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Abstract

In this work, we show that parallel repetition of public-coin interactive arguments reduces
the soundness error at an exponential rate even in the post-quantum setting. Moreover, we
generalize this result to hold for threshold verifiers, where the parallel repeated verifier accepts
if and only if at least t of the executions are accepted (for some threshold t). Prior to this work,
these results were known only when the cheating prover was assumed to be classical.

We also prove a similar result for three-message private-coin arguments. Previously, Bostanci,
Qian, Spooner, and Yuen (STOC 2024) proved such a parallel repetition result in the more gen-
eral setting of quantum protocols, where the verifier and communication may be quantum. We
consider only protocols where the verifier is classical, but obtain a simplified analysis, and for
the more general setting of threshold verifiers.
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1 Introduction

One of the most important techniques in the study of interactive proofs, probabilistically checkable
proofs, and multi-prover interactive proofs is that of soundness amplification, where the goal is to
improve soundness (i.e., reduce the probability that a malicious prover makes the verifier accept
a false statement). This has also been studied in the context of interactive arguments, which
are interactive protocols that are guaranteed to be sound only against computationally bounded
cheating provers. We focus on interactive arguments in the post-quantum setting, where the verifier
(and thus the communication) remains classical but soundness is required to hold even against
quantum adversaries of polynomial size.

One natural way to amplify soundness is via sequential repetition, namely, by repeating the
protocol sequentially, where the verifier accepts only if all sequential executions are accepted. In-
deed, this transformation is known to reduce the soundness error at an exponential rate, but it has
the undesirable property of significantly increasing the round complexity of the original protocol.
A preferable way to reduce the soundness error would be via parallel repetition, as it preserves the
round complexity of the original protocol. However, quite surprisingly, in the context of interactive
arguments, parallel repetition does not always reduce the soundness error [BIN97].

The classical setting. The question of parallel repetition has been studied quite extensively
in the classical setting. It is a well-known fact that parallel repetition decreases the soundness
error exponentially for proofs with statistical soundness [BM88, KW00]. However, for proofs with
computational soundness, the situation is much more complicated.

The study of parallel repetition in the computationally sound setting dates back to the work of
Yao [Yao82] on hardness amplification of one-way functions, which can be viewed as establishing
that parallel repetition reduces the soundness error at an asymptotically optimal rate in every
publicly-verifiable two-message argument. Later, Bellare, Impagliazzo, and Naor [BIN97] extended
this result by proving that parallel repetition reduces the soundness error exponentially for any
three-message interactive argument. Quite surprisingly, in that same paper, Bellare et al. also
showed that this is not the case for four-message arguments, by constructing a family of four-
message interactive arguments (assuming the existence of a non-malleable encryption scheme),
where for each k, there exists a protocol whose k-fold parallel repetition has the same soundness
error.1 Loosely speaking, their interactive arguments are constructed to allow a cheating prover to
coordinate among the different executions. More specifically, their cheating prover cheats by using
the verifier’s messages from other executions. Importantly, the verifier’s messages are private-coin;
otherwise they would be useless, as the cheating prover could have simulated them on her own.

Indeed, it was proven that for public-coin protocols,2 and more generally for simulatable proto-
cols,3 parallel repetition reduces the soundness error exponentially [PV07, HPPW10, CL10, CP15].
All these works left open the following question: for which multi-round private-coin protocols does
parallel repetition reduce the soundness error, and at what rate?

Haitner [Hai09] was the first to show a generic transformation that converts any interactive
argument into one for which parallel repetition decreases the soundness error at an exponential rate.

1The communication complexity of a single-fold execution in their family of argument systems grows linearly with
k. Later work by Pietrzak and Wikstrom [PW07] constructed an interactive argument (from standard computational
assumptions) where the k-fold parallel repetition does not decrease the error probability below some constant for any
polynomial k, and where the communication complexity of a single-fold execution does not depend on k.

2These are protocols where all the verifier’s messages are computed by simply tossing random coins and sending
the outcome.

3These are protocols where the verifier’s messages are efficiently and computationally simulatable, but the verifier’s
verdict may still require private randomness.
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Moreover, his transformation, known as random-termination, is extremely simple and preserves the
round complexity of the original protocol. The transformation only slightly modifies the protocol by
having the verifier terminate the protocol in each round with some small probability (in which case
the verifier automatically accepts). Haitner proved that while this slightly increases the soundness
error of the protocol, the soundness error decreases exponentially when repeated in parallel!

We emphasize that all the works mentioned above were in the classical setting and considered
only classical cheating provers. Indeed, the proofs of these parallel repetition theorems proceeded
by converting a cheating prover for the parallel-repeated protocol into a cheating prover for a sin-
gle execution, by rewinding the parallel prover over and over again. We note that such (perfect)
rewinding cannot be done in the quantum setting due to the no-cloning principle and the destruc-
tive nature of quantum measurements. Given the increasing progress towards building large-scale
quantum computers, it is of utmost importance to ensure the security of our systems and soundness
of our proofs against quantum cheating provers.

The quantum setting. A recent work by Bostanci, Qian, Spooner, and Yuen [BQSY24] con-
siders the quantum setting where both the prover and verifier have quantum capabilities. They
show that for three-message quantum argument systems, parallel repetition decreases soundness
exponentially. They also demonstrate a round compression procedure which converts any quantum
argument system with a polynomial number of rounds to a three-message, public-coin quantum
argument system with polynomially-related soundness.

Importantly, this round compression procedure is unlikely to have a classical analogue, even for
proof systems: while it is known that QIP(3) = QIP [KW00], it is widely believed that IP(3) ̸= IP,
as otherwise AM = PSPACE, which implies the collapse of the polynomial hierarchy.

1.1 Our Results

In this work, we consider the post-quantum setting, where both the verifier and communication
are restricted to being classical, but soundness is required to hold even against quantum cheating
provers. We establish parallel repetition theorems for two classes of post-quantum interactive
arguments.

First, we show that for public-coin protocols with an arbitrary polynomial number of rounds,
parallel repetition decreases the soundness error at an exponential rate.

Theorem 1.1 (Informal). For any public-coin m-message protocol with soundness error s, its
k-fold parallel repetition has soundness error ≤ f(s)O(k/m2) + negl(λ), where f(s) ≈ 2−(1−s)

2
.

Our result is lossy in two aspects: first, the soundness error goes down exponentially in k/m2

as opposed to k. Secondly, the base is f(s) and opposed to s. We note that a similar soundness
loss was given in the classical setting in [HPPW10] and [CP15]. We generalize Theorem 1.1 by
considering the setting of threshold verifiers, who accept if the number of accepting transcripts
among all executions exceeds some threshold.

Theorem 1.2 (Informal). For any public-coin m-message protocol with soundness error s, its k-
fold parallel repetition with threshold 0 ≤ t ≤ k has soundness error ≤ f(s)O(k/m2)+ negl(λ), where

f(s) ≈ 2−(t/k−s)
2

.

Second, we show a parallel repetition theorem for any three-message (possibly private-coin)
protocol.
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Theorem 1.3 (Informal). For any 3-message protocol with soundness error s, its k-fold parallel
repetition has soundness error ≤ f(s)O(k) + negl(λ), where f(s) ≈ 2−(1−ok(1)−s)

2
.4

We also generalize Theorem 1.3 to hold for threshold verifiers.

Theorem 1.4 (Informal). For any 3-message protocol with soundness error s, the k-fold parallel
repetition with threshold 0 ≤ t ≤ k has soundness error ≤ f(s)O(k) + negl(λ), where f(s) ≈
2−(t/k−ok(1)−s)

2

.

Remark 1.5. Our proof ismildly non-black-box since we assume knowledge of the cheating prover’s
size. Our proof is also mildly non-constructive since we use multiple copies of the prover’s original
state. This latter property is known to be inherent for any reduction that needs to succeed with
higher probability than the underlying prover (see for example [BQSY24]). As in [BQSY24], given
a state which is already in a “good subspace”, we only need one such copy for the reduction to run.

Open problems. We leave open the question of whether a fully black-box proof can be used to
establish parallel repetition in the public-coin setting.5 We also leave open the question of removing
the round dependence from our soundness error in Theorems 1.1 and 1.2. This was done in the
classical setting in [CP15] by analyzing relative entropy; we note that the direct quantum analogue
of the classical chain rule does not hold for quantum relative entropy.6

Finally, and most interestingly, we leave open the question of obtaining a post-quantum parallel
repetition theorem for private-coin protocols. We know that in order to obtain such a result,
one would need to modify the underlying protocol, for example by using the random-termination
transformation [Hai09]. Our techniques do not seem to extend to the multi-round private-coin
setting (see Section 2 for a discussion).

2 Technical Overview

As mentioned in the introduction, the main challenge in the post-quantum (and quantum) setting
lies in the fact that most classical reductions for proving parallel repetition inherently assume the
ability to perfectly rewind a prover to its previous state. In the setting where the prover’s state
is quantum, this is impossible to implement efficiently due to the potentially destructive nature of
measurement and the no-cloning principle.

Our first approach to bypass this problem is to use a technique introduced in [CMSZ22], which
allows us to rewind the cheating prover to a state that is still “useful” in the sense that it can be
used to cheat in the argument system. However, this state is not identical to the original state and
the only guarantee we have is that the state is still a “good” state in the sense that it is accepting
with sufficiently high probability. Unfortunately, this alone turns out not to be enough. As we
elaborate below, the reason is that this “rewound” state may record information about past queries
used by the reduction, and may deliberately fail on these queries. To make the analysis work, we
use a technique called flooding [BBK22] which makes non-black box use of the cheating prover.

4It should be noted that [BQSY24] provides a tighter result in the three-message setting. We give a different proof
of parallel repetition which extends to the setting of threshold verifiers when both the verifier and communication
are classical.

5The proof in [BQSY24] for three-message protocols is black-box in this sense, but it is unclear how to extend it
to the multi-round, post-quantum setting.

6In fact, there are explicit counterexamples to the classical chain rule when directly extended to the setting of
quantum channels, and only a modified chain rule is known [FFRS20].
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Throughout this overview, we focus on the problem of parallel repetition without a threshold
(i.e., where the threshold is t = k) since this is where our conceptual ideas lie. We start by
explaining our techniques for public-coin protocols.

2.1 Public-Coin Protocols

We show that for public-coin protocols, parallel repetition reduces the soundness at a (weakly)
exponential rate even in the post-quantum setting; this is done by means of a reduction.

We assume that there is a QPT adversary B that succeeds in the k-fold repetition setting with
probability ζ > 0, and we construct a QPT adversary A which makes black-box calls to B and

succeeds in a single protocol with probability roughly 1−O
(
m
√
− log ζ

k

)
, where m is the number

of messages sent in the protocol (see Theorem 5.1). This implies that if the original protocol has
constant post-quantum soundness then its k-fold parallel repetition has post-quantum soundness
ζ = exp

(
−O(k/m2)

)
.

The classical setting. Let us start by recalling the analysis in the classical setting (specifically
from the works of [PV07, HPPW10]), and see where it breaks down in the post-quantum setting.
In the classical analysis, A first picks a random execution i ∈ [k]. The basic idea now is for A to
forward the verifier’s queries to the k-fold adversary B, by embedding in the ith execution the query
it received from the external verifier, and simulating the queries for all other executions on its own.
Namely, in round j, upon receiving a query qj from the external verifier, A chooses a random vector
q̄j such that q̄ij = qj .

7 Then, when A receives answers z̄j from B, she checks whether a random
continuation of the transcript is accepting. If this continuation is accepting, then she forwards the
answer z̄ij to the verifier; otherwise she rewinds the prover B and tries again with fresh q̄j such that

q̄ij = qj . This method of picking the first successful random continuation can be thought of as a
noisy measurement of the prover’s residual success probability; namely, if the random continuation
is successful, then the prover has likely found a “good” response.

The classical analysis then compares this reduction (which we label as Real) with an experiment
(labeled Ideal) which simulates all verifiers on its own, conditioned on a random continuation being
accepting. Raz’s lemma (Lemma 3.7, [Raz95]) is used to argue that these two experiments are
close: in particular, one can show that the distribution of q̄ “hides” the location of the embedded
execution. Specifically, Raz’s lemma asserts that

Ei←[k],qj [TD((i, (q̄j |W )), (i, (q̄j |W, q̄ij = qj)))] ≤
√
− log(Pr[W ])

k
,

where W is the event that the random continuation is accepting.
Thus, after m rounds, the expected statistical distance between the two experiments will grow

to roughly m
√
− log ζ

k , which is why our adversary A for the single execution ultimately succeeds

with probability 1−O
(
m
√
− log ζ

k

)
(assuming the Ideal experiment succeeds with high probability).

We note that the use of Raz’s lemma is precisely why our soundness amplification is lossy.8

7From now on, we will use superscripts to refer to executions and subscripts to refer to rounds.
8Indeed, in the classical setting, Chung and Pass [CP15] provide an alternative analysis that avoids this loss by

using KL-divergence instead of Raz’s lemma. We leave it as an open problem to extend the analysis of [CP15] to the
post-quantum setting.
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First challenge in the quantum setting. The first issue that we are faced with in the post-
quantum setting is that perfect rewinding is impossible due to the potentially destructive nature
of measurement and the no-cloning principle. We overcome this barrier by utilizing a technique
from [CMSZ22] that shows that if we start with a state that has acceptance probability ζ, and we
measure only a few bits, say whether the prover’s response z̄j for a query q̄j is “good”, then while
we cannot rewind back to the state we started with, we can go back to a different state that still
has acceptance probability at least ζ−ε for any small ε. The runtime of this “repairing procedure”
grows polynomially with 1/ε.

Remark 2.1. The technique of [CMSZ22] was originally designed for the single-round public-coin
setting, but can be easily generalized to the multi-round setting. Moreover, it can further be
generalized to the private-coin setting, as long as the protocol is computationally simulatable and
the verifier’s verdict can be efficiently estimated. This latter extension will be useful to obtain
parallel repetition for 3-round private-coin protocols. See Section 2.2 for details.

At this point, it is tempting to think that our ability to “rewind” the prover’s state implies
that we can use an analysis similar to that in the classical setting. However, there is still a major
obstacle that differentiates the classical setting from the quantum/post-quantum settings.

Second challenge in the quantum setting. While in the classical setting, one can rewind the
prover back to exactly the same state as before, this is not true in the quantum setting: although
one can rewind to a state that has acceptance probability close to ζ, this state may be very different
from the original state of the prover. In fact, it may (in theory) crucially remember information
about q̄j and i. If it does, then the prover may choose to perform poorly on any input q̄′j such that

(q̄′j)
i = q̄ij = qj (where qj is the query sent by the external verifier), while at the same time having

an acceptance probability close to ζ on uniformly random queries.

