
Improved Key Recovery Attacks of Ascon

Shuo Peng1,2,3, Kai Hu2,1,3(B), Jiahui He1,3, and Meiqin Wang2,1,3

1 School of Cyber Science and Technology, Shandong University, Qingdao, Shandong,
China

{pengshuo, hejiahui2020}@mail.sdu.edu.cn
2 Quan Cheng Shandong Laboratory, Jinan, China

{kai.hu, mqwang}@sdu.edu.cn
3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of

Education, Shandong University, Jinan, China

Abstract. Ascon, a family of algorithms that support hashing and Au-
thenticated Encryption with Associated Data (AEAD), is the final win-
ner of the NIST Lightweight Cryptography Project. As a research hotspot,
Ascon has received substantial third-party security evaluation. Among all
the results of Ascon-128 (the primary recommendation of AEAD), the
key recovery attack can only be achieved by reducing the initialization
phase to 7 rounds or fewer, regardless of whether it violates the secu-
rity claims made by the designers (i.e., misuse of the nonce or exceeding
data limits 264). In this paper, we, from two aspects (misuse-free setting
and misused setting), improve the key recovery attack on Ascon-128 us-
ing the cube attack method. In one part, we present a faster method to
recover the superpolies for a 64-dimensional cube in the output bits of
the 7-round initialization, enabling us to recover the secret key with a
time complexity of 295.96 and a data complexity of 264. Our 7-round key
recovery attack, based on the full key space, greatly improves the time
complexity, making it the best result to date. Additionally, we utilize sev-
eral techniques to extend state recovery to key recovery, answering the
open problem of transitioning from full state recovery in the encryption
phase to key recovery for Ascon-128 (ToSc Vol 4, 2022). By combining
encryption phase state recovery with initialization phase key recovery,
we can achieve 8-round and 9-round initialization phase key recovery in
the nonce misuse scenario, with time complexities of 2101 and 2123.92,
respectively. This represents an improvement of two rounds over previ-
ous results in the misused setting. Our first key recovery attack is also
applicable to Ascon-128a, achieving the same result. In cases where the
full state, prior to the encryption phase, can be recovered in other Ascon
AEAD modes, our second key recovery attack will also be useful. It is
worth noting that this work does not threaten the security of the full 12
rounds Ascon, but we expect that our results provide new insights into
the security of Ascon.

Keywords: Ascon-128 · Cube attack · Superpoly recovery · Key recov-
ery

2 S. Peng et al.

1 Introduction

Ascon [11], designed by Dobraunig, Eichlseder, Mendel, and Schläffer, is a fam-
ily of lightweight Authenticated Encryptions with Associated Data (AEAD) and
hash functions. As the winner of CAESAR competition, it is part of the final
portfolio of the CAESAR competition in the “lightweight applications” cate-
gory. Additionally, in February 2023, the NIST Lightweight Cryptography Team
announced its decision to standardize the Ascon family for lightweight crypto-
graphic applications, recognizing its suitability for a wide range of use cases
where lightweight cryptography is essential. Consequently, assessing the security
of Ascon is of critical importance.

The Ascon family supports authenticated ciphers Ascon-128, Ascon-128a, and
Ascon-80pq, hash functions Ascon-Hash and Ascon-Hasha, and extendable out-
put functions Ascon-XOF and Ascon-XOFa. In this paper, we focus on the AEAD
modes, mainly Ascon-128, the primary recommendation of AEAD mode which
aims to provide integrity, confidentiality, and authenticity. The designers of As-
con claim AEAD variants provide 128-bit security of privacy and authenticity
when unique nonce values are used for the encryption under the same key. The
maximum available plaintext and associated data blocks to the attacker are lim-
ited to 264 per key.

Since being proposed, the security of the Ascon family has been widely an-
alyzed. Cryptanalysis of Ascon in the AEAD context can be divided into dif-
ferent categories by whether the security claims are satisfied during the attack
process. When the security claims are followed, many results cannot reach 7
rounds [10,19,16] and most 7-round key recovery attacks are based on the weak
key condition [23,15]. The only known 7-round result based on the full key space
is proposed by the authors in [22] with a time complexity of 2123. In cases where
the security claims are violated, some 7-round initialization key recovery attacks
exceed the data limitations, although they remain within the nonce-respecting
setting [19,15]. When it comes to that nonce is misused(nonce is reused under
the same key), the state recovery during the encryption phase is typically the
primary target of attacks, as seen in studies such as [19,3,7]. In [19], Li et al.
provided key recovery attacks using a cube-like technique on a round-reduced
version of Ascon with 7 rounds initialization in a nonce-misused setting. An-
other key recovery attack mentioned in [7] targeted the finalization phase of
Ascon-128a and Ascon-80pq.

Although extensive analyses have been conducted on Ascon-128, none of the
identified attacks pose a significant threat to the initialization phase of Ascon-128
for more than 7 rounds. Also, most 7-round initialization results either violate
the security claims or are restricted to a weak key space. The only known 7-round
key recovery attack, based on security claims, was proposed by the authors in [22]
and exhibits a substantial time complexity of 2123. Given the low degree of the
round function in Ascon, algebraic attacks may prove more effective in the attack
of Ascon. In this paper, we present some improved key recovery results for the
initialization phase of Ascon-128 based on the cube attack, considering both
misused and misuse-free settings.

Improved Key Recovery Attacks of Ascon 3

Contributions. This paper focuses on key-recovery attacks against Ascon-128.
We improve the key recovery attack from two aspects (misuse-free and misused
settings) on Ascon-128. The details of our results are shown in Table 1.

Key recovery in the misuse-free setting. In the misuse-free setting, unique
nonce values are used for encryption under the same key, with data complexity
not exceeding 264. This limitation on data and the respective nonce prevent
key recovery attack on Ascon-128. To adhere to the security claims of Ascon-
128, we employ a cube attack methodology, specifically targeting the 7-round
initialization phase of Ascon-128 while utilizing a 64-dimensional cube. We first
present a faster method to efficiently recover the superpolies of the selected 64-
dimensional cube in the output bits of the 7-round Ascon initialization. Based
on the recovered superpolies, we can execute a key recovery attack. As a result,
our attack can recover the secret key with a time complexity of 295.96 and a data
complexity of 264. Our key recovery attack operates over the full key space and
significantly improves the time complexity compared to previous works.

Key recovery in the misused setting. In [3], Baudrin et al. proposed a con-
ditional cube attack capable of recovering the full state during the encryption
phase of Ascon-128 within a practical time. However, extending this attack to
achieve key recovery or forgery in Ascon-128 remains an open problem. To ad-
dress this issue, we extend state recovery to key recovery by integrating state
recovery during the encryption phase with key recovery during the initialization
phase. Note a secret key is added to the state after the initialization phase, we
exploit a cube distinguisher in the initialization phase. Then we traverse the key
space to decrypt the recovered state until the end of the distinguisher. Since
the correct key satisfies the conditions of the distinguisher, while the wrong key
may not, the secret key space is reduced. To enhance the decryption process,
we employ the partial sum technique, allowing us to append more rounds at
the end of the distinguisher. For Ascon-128, we can recover the secret key with a
complexity of 2101 for 8-round initialization and 2123.92 for 9-round initialization.
Compared to the previous attack, which was limited to 7-round initialization,
we have achieved an improvement of 2 rounds.

Outline. This paper is organized as follows: Section 2 presents some notations
and definitions that will be used in this paper. The specification and some prop-
erties of Ascon are illustrated in Section 3. Section 4 introduces our key recovery
in the misuse-free setting. The key recovery in the misused setting is shown
in Section 5. Section 6 concludes the paper. The source codes and some results
used in this paper are provided at https://github.com/keyrecoveryofascon/
keyrecoveryofascon.

2 Preliminaries

Notations. Let F2 denote the finite field with two elements, while Fn
2 denotes the

vector space of dimension n over F2. We use bold italic lowercase letters to repre-
sent bit vectors. Given two vectors u = (u0, u1,⋯, un−1),v = (v0, v1,⋯, vn−1) ∈ Fn

2 ,

https://github.com/keyrecoveryofascon/keyrecoveryofascon
https://github.com/keyrecoveryofascon/keyrecoveryofascon

4 S. Peng et al.

Table 1: Summary of key recovery attacks on Ascon AEAD. In the "Attack Type"
column, "NR" denotes nonce-respecting attacks, while "NM" indicates nonce is
misused. The "Var." column lists the Ascon variants, including Ascon-128, Ascon-
128a, and Ascon-80pq. In the "Method" column, "Con." stands for conditional,
"DL" refers to differential-linear, and "HDL" denotes higher-order differential-
linear. The symbol † represents "weak-key space". "Valid.D" indicates whether
the data complexity exceeds 264.

