message.

Case 1: q receives a BCAST message with the sender ID
set to p. BCAST message must be previously broadcast by
p because only p can generate a BCAST message in its TEE
with the sender ID set to p. It contradicts our assumption
that p has never broadcast m.

Case 2: q receives a ECHO message with the sender
ID set to p. There must be a BCAST message with the
same broadcasterID broadcast previously. The very first ECHO
message with broadcasterID set to p can only be generated in
some process’ TEE after receiving a BCAST message with the
same broadcasterID set to p. It contradicts our assumption as
demonstrated in Case 1.

The proof of the lemma is concluded.

Lemma 4 (BRB-Agreement). If some correct process delivers a
message m, then every correct process eventually delivers m.

Proof. We prove this by contradiction. Assume correct pro-
cess p fails to deliver a message m from sender s and some
other correct process q does. There are two cases to consider:

• Case 1: s is correct.
• Case 2: s is faulty.

Case 1: From BRB-Integrity, we deduce that m is broad-
cast by s. From BRB-Validity, we assert all process, includ-
ing p, eventually delivers m, a contradiction.

Case 2: s only broadcasts m to part of the network and
has never sent m to p. Since q is correct and delivers m,
q rebroadcasts m in an ECHO message before it delivers
as required by the protocol. From Case 1 of the proof of
BRB-Validity, the pl link guarantees q’s ECHO message to
be eventually delivered to p. In our assumption, p fails to
deliver a message m after receiving q’s ECHO message, which
contradicts with our protocol requirements and p, being cor-
rect, is expected to adhere to the protocol. A contradiction.

The proof of the lemma is concluded.

7.1.2 Hybrid verified reliable broadcast
The hybrid VRB protocol can be viewed as a hybrid BRB
with a verification function. Here, the verification function
is an external component situated outside the TEE. Given
that the trusted components cannot ensure the correctness
of the verification’s output verif, a quorum of f+1 is required
in a network of 2f+1.

For a message m to be delivered to process p, p must
receive at least f+1 ECHO messages with the same verif. To
validate the correctness of the VRB protocol, we provide
proofs for VRB-Validity and VRB-Agreement while the
proofs for VRB-No duplication and VRB-Integrity align
with the aforementioned BRB.

Lemma 5 (VRB-Validity). If a correct process p broadcasts a
message m, then every correct process eventually delivers m.

Proof. We prove this by contradiction. Assume there is a
correct process q that fails to deliver a message from a
correct process p. q is unable to collect f+1 ECHO messages
with the same verif. There are three cases to consider:

9

• Case 1: p has sent a BCAST message m to q but neither
a BCAST nor an ECHO message is delivered to q.

• Case 2: p has never sent a BCAST message m to q.
• Case 3: Less than f+1 processes have sent an ECHO

message m with verif to q.

Case 1: the proof for this case aligns with BRB-Validity
Case 1 and Case 3.

Case 2: this case contradicts the assumption that process
p is correct.

Case 3: since there are at least f+1 correct processes,
there exists at least one correct process, say x, that never
sends a valid ECHO message to q. Drawing from Case 1 and
Case 2, we deduce that process x can eventually receive m.
In this case, process x deviates from the protocol by not
broadcasting a valid ECHO message after receiving m, which
contradicts the assumption that process x is correct.

The proof of the lemma is concluded.

Lemma 6 (VRB-Agreement). If some correct process delivers a
message m, then every correct process eventually delivers m.

Proof. We prove this by contradiction. Assume correct pro-
cess p fails to deliver a message m from sender s and some
other correct process q does. There are two cases to consider:

• Case 1: s is correct.
• Case 2: s is faulty.

Case 1: From VRB-Integrity, we deduce that m is broad-
cast by s. From VRB-Validity, we assert all processes, in-
cluding p, eventually deliver m, a contradiction.

Case 2: s only broadcasts m to part of the network and
never sends m to p. Given that q is correct and delivers m,
q rebroadcasts m in an ECHO message after receiving m as
required by the protocol. Upon receiving q’s ECHO message,
all correct processes will broadcast ECHO messages. Since p
fails to deliver a m, it implies p has never received f+1 valid
ECHO messages and there exists at least one correct process
that never sends an ECHO message to p, which contradicts
the assumptions in this case.

The proof of the lemma is concluded.

7.1.3 Hybrid binary BFT consensus
Deployed with the hybrid VRB and a reconciliation algo-
rithm, the proposed binary BFT consensus is to solve the
set BFT problem with a hybrid VRB and a reconciliation
algorithm. Since hybrid BRB is proven to be secure and the
reconciliation algorithm remains unchanged and can barely
be affected by the other two parts, we here use the properties
of set BFT defined in the RedBelly blockchain to attest to the
correctness of binary BFT consensus.