Making the rewound state forgetful. Our strategy will be to force the rewound state to
“forget” information about q̄j (and in particular about the external verifier’s query) by using a
technique due to [BBK22] called flooding. The basic idea is to flood the cheating prover B with
many dummy queries and then argue that B cannot remember the embedded query from the
external verifier since it does not have enough memory to store all of the queries. The number of
dummy queries we need to flood the state with depends on the size of the memory (i.e., number of
qubits) that the prover has: if it has ℓ qubits, then the number of dummy queries will scale with ℓ.
In particular, this technique is (mildly) non-black-box, and is the only non-black-box part of our
reduction.

We formalize this by presenting a new “memoryless” version of the [CMSZ22] lemma, which
provides a repairing technique that, while still not rewinding the state to the exact state it started
with (which is inherent since performing a measurement can irreversibly destroy information), can
rewind the state to one that is almost “independent” of the projection applied to the state prior to
the rewinding. In other words, we ensure that the state “forgets” the projection. We believe that
this lemma (formalized in Lemma 4.1) is of independent interest and will prove useful for other
applications as well. We refer the reader to Section 4 for details.

The final reduction, outlined. Roughly speaking, our final reduction proceeds as follows:

1. Estimate the success probability of the k-fold cheating prover B given an initial state |ψ⟩.
With sufficiently (polynomially) many copies of |ψ⟩, one can assume that at least one copy will
have a sufficiently good outcome, giving us a residual state in the desired “good” subspace.
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2. Choose a random execution i← [k] to embed the external verifier’s queries in.

3. For each round, upon receiving a query from the external verifier, we will try the following
sufficiently (polynomially) many times:

(a) Generate a k-fold query q̄ where we embed the external verifier’s query in the ith coor-
dinate and simulate the rest of the verifiers internally.

(b) Test to see if q̄ is a “good” query by computing B’s response to q̄ coherently and then
running the projection which estimates whether or not the residual success probability
of the prover is still high.

(c) i. If it is, then measure the response, send the answer located in the ith coordinate to
the external verifier, and proceed to the next round.

ii. Otherwise, we use our memoryless repair procedure to repair the state back to one
which is still good over random queries and has almost no memory of the previous
query q̄.

4. Conclude when a complete transcript has been formed.

As mentioned above, we instantiate these estimation and memoryless repair procedures using the
algorithms given by [CMSZ22], and tweaking them using ideas from [BBK22] to create “memory-
less” versions of these procedures. This allows us to test each embedded query many times, since
to the prover each test looks nearly indistinguishable from a random query.

2.2 Private-Coin Protocols

Next, we move to consider the private-coin setting. The first problem that arises is that we can no
longer estimate the success probability of a cheating prover since computing the verifier’s verdict
may require knowing the verifier’s private coins. This problem also appears in the classical setting;
indeed, it was shown [BIN97] that for private-coin protocols, parallel repetition does not always
reduce the soundness error! The issue in the private-coin setting is that the prover may be able
to use the verifier’s messages from different executions to cheat, since these may actually contain
useful information, as opposed to simply consisting of random coins.

Three-message protocols. Luckily, it turns out that such a counterexample does not exist for
the special case of three-message protocols. Indeed, the works of [BIN97], [CHS05], and [HPPW10]
demonstrated that in the classical setting, all three-message (including private-coin) protocols have
exponentially decreasing soundness under parallel repetition. Recently, the work of [BQSY24]
extended this result to the quantum (and post-quantum) settings.

In this work, we reprove this result in the post-quantum setting, but through a different frame-
work that allows us to directly generalize to threshold-type verifiers. We take a similar approach
to [BIN97] and [HPPW10], which implement probability estimation via the soft-decision approach,
which we elaborate on below. We note that [BQSY24] more closely mirrors the correlation reduc-
tion approach taken by [CHS05], offering a tight (but more complicated) analysis. Our reduction
in the three-message setting follows the same framework as the public-coin reduction with a simple
substitution of the probability estimation procedure, again using flooding to make the quantum
state “forgetful”, allowing us to extend our results to the case of threshold-type verifiers.

Remark 2.2. In the three-message setting, one can achieve a straightforward black-box proof,
avoiding the need to flood, but at the expense of the reduction being significantly more non-
constructive. This is the case both in the post-quantum and quantum settings. Intuitively, one
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can take a prover that has access to many copies of the original prover’s residual state after a good
first response has already been measured. The downside of this approach is that even if the original
prover’s starting state was efficiently preparable, its post-measurement residual state is unlikely to
be efficiently preparable if the response space is super-polynomially large.

The soft-decision approach. Let us recall the soft-decision approach of [BIN97] and [HPPW10].
In the private-coin setting, a major issue is the problem of estimating the success probability of the
prover without the external verifier’s randomness. A naive first attempt to determining whether
a prover’s response is good (in the sense that conditioned on this response, the prover’s residual
success probability is relatively high) might be to assume the external coordinate is good if all other
coordinates are good as well. However, this intuitive approach does not quite work: consider the
following example first given by Chung [Chu11] of a malicious prover B for the k-parallel-repeated
protocol that will foil such a reduction. Suppose B interacts with the parallel verifier in such a way
that it is accepted by all executions with probability δk, and for each j ∈ [k], is accepted by all
executions except the jth execution with probability (1− δk)/k. Intuitively, conditioned on all but
the ith coordinate accepting, B may actually only succeed on the ith coordinate with probability

δk

δk+(1−δ)k/k ≪ δ. Such a prover can be considered to be one that has “bad correlations”.

In order to deal with provers with this behavior, classical analyses have generally taken two
approaches, the correlation reduction approach of [CHS05] (which is roughly the approach taken
by [BQSY24]) and the soft-decision approach of [BIN97] and [HPPW10] (which is the approach we
take in this work). Instead of taking only responses for which all executions, except the external
execution, accept, we weigh our decision to take a response with probability exponentially propor-
tional to the number of rejecting executions outside the external execution. That is, if z executions
excluding the embedded one are rejecting, then we will accept the response with probability roughly
2−z. Looking at the prover in our example, it is easy to see that this soft-decision approach will
choose answers that are rejected on coordinate i only with probability O(1/k). In general, this
intuition explains how the soft-decision approach works to “smoothen” the distribution of errors
made by the reduction. This approach also almost immediately generalizes to the setting of thresh-
old verifiers, where we can set our acceptance probability to be roughly min{1, 2k−t−z}, where t is
the threshold of the parallel verifier.9

Challenges in the quantum setting. The first challenge, which we encountered in the public-
coin setting as well, is that perfect rewinding cannot be done in the quantum setting. As in the
public-coin setting, we use [CMSZ22] to repair. As mentioned above, we cannot rewind to the exact
same state, and we can only guarantee that we repair to a state that is still successful, i.e., succeeds
on a random continuation with sufficiently high probability. As mentioned in Remark 2.1, the
technique of [CMSZ22], which was originally designed for the single-round public-coin setting, can
be easily extended to multiple rounds, as long as the protocol is computationally simulatable and
the verifier’s verdict can be efficiently estimated. Here, we run into an issue which is common to
the classical setting as well – given the prefix of a transcript, how can we estimate if a continuation
is accepting without access to the external verifier’s randomness?

In the three-message setting, this is not a problem, since if the prefix consists of only the first
prover message, then one can perfectly simulate a full transcript and compute the verifier’s verdict,
and if the prefix consists of a full transcript then one can implement the soft-decision approach to
estimate the prover’s success probability (see Remark 3.5 for more details).

9We note that in the classical setting, the soft-decision approach is known to be inherently lossy compared to the
correlation reduction approach.
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The fact that this rewinding is not perfect also brings with it challenges which we first encoun-
tered in the public-coin setting. Specifically, the state can depend on its projection history, and in
particular can remember the query from the external verifier, and fail on that specific query while
succeeding on random queries. In the public-coin setting we solved this issue by flooding. In fact,
one can observe that flooding can always be applied to the first two messages of the protocol, which
suffices for the three-message setting. The reason is that whenever we flood, we need to be able to
sample the external verifier’s query (and its private randomness) from the conditional distribution
given the transcript prefix, but for the first two messages this prefix is empty, so in this case we
can efficiently sample from the randomness distribution.

Multi-round protocols. Unfortunately, in the multi-round, private-coin setting (where the num-
ber of messages sent is more than three) we are unable to prove a parallel repetition theorem in
the post-quantum setting. The first obstacle that arises is that after the first verifier’s message is
sent, it may be hard to simulate the verifier’s subsequent messages without access to the private
randomness of the verifier. This is a challenge that occurred even in the classical setting (where
random termination enabled the overcoming of this problem).

In the post-quantum setting, even if the protocol is computationally simulatable, we still do not
know how to prove a parallel repetition theorem. The problem is that every time we estimate the
success probability of the prover we must do so without knowing the embedded execution’s final
verdict, and in the post-quantum setting, the state may remember that the embedded execution,
denoted by i, is not being correctly estimated, and once it remembers i, it can behave in a way so
that only the i’th execution (which has a fixed query given by the external verifier) will be rejected.

With both public-coin and three-message protocols, the issue of the state remembering i arose,
but we were able to make the state “forgetful” by flooding. In the public-coin case, simulation
of messages and verdict is trivial, and in the three-message case, simulation of the messages and
verdict is possible since there is only one verifier message. However, in the multi-round setting,
it is apparent that we cannot flood, since we cannot simulate the messages of the verifier and its
verdict, after the first message has been fixed.

Indeed, our proofs in the public-coin and three-message settings rely substantially on the ability
to flood, and this inability to flood in the general private-coin setting is one major obstacle to
proving a parallel repetition theorem with the “estimate and repair” approach.

A note on flooding. We note that the key property required to apply the flooding technique
is the ability to simulate the messages and the verdict of the external verifier given a prefix of the
transcript. This allows us to show similar parallel repetition results for protocols which are public-
coin except for (possibly) the last round, which includes both the public-coin and three-message
settings. As many protocols for classical verification of quantum computation are public-coin except
for the first round, determining if such protocols have exponentially decreasing soundness under
parallel repetition seems to be one potential extension of interest.10

3 Preliminaries

We use PPT as a shorthand for probabilistic polynomial time and QPT as a shorthand for quantum
polynomial time.

10We note that even a restriction to such protocols with only four messages would already have useful implications.

8



Notation 1. For any two quantum states ρ1 and ρ2, we use the notations

ρ1
ε≡ ρ2 and TD(ρ1,ρ2) ≤ ε

to denote that the trace distance between ρ1 and ρ2 is at most ε. In particular, this means that
for any quantum adversary A,

|Pr[A(ρ1) = 1]− Pr[A(ρ2) = 1]| ≤ ε.

Definition 1 (Measurement). A real-valued measurement M is a quantum circuit that takes as
input a quantum state ρ and outputs a quantum state ρ∗ and a real number p∗.

Definition 2 ((ε, δ)-Almost Projective Measurement, [CMSZ22]). A real-valued measurement M
on a Hilbert space H is said to be (ε, δ)-almost projective if on input a quantum state ρ ∈ S(H),
M satisfies

Pr

[
|p∗ − p∗∗| ≥ ε

∣∣∣∣∣ (ρ∗, p∗)← M(ρ)

(ρ∗∗, p∗∗)← M(ρ∗)

]
≤ δ.

We next define a family of measurements that are (ε, δ)-almost projective for arbitrary ε, δ > 0.

Definition 3 (Almost Projective Measurement). A real-valued measurement familyM = {Mε,δ}ε,δ>0

on H is said to be almost projective if for all quantum states ρ ∈ S(H) and all parameters
ε, ε′, δ, δ′ ∈ (0, 1],

Pr

[
|p∗ − p∗∗| ≥ max{ε, ε′}

∣∣∣∣∣ (ρ∗, p∗)← Mε,δ(ρ)

(ρ∗∗, p∗∗)← Mε′,δ′(ρ
∗)

]
≤ max{δ, δ′}.

In particular, for all ε, δ > 0, Mε,δ is an (ε, δ)-almost projective measurement.

We will use the well-known fact that any quantum measurement performed by a quantum
circuit can be implemented projectively by deferring measurement. That is, any quantum circuit
C can be equivalently implemented by applying a unitary dilation U (corresponding to replacing
intermediate measurements with CNOT gates) followed by a measurement of the output register
and an application of U †.

3.1 Interactive Protocols with Computational Soundness

In what follows, we focus on interactive protocols between two parties, where one party, denoted by
V (for verifier), outputs a single bit, indicating acceptance or rejection. The other party, denoted
by P (for prover), tries to convince the verifier to accept. We define the notion of computational
soundness for such protocols. For the sake of simplicity, we focus on the case where the parties
receive as input the security parameter 1λ, and omit all additional inputs. We denote by

⟨(P, V )(1λ)⟩

the output bit of V after interacting with P .

Definition 4. An interactive protocol between parties P and V , where V outputs a single bit is
said to have (computational) soundness ε for any polynomial-size cheating prover A there exists a
negligible function µ such that for every λ ∈ N

Pr
[
⟨(A, V )(1λ)⟩ = 1

]
≤ ε+ µ(λ).
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Interactive protocols with computational soundness are also referred to as interactive arguments,
and we will use these terms interchangeably. A public-coin interactive argument is a protocol where
the verifier’s messages to the prover consist entirely of random coins, and the verifier’s verdict is
deterministic and publicly computable given a complete transcript. We consider only protocols
where the communication between the prover and verifier is classical and the verifier is a classical
PPT algorithm.

Remark 3.1. We assume without loss of generality that the last message of any protocol is sent
from the prover to the verifier. We call an interactive protocol an m-round protocol if it consists of
m rounds of back and forth messages between the prover and verifier (as opposed to the alternative
2m-round definition). For the sake of simplicity and without loss of generality, we also assume that
the first message is sent by the verifier (unless we are in the three-message setting), as otherwise
the verifier can always begin by sending coins that are ignored in the rest of the protocol.

Notation 2. The transcript of an m-round interactive protocol (P, V ) consists of all messages sent
between the prover and verifier, denoted by τ = (q1, z1, . . . , qm, zm), where qj is the query sent by V
in the jth round, and zj is the response sent by P in the jth round. In the case of three-message
protocols, we instead use the notation τ = (z1, q, z2) to emphasize that only one query is sent by
the verifier and that the first message is sent by the prover.