Attack Type Phase Var. #R Data/Time Method Valid.D Source

NR key-recovery Init.

all 4/12 218/218 DL ✓ [10]

all 5/12 236/236 DL ✓ [10]

all 5/12 235/235 Cube ✓ [10]

all 5/12 226/226 Con.DL ✓ [21]

all 5/12 224/236 Con.cube ✓ [20]

all 5/12 222/232 Con.HDL ✓ [16]

all 6/12 266/266 Cube ✗ [10]

all 6/12 240/240 Con.cube ✓ [20]

128(a) 7/12 277.2/277 Con.cube† ✗ [20]

all 7/12 264/297 Cube† ✓ [23]

all 7/12 263/2115.2 Cube† ✓ [23]

128(a) 7/12 272.1/272.1 Con.cube† ✗ [15]

128(a) 7/12 263.32/2115 Con.cube† ✓ [15]

80pq 7/12 272.1/272.1 Con.cube† ✗ [15]

128(a) 7/12 272.1/2104.7 Con.cube ✗ [15]

80pq 7/12 272.1/2104.7 Con.cube ✗ [15]

all 7/12 264/2123 Cube ✓ [22]

128(a) 7/12 264/295.96 Cube ✓ Section 4

NM key-recovery Init.
all 7/12 297/297 Cube-like ✗ [19]

128 8/12 2101/2101 Con.cube ✗ Section 5

128 9/12 2101/2123.92 Con.cube ✗ Section 5

u ≼ v(resp. u ⪰ v) stands for ui ≤ vi (resp. ui ≥ vi), ∀i ∈ {0, . . . , n−1}. The Ham-
ming weight of vector x = (x0, x1,⋯, xn−1), considered in Z, is denoted as wt(x),
which is equal ∑n−1

i=0 xi. We use “+” to denote all kinds of additions (of integers,
field elements, Boolean functions, etc.). The actual meaning of a specific use
instance should be clear from the context. Let I be a set, the complementary
set of I is denoted Ī. we use ∣I ∣ to represent the size of I. All elements in I but
not in J are denoted by I − J . Given a set I ⊆ {0, . . . , n − 1} of indexes, x[I]
denotes the set of variables {xi ∶ i ∈ I} and xI denotes the monomial ∏i∈I xi. Let
f ∶ Fn

2 → F2 with Algebraic Normal Form

f(x) = ∑
u∈Fn

2

αux
u,

where x = (x0, x1, . . . , xn−1), αu ∈ F2 and xu = ∏
n−1
i=0 xui

i , the coefficient of the
monomial xu in f is denoted by αu =Coef(xu).

Improved Key Recovery Attacks of Ascon 5

Lemma 1 ([6,5]). Given an oracle access to the Boolean function f, the coeffi-
cient of the monomial xu in f for a particular u can be computed as Coef(xu) =

∑x≼u f(x) with 2wt(u) evaluations of f.

Lemma 2 ([6,5]). The set of all coefficients {αu = ∑x≼u f(x) ∶ u ∈ Fn
2} of

the ANF can be obtained from the truth table of f with so-called fast Möbius
transform with about n2n XOR operations.

Keyed Boolean functions. It is often necessary to distinguish controllable
public variables from inaccessible secret variables. We denote public variables
x, and secret variables k. With such a distinction, when a Boolean function
depends on n public variables and m key variables, we look at it as

f(x,k) = ∑
u∈Fn

2

αu(k)x
u, (1)

where x ∈ Fn
2 , k ∈ Fm

2 . To distinguish from the Boolean function without secret
variables, we also denote the keyed Boolean functions as fk(x). When referring
to the degree of a keyed Boolean function, we mean the degree in public variables:
deg(f) ∶=max{wt(u), αu ≠ 0}. In equation 1, the coefficient Coefk(x

u) actually
is a Boolean function from Fm

2 → F2 which maps k to αu(k).

Lemma 3 ([22]). For the Boolean function shown in equation 1, it takes 2m+wt(u)

evaluations of fk to recover Coefk(x
u) for a certain u where wt(u) > log2(m).

Proof. According to Lemma 1, for any keyed Boolean function fk and any given
key, the value of Coef(xu) for all possible k ∈ Fm

2 can be obtained with 2m+wt(u)

evaluations of f . Then, applying Lemma 2, the ANF of the Coef(xu)in k can
be derived with about m2m = 2m+log2(m) XOR operations. If wt(u) > log2(m),
2m+log2(m) XOR operations can be ignored.

Cube attack. The cube attack was proposed at EUROCRYPT 2009 by Dinur
and Shamir to analyze black-box tweakable polynomials [9]. For a set I ⊆ {0, . . . , n−
1} with its complementary set Ī = {0, . . . , n − 1} − I, the above keyed Boolean
function can be represented as

f(x,k) = xI
⋅ pI(x[Ī],k) + q(x,k),

where each term of q(x,k) misses some variables in x[I]. We call xI the cube
term and pI(x[Ī],k) the superpoly of xI in f(x,k). If we set the variables in
x[Ī] to some fixed constants, the superpoly pI(x[Ī],k) is a Boolean function of
k. Concerning the superpoly, we have the following lemma.

Lemma 4 ([9]). For a set I ⊆ {0, . . . , n − 1} and a keyed Boolean function

f(x,k) = ∑
u∈Fn

2

au(k)x
u
= xI

⋅ pI(x[Ī],k) + q(x,k),

we have pI(x[Ī],k) = ∑x[I]∈F∣I∣2

f(x,k).

6 S. Peng et al.

In Lemma 4, if I = {0,1,⋯, n−1}, then the superpoly of xI in f(x,k) equals
to Coef(xI).

Division property. Recovering the superpoly of xI is challenging when the
expressions of the fk are complex and not readily available. Luckily, division
properties proposed by Todo [24] have evolved into an effective and accurate
method of probing the structure of Boolean functions. Its bit-based variants [26]
together with their automatic search methods [29] have been found to have a
great potential in accurately determining whether a monomial appears or dis-
appears in an ANF that is not directly accessible [25,27,28,13]. In particular,
bit-based division property can detect the presence or absence of a monomial
in the target Boolean function, and therefore can be used to (partially) deter-
mine the algebraic structures of superpolies in cube attacks [25,27,28,13,14,17].
In fact, the division property has become a quite standard tool in assisting cube
attacks. In this work, we adopt the Mixed Integer Linear Programming (MILP)
approach to model the three-subset bit-based division property without unknown
subset(3BDPwoU) [13], aiding in the recovery of the superpoly. A permutation
can be decomposed into a sequence of basic operations, such as XOR, AND, and
COPY. Therefore, it is sufficient to provide propagation rules of the 3BDPwoU
for these basic operations. The concrete propagation rules and models of the
3BDPwoU are provided in Appendix A.

3 Ascon specification and useful properties

At a high level, the Ascon AEAD algorithm takes as input a nonce N, a secret key
K, an associated data A and a plaintext or message M, and produces a ciphertext
C and a tag T. The authenticity of the associated data and message can be
verified against the tag T. The Ascon AEAD adopts a MonkeyDuplex [4] mode
with a stronger keyed initialization and keyed finalization phases as illustrated
in Figure 1. The Ascon AEAD family consists of three members, Ascon-128,
Ascon-128a, and Ascon-80pq. All three variants have 128-bit nonce and Ascon-
80pq takes half of the IV positions to allow 32 more key bits. The rates of
the Ascon-128 and Ascon-80pq are 64 bits while 128 bits for Ascon-128a. The
parameters are summarized in Table 2 and all three variants provide 128-bit
security. The core components of all variants are the two 320-bit permutations
pa and pb, with the permutation p of a and b rounds, respectively.

Table 2: Ascon-AEAD variants and their recommended parameters
Name State size Rate r Size of Rounds IV

Key Nonce Tag pa pb

Ascon-128 320 64 128 128 128 12 6 80400c0600000000
Ascon-128a 320 128 128 128 128 12 8 80800c0800000000
Ascon-80pq 320 64 160 128 128 12 6 a0400c06

Improved Key Recovery Attacks of Ascon 7

IV∥K∥N 320
pa

⊕

0∗∥K

c

⊕r

A1

pb
⊕

As

c
pb

⊕

0∗∥1

c

⊕r

P1 C1

pb
c

⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

r

⊕

K∥0∗

c

pa

⊕

K

k
T

Initialization Associated Data Plaintext Finalization

Fig. 1: Ascon AEAD encryption.

The permutation p is defined as the composition of a constant addition, a
non-linear substitution layer, and a linear diffusion layer: p = pl ○ ps ○ pc. The
permutation operates on a 320-bit state, which is typically decomposed into five
rows(Each row is a 64-bit word). The input state to the round function at r-th
round is denoted by Xr

0 ∣∣X
r
1 ∣∣X

r
2 ∣∣X

r
3 ∣∣X

r
4 while the output state after ps is given

by Y r
0 ∣∣Y

r
1 ∣∣Y

r
2 ∣∣Y

r
3 ∣∣Y

r
4 . A bit of these words is denoted by [⋅] and Xr, Y r refer to

the full state. We denote Xr
i [j] as the j-th (column) bit of the i-th (row) 64-bit

word, where 0 ≤ i ≤ 4 and 0 ≤ j ≤ 63. Alternatively, Xr
i [j] is also denoted as

Xr[64 ∗ i + j]. The state is constructed as a Substitution Permutation Network
(SPN), as illustrated in Figure 2. These operations in p are described as follows.
Addition of constants(pc). The constant addition step consists in XORing an

ps

pl

pc

Fig. 2: The column-wise S-box layer, the row-wise linear layer and the constant
addition.

8-bit constant to the positions 56,⋯,63 of the 64-bit word X2 at each round.
Substitution layer(ps). The substitution layer is made of 64 parallel calls to a
single Substitution box (Sbox) on each state column. The Sbox used in Ascon
is a quadratic 5-bit permutation. Equation 2 presents the ANFs of the Sbox in
Ascon.

Y0[j] =X4[j]X1[j] +X3[j] +X2[j]X1[j] +X2[j] +X1[j]X0[j] +X1[j] +X0[j]
Y1[j] =X4[j] +X3[j]X2[j] +X3[j]X1[j] +X3[j] +X2[j]X1[j] +X2[j] +X1[j] +X0[j]
Y2[j] =X4[j]X3[j] +X4[j] +X2[j] +X1[j] + 1
Y3[j] =X4[j]X0[j] +X4[j] +X3[j]X0[j] +X3[j] +X2[j] +X1[j] +X0[j]
Y4[j] =X4[j]X1[j] +X4[j] +X3[j] +X1[j]X0[j] +X1[j]

(2)

8 S. Peng et al.

Linear diffusion layer(pl). The linear diffusion layer is made of five calls to five
different linear functions on each row of the state, as illustrated in Equation 3.