Lemma 7 (SBC-Termination). Every correct node eventually
decides a set of proposals.

Proof. We prove this by contradiction. Assume there is a
correct process p that fails to decide any proposal(with a
positive outcome).

There are three cases to consider:

• Case 1: p eventually decides 0 for all the proposals.
• Case 2: p eventually fails to decide for any proposal.
• Case 3: p eventually decides 0 for some proposals

while failing to decide for all other proposals.

Case 1: p must have received f+1 0 votes for all the
proposals, indicating that all proposals have at least f+1
processes voting 0 for them. Furthermore, none of these
proposals is delivered to any process otherwise there can
only be at most f processes voting 0. This contradicts the
VRB-Validity.

Case 2: p must have neither received vote 1 nor f+1 votes
0 for any proposal otherwise p would eventually decide 1
or 0. It implies proposals from all correct processes fail to be
delivered to p, which contradicts the VRB-Validity.

Case 3: Similar to Case 2, this case suggests that propos-
als from all correct processes fail to be delivered to p, which
contradicts the VRB-Validity.

The proof of the lemma is concluded.

Lemma 8 (SBC-Agreement). No two correct processes decide
different sets of proposals.

Proof. We prove this by contradiction. Assume there are
correct processes p and q that end up with different sets
of proposals, which means there is at least one proposal, say
prop, that has different consensus outcomes from p and q.
For a process to output a consensus outcome, it must have
received f+1 VOTE messages with the same vote value and
at least one process has voted twice for prop. In this case,
the conditions to vote 0 and 1 have all been triggered in this
process’ TEE, which is impractical in our design. A process
votes 0 for prop if the prop has not been received or verified
prop to be invalid. It contradicts the vote 1 condition as prop
needs to be received and verified to be valid in order to be
delivered. The proof of the lemma is concluded.

Lemma 9 (SBC-Validity). A decided set of transactions is a valid
non-conflicting subset of the union of the proposed sets.

Proof. The validity of the decided sets can be guaranteed by
the verification function as well as the f+1 quorum required
for proposal delivery in the hybrid VRB. The cross-proposal
non-conflicting feature can be achieved via the reconciliation
procedure. The proof of the lemma is concluded.

Lemma 10 (SBC-Nontriviality). If all nodes are correct and
propose an identical valid non-conflicting set of transactions, then
this set is the decided set.

Proof. This is to prevent a trivial algorithm that always
outputs an empty set to solve the problem. Assume cor-
rect processes all propose an identical proposal p where
all transactions are valid, and the final decided set is q,
which is a subset of p. During the verification of p using
VRB, at least f+1 correct processes will verify and accept
all transactions, eventually delivering the proposal p in its
entirety. The following consensus instance in f+1 correct
processes will output 1 for p as it has been successfully
delivered, which contradicts the assumption. The proof of
the lemma is concluded.

7.2 Performance Evaluation

7.2.1 Message complexity
Hybrid reliable broadcast protocols: The proposed hybrid
BRB requires one round of one-to-all communication for the
BCAST message and one round of all-to-all communication

10

for ECHO messages. Therefore, the maximum message com-
plexity is O(n+n2). In comparison, the message complexity
of the original Bracha’s authenticated double-echo protocol
is O(n+2n2) with one round of one-to-all communication
(SEND) and two rounds of all-to-all communication (ECHO
and READY) (cf. table 1).
Binary BFT consensus: As for message complexity, in a BFT
instance where 1 is eventually decided, the worst case is
when f processes have voted 0, and a valid VOTE 1 message
has arrived. In this case, all the processes that have not voted
0 need to send VOTE 1 message and those who sent VOTE
0 messages before will also need to send VOTE 1 message.
As a result, the message complexity is O(n2 + n). In a BFT
instance where 0 is eventually decided, no VOTE 1 message
can ever be generated in TEE, there are at most N VOTE 0
messages, so the message complexity is O(n). In general, the
highest possible message complexity is O(n2 + n).