3.2 Value Estimation

We borrow the following lemma from [CMSZ22] (using the formalism from [LMS22]).

Lemma 3.2 (Value Estimation and State Repair, [CMSZ22, LMS22]). Let H be a Hilbert
space. There exist quantum algorithms:

1. (ρ∗, p∗) ← ValEstV,A(ρ, ε, δ) is given black-box access to a verifier circuit V : {0, 1}d ×
{0, 1}n → {0, 1} and a quantum circuit A, and on input a quantum state ρ ∈ S(H) and accu-
racy parameters ε, δ ∈ (0, 1], outputs a quantum state ρ∗ ∈ S(H) and value p∗ ∈ X ⊆ [−1

2 ,
3
2 ]

for some discrete set X where Nε,δ := |X| = O
(

1
ε2

log 1
δ

)
.11

2. σ∗ ← RepairM,Π(σ, y, p, η) is given black-box access to an (ε, δ)-almost projective measurement
M and a projective measurement Π = (Πy)y∈Y on H, and on input a quantum state σ ∈ S(H),
an outcome y ∈ Y , a probability p ∈ [0, 1], and parameter η ∈ (0, 1], outputs a quantum state
σ∗ ∈ S(H).

These algorithms satisfy the following guarantees:

1. Value Estimation:

E [p∗ | (ρ∗, p∗)← ValEstV,A(ρ, ε, δ)] = Pr

[
V (r, z) = 1

∣∣∣∣∣ r ← {0, 1}dz ← A(ρ, r)

]
.

2. ValEstV,Aε,δ := ValEstV,A(·, ε, δ) is an Almost Projective Family:

Pr

[
|p∗ − p∗∗| ≥ max{ε, ε′}

∣∣∣∣∣ (ρ∗, p∗)← ValEstV,A(ρ, ε, δ)

(ρ∗∗, p∗∗)← ValEstV,A(ρ
∗, ε′, δ′)

]
≤ max{δ, δ′}.

11The reader should think of p∗ as a noisy estimate of the success probability, whose expectation is in [0, 1].
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3. Repairing: For any (ε, δ)-almost projective measurement M on H,

Pr

|p∗ − p∗∗| ≥ 2ε

∣∣∣∣∣∣∣∣∣∣
(ρ∗, p∗)← M(ρ)

(σ, y)← Π(ρ∗)

σ∗ ← RepairM,Π(σ, y, p
∗, η)

(ρ∗∗, p∗∗)← M(σ∗)

 ≤ N · (η + δ) + 4
√
δ,

where N = |Y | is the number of outcomes the projective measurement Π can obtain.

ValEst and Repair are oracle circuits with O(|X|) = O
(
log 1/δ

ε2

)
and O(1/η) gates, respectively.

Remark 3.3 (Computing ValEst coherently). We note that by deferring measurements, we can
coherently compute ValEst over some register using ancilla registers.

Remark 3.4 (Randomness in ValEst). Note that even when the prover strategy has a fixed success
probability of precisely 0 or 1, the ValEst procedure may alter the prover’s state. Thus, in the
case where the circuits A and V are trivial (i.e. when d = n = 0), we define ValEst to be the
deterministic algorithm which simply returns the output of V and does not modify the quantum
state. This extension/modification of ValEst clearly still satisfies properties 1 and 2.

Remark 3.5 (Computing queries in ValEst). While the ValEst procedure was originally defined
in the context of single-round, public-coin protocols, we can easily generalize it to the multi-
round setting (as was done in [LMS22]) by having the randomness of V specify all of the verifier’s
randomness in the interactive protocol. With some slight modifications, one can also extend ValEst
to work in the private-coin (three-message) setting by considering a restricted adversary which
separately computes the verifier’s query before applying a specified unitary corresponding to the
prover’s strategy (see Remark 6.3 for more details). This allows us to efficiently simulate random
executions and estimate the prover’s success probability.

3.3 Information Theory

Lemma 3.6 ([BBK22]). Let Y⃗ = (Y1, . . . , Yt) be a joint distribution over t classical random vari-
ables. Let y⃗ be distributed according to Y⃗ . Let s be an ℓ-qubit random variable that has arbitrary
dependence on y⃗. We let y⃗i denote the prefix y⃗i = (y1, . . . , yi) for 1 ≤ i ≤ t, and let y⃗0 be the
empty vector (and likewise for Y⃗ ). Let J be the uniform distribution over [t] and let j ← J . Define
y′ ← Yj |(Y⃗j−1 = y⃗j−1). Then it holds that

TD((j, y⃗j−1, yj , s), (j, y⃗j−1, y
′, s)) ≤

√
ℓ/(2t).

Lemma 3.7 (Raz’s Lemma, [Raz95, Hol07, Hai09]). Let X1, . . . , Xk be independent random vari-
ables over some probability space, and let X = (X1, . . . , Xk). Let W be a non-empty event on the
same space. Then

Ei←[k][TD((i, (X|W )), (i, (X|W,Xi)))] ≤
√
− log(Pr[W ])/k.

4 A Memoryless CMSZ

The work of [CMSZ22] (Lemma 3.2) provides a technique for running a quantum adversary A
interacting with a verifier V , measuring its response z, and then repairing its state to one that is
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still accepted by V with roughly the same probability as the original state, where the runtime of
the repair procedure grows polynomially with the number of possible prover responses. This is a
powerful technique that allows us to rewind in the post-quantum setting. However, this rewinding
is different from the rewinding in the classical setting in that the repaired state may be significantly
different from the original state, and in particular may contain information about queries on which
the adversary A was run. This makes it problematic to apply this technique to lift reductions to
the post-quantum setting, and for parallel repetition in particular.

Specifically, in the analysis of parallel repetition, we reduce a cheating prover B for the k-fold
repetition to a cheating prover A for a single execution. In a nutshell, A interacts with a verifier,
it receives a query q, embeds this query in a random execution i← [k], and chooses the queries for
the rest of the executions on its own. It sends these k queries to B, computes the response of B
(coherently) and estimates its success probability. If the success probability is not sufficiently high
then it applies the Repair procedure and does this again with fresh queries in all executions except
the embedded one. The issue is that the repaired state may remember information about the k
queries on which it was run, and eventually remember the embedded query q, and be repaired to a
state that generates accepted answers with high probability but always generates a rejected answer
on the embedded query q. See Section 2.1 for a detailed discussion.

In this section we show how to make this Repair procedure forgetful, so that the repaired state
does not have information about the embedded query. This requires the forgetful Repair procedure
to have a bound on the size of the quantum state of A, and thus is (mildly) non-black-box.

4.1 Distributional Memoryless CMSZ

The idea for making the Repair procedure from Lemma 3.2 forgetful is to run the adversary, followed
by running the Repair procedure, sufficiently many times on dummy queries, so that the state will
not be able to remember all of these queries due to lack of space. If the distribution of the dummy
queries is the same as the distribution of the real query then the state should not be able to
distinguish the real query from the dummy ones, and in this way, we control the information that
can be remembered about the real query by the number of dummy queries we flood with.

We formalize this by defining two algorithms: Prepare and Repair′ (to distinguish it from Repair
from Lemma 3.2). The algorithm Prepare starts the flooding process. It is given black-box access
to the family of projective measurements, denoted by P, as well as access to an almost projective
family M = {Mε,δ}. Intuitively, Prepare repeats the following “sufficiently many times,” where the
number of times is a random variable that depends on the size of the quantum state (denoted by
ℓ).

1. Apply M to the state to obtain a value p′.

2. Choose at random a projection Π← P and apply Π to the state.

3. Apply Repair to the state, which repairs the state back to a state for which M would give a
value close to p′ with high probability.

The Repair′ algorithm first applies Repair to the state and then continues the flooding process,
exactly as was done by Prepare in steps (1)-(3) above. The guarantees are formalized in the
following lemma.

Lemma 4.1. Let H be a Hilbert space. There exist quantum algorithms:
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1. (ρ′, p′) ← PrepareM,P(ρ, ε, δ, η, ℓ) is given black-box access to an almost projective measure-
ment family M and to a family of projective measurements P associated with a set of N out-
comes in Y = {y1, . . . , yN}. It takes as input a state ρ ∈ S(H) and parameters ε, δ, η ∈ (0, 1]
and ℓ ∈ N, and outputs a quantum state ρ′ and a value p′.

2. σ∗ ← Repair′M,P,Π(σ, y, p, ε, δ, η, ℓ) is given black-box access to M and P as above as well as
black-box access to a projection Π ∈ P. It takes as input a quantum state σ ∈ S(H), an
outcome y ∈ Y , a value p, and parameters ε, δ, η ∈ (0, 1] and ℓ ∈ N, and outputs a quantum
state σ∗ ∈ S(H).

These algorithms satisfy the following guarantees:

1. Size: Prepare and Repair′ are oracle circuits of size poly(ℓ, 1/η) where all oracle calls to M
are with parameters ε′ and δ′ that are polynomially related to ε, δ, η, 1/ℓ.

2. Preparing Preserves Functionality: For every almost-projective measurement family M
and every family of N -outcome projections P,

Pr

[
|p∗ − p′| ≥ 4ε

∣∣∣∣∣ (ρ∗, p∗)← Mε,δ(ρ)

(ρ′, p′)← PrepareM,P(ρ
∗, ε, δ, η, ℓ)

]
≤ N · (η + 4δ).

In addition,

Pr

|p′ − p∗∗| ≥ ε
∣∣∣∣∣∣∣
(ρ∗, p∗)← Mε,δ(ρ)

(ρ′, p′)← PrepareM,P(ρ
∗, ε, δ, η, ℓ)

(ρ∗∗, p∗∗)← Mε,δ(ρ
′)

 ≤ δ.
3. Repairing is Functional but Forgetful: For every almost-projective measurement family

M, every family of N -outcome projections P, and every Π ∈ P,

Pr

|p
∗ − p∗∗| ≥ 4ε

∣∣∣∣∣∣∣∣∣∣∣∣

(ρ∗, p∗)← Mε,δ(ρ)

(ρ′, p′)← PrepareM,P(ρ
∗, ε, δ, η, ℓ)

(σ, y)← Π(ρ′)

σ∗ ← Repair′M,P,Π(σ, y, p
′, ε, δ, η, ℓ)

(ρ∗∗, p∗∗)← Mε,δ(σ
∗)

 ≤ N · (η + 4δ).

Moreover, for every M,P as above, and for every ℓ-qubit state ρ it holds that

TD((Π,σ∗Π), (Π
′,σ∗Π)) ≤ N · η

where Π,Π′ ← P and where the state σ∗Π is generated as follows:

(a) Compute (ρ∗, p∗)← Mε,δ(ρ).

(b) Compute (ρ′, p′)← PrepareM,P(ρ
∗, ε, δ, η, ℓ).

(c) Compute (σ, y)← Π(ρ′).

(d) Compute σ∗Π ← Repair′M,P,Π(σ, y, p
′, ε, δ, η, ℓ).

(e) Output σ∗Π.

Proof. Let us define Prepare and Repair′, where Repair is the procedure defined in Lemma 3.2:
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Definition 5 (PrepareM,P). On input (ρ∗, ε, δ, η, ℓ):

1. Set σ′′ = ρ∗ and T = 4ℓ/η3. Sample t← [T ] uniformly. Define M′ := Mε/2T,δ2/64T 2 .

2. For i = 1 to t− 1:

(a) Compute (ρ′, p′)← M′(σ′′).

(b) Sample Πi ← P uniformly and compute (σ′, y)← Πi(ρ
′).

(c) Compute σ′′ ← RepairM′,Πi
(σ′, y, p′, η/2T ).

3. Compute (ρ′, p′)← M′(σ′′).

4. Return (ρ′, p′).

Definition 6 (Repair′M,P,Π). On input (σ, y, p′, ε, δ, η, ℓ):

1. Set T = 4ℓ/η3. Define M′ := Mε/2T,δ2/64T 2 .

2. Compute σ∗ ← RepairM′,Π(σ, y, p
′, η/2T ).

3. For i = 1 to T :

(a) Compute (ρ, p∗∗)← M′(σ∗).

(b) Sample Πi ← P uniformly and compute (σ, y)← Πi(ρ).

(c) Compute σ∗ ← RepairM′,Πi
(σ, y, p∗∗, η/2T ).

4. Compute (σ∗, p∗∗)← M′(σ∗).

5. Return σ∗.

We begin by analyzing the size of Prepare and Repair′. First, note that both procedures have
oracle access to M and P, and Repair′ has oracle access to Π, and all oracle calls to M are with pa-
rameters ε/2T = Θ(εη3/ℓ) and δ2/64T 2 = Θ(δη6/ℓ2), which are polynomially related to ε, δ, η, 1/ℓ,
as desired.

In Prepare, at most T calls are made to M′ and to random Πi ← P, outside of Repair. Addi-
tionally, Repair makes O(T/η) calls to M′ and Πi (for each i ≤ t− 1) for a total of O(T )+O(T 2/η)
calls to measurements in M and P. Thus, Prepare is an oracle circuit of size O(T ) + O(T 2/η) =
O(ℓ/η3) +O(ℓ2/η7) = poly(ℓ, 1/η).

Similarly, Repair′ makes T calls to M′ and random Πi ← P, outside of Repair, and its O(T ) calls
to Repair themselves make O(T/η) calls to M′ and Πi (for each i ≤ t− 1). Thus, Repair′ is also an
oracle circuit of size O(T ) +O(T 2/η) = O(ℓ/η3) +O(ℓ2/η7) = poly(ℓ, 1/η).

Next, we prove the first part of property 3. Let us fix any sampling of t ∈ [T ] in the first step
of Prepare and prove our claim for this fixed t. Let us denote by p0 the output of the first Mε,δ,
denote by pi the output of the M′ := Mε/2T,δ2/64T 2 measurement in the ith loop of Prepare, and
denote by pt the output of the final M′ call in Prepare. For each j ∈ [T ] let pt+j denote the output
of the jth call to M′ in Repair′, and pt+T+1 denote the output of the final M′ call in Repair′. Let
pt+T+2 denote the output of the second Mε,δ call outside of Prepare and Repair′.