X0 ←∑
0

(Y 0) = Y0 + (Y0 >>> 19) + (Y0 >>> 28)

X1 ←∑
0

(Y 1) = Y1 + (Y1 >>> 61) + (Y1 >>> 39)

X2 ←∑
0

(Y 2) = Y2 + (Y2 >>> 1) + (Y2 >>> 6)

X3 ←∑
0

(Y 3) = Y3 + (Y3 >>> 10) + (Y3 >>> 17)

X4 ←∑
0

(Y 4) = Y4 + (Y4 >>> 7) + (Y4 >>> 41)

(3)

This paper focuses on cube attack for Ascon-128. Based on the ANFs of the
Ascon Sbox, several useful properties can be derived, which are commonly used
in the cube attack of Ascon-128. In the following, we introduce some properties
of Ascon-128 that will be used in our attack. Note that only the nonce X0

3 and
X0

4 can be viewed as public variables in Ascon-128. We refer to the variables of
X0

3 and X0
4 when discussing the degree.

Property 1. Among the 5 output bits of the Sbox, X4[j] never multiplies with
X2[j].

Property 2. For r ∈ {0,⋯,7}, the degree of Xr
i [j] is at most 2r.

Property 3. If only one of the words X0
3 and X0

4 is treated as public variables,
with the other set as constant, the degree of Xr

i [j] is at most 2r−1.

Property 1, 2 and 3 can be easily deduced from the quadratic Sbox in Ascon.
To reduce the degree of Xr

i [j], a condition can be imposed on the public vari-
ables, namely Conditional Cube [18]. In [22], the authors provided a condition
that X0

3 equals X0
4 for Ascon-128. They then modelled the 3BDPwoU for the

initialization phase of Ascon-128 using MILP to compute upper bounds on the
degree of Xr

i [j]. We present their 7-round results in the following property.

Property 4 (Adapted form[22]). Under the condition that the public variables
X0

3 and X0
4 are equal, the algebraic degrees of X7

0 [j],X
7
1 [j],⋯,X

7
4 [j] where

j ∈ {0,⋯,63} are 59, 59, 60, 60, and 58, respectively.

The concept Borderline cube whose superpoly depends only on a (relatively)
small number of key bits is proposed in [8]. When the cube variables are not
multiplied together in the first round, and the degree of Xr

i [j] is 2r−1, if a
secret variable ki is not multiplied with the cube variables in the first round,
then the superpoly of a 2r−1 dimensional cube in Xr

i [j] will be independent
of ki. According to the property 1 and property 3, a borderline cube can be
constructed when only X0

4 is regarded as cube variables, which was observed
in [10]. We write their observations as the following Lemma.

Lemma 5 (Adapted from [10]). If only X0
4 can be regarded as public variables

denoted xi(i ∈ 0,1,⋯,63), for 1 ≤ r ≤ 7 and I = {i0, i1, . . . , i2r−1−1} ⊆ {0,1, . . . ,63},
the coefficient of the monomial xI = ∏i∈I xi in X

(r)
i [j] for i ∈ {0,⋯,4} and

j ∈ {0,⋯,63} can be fully determined by the 2r−1 key bits in {ki0 ,⋯, ki2r−1−1}.

Improved Key Recovery Attacks of Ascon 9

4 Our key recovery attack in the misuse-free setting

In this section, we present our key recovery attack of 7-round initialization on
Ascon-128 adhering to the security claims made by the designers(the nonce re-
spective setting and the data complexity does not exceed 264). Our attack mode
is illustrated in Figure 3, employing a cube attack technique. The value in the
first row of X7

0 can be obtained by calculating P1 +C1. According to the inverse
of the linear layer in Ascon, we can compute the value of Y 6

0 (the first row in the
state after 7-round Sbox operation.) by X7

0 . Initially, we recover the superpolies
of chosen cube in Y 6

0 [j], for 0 ≤ j ≤ 63. The values of these superpolies can
be evaluated through several calls to the 7-round initialization process. Subse-
quently, the recovered superpolies enable us to deduce crucial key information.

IV∥K∥N 320
pr

⊕r

P1 C1

Fig. 3: Our attack mode.

4.1 Previous work in [22]

In [22], the authors provided the first valid key recovery attack(which follows As-
con’s security claims) on the 7-round initialization. In their work, they proposed
a useful technique called partial polynomial multiplication, which enables the re-
covery of the superpoly of a given cube by multiplying the simplified versions of
the involved Boolean functions.

More precisely, for a keyed Boolean function f(x,k) = ∑u∈Fn
2
αu(k)x

u where
x ∈ Fn

2 and k ∈ Fm
2 , if it can be expressed in the following form

f(x,k) = ε(x,k) +
l−1
∑
t=0

p(t)(x,k)q(t)(x,k)

such that deg(p(t)) ≤ n/2, deg(q(t)) ≤ n/2 and deg(ε) < n (here, We emphasize
that deg(f) refers to the algebraic degree in x) where n is even, then for I =
{0,⋯, n − 1}

Coef(x
I
) = Coe∑l−1

t=0 p(t)q(t)(x
I
) =

l−1
∑
t=0

Coep(t)q(t)(x
I
)

.
Since the degrees of p(t) and q(t) are no greater than n/2, only the degree-

n/2 monomials in p(t) multiplying with the degree-n/2 monomials in q(t) might

10 S. Peng et al.

contribute to the coefficient of the monomial xI . Therefore, We only need to care
the coefficients of degree-n/2 monomials in both p(t) and q(t) when computing
the coefficient of xI , as shown in the following,

Coep(t)q(t)(x
I
) = ∑

J⊊I,∣J ∣=n/2
Coep(t)(x

J
)Coeq(t)(x

I−J
)

The authors in [22] applied this technique to the key recovery of 7-round
Ascon initialization, successfully recovering the superpoly of a 64-dimensional
cube by multiplying the coefficients of degree-32 monomials in the bits of 6-th
round state(Xr

i [j]). With an overall time complexity of approximately 2123 calls
for 7-round Ascon permutations, they successfully recovered the superpoly. In
their work, the process of computing the ANFs of X6

i [j] dominates the overall
time complexity of superpoly recovery, which requires approximately 2123 calls
of 7-round Ascon permutation.

In this paper, we extend the partial polynomial multiplication technique pro-
posed in [22] to a more general case and apply it to the superpoly recovery of
the 7-round Ascon-128 initialization. Specifically, to recover the superpoly of a
64-dimensional cube, we compute it by multiplying the coefficients of monomials
of an earlier round state (in our case, the 5-th round state, rather than the 6-th
round state). Compared to the computation of the ANFs of X6

i [j], evaluating
the ANFs of X5

i [j] is significantly faster. Another challenge addressed in this
work is the increased frequency of multiplying the coefficients of two monomials.
To mitigate this, instead of expanding the product into a polynomial in terms
of k, we exploit its product form, which reduces the overall computational time.

4.2 Our superpoly recovery(offline phase)

In the above, we briefly describe the partial polynomial multiplication proposed
in [22]. Actually, the partial polynomial multiplication can be extended to a
more general case. For a keyed Boolean function f(x,k) = ∑u∈Fn

2
αu(k)x

u where
x ∈ Fn

2 and k ∈ Fm
2 , if it can be represented as the following form

f(x,k) = ε(x,k) +
l−1
∑
t=0
(
i−1
∏
s=0

p
(t)
(s)(x,k)) (4)

such that deg(p(t)(s)) ≤ n/i, and deg(ε) < n where n is divisible by i. This rep-
resentation of f(x,k) contains l monomials of p(x,k), i.e., the product of i
polynomials p(x,k). Then for I = {0,⋯, n − 1}

Coef(x
I
) = Coe∑l−1

t=0(∏i−1
s=0 p

(t)

(s)
)(x

I
) =

l−1
∑
t=0

Coe∏i−1
s=0 p

(t)

(s)

(xI
) (5)

Similarly, in p(x,k), only the coefficient of degree-(n/i)monomial can contribute
to Coef(xI). Thus, we can only focus on the coefficient of degree-(n/i) mono-
mials in each p(x,k).

Improved Key Recovery Attacks of Ascon 11

An R-round Ascon f(x,k) can be further decomposed into a composition of
simple vectorial Boolean functions as follows,

f(x,k) = f (R−1) ○ f (R−2) ○ ⋯f (0)(x,k),

where quadratic round function f (r) ∶ Fn
2 → Fn

2 (0 ≤ r ≤ R − 1). In the condition
of R ≤ 7, if we choose a proper number r0, where r0 ∈ {0,⋯,R − 1}, f(x,k) can
be represented the sum of monomials of Xr0 , which is the form as Equation 4,
where now p(x,k) is a bit of Xr0 and i = 2R−r0 . Thus, the coefficient of xI in
f(x,k) can be computed by Equation 5.

In our superpoly recovery process for Ascon-128, we set r0 = 5 and i will
be 4. Consequently, the state Y 6

0 can be expressed as a polynomial composed
of monomials of X5. Known the representation of f(x,k) as Equation 4, the
superpoly recovery process can be divided into two parts: (1) compute the ANFs
of all bits in X5 with respect to variables x and k, and (2) compute the superpoly
according Equation 5.