0 200 400 600 800 1000 1200
Batch size (tx)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (1

03 t
x/

se
c)

Hybrid Set BFT, f=5
Hybrid Set BFT, f=20
Hybrid Set BFT, f=50
MinBFT, f=5
MinBFT, f=20
MinBFT, f=50

Fig. 4: Throughputs for different batch sizes

7.2.2 Simulation performance
To simulate the performance of our hybrid set BFT protocol,
we deploy C++ implementations of the protocol on the Intel
i5-10505 3.20 GHz processor with 16 GB of memory and run
Ubuntu 18.04 LTS. Processes use ECDSA signatures with
prime256v1 elliptic curves (available in OpenSSL [55]) and
are connected using Salticidae [56]. For each experiment,
we generate the average result of 5 runs. The latency and
throughput of each network link is set to 0.5ms and 1Mbps,
respectively. We measure the protocol’s latency as the time
required for all correct processes to deliver the broadcast
proposals. We consider payloads of 250 bytes for each
transaction, and each process broadcast proposals with a
50-millisecond interval. We evaluate the performance of our
hybrid set BFT method against the trusted BFT protocol
minBFT. In our comparison, we adjust both the number
N of processes and the number f of Byzantine processes,
maintaining N ≤ 2f+1 for the hybrid set BFT.

We first analyze the performance of the protocols in a
network that has the maximum number of Byzantine faults,
which is f in a 2f+1 configuration in our scenario. As shown
in fig. 4, the throughput of hybrid set BFT is roughly 89%
greater than that of minBFT. When the batch (proposal) size
exceeds 400, minBFT exhibits only a marginal increase in
throughput. In contrast, a larger batch in set BFT continues
to enhance the throughput, reaching around 7k tps. Notably,
minBFT’s performance diminishes in larger networks as it
incurs a more complex message exchange pattern while

20 40
Byzantine faults

0

1

2

3

4

5

6

7

8

9

Th
ro

ug
hp

ut
 (1

03 t
x/

se
c)

Hybrid Set BFT
minBFT

20 40
Byzantine faults

0

1

2

3

4

5

6

7

8

La
te

nc
y

(s
ec

)

Hybrid Set BFT
minBFT

Fig. 5: Throughput and latency comparison in the network
of 100 processes with varying Byzantine processes

the throughput of hybrid set BFT may increase in larger
networks. This is attributed to the leaderless design of
set BFT, which can make the most use of the bandwidth,
allowing more proposals to be processed concurrently.

When evaluating the two protocols in a network of 100
processes with varying Byzantine faults, hybrid set BFT
demonstrates 67% higher throughput than minBFT when
Byzantine processes are fewer than 10%, reaching nearly
90% higher throughput when over 30% of processes are
Byzantine. In terms of latency, minBFT experiences a surge
as Byzantine faults increase, while set BFT shows a more
gradual growth. Set BFT maintains a steady latency of
around 4 seconds when Byzantine percentage exceeds 30%,
whereas minBFT approaches close to 7 seconds.

8 CONCLUSION

We design a leaderless BFT protocol, leveraging trusted
hardware to provide a hybrid solution for the set consensus
problem. To implement this protocol, we introduce two
primitives: a hybrid verified reliable broadcast protocol and
a hybrid binary consensus. The hybrid designs in our model
provide all the necessary trusted interfaces and internal
functions in a simple hardware configuration, which only
requires a monotonic counter and a small secure log. Our
analysis shows that the proposed protocol can provide
optimal resilience with improved message complexity.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Decentralized Business Review, p. 21260, 2008.

[2] C. Natoli, J. Yu, V. Gramoli, and P. Esteves-Verissimo, “Decon-
structing blockchains: A comprehensive survey on consensus,
membership and structure,” arXiv preprint arXiv:1908.08316, 2019.

[3] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed
consensus protocols for blockchain networks,” IEEE Communica-
tions Surveys & Tutorials, vol. 22, no. 2, pp. 1432–1465, 2020.

[4] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-
work vs. bft replication,” in International workshop on open problems
in network security. Springer, 2015, pp. 112–125.

[5] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry,
S. Meiklejohn, and G. Danezis, “SoK: Consensus in the age of
blockchains,” in Proceedings of the 1st ACM Conference on Advances
in Financial Technologies, 2019.

[6] M. Castro, B. Liskov et al., “Practical Byzantine fault tolerance,” in
OSDI, no. 1999, 1999, pp. 173–186.

11

[7] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, University of Guelph, 2016.

[8] B. Y. Chan and E. Shi, “Streamlet: Textbook streamlined
blockchains,” in Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies, 2020, pp. 1–11.

[9] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus with linearity and responsiveness,” in
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, 2019, pp. 347–356.

[10] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey
badger of bft protocols,” in Proceedings of the 2016 ACM SIGSAC,
2016, pp. 31–42.

[11] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li,
D. Malkhi, O. Naor, D. Perelman, and A. Sonnino, “State machine
replication in the Libra blockchain,” 2019.

[12] L. Lamport, “Brief announcement: Leaderless Byzantine paxos,”
in International Symposium on Distributed Computing, 2011.