Showing the first half of property 3 is equivalent to proving that

Pr[|p0 − pt+T+2| ≥ 4ε] ≤ N · (η + 4δ).
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Observing that δ ≤ 1 and T = 4ℓ/η3 ≥ 1, we know that ε/T ≤ ε and δ2/64T 2 ≤ δ. Thus, it follows
that

Pr[|p0 − p1| ≥ ε],Pr[|pt+T+1 − pt+T+2| ≥ ε] ≤ δ
by definition, and for all 1 ≤ i ≤ t+ T ,

Pr
[
|pi − pi+1| ≥

ε

T

]
≤ N ·

(
η

2T
+

δ2

64T 2

)
+ 4

√
δ2

64T 2

by Property 3 of Lemma 3.2.
Next, let

Good := (|p0 − p1| ≤ ε) ∧ (|pt+T+1 − pt+T+2| ≤ ε) ∧
(
|pi − pi+1| ≤

ε

T

)t+T

i=1

denote the event that all probabilities are close. Since t+T ≤ 2T , it follows by a union bound that

Pr[Good] ≥ 1−

[
δ + δ +N ·

(
η

2T
+

δ2

64T 2

)
· (t+ T ) + 4

√
δ2

64T 2
· (t+ T )

]

≥ 1−

[
δ + δ +N ·

(
η

2T
+

δ2

64T 2

)
· 2T + 4

√
δ2

64T 2
· 2T

]
= 1− [2δ +N · η +N · δ2/32T + δ]

≥ 1− [3δ +N · η +N · δ]
≥ 1−N · (η + 4δ).

Now note that if Good occurs, then

|p0 − pt+T+2| ≤
t+T+1∑
i=0

|pi − pi+1| ≤ ε+ ε+
ε

T
· (t+ T ) ≤ 4ε.

Thus,
Pr[|p∗ − p∗∗| ≥ 4ε] ≤ Pr

[
Good

]
≤ N · (η + 4δ),

as desired.
We note that the first half of property 2 is equivalent to stating that

Pr[|p0 − pt| ≥ 4ε] ≤ N · (η + 4δ),

which follows from the same argument as above. The second half of property 2 follows directly by
observing that the last step of Prepare (which determines p′) is a measurement M′ and applying
property 2 of Lemma 3.2.

Finally, to prove the second half of property 3, we first fix the state ρ and consider the current
implementation:

Hybrid H1:

1. Sample Π← P.

2. Compute (ρ∗, p∗)← Mε,δ(ρ).

3. Compute (ρ′, p′)← PrepareM,P(ρ
∗, ε, δ, η, ℓ).

4. Compute (σ, y)← Π(ρ′).
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5. Compute σ∗Π ← Repair′M,P,Π(σ, y, p
′, ε, δ, η, ℓ).

6. Output (Π,σ∗Π).

In what follows, we open the definition of Prepare and Repair′, and replace steps 3-5 to produce the
following identical distribution:

Hybrid H2:

1. Sample Π← P.

2. Compute (ρ∗, p∗)← Mε,δ(ρ).

3. Set σ′′ = ρ∗ and T = 4ℓ/η3. Sample Π1, . . . ,ΠT ← P uniformly. Sample t ← [T ]
uniformly and replace Πt with Π. Define M′ := Mε/2T,δ2/64T 2 .

4. For i = 1 to T :

(a) Compute (ρ′, p′)← M′(σ′′).

(b) Compute (σ′, yΠi)← Πi(ρ
′).

(c) Compute σ′′ ← RepairM′,Πi
(σ′, yΠi , p

′, η/2T ).

5. For i = T + 1 to T + t:

(a) Compute (ρ′, p′)← M′(σ′′).

(b) Sample Πi ← P uniformly and compute (σ′, yΠi)← Πi(ρ
′).

(c) Compute σ′′ ← RepairM′,Πi
(σ′, yΠi , p

′, η/2T ).

6. Compute (σ∗, p∗∗)← M′(σ′′).

7. Output (Π,σ∗).

Next, we note that since t, Π, and Πt are sampled uniformly randomly, we can move the sampling
of t to after step 4 and drop the planting of Π while maintaining an identical output distribution:

Hybrid H3:

1. Compute (ρ∗, p∗)← Mε,δ(ρ).

2. Set σ′′ = ρ∗ and T = 4ℓ/η3. Sample Π1, . . . ,ΠT ← P uniformly. Define M′ :=
Mε/2T,δ2/64T 2 .

3. For i = 1 to T :

(a) Compute (ρ′, p′)← M′(σ′′).

(b) Compute (σ′, yΠi)← Πi(ρ
′).

(c) Compute σ′′ ← RepairM′,Πi
(σ′, yΠi , p

′, η/2T ).

4. Sample t← [T ] uniformly and set Π = Πt.

5. For i = T + 1 to T + t:
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(a) Compute (ρ′, p′)← M′(σ′′).

(b) Sample Πi ← P uniformly and compute (σ′, yΠi)← Πi(ρ
′).

(c) Compute σ′′ ← RepairM′,Πi
(σ′, yΠi , p

′, η/2T ).

6. Compute (σ∗, p∗∗)← M′(σ′′).

7. Output (Πt,σ
∗).

Note that steps 5 and 6 of H3 have no dependence on Π = Πt, so it suffices to show that the state
σ at the end of step 4 satisfies

TD((Πt,σ), (Π
′,σ)) ≤ N · η

for uniformly sampled Π′ ← P.
To this end, for every j ∈ [N ], define the random variable Cj := |{i ∈ [T ] : yΠi = yj}| denoting

the number of projections with outcome equal to yj in steps 1-3, where Y = {y1, . . . , yN} is the set
of N possible outcomes for all projections in P. Note that for every j ∈ [N ],

Pr[(yΠt = yj) ∧ (Cj ≤ ηT/2)] = Pr[yΠt = yj | Cj ≤ ηT/2] · Pr[Cj ≤ ηT/2]
≤ Pr[yΠt = yj | Cj ≤ ηT/2] ≤ η/2,

where the probability is over the randomness in H3. Thus, by a union bound we have that

Pr[∃j ∈ [N ] : (yΠt = yj) ∧ (Cj ≤ ηT/2)] ≤ N · η/2.

Let B be the event that there exists j ∈ [N ] such that yΠt = yj and Cj ≤ ηT/2. By a simple
coupling argument, we have that

TD((Πt,σ), (Π
′,σ)) = Pr[B] · TD((Πt,σ | B), (Π′,σ | B)) + Pr

[
B
]
· TD

((
Πt,σ | B

)
,
(
Π′,σ | B

))
≤ N · η/2 + TD

((
Πt,σ | B

)
,
(
Π′,σ | B

))
.

But now note that the event B implies that for every possible outcome of yΠt , at least
η
2 fraction

of the T projections result in the same outcome as yΠt . Recall that all Π← P are drawn from an
identical distribution, so all projections which observed yΠt are drawn from the same distribution
as Πt. Thus, by Lemma 3.6,

TD
((
Πt,σ | B

)
,
(
Π′,σ | B

))
≤

√
ℓ

2(η2 · T )
= η/2,

and so we conclude that

TD((Π,σ), (Π′,σ)) := TD
t←[T ]

((Πt,σ), (Π
′,σ)) ≤ N · η/2 + η/2 ≤ N · η,

as desired.

Remark 4.2 (Efficiency). We observe that when V and A are efficiently computable circuits (in
some security parameter, say λ), then ValEstV,A·,· is an almost projective family such that for any

ε, δ, ValEstV,Aε,δ runs in time poly(λ, 1/ε, log 1/δ). If we then set M = ValEstV,A·,· and assume P is an
efficiently implementable projection family (i.e. it runs in poly(λ, 1/ε, log 1/δ) time) we see that
both Prepare and Repair′ can run in time poly(λ, 1/ε, log 1/δ, 1/η, ℓ) with no oracle calls.
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5 Parallel Repetition for Public-Coin Protocols

In this section, we analyze the soundness of k-fold parallel repetition of public coin protocols, and
prove that the soundness goes down exponentially in k. For any interactive protocol (P, V ) we
denote by (P (k), V (t,k)) its t-threshold, k-fold parallel repetition. Namely, V (t,k) accepts at the end
of the protocol if and only if at least t out of its k constituent verifiers accept.

5.1 Our Results

We prove the following parallel repetition theorem for public-coin protocols:

Theorem 5.1. Let (P, V ) be a m-round (where m = m(λ) is polynomial) public-coin interactive
argument. Suppose that there exists a quantum adversary B, ξ = ξ(λ) > 0, and polynomials
1 ≤ t = t(λ) ≤ k = k(λ) such that for all λ ∈ N,

Pr
[
⟨(B, V (t,k))(1λ)⟩ = 1

]
≥ ξ. (1)

Then there exists a quantum adversary A running in time poly(|B|, λ, 1/ξ) and a negligible function
negl such that for every λ ∈ N,

Pr
[
⟨(A, V )(1λ)⟩ = 1

]
≥ t

k
− 2m

√
− log(ξ/3m2)

k
− negl(λ).

Note that Theorem 5.1 implies the following corollary:

Corollary 5.2. Let (P, V ) be a m-round (where m = m(λ) is polynomial) public-coin interactive
argument and let ε = ε(λ) be any parameter such that for every QPT adversary A there exists a
negligible function negl such that for every λ ∈ N,

Pr
[
⟨(A, V )(1λ)⟩ = 1

]
≤ ε(λ) + negl(λ).

Fix any polynomials 1 ≤ t = t(λ) ≤ k = k(λ) such that ε < t/k.12 Then for every QPT adversary
B there exists a negligible function negl such that for every λ ∈ N,

Pr
[
⟨(B, V (t,k))(1λ)⟩ = 1

]
≤ max{6m2 · exp

(
−k
4m2

·
(
t

k
− ε
)2
)
, negl(λ)}.

Proof of Corollary 5.2. Suppose for the sake of contradiction that there exists a QPT adversary

B that succeeds against V (t,k) with non-negligible probability ξ > 6m2 · exp
(
−k
4m2 ·

(
t
k − ε

)2)
> 0.

Applying Theorem 5.1 gives a quantum adversary A running in time poly(λ, 1/ξ) such that

Pr
[
⟨(A, V )(1λ)⟩ = 1

]
≥ t

k
− 2m

√√√√− log
([

6m2 · exp
(
−k
4m2 ·

(
t
k − ε

)2)]
/3m2

)
k

− negl(λ)

=
t

k
− 2m

√√√√− log
(
2 exp

(
−k
4m2 ·

(
t
k − ε

)2))
k

− negl(λ)

12The condition that ε < t/k is necessary as otherwise any adversary A which succeeds with probability at least ε
can be easily converted (by a direct product) into a k-fold adversary which already convinces ≥ εk ≥ t verifiers on
expectation (and hence succeeds with probability at least 1/2).
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=
t

k
− 2m

√√√√− log
(
exp

(
−k
4m2 ·

(
t
k − ε

)2))− 1

k
− negl(λ)

=
t

k
− 2m

√
k

4m2 ·
(
t
k − ε

)2 − 1

k
− negl(λ)

=
t

k
−

√(
t

k
− ε
)2

− 4m2

k
− negl(λ)

≥ t

k
−

[(
t

k
− ε
)
−

4m2

k

2
(
t
k − ε

)]− negl(λ) (2)

≥ t

k
−
(
t

k
− ε
)
+

4m2

k

2
(
t
k − ε

) − negl(λ)

= ε+
4m2

k

2
(
t
k − ε

) − negl(λ)

≥ ε+
4m2

k
2t
k

− negl(λ)

= ε+
2m2

t
− negl(λ),

where (2) follows from the fact that
√
x2 − y ≤ x − y

2x for x, y > 0 such that x2 − y > 013. Since

m and t are polynomial, ε+ 2m2

t − negl(λ) > ε+ negl(λ).
But since B has non-negligible advantage, then 1/ξ is polynomial in λ (infinitely often) and so

A is QPT (infinitely often), in contradiction to the original assumption that no such QPT adversary
exists. Thus, no such QPT adversary B exists either.

Proof of Theorem 5.1. We assume that m ≥ 2, since parallel repetition in the case of m = 1 can
be easily shown using a test-and-check reduction (one can repeatedly test queries on fresh states
until the first acceptance).

Denote by |ψ⟩ the initial state of B, and let Λ = poly(λ) be the number of qubits in |ψ⟩. For
the sake of simplicity, we assume without loss of generality that |ψ⟩ contains designated registers
Z1,Z2, . . . ,Zm, where Zj is the register on which B writes its response to the j’th round queries.

We denote all the other registers in |ψ⟩ by I. We write Q
(k)
j to refer to the set of possible queries

sent in round j in the k-fold repeated protocol (P (k), V (t,k)) and q̄ij to refer to the ith coordinate

of a query vector q̄j ∈ Q(k)
j .

For every j ∈ [m] we denote by Uj the collection of unitaries indexed by jth round queries q̄j
such that Uj(q̄j) is the unitary that B applies to its quantum state upon receiving query q̄j (which
operates on I and Zj). We denote by

U (j)(q̄j , q̄j+1, . . . , q̄m) = Um(q̄m)Um−1(q̄m−1) . . . Uj(q̄j). (3)

The assumption that each Uj(q̄j) is a unitary is without loss of generality, as any adversary not of
this form can be “purified” into an adversary with unitary strategies, identical observable behavior,
and constant factor blowup in size.

13The condition holds here since c := 6m2 · exp
(

−k
4m2 ·

(
t
k
− ε

)2)
< ξ ≤ 1, and so 2m

√
− log(c/3m2)

k
=√

( t
k
− ε)2 − 4m2

k
> 0.
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For a complete transcript τm and index i ∈ [k], define Accepti(τm) = 1 iff the output of the ith
verifier at the end of a protocol with transcript τm is ‘1’, and Accept(τm) = 1 iff

∑
i Accepti(τm) ≥ t.

For any partial transcript τ = (q̄1, z̄1, . . . , q̄j−1, z̄j−1), we define a classical function Vτ that takes
as input a continuation of the transcript, namely (q̄j , z̄j , q̄j+1, z̄j+1, . . . , q̄m, z̄m), and outputs the
(threshold) parallel verifier’s decision predicate

V (t,k)(q̄1, z̄1, . . . , q̄m, z̄m) := Accept(q̄1||z̄1|| . . . ||q̄m||z̄m).

Additionally, for a partial transcript τ = (q̄1, z̄1, . . . , q̄ℓ−1, z̄ℓ−1), query q̄ℓ, and parameters ℓ, ε, δ,
denote by UValEst(τ, q̄ℓ, ℓ, ε, δ) the unitary that first coherently computes z̄ℓ = Uℓ(q̄ℓ) and then
coherently computes ValEstVτ ||q̄ℓ||z̄ℓ ,U

(ℓ+1)(·, ε, δ) (writing the outcome of the ValEst procedure in the

ancilla register E using the ancilla register F). We think of U (ℓ+1) as a quantum circuit that takes
as input (q̄ℓ+1, . . . , q̄m) and outputs corresponding answers (z̄ℓ+1, . . . , z̄m) (according to U (ℓ+1)),
and we think of Vτ ||q̄ℓ||z̄ℓ as the circuit that generates random queries (q̄ℓ+1, . . . , q̄m)14 and upon

receiving answers (z̄ℓ+1, . . . , z̄m) outputs Accept(τm) for τm ≜ (τ ||q̄ℓ||z̄ℓ||q̄ℓ+1||z̄ℓ+1|| . . . ||q̄m||z̄m).