The superpoly recovery process is performed entirely offline and needs to be
done only once for all (secret key). For sake of clarity, we take the first bit of Y 6

0

as an example to demonstrate how we recover the superpoly of xI in Y 6
0 [0].

Choose cube. According to Lemma 5, when all bits of X0
3 are set to 0 and all

bits of X0
4 are treated as cube variables, the superpoly corresponding to this cube

in 7the -th round depends solely on the 64 bits secret key, namely X0
1 . In this

configuration, the word X0
4 is viewed as cube variables denoted as x0, x1,⋯, x63,

while X0
1 and X0

2 represent secret variables, denoted as k0, k1,⋯, k127 (with
only k0, k1,⋯, k63 are involved in the superpoly). We specifically chose this 64-
dimensional borderline cube for the superpoly recovery because a smaller num-
ber of variables simplifies both the superpoly and key recovery processes. Conse-
quently, in our superpoly recovery, the cube set x[I] we choose is {x0, x1,⋯, x63}.

Compute all monomials of X5
i [j] containing xI in Y 6

0 [0]. Y
6
0 [0] can be

expressed as a polynomial composed of monomials of X5. According to prop-
erty 3, the degree of X5

i [j] is 16 and the degree of Y 6
0 [0] is 64. Therefore, only

the monomial of X5 with four factors may contain xI , which will contribute
to CoeY 6

0 [0](x
I). Without loss of generality, we denoted the monomial of X5

containing xI as the following form,

X5
[p]X5

[q]X5
[s]X5

[t]

Where p, q, s and t are different values in {0,1,⋯,319}. While there are
too many monomials of X5 in the representations of Y 6

0 [0], we use the MILP
tool and the three-subset bit-based division property without unknown sub-
set(3BDPwoU) [13] to help us finding all monomials containing xI . The details
of the MILP model rule for 3BDPwoU are shown in the appendix A.

We first compute all monomials with four factors(X5
i [j]) using Gurobi [1],

by solving a MILP model for the 6-th round and 7-th round (exclude the linear
layer). Subsequently, for each obtained monomial, we test whether it can contain
xI by solving a MILP model for the first five rounds of Ascon.

12 S. Peng et al.

In total, we identify 121 monomials that contribute to CoeY 6
0 [0](x

I). The
corresponding source code and results are available in the github repository at
https://github.com/keyrecoveryofascon/keyrecoveryofascon/tree/main/
forward_extension.

Step1: Compute the coefficients of degree-16 monomials in X5
i [j]. Ac-

cording to Lemma 5, for a given J = {i0,⋯, i15} ⊆ I = {0,⋯,63}, the coefficient of
xJ in X5

i [j] is a Boolean function in variables {ki0 ,⋯, ki15}, involving 15 secret
key variables. The truth table for this Boolean function can be obtained after
216×216 = 232 evaluations of the 5-round Ascon permutation, where for each pos-
sible value of (ki0 ,⋯, ki15) ∈ F16

2 , we evaluate the coefficient value of xJ based on
Lemma 1. Since one evaluation of the 5-round Ascon permutation gives the coef-
ficient value of xJ in the full state X5

i [j], after 216 × 216 = 232 evaluations of the
5-round Ascon permutation, we obtain the 320 truth tables for the coefficients
of xJ in X5

i [j].
By applying the fast Möbius transform to the 320 truth tables, we obtain the

ANFs of CoeX5
i [j](x

J) for i ∈ {0,⋯4} and j ∈ {0,⋯,63}, with about 320×16×216

XOR operations. In summary, the time complexity of recovering the ANF of
CoeX5

i [j](x
J) for i ∈ {0,⋯4} and j ∈ {0,⋯,63} is dominated by 232 evaluations

of the 5-round Ascon permutation. Since there are totally (64
16
) ≈ 248.8 different

sets J ⊆ I with ∣J ∣ = 16, it takes 248.8+32 ≈ 280.8 calls to the 5-round Ascon
permutation to obtain the ANFs of CoeX5

i [j](x
J) (i ∈ {0,⋯,4} and j ∈ {0,⋯,63})

for all possible J ⊆ I with ∣J ∣ = 16. Then we store each CoeX5
i [j](x

J) as a
216−bit string into a hash table Ti[j] at address addr(xJ) ∈ F64

2 . Finally, we
obtain 320 tables Ti[j] (i ∈ {0,⋯,4} and j ∈ {0,⋯,63}), which requires about
320 × (64

16
) × 216 ≈ 273.12 bits of memory.

Step2: Compute CoeY 6
0 [0](x

I). In the above, we identify 121 monomials that
contribute to CoeY 6

0 [0](x
I). To compute the coefficient of xI in Y 6

0 [0], we need
to calculate the contribution of each monomial and then sum them. Next, we
outline the process for calculating the contribution of a single monomial, using
X5[p]X5[q]X5[s]X5[t] as an illustrative example.

1. Firstly, we compute the coefficients of all degree-32 monomials in X5[p]X5[q]
and X5[s]X5[t]. Here, we use xL where L ⊆ I and ∣L∣ = 32 to denote a degree-
32 monomial. For X5[p]X5[q] and X5[s]X5[t], we use the hash tables Lp,q

and Ls,t to store the coefficients of the degree-32 monomials. The coefficient
of xL in X5[p]X5[q] (resp. X5[s]X5[t]) is stored at address addr(xL) ∈ F64

2

of the hash table Lp,q (resp. Ls,t).
For clarity, we take X5[p]X5[q] as an example to show how we compute the
coefficients of all degree-32 monomials in them and X5[s]X5[t] is similar.
For a degree-16 monomial xJ1 in X5[p] and a degree-16 monomial xJ2 in
X5[q], they will produce a degree-32 monomial if ∣J1 ∪ J2∣ = 32. We then
store the coefficient of xJ1 and xJ2 at the address addr(xJ1∪J2) ∈ F64

2 of the
hash table Lp,q. It is worth noting that instead of storing it as a polynomial
in terms of k, we just store the address of the coefficient of xJ1 and xJ2 .

https://github.com/keyrecoveryofascon/keyrecoveryofascon/tree/main/forward_extension
https://github.com/keyrecoveryofascon/keyrecoveryofascon/tree/main/forward_extension

Improved Key Recovery Attacks of Ascon 13

There are (64
16
) degree-16 monomials in X5[p]. For each degree-16 monomial

in X5[p], there are (48
16
) degree-16 monomials in X5[q] that will be multiplied

with it to produce a degree-32 monomial. Thus, the time complexity is (64
16
)×

(
48
16
) ≈ 248.80+41.04 = 289.84 memory accesses of hash table Lp,q. For a degree-32

monomial, there will be (32
16
) terms in its coefficient. The memory complexity

is (64
32
)× (

32
16
)× (64+64) ≈ 260.67+29.16+7 = 296.83. Considering X5[s]X5[t] and

there are 121 monomials to be handled, the time complexity is 297.76 and
the memory complexity is 2104.85. Note that there are many duplicate items
of X5[p]X5[q] and X5[s]X5[t] in the 121 monomials. The complexity can
be reduced further, but here we omit it.

2. Then, we compute the coefficient of xI in X5[i]X5[j]X5[s]X5[t]. For a
degree-32 monomial in X5[i]X5[j], only one degree-32 monomials in X5[s]
X5[t] can multiply with it to produce a degree-64 monomial, namely xI .
Let xL1 be a degree-32 monomial in X5[i]X5[j] and xL2 be a degree-32
monomial in X5[s]X5[t], where ∣L1 ∪ L2∣ = 64. We can obtain the coeffi-
cient of xI provided by multiplying the coefficient of xL1 with the coeffi-
cient of xL2 . Also, we use the product form rather than expand it into a
polynomial. It will cost 2 + 2(32

16
) memory accesses (one memory access of

Lp,q and Ls,t, 2(32
16
) memory accesses of Ti[j]). There are (64

32
) degree-

32 monomials in X5[i]X5[j]. The time complexity in this procedure is
(
64
32
) × 2 × (32

16
) ≈ 260.67+29.16+1 = 290.84 memory access(one memory access

of Lp,q and Ls,t can be ignored). Considering 121 monomials, the time com-
plexity is 297.76.

If all coefficients of xI in the 121 monomials of X5 are computed, CoeY 6
0 [0](x

I)

equals the sum of them. In total, in this step, the time complexity is 298.76(297.76+
297.76) memory accesses and the memory complexity is 2104.85 bits.

Generate the comparison tables for key candidates. With the 64 re-
covered superpolies CoeY 6

0 [0] (x
I) ,CoeY 6

0 [1] (x
I) , . . . ,CoeY 6

0 [63] (x
I), we can de-

fine a vectorial Boolean function F ∶ F64
2 → F64

2 mapping (k0, k1, . . . , k63) to
(CoeY 6

0 [0] (x
I) , . . . ,CoeY 6

0 [63] (x
I)). Then, we store each (k0, k1, . . . , k63) ∈ F64

2

into a hash table H at address F (k0, k1, . . . , k63), which requires about 264×64 =
270 bits of memory.

Experiment. Since the superpoly of a 64-dimensional cube in an output bit of
the 7-round initialization is too large to be practically recovered, we conduct an
experiment to recover the superpoly of a 32-dimensional cube in an output bit of
the 6-round initialization. In our experiment, we impose the following condition
on the public variable:

X0
3 [j] =

⎧⎪⎪
⎨
⎪⎪⎩

X0
4 [j] + 1 if j = 0 or j = 1,

X0
4 [j] if j ∈ {2,3, . . . ,63}.