[13] B. Arun, S. Peluso, and B. Ravindran, “ezbft: Decentralizing
byzantine fault-tolerant state machine replication,” in 2019 IEEE
ICDCS, 2019, pp. 565–577.

[14] T. Crain, C. Natoli, and V. Gramoli, “Red belly: a secure, fair and
scalable open blockchain,” in 2021 IEEE Symposium on Security and
Privacy (SP). IEEE, 2021, pp. 466–483.

[15] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer, “Scal-
able and probabilistic leaderless bft consensus through metastabil-
ity,” arXiv:1906.08936, 2019.

[16] M. Ben-Or, R. Canetti, and O. Goldreich, “Asynchronous secure
computation,” in Proceedings of the twenty-fifth annual ACM sympo-
sium on Theory of computing, 1993, pp. 52–61.

[17] M. Ben-Or, B. Kelmer, and T. Rabin, “Asynchronous secure com-
putations with optimal resilience,” in Proceedings of the thirteenth
annual ACM symposium on Principles of distributed computing, 1994.

[18] T. Crain, V. Gramoli, M. Larrea, and M. Raynal, “Dbft: Ef-
ficient leaderless Byzantine consensus and its application to
blockchains,” in IEEE 17th International Symposium NCA, 2018.

[19] G. Bracha, “Asynchronous byzantine agreement protocols,” Infor-
mation and Computation, vol. 75, no. 2, pp. 130–143, 1987.

[20] R. Palmieri, “Leaderless consensus: The state of the art,” in 2016
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 2016.

[21] J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu, “Damysus: stream-
lined bft consensus leveraging trusted components,” in Proceedings
of the Seventeenth European Conference on Computer Systems, 2022.

[22] J. Zhang, J. Gao, K. Wang, Z. Wu, Y. Lan, Z. Guan, and Z. Chen,
“Efficient byzantine fault tolerance using trusted execution envi-
ronment: Preventing equivocation is only the beginning,” arXiv
preprint arXiv:2102.01970, 2021.

[23] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Veris-
simo, “Efficient byzantine fault-tolerance,” IEEE Transactions on
Computers, vol. 62, no. 1, pp. 16–30, 2011.

[24] M. K. Aguilera, N. Ben-David, R. Guerraoui, V. Marathe, and
I. Zablotchi, “The impact of rdma on agreement,” in Proceedings
of the 2019 ACM symposium on principles of distributed computing.

[25] M. K. Aguilera, N. Ben-David, R. Guerraoui, D. Papuc, A. Xygkis,
and I. Zablotchi, “Frugal byzantine computing,” arXiv preprint
arXiv:2108.01330, 2021.

[26] M. J. Fischer, N. A. Lynch, and M. Merritt, “Easy impossibility
proofs for distributed consensus problems,” Distributed Computing,
vol. 1, pp. 26–39, 1986.

[27] N. Ben-David, B. Y. Chan, and E. Shi, “Revisiting the power of
non-equivocation in distributed protocols,” in Proceedings of the
2022 ACM Symposium on Principles of Distributed Computing, 2022.

[28] A. Clement, F. Junqueira, A. Kate, and R. Rodrigues, “On the
(limited) power of non-equivocation,” in Proceedings of the 2012
ACM symposium on Principles of distributed computing, 2012.

[29] M. Correia, G. S. Veronese, and L. C. Lung, “Asynchronous
byzantine consensus with 2f+ 1 processes,” in Proceedings of the
2010 ACM symposium on applied computing, 2010, pp. 475–480.

[30] C. Cachin and S. Tessaro, “Asynchronous verifiable information
dispersal,” in 24th IEEE Symposium on Reliable Distributed Systems
(SRDS). IEEE, 2005, pp. 191–201.

[31] J. Hendricks, G. R. Ganger, and M. K. Reiter, “Verifying distributed
erasure-coded data,” in Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing, 2007, pp. 139–146.

[32] N. Alhaddad, S. Das, and S. Duan, “Balanced Byzantine reliable
broadcast with near-optimal communication and improved com-

putation,” in Proceedings of the ACM Symposium on Principles of
Distributed Computing, 2022, pp. 399–417.

[33] S. Das, Z. Xiang, and L. Ren, “Asynchronous data dissemination
and its applications,” in Proceedings of the 2021 ACM SIGSAC, 2021.

[34] S. Bonomi, J. Decouchant, G. Farina, V. Rahli, and S. Tixeuil,
“Practical byzantine reliable broadcast on partially connected net-
works,” in 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2021.