Informal description of the reduction A. Before we give the full reduction and analysis, we
first informally describe our proof strategy. The adversary A uses as subroutines the algorithms
ValEst, Prepare, and Repair′ as defined in Lemmas 3.2 and 4.1, and does the following:

1. Apply ValEst to the state |ψ⟩ (which is the initial state of B), to obtain a probability p0.
Given sufficiently many copies of the state |ψ⟩, with high probability, for at least one of these
states p0 will be close to ξ, which is the success probability of B. Specifically, we can assume
that p0 ≥ ξ − ε0 for some small ε0 (which we set to be ε0 :=

ξ
m2 ).

2. Choose a random execution i← [k] to embed the queries in.

3. For each round ℓ ∈ [m], upon receiving a query qℓ from the external verifier V , do the following
iter = poly(λ,m, 1/ξ) times:

(a) Generate a k-fold query q̄ℓ such that its i’th coordinate is equal to qℓ (i.e., embed the
external verifier’s query in the ith execution and simulate the remaining k − 1 verifiers

internally). Namely, generate q̄ℓ ← Q
(k)
ℓ such that q̄iℓ = qℓ.

(b) Let Π = CheckCoinsq̄ℓ be the projection that estimates the acceptance probability of
the answers given by B on queries q̄ℓ. We would like to apply Π to the state so that
if the resulting probability is not sufficiently high (close to ξ), then we can repair it in
a forgetful way so that q̄ℓ (and in particular q̄iℓ) is forgotten. This is implemented as
instructed by Lemma 4.1, as follows:

Let Vτℓ−1
be the verifier circuit which samples queries (q̄ℓ, . . . , q̄m), and upon receiving re-

sponses (z̄ℓ, . . . , z̄m), outputs its verdict Accept(τℓ−1, q̄ℓ, z̄ℓ, . . . , q̄m, z̄m). In what follows,
for ease of presentation, we slightly abuse notation and also denote by U (ℓ) the adver-
sary circuit which upon receiving queries (q̄ℓ, . . . , q̄m) applies the unitary U (ℓ)(q̄ℓ, . . . , q̄m)
(which describes the answers of B from round ℓ onward, conditioned on the transcript
in the first ℓ − 1 rounds being τℓ−1; see Equation (3)) to its state, thereby producing
responses z̄ℓ, . . . , z̄m in registers Zℓ, . . . ,Zm.15 We can now define M ℓ = ValEstVτℓ−1

,U(ℓ) ,

which is an almost-projective measurement family.

14Since the protocol is public-coin, q̄ℓ+1, . . . , q̄m are independent/non-adaptively chosen random coins and can thus
be sampled concurrently. Therefore, given access to U (ℓ+1), a random continuation of the protocol can be thought of
as a single-round quantum game. Hence, ValEst can be implemented essentially without modification (as in [LMS22]).

15Note that we also use U (ℓ) to refer to the same unitary which is implemented by this circuit.
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i. Apply M ℓ to the state to obtain a probability estimate pℓ−1.

ii. Run Prepare with respect to the family of projections P = {CheckCoinsq̄ℓ}q̄ℓ∈Q(k)
ℓ

and

the family of almost projections M ℓ, on input the relevant parameters, including
pℓ−1.

iii. Apply Π to the state to obtain a probability estimate p.

iv. If p is not sufficiently high (i.e. p < ξ − ℓϵ0) then repair the state by applying the
(forgetful) Repair′ procedure to it, and try again (go back to Item 3(b)i).

v. If p is sufficiently high (i.e. p ≥ ξ − ℓϵ0) then measure the answer register Zℓ to
obtain answers z̄ℓ corresponding to q̄ℓ, send z̄

i
ℓ to the verifier, and proceed to round

ℓ+ 1.

We now formally describe algorithm A in the Figure 1 below.

Projection 1 : CheckCoinsℓ,τℓ−1,q̄[ρ]

Let L be the number of ancilla qubits required to compute UValEst(τℓ−1, q̄, ℓ, ε, δ).

1. Apply UValEst(τℓ−1, q̄, ℓ, ε, δ) to ρ ⊗
∣∣0L〉 〈0L∣∣E,F , resulting in state

∑
zℓ,pzℓ

(ρ′
zℓ
)I,Z−ℓ

⊗

|zℓ⟩ ⟨zℓ|Zℓ
⊗ |pzℓ⟩ ⟨pzℓ |E ⊗

∣∣∣junkzℓ,pzℓ

〉〈
junkzℓ,pzℓ

∣∣∣
F
.

2. Measure the bits in register E , obtaining p and remaining state ρ′′.

3. Apply UValEst(τℓ−1, q̄, ℓ, ε, δ)
† to get state σ = (ρ′′′)I,Z ⊗

∣∣0L〉 〈0L∣∣E,F . Discard registers E and

F before returning (p,ρ′′′).

Algorithm 1 : The Algorithm A

Let iter := λm2/ξ and Λ := size(|ψ⟩) be the number of qubits of |ψ⟩. A begins with state |ψ⟩⊗iter
,

and runs as follows:

1. Set ε0 := ξ
m2 , ε := ε0

16·iter , δ := min{2−λ, 2−k}, η := 1
2km·iter/Nε,δ, where Nε,δ is the parameter

from Lemma 3.2. Sample i← [k]. Define τ0 := ⊥.

2. For s = 1 to iter:

(a) Set ρ = |ψ⟩ to be A’s sth copy of |ψ⟩. Run (p0,ρ0)← ValEstVτ0
,U(1)(ρ, ε, δ).

i. If p0 ≥ ξ − ε0, continue to step 3.

ii. Else, if p0 < ξ − ε0 and s = iter, return (i,⊥).

3. For ℓ = 1 to m:

(a) Let P := {CheckCoinsℓ,τℓ−1,q̄}q̄∈Q
(k)
ℓ

be the projection family defined above. Define the

almost projective measurement family Mℓ := {ValEstVτℓ−1
,U(ℓ)(·, ε, δ)}ε,δ>0.

(b) Receive the ℓth-round message qℓ from V .

(c) For s = 1 to iter:

i. Generate a query q̄ℓ ← Q
(k)
ℓ uniformly conditioned on q̄iℓ = qℓ. Let Π :=

CheckCoinsℓ,τℓ−1,q̄ℓ .

ii. Compute (ρ′
ℓ−1, pℓ−1)← Mℓ

ε,δ(ρℓ−1).

iii. Compute (ρ′′
ℓ−1, p

′
ℓ−1)← PrepareMℓ,P(ρ

′
ℓ−1, pℓ−1, ε, δ, η,Λ).

If p′ℓ−1 < ξ − ℓε0 − (4s+ 1)ε, return (i,⊥).
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iv. Compute (σ, p)← Π[ρ′′
ℓ−1].

If p ≥ ξ − (ℓ+ 1)ε0, skip to step 3(d).
Else, if p < ξ − (ℓ+ 1)ε0 and s = iter, return (i,⊥).

v. Compute ρℓ−1 = Repair′Mℓ,P,Π(σ, p, p
′
ℓ−1, ε, δ, η,Λ).

(d) Apply UValEst(τℓ−1, q̄ℓ, ℓ, ε, δ) to σ ⊗
∣∣0L〉 〈0L∣∣E,F before measuring the Zℓ register to get

response z̄ℓ. Discard/measure the ancilla registers E and F , resulting in collapsed state
σ∗. Set ρℓ = σ∗.

(e) Set τℓ = τℓ−1||q̄ℓ||z̄ℓ and send z̄iℓ back to V .

4. Return (i, τm).

Runtime. The fact that A runs in time poly(|B|, λ, 1/ξ) follows from the efficiency of ValEst′,
Prepare, and Repair′, and the fact that all parameters are polynomial in λ and 1/ξ.
Soundness. Before we analyze the soundness of our reduction, we note that we can assume without
loss of generality that ξ ≫ δ, as otherwise our guarantee is essentially trivially true.
We begin by considering the following set of hybrids Hj defined for each j ∈ {0, . . . ,m}:

• Hybrid Hj : For rounds 1 ≤ ℓ ≤ j, replace the sampling of q̄ℓ in step 3(c)(i) with a completely

uniform sample of q̄ℓ ← Q
(k)
ℓ and derive partial transcript τj = (q̄1, z̄1, . . . , q̄j , z̄j). Now, set

i← [k] (instead of at step 1) and emulate a random execution of (A, V ) conditioned on (i, τj)
being the transcript of the protocol after the first j rounds to derive a full transcript τm and
state ρm. Return (i, τm).

Note that by definition, H0 produces the distribution of outputs over a random execution of (A, V ).
Before we continue, we note a simple fact about delaying measurements:

Fact 5.2.1. Fix any state ρ, partial transcript τ = (q̄1, z1, . . . , q̄ℓ−1, zℓ−1), and ℓ’th round query q̄ℓ.
Then the following two procedures return identical output distributions:

• Apply UValEst(τ, q̄ℓ, ℓ, ε, δ) to the state ρ ⊗
∣∣0L〉 〈0L∣∣E,F , where E ,F are the ancilla registers

that are initialized to 0L (where L denotes the number of ancilla qubits used by UValEst).
Then measure registers E, followed by measuring registers Zℓ and F , to get p, zℓ, junk, and
a collapsed state σ. Return (zℓ, p,σ), where σ excludes the E and F registers that were
measured and discarded.

• Apply Uℓ(q̄ℓ) to ρ and measure register Zℓ to get zℓ and state ρ∗. Apply

(p,σ)← ValEstVτ ||q̄ℓ||zℓ ,U
(ℓ+1)(ρ′zℓ , ε, δ)(ρ

∗)

and return (zℓ, p,σ).

The above fact follows from the principle of deferred measurement, which asserts that we can
always delay the measurement of both p and zℓ by introducing ancilla registers F which are ini-
tialized to 0L. Once all measurements are deferred, the order of measurement clearly does not
matter.

In what follows we first prove that Hm returns an accepting transcript with high probability,
and then use a hybrid argument to argue that this implies that H0 returns an accepting transcript
with high probability. Proving that Hm returns an accepting transcript with high probability is
done in two steps. First, we prove that the probability that Hm returns an accepting transcript
is precisely the probability that it does not abort, and then we prove that the probability that it
aborts is small.
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Lemma 5.3. Pr
(i,τm)←Hm

[Accept(τm) = 1] = 1− Pr
(i,τm)←Hm

[τm = ⊥].

Proof of Lemma 5.3. It suffices to prove that if Hm does not abort and returns a transcript, then
this transcript must be accepting. If Hm does not abort, then this means that in round ℓ = m,
there is some final q̄∗ such that CheckCoinsm,τm−1,q̄∗ on some state ρm−1 returned p ≥ ξ−(m+1)ε0.
Note that step 3 of CheckCoins is undone by step 3(d) of Hm. This means that we applied UValEst,
then measured some p∗ ≥ ξ − (m + 1)ε0, followed by measuring the response z̄m, and junkzℓ . By
Fact 5.2.1, this is equivalent to having measured z̄m and computing ValEst on the resulting full
transcript and receiving some probability p∗ ≥ ξ − (m + 1)ε0 = ξ − m+1

m2 ξ > 0. But when ℓ = m
this ValEst is the deterministic function which computes precisely whether the full transcript is
accepting and must either have value 0 or 1, and so p∗ = 1. Thus, by our setting of parameters,
the full transcript is accepting as long as Hm does not abort.

We next argue that Hm aborts only with small probability.

Lemma 5.4. Pr
(i,τm)←Hm

[τm = ⊥] ≤ 1/k + negl(λ).

Proof of Lemma 5.4. We first bound the probability that Hm aborts in step 2:

Claim 5.4.1. Hm aborts in step 2 with probability at most negl(λ).

Proof of Claim 5.4.1. Since the starting state |ψ⟩ has success probability which is at least ξ, by
property 1 of Lemma 3.2, we have that

E[p0|(p0,ρ0)← ValEstVτ0 ,U
(1)(|ψ⟩ , ε, δ)] ≥ ξ.

Recall that since ValEst takes on values in [−1
2 ,

3
2 ] (see Lemma 3.2), by a simple Markov argument,

the probability that a given copy of |ψ⟩ will succeed in step 2(a) is

Pr
[
p0 ≥ ξ − ε0

∣∣∣ (p0,ρ0)← ValEstVτ0 ,U
(1)(|ψ⟩ , ε, δ)

]
≥ 2ε0/3.

Thus, by using a Chernoff bound we conclude that the probability of failing to succeed with any
of the iter = λ/ε0 copies (and thus aborting in step 2) is at most negl(λ).

To bound the probability of aborting in step 3, we will rely on the following basic fact from
probability theory, that for every set of events {Ei}ni=1 it holds that

Pr[∨iEi] =
∑
i

Pr
[
Ei | (∧j<iEj)

]
.

Thus, it suffices to bound the conditional probability of each “bad” event occurring assuming all
previous “bad” events have not occurred.

Claim 5.4.2. Conditioned on not aborting in step 2, Hm aborts in step 3 with probability at most
1
k + negl(λ).

Proof of Claim 5.4.2. We begin by analyzing step 3(c)(ii) when s = 1 and distinguish between the
case where ℓ = 1 and ℓ > 1:

• ℓ = 1: the ValEst measurement falls into the same projective family asM1, so by property 2
of Lemma 3.2, step 3(c)(ii) will return p′0 < ξ − ε0 − ε with probability at most δ.
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• ℓ > 1: If Hm did not abort in the first ℓ− 1 rounds, then the last invocation of CheckCoins in
the (ℓ − 1)st round returned some p > ξ − ℓε0. Denote by zℓ−1 the response in step 3(d) in
the (ℓ− 1)st round. Fact 5.2.1 implies that the state at the beginning of the ℓth round looks
identical to a state obtained after computing ValEst on some state and obtaining probability
p ≥ ξ− ℓε0. Since this ValEst measurement falls into the same projective family asMℓ, again
by property 2 of Lemma 3.2, step 3(c)(ii) will return p < ξ− ℓε0− ε with probability at most
δ.