The degree of X6
0 is 30 when X0

3 [j] = X0
4 [j] for j ∈ {0,1, . . . ,63}. How-

ever, when the first two bits of X0
3 [j] and X0

4 [j] are not equal, the degree

14 S. Peng et al.

of X6
0 becomes 32. It appears that the appearance of degree-32 monomials is

mainly due to the first two bits of X0
3 [j] and X0

4 [j] are not equal. The main
reason for this condition is that the superpoly of a 32-dimension cube may be
sparse. The cube set we have chosen is {x0, x1, x2, x3, x36, x37,⋯, x63} and the
superpoly involves 64 bits secret key. While the superpoly can be recovered
at a time complexity of 296 evaluations according to Lemma 1, we are able
to recover it within 36 hours using our superpoly recovery method. The ex-
periment was conducted on a server equipped with 36 Intel(R) Xeon(R) Gold
6240 CPU @ 2.60GHz and 534GB of memory. Some of the programs were
run in parallel, as long as the memory is enough. The corresponding source
code and the recovered superpoly are available in the GitHub repository at
https://github.com/keyrecoveryofascon/keyrecoveryofascon.

4.3 Key recovery(online phase)

Considering the cube set x[I] = (x0, x1, . . . , x63) ∈ F64
2 that we have chosen,

we begin by selecting a random 64-bit plaintext P and encrypt it using Ascon,
obtaining the ciphertext C. The first 64-bit output after 7 rounds Ascon, namely
X7

0 is computed as P +C. According to the inverse of the linear layer in Ascon,
Y 6
0 can be obtained from X7

0 . By summing all Y 6
0 over all x ∈ F64

2 , we obtain
the 64-bit cube sum, denoted as (z0, z1, . . . , z63). Then the key candidates are
obtained from H[(z0, z1, ..., z63)]. Based on the assumption that the superpoly
for 7-round Ascon is (almost) balanced Boolean functions, on average, only one
key candidate is suggested. Such an assumption is common and also used in the
previous works [20,22]. The complexity of this step is 264 queries to Ascon. The
remaining 64-bit key can be obtained by an exhaustive search, which requires
another 264 queries. The total complexity in the online phase is then 265 queries
for 7-round Ascon permutations.

4.4 Complexity evaluation

Time complexity. In our attack, the process of superpoly recovery(offline
phase) dominates the main complexity. In Step 1, the time complexity is 280.8

calls to the 5-round permutation, which can regarded as 5/7×280.8 = 280.38 calls to
7-round permutation. In Step 2, the time complexity is 298.76 memory accesses.
In a conventional method, one memory access can be regarded as one Sbox op-
eration. In this paper, we regard one memory access to a big table as one single
round of Ascon permutation, considering the worst case. But our results are still
a significant improvement over previous work. Thus, the time complexity of our
attack 298.76/7 ≈ 295.96 calls of 7-round permutation. Following computing 64
superpolies in a parallel fashion used in [22], the total time complexity is 295.96

calls for 7-round Ascon permutation.

Memory complexity. In our attack, the memory complexity is dominated by
the process of the superpoly recovery in Subsection 4.2. In the superpoly recov-
ery process, step 1 requires 273.12 bits memory while step 2 requires a memory

https://github.com/keyrecoveryofascon/keyrecoveryofascon

Improved Key Recovery Attacks of Ascon 15

of 2104.85 bits. When generating the comparison tables for key candidates, the
memory complexity is 270 bits of memory. Therefore, the total memory com-
plexity in our attack is around 2104.85.

Data complexity. Since our attack utilizes only a 64-dimensional cube, it re-
quires 264 data to compute the cube sum. Consequently, the data complexity is
264, which satisfies the security claim of Ascon.

5 Our key recovery in the misused setting

In [3], Baudrin et al. proposed a conditional cube attack on Ascon-128 that
is capable of recovering the full state prior to the encryption phase within a
practical time. However, the extension of this attack to achieve key recovery
or forgery in Ascon-128 remains an unresolved open problem. In this paper, we
provide an answer of the problem by executing a key recovery attack on Ascon-
128 under the condition of the full state prior to the encryption phase being
recovered. Our attack is in the misused setting, specifically, the nonce will be
reused, and the data exceeds 264. We first present our key recovery attack on the
8-round initialization of Ascon-128 in Subsection 5.1. Then, in Subsection 5.2,
we introduce our key recovery attack when the initialization phase is reduced to
9 rounds.

5.1 Key recovery on the 8-round initialization

IV∥K∥N 320
pr

⊕

0∗∥K

c

⊕r

P1 C1

pb
c

⊕r

0∗ C2

pb

Initialization Encryption

Fig. 4: Our attack mode.

In our attack process, we focus on both the initialization phase and the
encryption phase, as illustrated in Figure 4. We omit the associated data phase
since the associated data is public and will never affect our attack results. For
convenience, the state prior to the encryption phase is denoted as E. Accordingly,
the bit in i−th row and j−th column is Ei[j]. The details of our attack process
on 8-round initialization are as follows.

16 S. Peng et al.

IV∥K∥N 320
7-round distinguisher

eK

ps pl

Fig. 5: Key recovery of 8-round initialization of Ascon-128.

Choose a distinguisher for the initialization phase. In [22], Rohit et al, de-
tected the degree upper bound of Ascon in the condition of X0

3 =X
0
4 . The 7-round

results are shown in Property 4. When a cube size ∣I ∣ is larger than the degree
upper bound (∣I ∣ > deg(f)) in X7

i [j], the superpoly of the monomial xI in X7
i [j],

namely CoeX7
i [j](x

I), must be 0, which distinguishes the 7-round Ascon permu-
tation from random. According to Property 4, we choose a 61 dimension cube
in the condition of X0

3 =X
0
4 . Then, the value of all superpolies of the 61 dimen-

sion cube in all bits of X7
i [j] is 0. Namely, CoeX7

i [j](x
I) = ∑x[I]∈F∣I∣2

f(x,k) = 0.
This gives us a distinguisher for 7-round initialization. In this distinguisher, the
number of nonces we used is 261 to compute the cube sums.

Recover the state prior to the encryption phase. For the 261 nonces, we
will recover all states prior to the encryption phase, which is denoted as E. The
authors in [3] proposed a method to recover the value of E for Ascon-128 with a
time complexity less than 240. To obtain the values of E for 261 different nonces,
we employ the method introduced in [3]. In total, we can recover all E at a time
complexity less than 2101 calls to an 8-round permutation in the initialization
phase and a 6-round permutation in the encryption phase.

Recover the secret key. Since the secret key is added to the 4-th and 5-th
words after the initialization phase, we can guess the secret key and decrypt E
to the end of the chosen distinguisher. The correctness of the guess is determined
by whether the guessed key satisfies the end condition of the distinguisher.

As shown in Figure 5, we append one additional round at the end of the
distinguisher, targeting the 8-round initialization. The constant operation pc is
simple and does not affect our attack, so we omit it. Furthermore, since both
the linear layer pl and key addition are linear, we swap the order of these two
operations in the final round and introduce the equivalent keys eK.

By recovering all information of eK, we can deduce the original secret key
using the linear layer of the Ascon permutation. The substitution layer of the
Ascon permutation consists of 64 parallel Sbox calls on each state column, allow-
ing the equivalent key bits to be guessed separately. For example, we first guess
2 equivalent key bits in the first column to determine the input to the first Sbox
in the 8-th round, i.e., X7

i [0] for i ∈ {0, . . . ,4}.
For 261 states E, the time complexity is 263 Sbox operations. If the guessed

bits are correct, the sum of 261 values of X7
i [0] should be zero for i ∈ {0, . . . ,4},

Improved Key Recovery Attacks of Ascon 17

forming a 5-bit filtering condition. As a result, only one candidate remains for
the guessed equivalent key bits. For the 64 Sboxes, this procedure requires 269

Sbox operations.

Complexity. In the attack process, the state recovery dominates the complexity.
Thus, the data complexity and time complexity are around 2101. The memory
complexity is 261+8.32 = 269.32 bits.

5.2 Key recovery on 9-round initialization

In the above, we introduce our key recovery target the 8-round initialization
by appending one round at the end of a 7-round distinguisher of the initializa-
tion. Actually, we can recover the secret key for the 9-round initialization at a
complexity less than an exhaustive search by appending two rounds after the
7-round distinguisher. There is a challenge in that the diffusion of the inverse of
ps and pl in Ascon is relatively fast. Equation 6 presents the ANFs of the inverse
of the Sbox which can be easily obtained by SageMath [2].

X0[j] =Y4[j]Y3[j]Y2[j] + Y4[j]Y3[j]Y1[j] + Y4[j]Y3[j]Y0[j] + Y3[j]Y2[j]Y0[j]
+ Y3[j]Y2[j] + Y3[j] + Y2[j] + Y1[j]Y0[j] + Y1[j] + 1,

X1[j] =Y4[j]Y2[j]Y0[j] + Y4[j] + Y3[j]Y2[j] + Y2[j]Y0[j] + Y1[j] + Y0[j],
X2[j] =Y4[j]Y3[j]Y1[j] + Y4[j]Y3[j] + Y4[j]Y2[j]Y1[j] + Y4[j]Y2[j]

+ Y3[j]Y1[j]Y0[j] + Y3[j]Y1[j] + Y2[j]Y1[j]Y0[j] + Y2[j]Y1[j]
+ Y2[j] + 1 + a1,

X3[j] =Y4[j]Y2[j]Y1[j] + Y4[j]Y2[j]Y0[j] + Y4[j]Y2[j] + Y4[j]Y1[j] + Y4[j]
+ Y3[j] + Y2[j]Y1[j] + Y2[j]Y0[j] + Y1[j],

X4[j] =Y4[j]Y3[j]Y2[j] + Y4[j]Y2[j]Y1[j] + Y4[j]Y2[j]Y0[j] + Y4[j]Y2[j]
+ Y3[j]Y2[j]Y0[j] + Y3[j]Y2[j] + Y3[j] + Y2[j]Y1[j] + Y2[j]Y0[j]
+ Y1[j]Y0[j].