[35] S. Toueg, “Randomized byzantine agreements,” in Proceedings of
the third annual ACM symposium on Principles of distributed comput-
ing, 1984, pp. 163–178.

[36] A. Patra, “Error-free multi-valued broadcast and byzantine agree-
ment with optimal communication complexity,” in International
Conference On Principles Of Distributed Systems. Springer, 2011.

[37] M. Correia, N. F. Neves, and P. Verissimo, “How to tolerate half
less one byzantine nodes in practical distributed systems,” in
Proceedings of the 23rd IEEE International Symposium on Reliable
Distributed Systems, 2004. IEEE, 2004, pp. 174–183.

[38] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
append-only memory: Making adversaries stick to their word,”
ACM SIGOPS, vol. 41, no. 6, pp. 189–204, 2007.

[39] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda, “Trinc:
Small trusted hardware for large distributed systems.” in NSDI,
vol. 9, 2009, pp. 1–14.

[40] J. Behl, T. Distler, and R. Kapitza, “Hybrids on steroids: Sgx-
based high performance bft,” in Proceedings of the Twelfth European
Conference on Computer Systems, 2017, pp. 222–237.

[41] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mo-
hammadi, W. Schröder-Preikschat, and K. Stengel, “Cheapbft:
Resource-efficient byzantine fault tolerance,” in Proceedings of the
7th ACM european conference on Computer Systems, 2012.

[42] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Scalable Byzantine
consensus via hardware-assisted secret sharing,” IEEE Transactions
on Computers, vol. 68, no. 1, pp. 139–151, 2018.

[43] M. K. Aguilera, N. Ben-David, R. Guerraoui, A. Murat, A. Xygkis,
and I. Zablotchi, “Ubft: Microsecond-scale bft using disaggregated
memory,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, 2023, pp. 862–877.

[44] I. Abraham, G. Gueta, D. Malkhi, L. Alvisi, R. Kotla, and J.-P.
Martin, “Revisiting fast practical Byzantine fault tolerance,” arXiv
preprint arXiv:1712.01367, 2017.

[45] K. Antoniadis, A. Desjardins, V. Gramoli, R. Guerraoui, and
I. Zablotchi, “Leaderless consensus,” in IEEE ICDCS. IEEE, 2021.

[46] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman,
“Narwhal and tusk: a dag-based mempool and efficient bft con-
sensus,” in Proceedings of the Seventeenth European Conference on
Computer Systems, 2022.

[47] A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-Kogias,
“Bullshark: Dag bft protocols made practical,” in Proceedings of the
2022 ACM SIGSAC, 2022.

[48] I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman, “All
you need is dag,” in Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing, 2021, pp. 165–175.

[49] Q. Wang, J. Yu, S. Chen, and Y. Xiang, “Sok: Dag-based blockchain
systems,” ACM Computing Surveys, 2022.

[50] J. Niu and C. Feng, “Leaderless byzantine fault tolerant consen-
sus,” arXiv preprint arXiv:2012.01636, 2020.

[51] N. Shrestha and M. Kumar, “Revisiting ezBFT: A decentralized
byzantine fault tolerant protocol with speculation,” arXiv preprint
arXiv:1909.03990, 2019.

[52] N. Bertrand, V. Gramoli, I. Konnov, M. Lazic, and P. Tholoniat,
“Compositional verification of byzantine consensus,” 2021.

[53] R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovič, and D.-A.
Seredinschi, “The consensus number of a cryptocurrency,” in
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, 2019, pp. 307–316.

[54] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to reliable
and secure distributed programming. Springer, 2011.

[55] Retrieved in 2022, http://openssl.org.
[56] Retrieved in 2022, https://github.com/Determinant/salticidae.

12

http://openssl.org
https://github.com/Determinant/salticidae

	Introduction
	Related Works and Background
	Related Works
	Byzantine reliable broadcast
	Hybrid BFT protocols with hardware assistance
	Leaderless BFT models

	The Set Byzantine Consensus Problem and RedBelly's Solution
	Verified reliable broadcast
	Binary BFT consensus
	Reconciliation protocol

	Preliminaries
	System Model
	Process model
	Communication link
	Signature

	Problem Formulations

	Trusted Services
	Counter
	Collector

	Hybrid Reliable Broadcast Protocols
	Hybrid Byzantine Reliable Broadcast Protocol
	Hybrid Verified Reliable Broadcast Protocol

	Hybrid Binary BFT Consensus
	Evaluation
	Security Analysis
	Hybrid Byzantine reliable broadcast
	Hybrid verified reliable broadcast
	Hybrid binary BFT consensus

	Performance Evaluation
	Message complexity
	Simulation performance

	Conclusion
	References