Now, for iteration s, if step 3(c)(ii) returned some value p ≥ ξ − ℓε0 − (4(s− 1) + 1)ε, then by
property 2 of Lemma 4.1, the probability that step 3(c)(iii) aborts during iteration s is at most
Nε,δ · (η + 4δ), where Nε,δ = O

(
1
ε2

log 1
δ

)
is the number of possible outcomes of CheckCoins (see

Lemma 3.2).
Next, we let xs denote the probability that step 3(c)(iv) skips to step 3(d) in iteration s. By

property 3 of Lemma 4.1 and a simple Markov argument,

Pr[step 3(c)(ii) in iter. s+ 1 gives p < ξ − ℓε0 − (4s+ 1)ε | not aborting in iter. s] ≤
Nε,δ(η + 4δ)

1− xs
.

But since we do not skip in iteration s to step 3(d) with precisely probability 1 − xs, conditioned
on step 3(c)(ii) being good in iteration s, the probability that we fail in step 3(c)(iv) and the next
call to step 3(c)(ii) returns a bad probability is at most Nε,δ · (η + 4δ).

Iterating this argument, we see that for a given round ℓ, the total probability that Hm aborts in
step 3(c)(iii) and step 3(c)(ii) returns a value below what we expect (unless step 3(c)(iv) succeeds,
in which case we are done with round ℓ) is at most δ + iter · 2Nε,δ(η + 4δ) ≤ 1/km+ negl(λ).

Otherwise, we can assume that in iteration s, no abort has occurred in step 3(c)(iii) up to
iteration s in round ℓ. In iteration s, given that the last Prepare returned a p ≥ ξ−ℓε0−(4s+1)ε, we
have by property 2 of Lemma 4.1 that any subsequent ValEst would return a p ≥ ξ− ℓε0− (4s+2)ε
with probability at least 1 − δ. But since such a ValEst is on expectation equal to the success
probability of the prover’s state at the start of step 3(c)(iv), this success probability is at least

(ξ − ℓε0 − (4s+ 2) · ε) · (1− δ)− 1

2
· δ ≥ ξ − ℓε0 − (4 · iter + 2) · ε− 3δ

2
≥ ξ − (ℓ+ 1/2)ε0 −

3δ

2
.

If we denote the prover’s state after step 3(c)(iii) by ρ, it follows from property 1 of Lemma 3.2
that

E
q̄←Q

(k)
ℓ

[
p
∣∣∣ (p,ρ′)← ValEstVτℓ

,U(ℓ+1)(Uℓ(q̄ℓ)ρ, ε, δ)
]
≥ ξ − (ℓ+ 1/2)ε0 −

3δ

2
.

Thus, by a simple Markov argument, it follows that step 3(c)(iv) will succeed with probability
at least ε0/3 − δ because q̄ is sampled from the uniform distribution. Therefore, we can apply a
Chernoff bound and bound the probability of aborting in step 3(c)(iv), which requires iter = λ/ε0
consecutive failures, by negl(λ).

Thus, by a union bound, the probability of aborting in step 3 is at most

m · (1/km+ negl(λ)) +m · negl(λ) = 1/k + negl(λ),

provided m = poly(λ).

Combining the two claims with another a union bound gives an overall probability of at most

negl(λ) + (1/k + negl(λ)) = 1/k + negl(λ),

as desired.
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Next, if we letHj also denote the distribution of outputs that a random execution ofHj induces,
then we claim the following is true:

Lemma 5.5. For 0 ≤ j ≤ m− 1, TD(Hj ,Hj+1) ≤
√
− log(ξ/3m2)/k + 1/km+ negl(λ).

Before we prove Lemma 5.5, we first show how Lemmas 5.3, 5.4, and 5.5 can be used to establish
soundness.

Observe that in hybrid Hm, τm is independent of i. Therefore, we have that

Pr
(i,τm)←Hm

[Accepti(τm) = 1] ≥ Pr
(i,τm)←Hm

[Accepti(τm) = 1 | Accept(τm) = 1] · Pr
(i,τm)←Hm

[Accept(τm) = 1]

=
t

k
· Pr
(i,τm)←Hm

[Accept(τm) = 1].

Consequently, it follows that

Pr
[
⟨(A, Ṽ )(λ, x)⟩ = 1

]
= Pr

(i,τm)←H0

[Accepti(τm) = 1]

≥ Pr
(i,τm)←Hm

[Accepti(τm) = 1]−
m−1∑
j=0

TD(Hj+1,Hj)

≥ t

k
· Pr
(i,τm)←Hm

[Accept(τm) = 1]−
m−1∑
j=0

TD(Hj+1,Hj)

≥ t

k

(
1− Pr

(i,τm)←Hm

[τm = ⊥]
)
−

m−1∑
j=0

TD(Hj+1,Hj)

≥ t

k
− 1

k
− negl(λ)−m ·

[√
− log(ξ/3m2)

k
+

1

km
+ negl(λ)

]

≥ t

k
− 1

k
− negl(λ)−m ·

[√
− log(ξ/3m2)

k
+

1

km
+ negl(λ)

]

≥ t

k
− 2

k
−m

√
− log(ξ/3m2)

k
− negl(λ),

≥ t

k
− 2m

√
− log(ξ/3m2)

k
− negl(λ),

as desired, which concludes the proof of Theorem 5.1.

Thus, it remains to prove Lemma 5.5:

Proof of Lemma 5.5. It is easy to see that in the first j − 1 rounds, Hj and Hj+1 are identical.
Note that the sampling of queries in rounds j + 1 and onwards is also identical, so it suffices to
show that at the end of the jth round (i.e. when step 3(d) is reached), the prover states in Hj and
Hj+1 are close in trace distance.

In the case of an abort in step 3(c)(iv) when s = iter, we define the ending prover state to be
any arbitrary quantum state (denoted by ⊥). Without loss of generality, we can assume that both
Hj and Hj+1 start with the same fixed quantum state at the beginning of the jth iteration of step
3.

We now consider a new series of hybrids relating Hj to Hj+1. For every h ∈ [iter], define Hj,h to
be the algorithm which behaves identically to Hj except when ℓ = j and s ∈ {1, . . . , h}, it replaces
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the conditional sampling of q̄ in step 3(c)(i) with a uniform sample. By definition, we have that
Hj,0 := Hj and Hj,iter := Hj+1. Now, for each hybrid Hj,h, let Dh denote the distribution of prover
states at the end of the jth round and sh denote the distribution of stopping times, which is the
iteration on which the CheckCoins procedure first succeeds in round j (or iter + 1 if CheckCoins
never succeeds).

Our goal is to show that Hj,0 and Hj,iter are close in trace distance:

TD(Hj,0,Hj,iter) ≤
√
− log(ξ/3m2)/k + 1/km+ negl(λ). (4)

We prove Equation (4) by showing that for every h ∈ [iter], Hj,h−1 and Hj,h are close in trace
distance:

Claim 5.5.1. For all 1 ≤ h ≤ iter,

TD(Hj,h−1,Hj,h) ≤ Pr[sh−1 = h] ·
√
− log(ξ/3m2)

k
+

1

km · iter
+ negl(λ).

Proof of Equation (4) assuming Claim 5.5.1. We first observe that for all h < h′, Hj,h and Hj,h′

behave identically in the ℓth round up until the hth iteration (when s = h). This means that the
trace distance between the states in Hj,h and Hj,h′ up until step 3(c)(iv) in iteration h is zero.
Additionally, since the conditionally sampled query in the (h+1)th iteration in Hj,h is drawn from
an identical distribution as the uniformly sampled query given an arbitrary starting quantum state
(since it has no dependence on i), for all s′ ≤ h+ 1, Pr[sh = s′] = Pr[sh′ = s′].

Therefore, we have that

TD(Hj,0,Hj,iter) ≤
iter∑
h=1

TD(Hj,h−1,Hj,h)

≤
iter∑
h=1

(
Pr[sh−1 = h] ·

√
− log(ξ/3m2)

k
+

1

km · iter
+ negl(λ)

)

=
iter∑
h=1

(
Pr[siter = h] ·

√
− log(ξ/3m2)

k

)
+

1

km
+ negl(λ)

≤
√
− log(ξ/3m2)

k
+

1

km
+ negl(λ),

as desired.

We now prove Claim 5.5.1:

Proof of Claim 5.5.1. Fixing h, we observe (as noted earlier) that Hj,h−1 and Hj,h behave iden-
tically in the first h − 1 iterations, so TD(Dh−1|sh−1<h,Dh|sh<h) = 0 and thus Pr[sh−1 < h] =
Pr[sh < h]. Additionally, since the first h− 1 iterations have no dependence on i, we also have (as
noted earlier) that Pr[sh−1 = h] = Pr[sh = h].

Without loss of generality, we can fix the state ρ in Hj,h−1 before the start of the hth iteration
(and assume this is the same starting state as in Hj,h). A simple coupling argument now provides
a bound on the desired trace distance:

TD(Hj,h−1,Hj,h) ≤ Pr[sh−1 = h] · TD(Hj,h−1|sh−1=h,Hj,h|sh=h)

+ Pr [sh−1 > h] · TD(Hj,h−1|sh−1>h,Hj,h|sh>h)).

We now bound this expression with the following two propositions:
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Proposition 5.6. TD(Hj,h−1|sh−1=h,Hj,h|sh=h) ≤
√
− log(ξ/3m2)/k + negl(λ).

Proof of Proposition 5.6. First, it is easy to see that Hj,s′−1 and Hj,s′ behave identically before the
s′th iteration. Thus, it suffices to bound the statistical distance between the joint distributions of
accepting projections/queries with i, as the mixed states after continuing to the next round in both
hybrids are entirely determined by the state before the beginning of the previous round and the
queries being tested.16

Defining W to be the event which occurs when the CheckCoins returns some p such that p ≥
ξ − (ℓ+ 1)ε0 given a fixed state ρ and projection Πq̄, we have that

TD(Hj,h−1|sh−1=h,Hj,h|sh=h) = E
i←[k]

[TD((i, (Q
(k)
ℓ |W )), (i, (Q

(k)
ℓ |W, (Q

(k)
ℓ )i)))].

Since Pr[W ] ≥ ε0/3 − negl(λ) on average across all queries as previously argued by a simple
application of a Markov bound, by Lemma 3.7 we have that

TD(Hj,h−1|sh−1=h,Hj,h|sh=h) = E
i←[k]

[TD((i, (Q
(k)
ℓ |W )), (i, (Q

(k)
ℓ |W, (Q

(k)
ℓ )i)))]

≤
√
− log(Pr[W ])/k ≤

√
log(3/ε0 + negl(λ))/k

=

√
− log(ξ/3m2)

k
+ negl(λ).

Proposition 5.7. Pr[sh−1 > h] · TD(Hj,h−1|sh−1>h,Hj,h|sh>h) ≤ 1
km·iter + negl(λ).

Proof of Proposition 5.7. When h < iter, as noted earlier, it suffices to consider the state at the
start of the hth iteration of step 3(c). Observing that this state has no dependence on i or qj , this
implies that the sampling of Π in both hybrids is drawn from the same uniform distribution over
P. Therefore, we can apply Lemma 4.1 and note that by a coupling argument, we have that

TD(Hj,h−1|sh−1>h,Hj,h|sh>h) ≤ TD(Dh−1|sh−1>h,Dh|sh>h) ≤
TD(Dh−1,Dh)

Pr[sh−1 > h]
≤

Nε,δ · η
Pr[sh−1 > h]

,

and so

Pr[sh−1 > h] · TD(Hj,h−1|sh−1>h,Hj,h|sh>h) ≤ Nε,δ · η ≤
1

km · iter
.

On the other hand, through an identical argument as in Lemma 5.3, we observe that

Pr[siter−1 > iter] = negl(λ),

and thus

Pr[siter−1 > iter] · TD(Hj,iter−1|siter−1>iter,Hj,iter|siter>iter) ≤ Pr[siter−1 > iter] · 1 = negl(λ),

which finishes the proof.

16Note that although round j + 1 of our hybrids use q̄j , upon acceptance, q̄j itself contains no information about
i, so applications of Mj+1 in step 3(c) leak no additional information about i.
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Thus, we have that

TD(Hj,h−1,Hj,h) ≤ Pr[sh−1 = h] · TD(Hj,h−1|sh−1=h,Hj,h|sh=h)

+ Pr [sh−1 > h] · TD(Hj,h−1|sh−1>h,Hj,h|sh>h)

≤ Pr[sh−1 = h] ·
√
− log(ξ/3m2)

k
+

1

km · iter
+ negl(λ),

as claimed, concluding the proof of Claim 5.5.1.

Since Equation (4) is equivalent to our claim, this concludes the proof of Proposition 5.5.

6 Parallel Repetition for Three-Message Protocols

In this section, we analyze the soundness of parallel repetition of private-coin protocols that consist
of three messages. Although exponentially-decreasing soundness from parallel repetition for three-
message arguments was already demonstrated through other means in [BQSY24], we provide a
simpler proof of parallel repetition (for protocols where the verifier is classical) and generalize from
the direct-product setting to the setting of threshold verifiers.

In the private-coin setting, one cannot compute the predicate of the external verifier, and so
a proxy for the external verifier’s verdict must be used. Existing classical reductions take two
general approaches: the correlation reduction strategy of [CHS05] and the soft-decision procedure
of [BIN97] and [HPPW10]. [BQSY24] provides a quantum analogue of correlation reduction, while
we consider an analogue of the soft-decision procedure (see Section 2 for more details).

6.1 Our Results

We prove the following parallel repetition theorem for three-message protocols:

Theorem 6.1. Let (P, V ) be a three-message interactive argument. Suppose that there exists a
quantum adversary B, ξ = ξ(λ) > 0, and polynomials 1 ≤ t = t(λ) ≤ k = k(λ) such that for all
λ ∈ N,

Pr
[
⟨(B, V (t,k))(1λ)⟩ = 1

]
≥ ξ. (5)

Then there exists a quantum adversary A running in time poly(|B|, λ, 1/ξ) and a negligible function
negl such that for every λ ∈ N,

Pr
[
⟨(A, V )(1λ)⟩ = 1

]
≥ t

k
− 2 log k√

k
− 3

√
− log ξ

k
− negl(λ).17

Note that Theorem 6.1 implies the following corollary:

Corollary 6.2. Let (P, V ) be a three-message interactive argument and let ε = ε(λ) be any param-
eter such that for every QPT adversary A there exists a negligible function negl such that for every
λ ∈ N,

Pr
[
⟨(A, V )(1λ)⟩ = 1

]
≤ ε(λ) + negl(λ).