(6)

For the inverse of the linear layer, the state Y r−1
i (state before the linear layer)

can be regarded as Mi ×X
r
i , where i refers to the i-th row, i ∈ {0,1,⋯,4}. The

binary matrices Mi used in the inverse of the linear layer are 64 × 64 circulant
matrices, which are shown in Appendix B.

Similarly to the key recovery of the 8-round case, we change the order of the
last linear layer in 9-th round and the addition key operation by introducing eK.
Thus, the last linear layer can be ignored, and the state before the last linear
layer, denoted C, can be calculated by the linear layer of Ascon.

Firstly, we try to write out explicitly the mapping f from Ci[j] to any one
bit of X(7). without loss of generality, here we take the bit in the first row and
first column X7

0 [0] as an example. Since the Boolean function of the mapping f
is too complicated, we split it into three steps, clearly indicating how each step
maps to the next.

18 S. Peng et al.

Step 1: Express X7
0 [0] by Y 7. We first express X7

0 [0] in a polynomial of Y 7,
according to the ANF of the inverse of the Sbox.

X7
0 [0] = Y 7

4 [0]Y
7
3 [0]Y

7
2 [0] + Y

7
4 [0]Y

7
3 [0]Y

7
1 [0] + Y

7
4 [0]Y

7
3 [0]Y

7
0 [0]

+ Y 7
3 [0]Y

7
2 [0]Y

7
0 [0] + Y

7
3 [0]Y

7
2 [0] + Y

7
3 [0]

+ Y 7
2 [0] + Y

7
1 [0]Y

7
0 [0] + Y

7
1 [0] + 1

There are five bits involved in the ANF of X7
0 [0]. If we have known the Y 7

i [0]
for 0 ≤ i ≤ 4, we can compute the value of X7

0 [0].

Step 2: Express Y 7
i [0] for 0 ≤ i ≤ 4 by X8.

Y 7
i [0] =Mi[0] ⋅ (X

8
i [0],X

8
i [1], . . . ,X

8
i [63])

T
= ∑

j∈Ii
X8

i [j],

where Ii is a set of indices corresponding to the coefficient of Mi[0](Mi[j] is the
j-th row of Mi). According to Mi, Y 7

i [0] can be computed by the sum of 31, 33,
33, 33 and 35 bits of X8

i [0] respectively, where i ∈ {0,1,⋯,4}.

Step 3: Express X8
i [j] for 0 ≤ i ≤ 4 by Y 8.

According to the ANF of the inverse of Sbox, each bit of X8
i [j] can be

represented by Y (8) easily. Here we only take X8
0 [j] as an example and others

are similar.
X8

0 [j] = Y 8
4 [j]Y

8
3 [j]Y

8
2 [j] + Y

8
4 [j]Y

8
3 [j]Y

8
1 [j] + Y

8
4 [j]Y

8
3 [0]Y

8
0 [j]

+ Y 8
3 [j]Y

8
2 [j]Y

8
0 [j] + Y

8
3 [j]Y

8
2 [j] + Y

8
3 [j]

+ Y 8
2 [j] + Y

8
1 [j]Y

8
0 [j] + Y

8
1 [j] + 1,

In the end, an equivalent key eK is added to Y 8 at the position of 3-th and
4-th rows. Thus, we can build a relation between the Y 8 and C. Towards the
first three rows of Y 8, we can directly obtain Y 8

i [j] = Ci[j] where i ∈ {0,1,2}
and j ∈ {0,⋯,63}. For the 4-th row of Y 8, we can represent them by Y 8

3 [j] =
C3[j] + eK0[j], where j ∈ {0,⋯,63}. For the 5-th row of Y 8, we can represent
them by Y 8

4 [j] = C4[j] + eK1[j], where j ∈ {0,⋯,63}.
As a result, we can further represent Y 7

i [0] for 0 ≤ i ≤ 4 by C and eK. Here,
we only take Y 7

i [0] as an example and others are similar.

Y 7
0 [0] = ∑

j∈I0

X8
0 [j]

= ∑
j∈I0

Y 8
4 [j]Y 8

3 [j]Y 8
2 [j] + ∑

j∈I0

Y 8
4 [j]Y 8

3 [j]Y 8
1 [j] + ∑

j∈I0

Y 8
4 [j]Y 8

3 [j]Y 8
0 [j]

+ ∑
j∈I0

Y 8
3 [j]Y 8

2 [j]Y 8
0 [j] + ∑

j∈I0

Y 8
3 [j]Y 8

2 [j] + ∑
j∈I0

Y 8
3 [j]

+ ∑
j∈I0

Y 8
2 [j] + ∑

j∈I0

Y 8
1 [j]Y 8

0 [j] + ∑
j∈I0

Y 8
1 [j] + 1,

= ∑
j∈I0

(C4[j] + ek1[j])(C3[j] + ek0[j])(C2[j] +C1[j] +C0[j])

+ ∑
j∈I0

(C3[j] + ek1[j])C2[j]C0[j] + ∑
j∈I0

(C3[j] + ek1[j])C2[j]

+ ∑
j∈I0

(C3[j] + ek1[j]) + ∑
j∈I0

C2[j] + ∑
j∈I0

C1[j]C0[j] + ∑
j∈I0

C1[j] + 1

(7)

Improved Key Recovery Attacks of Ascon 19

According to Equation 7, Y 7
0 [0] involves 2×∣I0∣ = 62 bits of eK. It is similar for

Y 7
i [0] where i ∈ {1,2,3,4}, the involved eK is 33, 33, 33 and 35 bits respectively,

which are shown in Figure 6. If we decrypt C to X7
i [j] directly, many key bits

are involved which will cause the complexity increasing quickly. Fortunately, the
technique, partial sum, can be used to reduce the complexity.

The partial-sum technique was initially introduced by Ferguson et al. in [12]
to reduce the time complexity of integral attacks. In Ascon, the small Sboxes are
applied separately and the output of Mi ×X

r
i is a linear combination of Xr

i [j].
Then, the secret key bits are divided into relatively independent parts and can
be guessed one after another, which will reduce the complexity. When a part of
the secret key is guessed, the corresponding value obtained by decrypting C, can
be compressed with the information and stored for further calculation.

7-round encryption

X7

Y 7

X8

Y 8

C

0
0
0
0
0

1
1
1
1
1

2
2
2
2
2

3
3
3
3
3

4
4
4
4
4

5
5
5
5
5

6
6
6
6
6

7
7
7
7
7

8
8
8
8
8

9
9
9
9
9

10
10
10
10
10

11
11
11
11
11

12
12
12
12
12

13
13
13
13
13

14
14
14
14
14

15
15
15
15
15

16
16
16
16
16

17
17
17
17
17

18
18
18
18
18

19
19
19
19
19

20
20
20
20
20

21
21
21
21
21

22
22
22
22
22

23
23
23
23
23

24
24
24
24
24

25
25
25
25
25

26
26
26
26
26

27
27
27
27
27

28
28
28
28
28

29
29
29
29
29

30
30
30
30
30

31
31
31
31
31

32
32
32
32
32

33
33
33
33
33

34
34
34
34
34

35
35
35
35
35

36
36
36
36
36

37
37
37
37
37

38
38
38
38
38

39
39
39
39
39

40
40
40
40
40

41
41
41
41
41

42
42
42
42
42

43
43
43
43
43

44
44
44
44
44

45
45
45
45
45

46
46
46
46
46

47
47
47
47
47

48
48
48
48
48

49
49
49
49
49

50
50
50
50
50

51
51
51
51
51

52
52
52
52
52

53
53
53
53
53

54
54
54
54
54

55
55
55
55
55

57
57
57
57
57

58
58
58
58
58

59
59
59
59
59

60
60
60
60
60

61
61
61
61
61

62
62
62
62
62

63
63
63
63
63

0
0
0
0
0

1
1
1
1
1

2
2
2
2
2

3
3
3
3
3

4
4
4
4
4

5
5
5
5
5

6
6
6
6
6

7
7
7
7
7

8
8
8
8
8

9
9
9
9
9

10
10
10
10
10

11
11
11
11
11

12
12
12
12
12

13
13
13
13
13

14
14
14
14
14

15
15
15
15
15

16
16
16
16
16

17
17
17
17
17

18
18
18
18
18

19
19
19
19
19

20
20
20
20
20

21
21
21
21
21

22
22
22
22
22

23
23
23
23
23

24
24
24
24
24

25
25
25
25
25

26
26
26
26
26

27
27
27
27
27

28
28
28
28
28

29
29
29
29
29

30
30
30
30
30

31
31
31
31
31

32
32
32
32
32

33
33
33
33
33

34
34
34
34
34

35
35
35
35
35

36
36
36
36
36

37
37
37
37
37

38
38
38
38
38

39
39
39
39
39

40
40
40
40
40

41
41
41
41
41

42
42
42
42
42

43
43
43
43
43

44
44
44
44
44

45
45
45
45
45

46
46
46
46
46

47
47
47
47
47

48
48
48
48
48

49
49
49
49
49

50
50
50
50
50

51
51
51
51
51

52
52
52
52
52

53
53
53
53
53

54
54
54
54
54

55
55
55
55
55

57
57
57
57
57

58
58
58
58
58

59
59
59
59
59

60
60
60
60
60

61
61
61
61
61

62
62
62
62
62

63
63
63
63
63

0

0
0
0
0
0

0 3 6 9 11 12 14 15 17 18 19 21 22 24 25 27 30 33 36 38 39 41 42 44 45 47 50 53 57 60 63
0 1 2 3 4 8 11 13 14 16 19 21 23 24 25 27 28 29 30 35 39 43 44 45 47 48 51 53 54 55 57 60 61
0 2 4 6 7 10 11 13 14 15 17 18 20 23 26 27 28 32 34 35 36 37 40 42 46 47 52 58 59 60 61 62 63

1 2 4 6 7 9 12 17 18 21 22 23 24 26 27 28 29 31 32 33 35 36 37 40 42 44 47 48 49 53 58 61 63
0 1 2 3 4 5 9 10 11 13 16 20 21 22 24 25 28 29 30 31 35 36 40 41 44 45 46 47 48 50 53 55 60 61 63

p
(8)
s

eK

p
(7)
l

p
(7)
s

Fig. 6: Key recovery of 9-round initialization.