17We remark that the precise constants here can be improved by tweaking the parameters of our reduction, but we
will keep these for ease of presentation.
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Fix any polynomials 1 ≤ t = t(λ) ≤ k = k(λ) such that ε < t
k −

2 log k√
k

.18 Then for every QPT

adversary B there exists a negligible function negl such that for every λ ∈ N,

Pr
[
⟨(B, V (t,k))(1λ)⟩ = 1

]
≤ max{2 exp

−k
9
·

(
t− 2

√
k log k

k
− ε

)2
 , negl(λ)}.

Proof of Corollary 6.2. Suppose for the sake of contradiction that there exists a QPT adversary B

such that B succeeds against V (t,k) with non-negligible probability ξ > 2 exp

(
−k
9 ·
(
t−2
√
k log k
k − ε

)2)
.

Applying Theorem 6.1 then gives a quantum adversary A running in time poly(λ, 1/ξ) such that

Pr
[
⟨(A, V )(1λ)⟩ = 1

]
≥ t

k
− 2 log k√

k
− 3

√√√√√− log

(
2 exp

(
−k

9

(
t
k −

2 log k√
k
− ε
)2))

k
− negl(λ)

=
t

k
− 2 log k√

k
− 3

√√√√√− log

(
exp

(
−k

9

(
t
k −

2 log k√
k
− ε
)2))

− 1

k
− negl(λ)

=
t

k
− 2 log k√

k
− 3

√√√√ k
9 ·
(

t
k −

2 log k√
k
− ε
)2
− 1

k
− negl(λ)

=
t

k
− 2 log k√

k
−

√(
t

k
− 2 log k√

k
− ε
)2

− 9

k
− negl(λ).

Observe that since ξ ≤ 1, this means that c := 2 exp

(
−k
9 ·
(
t−2
√
k log k
k − ε

)2)
< ξ ≤ 1 and so

3
√
− log c

k =

√(
t
k −

2 log k√
k
− ε
)2
− 9

k > 0. Since
√
x2 − y ≤ x− y

2x and hence −
√
x2 − y ≥ −x+ y

2x

for x, y > 0 such that x2 − y > 0, we have that

Pr
[
⟨(A, V )(1λ)⟩ = 1

]
≥ t

k
− 2 log k√

k
−

√(
t

k
− 2 log k√

k
− ε
)2

− 9

k
− negl(λ)

≥ t

k
− 2 log k√

k
−
(
t

k
− 2 log k√

k
− ε
)
+

9/k

2
(

t
k −

2 log k√
k
− ε
) − negl(λ)

= ε+
9/k

2
(

t
k −

2 log k√
k
− ε
) − negl(λ)

≥ ε+ 9/k

2t/k
− negl(λ) = ε+

9

2t
− negl(λ).

Since t is polynomial, ε+ 9
2t − negl(λ) > ε+ negl(λ).

But if B has non-negligible advantage, then 1/ξ is polynomial in λ and so A is QPT, in con-
tradiction to the original assumption that no such QPT adversary exists. Thus, no such QPT
adversary B exists either.

18The condition that ε < t
k
− 2 log k√

k
is similar to the condition in Corollary 5.2 but with some minor loss.
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Proof of Theorem 6.1. Denote by |ψ⟩ the initial state of B, and let Λ = poly(λ) be the number of
qubits in |ψ⟩. For the sake of simplicity, we assume without loss of generality that |ψ⟩ contains
designated registers Z1 and Z2, where Zj is the register on which B writes its jth message. Since
the prover’s unitary in the first round is efficiently implementable and independent of the verifier’s
queries, we also assume without loss of generality that B determines its first round message by
simply measuring the Z1 register of |ψ⟩. We denote all the other registers in |ψ⟩ by I.

We denote by Q the distribution of queries of the single-fold verifier in the protocol (P, V ); let
Q(k) refer to the distribution of the queries sent in the k-fold repeated protocol (P (k), V (t,k)) and
q̄i refer to the ith coordinate of the query vector q̄.

We denote by Uq̄ (which operates on registers I and Z2) the unitary that B applies to its
quantum state upon receiving query q̄ before measuring the Z2 register to compute its second
round response. As in Section 5, the assumption that Uq̄ is a unitary is without loss of generality,
as any adversary not of this form can be “purified” into an adversary with unitary strategies,
identical observable behavior, and constant factor blowup in size.

For a k-fold transcript τ = (z̄1, q̄, z̄2), where q̄ is generated with verifier internal randomness
r̄ = (r̄1, . . . , r̄k), let τ j = (z̄j1, q̄

j , z̄j2) and r̄j be the view and internal randomness of the j’th
execution. Let Acceptj(r̄, τ) = 1 if and only if the (single-execution) verifier accepts τ j with

respect to internal randomness r̄j . Similarly, given the verifier’s internal randomness r̄(−i) in all
but the ith execution, one can define Acceptj(r̄

(−i), τ) = 1 for j ̸= i to occur exactly when the
(single-execution) verifier accepts τ j with respect to internal randomness r̄j . Again, for fixed
threshold t we define Accept(r̄, τ) = 1 iff

∑
i Accepti(r̄, τ) ≥ t. We also define the classical function

SoftDecisionν,t(i, r̄
(−i), τ, ω) parametrized by a threshold 0 ≤ t ≤ k and smoothness parameter ν > 0

which takes as input an index i ∈ [k], verifier internal randomness r̄(−i), transcript τ , and random
string ω ∈ {0, 1}poly(λ), and outputs a bit b ∈ {0, 1} such that if

∑
j ̸=i Acceptj(r̄

(−i), τ) = ℓ, then

Pr
ω←{0,1}poly(λ)

[SoftDecisionν,t(i, r̄
(−i), τ, ω) = 1] = min{1, 2ν(ℓ+1−t)}.

One can think of SoftDecision as using ω as its random coins to decide whether to accept with
probability min{1, 2ν(ℓ+1−t)}.

Remark 6.3. Recall that in Lemma 3.2, ValEst is defined with respect to a verdict function V
and adversary circuit A, where A takes as input randomness u and returns a response z, and V is
a deterministic function of u and z. For our setting, we take A := Az̄1 to be the algorithm that
has the first message z̄1 of B hardwired and on input r̄, which represents the verifier’s random
coins, computes the verifier’s message q̄ corresponding to the randomness r̄, and then applies Uq̄

to obtain z̄2, and outputs (q̄, z̄2). Now, we define V := Vz̄1 to be the verdict function which takes
as input r̄, (q̄, z̄2) and returns Accept(r̄, z̄1||q̄||z̄2).19 Note that the estimated success probability
in this ValEst is indeed the same success probability of the original prover B in the three-message
protocol.

The general framework of our reduction is the same as in the public-coin setting, so we refer
the reader to the informal explanation given in Section 5 for some intuition behind the reduction
in the three-message setting as well.

Taking ValEst, Prepare, and Repair′ to be the algorithms defined in Lemmas 3.2 and 4.1, our
algorithm A is described in the figure below (Figure 2).

19Note that q̄ is technically redundant since it can be computed from r̄ and z̄1. We include it only for notational
convenience.
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Projection 2 : SoftDecisionProjz̄1,j,r̄(−j),q,ω[ρ]

1. Use r̄(−j) to compute query q̄(−j) and complete q̄(−j) with q̄j = q to get query q̄.

2. Apply Uq̄ to ρ, resulting in state ρ′ =
∑

z̄2
(ρ′

z̄2)I,Z1
⊗ |z̄2⟩ ⟨z̄2|Z2

.

3. Apply the classical function SoftDecisionν,t(j, r̄
(−j), z̄1||q̄||·, ω) to ρ′ ⊗ |0⟩ ⟨0|E coherently over

responses z̄2 and write the outcome in register E , resulting in state
∑

z̄2
(ρ′

z̄2)I,Z1
⊗|z̄2⟩ ⟨z̄2|Z2

⊗
|bz̄2⟩ ⟨bz̄2 |E .

4. Measure and discard register E , obtaining b and remaining state ρ′′.

5. Apply U†
q̄ to get state σ = ρ′′′

I,Z1,Z2
before returning (ρ′′′, b).

Algorithm 2 : The Algorithm A

Let iter := 4λ/ξ and Λ := size(|ψ⟩) be the number of qubits of |ψ⟩. A begins with state |ψ⟩⊗iter
, and

runs as follows:

1. Set ε0 := ξ/4, ε := ε0
16·iter , δ := min{2−λ, 2−k}, η := 1

4k·iter/Nε,δ, ν :=
√
− log ξ/k, where Nε,δ is

the parameter from Lemma 3.2. Sample i← [k].

2. For s = 1 to iter:

(a) Set ρ = |ψ⟩ to be A’s sth copy of |ψ⟩. Measure the Z1 register to get response z̄1 and
leftover state ρ0. Run (p0,ρ1)← ValEstVz̄1

,Az̄1
(ρ0, ε, δ).

i. If p0 ≥ ξ − ε0, fix z̄1 and send z̄i1 to V before continuing to step 3.

ii. Else, if p0 < ξ − ε0 and s = iter, return (i,⊥).

3. Let P := {SoftDecisionProjz̄1,j,r̄(−j),q,ω}j∈[k],r̄(−j)∈{0,1}poly(λ),q∈Q,ω∈{0,1}poly(λ) be the projection
family defined above. Define the almost projective measurement family M := ValEstVz̄1 ,Az̄1

.

4. Receive the message q from V .

5. For s = 1 to iter:

(a) Generate verifier randomness r̄(−i) ← {0, 1}poly(λ) for executions [k] \ {i} and generate a
uniformly random string ω ← {0, 1}poly(λ). Let Π := SoftDecisionProjz̄1,i,r̄(−i),q,ω.

(b) Compute (ρ′
1, p1)← Mε,δ(ρ1).

(c) Compute (ρ′′
1 , p

′
1)← PrepareM,P(ρ

′
1, p1, ε, δ, η,Λ).

If p′1 < ξ − ε0 − (4s+ 1)ε, return (i,⊥).
(d) Compute (σ, b)← Π[ρ′′

1 ].

If b = 1, skip to step 6.

Else, if b = 0 and s = iter, return (i,⊥).
(e) Compute ρ1 = Repair′M,P,Π(σ, b, p

′
1, ε, δ, η,Λ).

6. Use r̄(−i) to compute query q̄(−i) and complete q̄(−i) with q̄i = q to get query q̄. Apply Uq̄ to
σ before measuring the Z2 register to get response z̄2.

7. Set τ = z̄1||q̄∗||z̄2 and send z̄i2 back to V .

8. Return (i, τ).

Runtime. The fact that A runs in time poly(|B|, λ, 1/ξ) follows from the efficiency of ValEst′,
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Prepare, and Repair′, and the fact that all parameters are polynomial in λ and 1/ξ.
Soundness. Before we analyze the soundness of our reduction, we note that we can assume without
loss of generality that ξ ≫ δ, as otherwise our guarantee is essentially trivially true.
We begin by considering the following hybrids H0 and H1:

• Hybrid H0: Run a random execution of A and return (i, τ).

• HybridH1: In step 5(a), replace i with a uniformly random index j ← [k], sample a fresh query
q ← Q, and define Π := SoftDecisionProjz̄1,j,r̄(−j),q,ω instead. Alternatively, one can think of
replacing the conditionally sampled projection Π in step 5(a) with an unconditionally sampled
projection Π← P. Having done this for all iterations, derive a full transcript τ . Now, sample
i← [k] and return (i, τ).

Note that by definition, H0 outputs a random transcript as produced by (A, V ), while H1 outputs
a transcript that has no dependence on i.

It is easy to see that step 6 of A undoes the effect of step 5 in SoftDecisionProj, and since step
6 is only reached when an outcome of b = 1 is measured, this means that the state after measuring
z̄2 has the property that SoftDecisionν,t(j, r̄

(−j), z̄1||q̄||z̄2, ω) = 1.
We will mirror the argument from the proof of Theorem 5.1, although with a slightly different

ordering.

Lemma 6.4. Pr
(i,τ)←H1

[τ = ⊥] ≤ 1/2k + negl(λ).

Proof of Lemma 6.4. We first bound the probability that H1 aborts in step 2:

Claim 6.4.1. H1 aborts in step 2 with probability at most negl(λ).

Proof of Claim 6.4.1. First, note that because the starting state |ψ⟩ has success probability which
is at least ξ, by property 1 of Lemma 3.2 and Fact 5.2.1, we have that

E[p0|(p0,ρ′)← ValEstVz̄1 ,Az̄1
(ρ0, ε, δ)] ≥ ξ.

Recall that since ValEst takes on values in [−1
2 ,

3
2 ] (see Lemma 3.2), by a simple Markov argument,

the probability that any particular iteration of step 2(a) will succeed is

Pr
[
p0 ≥ ξ − ε0

∣∣ (p0,ρ′)← ValEstVz̄1 ,Az̄1
(ρ0, ε, δ)

]
≥ 2ε0/3.

Thus, by using a Chernoff bound we conclude that the probability of aborting in step 2 is at most
negl(λ).

We now bound the probability of H1 aborting in step 5(c) or 5(d):

Claim 6.4.2. Conditioned on not aborting in step 2, H1 aborts in step 5 with probability at most
1
2k + negl(λ).

Proof of Claim 6.4.2. We begin by analyzing step 5(b) when s = 1: since the last ValEst measure-
ment in step 2(a) before A moved on to step 3 falls into the same projective family as M, by
property 2 of Lemma 3.2, step 5(b) will return p1 < ξ − ε0 − ε with probability at most δ.

Now, for all iterations s ≥ 1, if step 5(b) returned some value p1 ≥ ξ− ε0− (4(s− 1)+1)ε, then
by property 2 of Lemma 4.1, the probability that step 5(c) aborts during iteration s is at most
Nε,δ · (η + 4δ), where Nε,δ = O

(
1
ε2

log 1
δ

)
is the number of possible outcomes of CheckCoins (see

Lemma 3.2).
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Next, we let xs denote the probability that step 5(d) skips to step 6 in iteration s. By property
3 of Lemma 4.1 and a simple Markov argument,

Pr[step 5(b) in iter. s+ 1 gives p < ξ − ε0 − (4s+ 1)ε | not aborting in iter. s] ≤
Nε,δ(η + 4δ)

1− xs
.

But since we do not skip in iteration s to step 6 with precisely probability 1− xs, conditioned on
step 5(b) being good in iteration s, the probability that we fail in step 5(d) and step 5(b) is bad in
iteration s+ 1 is at most Nε,δ · (η + 4δ).