Guess strategy. According to Figure 6, we can identify only 63 columns are
involved to calculate the sum of X7

0 [0], which can be guessed separately. Firstly,
for each 2-bit guess, decrypt through p

(8)
s and p

(7)
l and calculate the contribution

to Y 7
i [0] for 0 ≤ i ≤ 4. We treat the cost of the operation at once as 2 times 5-bit

Sbox computations. Since there are 261 C distributed over 315 bits, the average
amount of data reduced each time a 2-bit key is guessed is 20.97. The maximum
complexity of the step to guess the key of the last column is 2127.97 5-bit Sbox
computations. We then decrypt Y 7

i [0] to X
(7)
i [0] for 0 ≤ i ≤ 4. Due to there are

2126 bit guessed equivalent key, the time complexity is 2(126+5) × 2 5-bit sbox
computation.

The key space by a factor of 2−1 for the 126-bit guess. Actually, the super-
polies of the 61 dimension cube in X7

i [0] for 0 ≤ i ≤ 4 are all 0. The key space

20 S. Peng et al.

can be reduced by 2−5. For the remaining key space, we just exhaustive search
all possibilities.

Complexity. In the state recovery phase, we need recover the 261 states of E,
with a time complexity of less than 261×240 = 2101, which can be omitted. In the
guessing equivalent key phase, the complexity is dominated by decrypting Y 7

i [0]

to X
(7)
i [0] for 0 ≤ i ≤ 4, which involves around 2132 5-bit Sbox computations.

There are 64 5-bit Sbox computations in ps of Ascon and we only regard a ps
operation as equivalent to one round permutation. The corresponding complexity
represented by 9-round initialization is 2132/(64 × 9) ≈ 2122.83. Since there are
2123 possibilities in the remaining key space, 2123 exhaustive search are needed.
The total time complexity is 2122.83+2123 ≈ 2123.92 calls for 9-rounds permutation
of Ascon.

Since there are 261 states to be recovered, the data complexity is 2101 and
the memory complexity is 261+8.32 = 269.32 bits.

6 Conclusion

In this paper, we improve the key recovery attack on Ascon-128 both in misuse-
free and misused settings. In a misuse-free setting, we present a faster method
to recover the superpolies for a 64-dimension cube in the output bits of 7-round
initialization, by which we can recover the full key with a time complexity of
298.76 and a data complexity of 264. Additionally, we employ several techniques
to extend state recovery to key recovery, answering the open question of how to
transition from full state recovery in the encryption phase to key recovery for
Ascon-128 (ToSc Vol 4, 2022). We achieve a 8-round and 9-round key recovery
in the nonce misuse scenario, with complexities of 2101 and 2123.92 for Ascon-
128, respectively. This represents an improvement of two rounds over previous
results. We believe our attacks will be helpful in understanding the security of
Ascon.

Acknowledgment. We sincerely thank the anonymous reviewers for providing
valuable comments to help us improve the overall quality of the paper. This
research is supported by the National Key R&D Program of China(Grant No.
2024YFA1013000), the National Natural Science Foundation of China (Grant
No. 62032014, U2336207), Department of Science & Technology of Shandong
Province (No.SYS202201), Quan Cheng Laboratory (Grant No. QCLZD202301,
QCLZD202306). Kai Hu is also supported by the National Natural Science Foun-
dation of China (62402283), Natural Science Foundation of Jiangsu Province
(BK20240420), and Program of Qilu Young Scholars of Shandong University.

References

1. Gurobi optimization. https://www.gurobi.com
2. Sagemath. https://www.sagemath.org/

https://www.gurobi.com
https://www.sagemath.org/

Improved Key Recovery Attacks of Ascon 21

3. Baudrin, J., Canteaut, A., Perrin, L.: Practical cube attack against nonce-
misused ascon. IACR Trans. Symmetric Cryptol. 2022(4), 120–144 (2022).
https://doi.org/10.46586/TOSC.V2022.I4.120-144, https://doi.org/10.46586/
tosc.v2022.i4.120-144

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Permutation-based encryp-
tion, authentication and authenticated encryption. Directions in Authenticated
Ciphers pp. 159–170 (2012)

5. Canteaut, A.: Lecture notes on cryptographic boolean functions. Inria, Paris,
France 3 (2016)

6. Carlet, C., Crama, Y., Hammer, P.L.: Boolean functions for cryptography and
error-correcting codes. (2010)

7. Chang, D., Hong, D., Kang, J., Turan, M.S.: Resistance of ascon family
against conditional cube attacks in nonce-misuse setting. IEEE Access 11, 4501–
4516 (2023). https://doi.org/10.1109/ACCESS.2022.3223991, https://doi.org/
10.1109/ACCESS.2022.3223991

8. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and
cube-attack-like cryptanalysis on the round-reduced keccak sponge function. In:
Advances in Cryptology–EUROCRYPT 2015: 34th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I 34. pp. 733–761. Springer (2015)

9. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) Advances in Cryptology - EUROCRYPT 2009, 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cologne,
Germany, April 26-30, 2009. Proceedings. Lecture Notes in Computer Science,
vol. 5479, pp. 278–299. Springer (2009). https://doi.org/10.1007/978-3-642-01001-
9_16, https://doi.org/10.1007/978-3-642-01001-9_16

10. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Cryptanalysis of as-
con. In: Nyberg, K. (ed.) Topics in Cryptology - CT-RSA 2015, The Cryptog-
rapher’s Track at the RSA Conference 2015, San Francisco, CA, USA, April
20-24, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9048, pp.
371–387. Springer (2015). https://doi.org/10.1007/978-3-319-16715-2_20, https:
//doi.org/10.1007/978-3-319-16715-2_20

11. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2:
Lightweight authenticated encryption and hashing. J. Cryptol. 34(3), 33
(2021). https://doi.org/10.1007/S00145-021-09398-9, https://doi.org/10.1007/
s00145-021-09398-9

12. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D.A., Whit-
ing, D.: Improved cryptanalysis of rijndael. In: Schneier, B. (ed.) Fast Soft-
ware Encryption, 7th International Workshop, FSE 2000, New York, NY, USA,
April 10-12, 2000, Proceedings. Lecture Notes in Computer Science, vol. 1978,
pp. 213–230. Springer (2000). https://doi.org/10.1007/3-540-44706-7_15, https:
//doi.org/10.1007/3-540-44706-7_15

13. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset
division property without unknown subset - improved cube attacks against triv-
ium and grain-128aead. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2020 - 39th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14,
2020, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12105, pp.
466–495. Springer (2020). https://doi.org/10.1007/978-3-030-45721-1_17, https:
//doi.org/10.1007/978-3-030-45721-1_17

https://doi.org/10.46586/TOSC.V2022.I4.120-144
https://doi.org/10.46586/tosc.v2022.i4.120-144
https://doi.org/10.46586/tosc.v2022.i4.120-144
https://doi.org/10.1109/ACCESS.2022.3223991
https://doi.org/10.1109/ACCESS.2022.3223991
https://doi.org/10.1109/ACCESS.2022.3223991
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-319-16715-2_20
https://doi.org/10.1007/978-3-319-16715-2_20
https://doi.org/10.1007/978-3-319-16715-2_20
https://doi.org/10.1007/S00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/978-3-030-45721-1_17
https://doi.org/10.1007/978-3-030-45721-1_17
https://doi.org/10.1007/978-3-030-45721-1_17

22 S. Peng et al.

14. Hebborn, P., Lambin, B., Leander, G., Todo, Y.: Lower bounds on the degree
of block ciphers. In: Moriai, S., Wang, H. (eds.) Advances in Cryptology - ASI-
ACRYPT 2020 - 26th International Conference on the Theory and Application
of Cryptology and Information Security, Daejeon, South Korea, December 7-11,
2020, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12491, pp.
537–566. Springer (2020). https://doi.org/10.1007/978-3-030-64837-4_18, https:
//doi.org/10.1007/978-3-030-64837-4_18

15. Hu, K.: Improved conditional cube attacks on ascon aeads in nonce-respecting
settings - with a break-fix strategy. IACR Cryptol. ePrint Arch. p. 743 (2024),
https://eprint.iacr.org/2024/743

16. Hu, K., Peyrin, T., Tan, Q.Q., Yap, T.: Revisiting higher-order differential-linear
attacks from an algebraic perspective. In: Guo, J., Steinfeld, R. (eds.) Advances in
Cryptology - ASIACRYPT 2023 - 29th International Conference on the Theory and
Application of Cryptology and Information Security, Guangzhou, China, December
4-8, 2023, Proceedings, Part III. Lecture Notes in Computer Science, vol. 14440, pp.
405–435. Springer (2023). https://doi.org/10.1007/978-981-99-8727-6_14, https:
//doi.org/10.1007/978-981-99-8727-6_14

17. Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the divi-
sion property: Revisiting degree evaluations, cube attacks, and key-independent
sums. In: Moriai, S., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT
2020 - 26th International Conference on the Theory and Application of Cryp-
tology and Information Security, Daejeon, South Korea, December 7-11, 2020,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 12491, pp. 446–
476. Springer (2020). https://doi.org/10.1007/978-3-030-64837-4_15, https://
doi.org/10.1007/978-3-030-64837-4_15

18. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack on
reduced-round keccak sponge function. In: Advances in Cryptology–EUROCRYPT
2017: 36th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Paris, France, April 30–May 4, 2017, Proceedings, Part
II 36. pp. 259–288. Springer (2017)

19. Li, Y., Zhang, G., Wang, W., Wang, M.: Cryptanalysis of round-reduced ASCON.
Sci. China Inf. Sci. 60(3), 38102 (2017). https://doi.org/10.1007/S11432-016-0283-
3, https://doi.org/10.1007/s11432-016-0283-3

20. Li, Z., Dong, X., Wang, X.: Conditional cube attack on round-reduced
ASCON. IACR Trans. Symmetric Cryptol. 2017(1), 175–202 (2017).
https://doi.org/10.13154/TOSC.V2017.I1.175-202, https://doi.org/10.13154/
tosc.v2017.i1.175-202

21. Liu, M., Lu, X., Lin, D.: Differential-linear cryptanalysis from an algebraic per-
spective. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Vir-
tual Event, August 16-20, 2021, Proceedings, Part III. Lecture Notes in Computer
Science, vol. 12827, pp. 247–277. Springer (2021). https://doi.org/10.1007/978-3-
030-84252-9_9, https://doi.org/10.1007/978-3-030-84252-9_9

22. Rohit, R., Hu, K., Sarkar, S., Sun, S.: Misuse-free key-recovery and distinguishing
attacks on 7-round ascon. IACR Trans. Symmetric Cryptol. 2021(1), 130–155
(2021). https://doi.org/10.46586/TOSC.V2021.I1.130-155, https://doi.org/10.
46586/tosc.v2021.i1.130-155

23. Rohit, R., Sarkar, S.: Diving deep into the weak keys of round re-
duced ascon. IACR Trans. Symmetric Cryptol. 2021(4), 74–99 (2021).

https://doi.org/10.1007/978-3-030-64837-4_18
https://doi.org/10.1007/978-3-030-64837-4_18
https://doi.org/10.1007/978-3-030-64837-4_18
https://eprint.iacr.org/2024/743
https://doi.org/10.1007/978-981-99-8727-6_14
https://doi.org/10.1007/978-981-99-8727-6_14
https://doi.org/10.1007/978-981-99-8727-6_14
https://doi.org/10.1007/978-3-030-64837-4_15
https://doi.org/10.1007/978-3-030-64837-4_15
https://doi.org/10.1007/978-3-030-64837-4_15
https://doi.org/10.1007/S11432-016-0283-3
https://doi.org/10.1007/S11432-016-0283-3
https://doi.org/10.1007/s11432-016-0283-3
https://doi.org/10.13154/TOSC.V2017.I1.175-202
https://doi.org/10.13154/tosc.v2017.i1.175-202
https://doi.org/10.13154/tosc.v2017.i1.175-202
https://doi.org/10.1007/978-3-030-84252-9_9
https://doi.org/10.1007/978-3-030-84252-9_9
https://doi.org/10.1007/978-3-030-84252-9_9
https://doi.org/10.46586/TOSC.V2021.I1.130-155
https://doi.org/10.46586/tosc.v2021.i1.130-155
https://doi.org/10.46586/tosc.v2021.i1.130-155

Improved Key Recovery Attacks of Ascon 23

https://doi.org/10.46586/TOSC.V2021.I4.74-99, https://doi.org/10.46586/
tosc.v2021.i4.74-99

24. Todo, Y.: Structural evaluation by generalized integral property. In: Os-
wald, E., Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 9056, pp. 287–314.
Springer (2015). https://doi.org/10.1007/978-3-662-46800-5_12, https://doi.
org/10.1007/978-3-662-46800-5_12

25. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox poly-
nomials based on division property. In: Katz, J., Shacham, H. (eds.) Ad-
vances in Cryptology - CRYPTO 2017 - 37th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceed-
ings, Part III. Lecture Notes in Computer Science, vol. 10403, pp. 250–
279. Springer (2017). https://doi.org/10.1007/978-3-319-63697-9_9, https://
doi.org/10.1007/978-3-319-63697-9_9

26. Todo, Y., Morii, M.: Bit-based division property and application to simon
family. In: Peyrin, T. (ed.) Fast Software Encryption - 23rd International
Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 9783, pp. 357–377.
Springer (2016). https://doi.org/10.1007/978-3-662-52993-5_18, https://doi.
org/10.1007/978-3-662-52993-5_18

27. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division prop-
erty based cube attacks exploiting algebraic properties of superpoly. In: Shacham,
H., Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10991, pp.
275–305. Springer (2018). https://doi.org/10.1007/978-3-319-96884-1_10, https:
//doi.org/10.1007/978-3-319-96884-1_10

28. Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: Milp-aided method of searching
division property using three subsets and applications. In: Galbraith, S.D., Moriai,
S. (eds.) Advances in Cryptology - ASIACRYPT 2019 - 25th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Kobe,
Japan, December 8-12, 2019, Proceedings, Part III. Lecture Notes in Computer
Science, vol. 11923, pp. 398–427. Springer (2019). https://doi.org/10.1007/978-3-
030-34618-8_14, https://doi.org/10.1007/978-3-030-34618-8_14

29. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to search-
ing integral distinguishers based on division property for 6 lightweight block ci-
phers. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology - ASIACRYPT
2016 - 22nd International Conference on the Theory and Application of Cryp-
tology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 10031, pp. 648–
678 (2016). https://doi.org/10.1007/978-3-662-53887-6_24, https://doi.org/10.
1007/978-3-662-53887-6_24

30. Yan, H., Lai, X., Wang, L., Yu, Y., Xing, Y.: New zero-sum distinguishers on
full 24-round keccak-f using the division property. IET Inf. Secur. 13(5), 469–478
(2019). https://doi.org/10.1049/IET-IFS.2018.5263, https://doi.org/10.1049/
iet-ifs.2018.5263

https://doi.org/10.46586/TOSC.V2021.I4.74-99
https://doi.org/10.46586/tosc.v2021.i4.74-99
https://doi.org/10.46586/tosc.v2021.i4.74-99
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-319-96884-1_10
https://doi.org/10.1007/978-3-319-96884-1_10
https://doi.org/10.1007/978-3-319-96884-1_10
https://doi.org/10.1007/978-3-030-34618-8_14
https://doi.org/10.1007/978-3-030-34618-8_14
https://doi.org/10.1007/978-3-030-34618-8_14
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1049/IET-IFS.2018.5263
https://doi.org/10.1049/iet-ifs.2018.5263
https://doi.org/10.1049/iet-ifs.2018.5263

24 S. Peng et al.

Appendix

A MILP model for the three-subset bit-based division
property [13]

In the following, we will give the model method of 3BDPwoU trail propagation
for some basic operations.

COPY operation. For the COPY operation, 3BDPwoU MILP model u →
(v1, v2) can use the following constraints

{
u, v1, v2 are binary variables
u = v1 ∨ v2

XOR operation. For the XOR operation, 3BDPwoU MILP model (u1, u2)→ v
can use the following constraints

{
u1, v2, v are binary variables
v = u1 + u2

AND operation. For the AND operation, 3BDPwoU MILP model (u1, u2)→ v
can use the following constraints

{
u1, u2, v are binary variables
u1 = v, u2 = v

For the nonlinear layer Sbox, we can model the exact vectorial Boolean func-
tions of Sbox in each round.

B The binary matrices Mi

The binary matrices Mi used in the inverse of the linear layer are 64×64 circulant
matrices, as follows.

M0 = cir([1,0,0,1,0,0,1,0,0,1,0,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,0,1,0,0,1,0,
0,1,0,0,1,0,1,1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0,0,0,1,0,0,1,0,0,1]),

M1 = cir([1,1,1,1,1,0,0,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,0,1,1,1,0,1,1,1,1,0,
0,0,0,1,0,0,0,1,0,0,0,1,1,1,0,1,1,0,0,1,0,1,1,1,0,1,0,0,1,1,0,0]),

M2 = cir([1,0,1,0,1,0,1,1,0,0,1,1,0,1,1,1,0,1,1,0,1,0,0,1,0,0,1,1,1,0,0,0,
1,0,1,1,1,1,0,0,1,0,1,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1]),

M3 = cir([0,1,1,0,1,0,1,1,0,1,0,0,1,0,0,0,0,1,1,0,0,1,1,1,1,0,1,1,1,1,0,1,
1,1,0,1,1,1,0,0,1,0,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,0,0,1,0,1]),

M4 = cir([1,1,1,1,1,1,0,0,0,1,1,1,0,1,0,0,1,0,0,0,1,1,1,0,1,1,0,0,1,1,1,1,
0,0,0,1,1,0,0,0,1,1,0,0,1,1,1,1,1,0,1,0,0,1,0,1,0,0,0,0,1,1,0,1]).

	Improved Key Recovery Attacks of Ascon