Iterating this argument, we see that the total probability that H1 aborts in step 5(c) and step
5(b) returns a value below what we expect in any iteration (unless step 5(d) succeeds, in which
case we are done) is at most δ + iter · 2Nε,δ(η + 4δ) ≤ 1/2k + negl(λ).

Otherwise, we can assume that in iteration s, no abort has occurred in step 5(c) up to iteration
s in round ℓ. In iteration s, given that the last Prepare returned a p ≥ ξ − ε0 − (4s+ 1)ε, we have
by property 2 of Lemma 4.1 that any subsequent ValEst would return a p ≥ ξ− ε0− (4s+2)ε with
probability at least 1− δ. But since such a ValEst is on expectation equal to the success probability
of the prover’s state at the start of step 5(d), this success probability is at least

(ξ − ε0 − (4s+ 2) · ε) · (1− δ)− 1

2
· δ ≥ ξ − ε0 − (4 · iter + 2) · ε− 3δ

2
≥ ξ − 3ε0

2
− 3δ

2
.

We now note that the event that
∑

j ̸=i Acceptj(r̄
(−j), τ) ≥ t−1 immediately implies that SoftDecision

returns 1 (and in particular this also means that if
∑

j Acceptj(r̄, τ) ≥ t then SoftDecision will re-
turn 1), so the probability of success at step 5(d) is at least the true success probability of the state
at the start of step 5(d). Thus, the probability of succeeding at step 5(d) is always at least

ξ − 3ε0
2
− 3δ

2
≥ 2ε0,

for sufficiently large λ. Therefore, we can apply a Chernoff bound and bound the probability of
aborting in step 5(d), which requires iter = λ/ε0 consecutive failures, by negl(λ).

The claim then follows immediately from a union bound.

The two claims, combined with a second union bound, bound the probability of H1 aborting in
any step by at most

negl(λ) + (1/2k + negl(λ)) = 1/2k + negl(λ),

as desired.

Next, if we letHj also denote the distribution of outputs that a random execution ofHj induces,
then we claim the following is true:

Lemma 6.5. TD(H0,H1) ≤
√
− log ξ/k + 1/4k + negl(λ).

Proof of Lemma 6.5. It is easy to see that step 1 of both H0 and H1 are identical, so we can assume
without loss of generality that both H0 and H1 start with the same fixed quantum state at the
beginning of step 5.

In the case of an abort in step 5(d) when s = iter, we define the ending prover state to be any
arbitrary quantum state (denoted by ⊥). It suffices to show that if and when step 6 is reached, the
prover states in H0 and H1 are close in trace distance.

We now consider a new series of hybrids relating H0 to H1. Define H0,h to be the algorithm
which behaves identically to H0 except when 1 ≤ s ≤ h, it samples fresh queries q ← Q in step 5(a)
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when determining Π instead of using the verifier’s query. By definition, we have that H0,0 := H0

and H0,iter := H1. Now, for each hybrid H0,h, let Dh denote the distribution of prover states at
the end of step 6 (or steps 5(c)/5(d) if an abort has occurred) and sh denote the distribution of
stopping times, which is the iteration on which the SoftDecisionProj procedure first succeeds (or
iter + 1 if SoftDecisionProj never succeeds).

Therefore, our goal is to show that H0,0 and H0,iter are close in trace distance:

TD(H0,0,H0,iter) ≤
√
− log ξ/k + 1/4k + negl(λ). (6)

We prove Equation (6) by proving that for every h ∈ [iter], H0,h−1 and H0,h are close in trace
distance:

Claim 6.5.1. For all 1 ≤ h ≤ iter,

TD(H0,h−1,H0,h) ≤ Pr[sh−1 = h] ·
√
− log ξ/k +

1

4k · iter
+ negl(λ).

Proof of Equation 6 assuming Claim 6.5.1. We first observe that for all h < h′, H0,h and H0,h′

behave identically up until the hth iteration (when s = h). This means that the trace distance
between the states in H0,h and H0,h′ up until step 5(d) in iteration h is zero. Additionally, since
the projection Π in the (h + 1)th iteration in H0,h is drawn from the same distribution as the in
the (h+1)th iteration of H0,h′ given an arbitrary starting quantum state which has no dependence
on i, for all s′ ≤ h+ 1, Pr[sh = s′] = Pr[sh′ = s′].

Therefore, we have that

TD(H0,0,H0,iter) ≤
iter∑
h=1

TD(H0,h−1,H0,h)

≤
iter∑
h=1

(
Pr[sh−1 = h] ·

√
− log ξ/k +

1

4k · iter
+ negl(λ)

)

=
iter∑
h=1

(
Pr[siter = h] ·

√
− log ξ/k

)
+

1

4k
+ negl(λ)

≤
√
− log ξ/k +

1

4k
+ negl(λ),

as desired.

We now prove Claim 6.5.1:

Proof of Claim 6.5.1. Fixing h, we observe (as noted earlier) that H0,h−1 and H0,h behave iden-
tically in the first h − 1 iterations, so TD(Dh−1|sh−1<h,Dh|sh<h) = 0 and thus Pr[sh−1 < h] =
Pr[sh < h]. Additionally, since the first h− 1 iterations have no dependence on i, we also have (as
noted earlier) that Pr[sh−1 = h] = Pr[sh = h].

Without loss of generality, we can fix the state ρ in H0,h−1 before the start of the hth iteration
(and assume this is the same starting state as in H0,h). A simple coupling argument now provides
a bound on the desired trace distance:

TD(H0,h−1,H0,h) ≤ Pr[sh−1 = h] · TD(H0,h−1|sh−1=h,H0,h|sh=h)

+ Pr [sh−1 > h] · TD(H0,h−1|sh−1>h,H0,h|sh>h)).

We can now bound this expression with the following two propositions:
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Proposition 6.6. Pr[sh−1 > h] · TD(H0,h−1|sh−1>h,H0,h|sh>h) ≤ 1
4k·iter + negl(λ).

Proof of Proposition 6.6. When h < iter, as noted earlier, it suffices to consider the state at the
start of the hth iteration of step 5. Observing that this state has no dependence on i or q (the
external verifier’s query), this implies that the sampling of Π in both hybrids is drawn from the
same uniform distribution over P. Therefore, we can apply Lemma 4.1 and note that by a coupling
argument, we have that

TD(H0,h−1|sh−1>h,H0,h|sh>h) ≤ TD(Dh−1|sh−1>h,Dh|sh>h) ≤
TD(Dh−1,Dh)

Pr[sh−1 > h]
≤

Nε,δ · η
Pr[sh−1 > h]

,

and so

Pr[sh−1 > h] · TD(H0,h−1|sh−1>h,H0,h|sh>h) ≤ Nε,δ · η ≤
1

4k · iter
.

On the other hand, through an identical argument as in Lemma 6.8, we observe that

Pr[siter−1 > iter] = negl(λ),

and thus

Pr[siter−1 > iter] · TD(H0,iter−1|siter−1>iter,H0,iter|siter>iter) ≤ Pr[siter−1 > iter] · 1 = negl(λ),

which finishes the proof.

Proposition 6.7. TD(Hj,h−1|sh−1=h,Hj,h|sh=h) ≤
√
− log ξ

k .

Proof of Proposition 6.7. First, it is easy to see that H0,s′−1 and H0,s′ behave identically before the
s′th iteration. Thus, by a coupling argument, we can fix the state (which does not yet have any
dependence on i) at the start of the s′th iteration. Note that since the transcript is fully measured
upon success and both hybrids use a query q̄ drawn from the same distribution (given a quantum
state which has no dependence on i) and first round message z̄1, it suffices to bound the trace
distance of (i, τ) and (j, τ) conditioned on success in the s′th iteration, where τ is the transcript
outputted by hybrid H0,s′ .

20

To this end, using another coupling argument, it suffices to consider for two fixed indices
i, j ← [k], fixed transcript τ , and fixed internal randomness r̄, the potential difference in verdicts of
SoftDecisionν,t(i, r̄

(−i), τ, ω) and SoftDecisionν,t(j, r̄
(−j), τ, ω). In the case where i = j, they behave

identically, so we assume that i ̸= j. Then, note that if
∑

n̸=i,j Acceptn(r̄, τ) = ℓ, we have that

ℓ+ 1 ≤ 1 +
∑
n̸=i

Acceptn(r̄, τ), 1 +
∑
n ̸=j

Acceptn(r̄, τ) ≤ ℓ+ 2,

and so for random i, j ← [k]∣∣∣Pr
ω
[SoftDecisionν,t(i, r̄

(−i), τ, ω) = 1]− Pr
ω
[SoftDecisionν,t(j, r̄

(−j), τ, ω) = 1]
∣∣∣ ≤ 1− 2−ν ≤ ν.

Since the probability of overall acceptance (i.e. the SoftDecision projection returning 1) is the same
for random i as it is for random j, we conclude that the trace distance of the outputs of the two

hybrids conditioned on success is at most ν =
√
− log ξ

k .

20We could equally have considered the transcript outputted by hybrid H0,s′−1, but note that they would behave
identically in the s′th iteration.
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Thus, we have that

TD(H0,h−1,H0,h) ≤ Pr[sh−1 = h] · TD(H0,h−1|sh−1=h,H0,h|sh=h)

+ Pr [sh−1 > h] · TD(H0,h−1|sh−1>h,H0,h|sh>h)

≤ Pr[sh−1 = h] ·
√
− log ξ

k
+

1

4k · iter
+ negl(λ),

as claimed, concluding the proof of Proposition 6.5.1.

This concludes the proof of Lemma 6.5.

For complete transcripts τ , we define r̄τ to be the internal randomness of the k-fold verifier

which is consistent with τ . Similarly, r̄
(−j)
τ refers to the randomness of all but the jth coordinate

of the k-fold verifier which is consistent with τ .

Lemma 6.8. Pr
(i,τ)←H1,ω

[∃j : SoftDecisionν,t(j, r̄(−j)τ , τ, ω) = 1] ≥ 1− Pr
(i,τ)←H1

[τ = ⊥].

Proof of Lemma 6.8. Like in the proof of Lemma 5.3, it suffices to prove that if H1 does not abort
and returns a transcript τ , then for the j and r̄ corresponding to the last projection computed in
step 5(d) (that is, r̄ is the completion of r̄(−j) with the randomness used to generate the associated
query q), SoftDecisionν,t(j, r̄

(−j), τ, ω) = 1 and r̄ is by definition the verifier randomness which is
consistent with τ . This follows directly from the observation that step 6 of H1 undoes step 5 of the
last (successful) SoftDecisionProj projection and so we can apply Fact 5.2.1.

Finally, define Goodν,t,j := {(τ, ω) | SoftDecisionν,t(j, r̄(−j)τ , τ, ω) = 1} to be the set of transcripts
τ and randomness ω such that the SoftDecision function returns 1 on τ given randomness ω. Then
we have the following:

Lemma 6.9. For all ν > 0, t = t(λ), and j,

Pr
(i,τ)←H1,ω

[
Accepti(r̄τ , τ) = 1 | (τ, ω) ∈ Goodν,t,j)

]
≥ t

k
− log k√

k
− 2

√
− log ξ

k
− 2√

k
− negl(λ).

Proof of Lemma 6.9. Note that we can assume that k ≥ 16 as otherwise the inequality is trivially
satisfied. Consider the modified function SoftDecision′ν,t which on input r̄τ , τ , and ω, returns 1 with

probability min{1, 2−ν(ℓ−t)} where ℓ =
∑

i Accepti(r̄, τ). We first consider the difference in the
probability that SoftDecision′ν,t returns 1 and the probability that SoftDecisionν,t(j, ·, ·, ·) returns
1 on input τ . It is clear from a coupling argument that for any transcript, the largest possible
difference between these two probabilities is 1− 2−ν ≤ ν, so we have that

Pr
(i,τ)←H1,ω

[SoftDecision′ν,t(r̄τ , τ, ω) = 1 | (τ, ω) ∈ Goodν,t,j ] ≥ 1− ν.

Thus, it suffices to bound

Pr
(i,τ)←H1,ω

[
Accepti(r̄τ , τ) = 1 | SoftDecision′ν,t(r̄τ , τ, ω) = 1

]
,

since Pr(i,τ)←H1,ω

[
Accepti(r̄τ , τ) = 1 | (τ, ω) ∈ Goodν,t,j

]
is at least the product of these two lower

bounds.
Here, we use the following lemma from [HPPW10]:
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Lemma 6.10 ([HPPW10]). Let D1, . . . , Dk be binary random variables where Pr
[∑k

i=1Di ≥ t
]
≥

ε, let L =
∑k

i=1Di, let t ≤ k, ν > 0, and letW be a binary random variable such that Pr[W = 1 | L = ℓ] =
min(1, 2ν(ℓ−t)). Then

1

k

k∑
i=1

Pr[Di = 0 |W = 1] ≤ 1− t

k
+

1

kν
(log k − log ε) +

4

ν2k2
.

Setting ν =
√
− log ξ/k like in our reduction and letting Di := Accepti, we first recall that in every

iteration of step 5 of H1, the SoftDecisionProj projection in step 5(d) always has a minimum success
probability of 2ε0 = ξ/2 for sufficiently large λ, we find that

1

k

k∑
i=1

Pr
(i,τ)←H1,ω

[Accepti(r̄τ , τ) = 0 | SoftDecision′ν,t(r̄τ , τ, ω) = 1] ≤ 1− t
k
+
log k√
k
+

√
− log(ξ/2)

k
+
4

k
+negl(λ)

Since τ is independent of i in H1, this means that

Pr
(i,τ)←H1,ω

[Accepti(r̄τ , τ) = 1 | SoftDecision′ν,t(r̄τ , τ, ω) = 1] ≥ t

k
− log k√

k
−
√
− log ξ

k
− 1√

k
− 4

k
− negl(λ)

≥ t

k
− log k√

k
−
√
− log ξ

k
− 2√

k
− negl(λ).

Multiplying these two lower bounds, we conclude that

Pr
(i,τ)←H1,ω

[
Accepti(r̄τ , τ) = 1 | (τ, ω) ∈ Goodν,t,j

]
≥ (1− ν)

(
t

k
− log k√

k
−
√
− log ξ

k
− 2√

k
− negl(λ)

)

≥ t

k
− log k√

k
−
√
− log ξ

k
− 2√

k
− ν − negl(λ)

=
t

k
− log k√

k
− 2

√
− log ξ

k
− 2√

k
− negl(λ),

as desired.

Consequently, from Lemmas 6.4, 6.5, 6.8, and 6.9, it follows that

Pr
[
⟨(A, Ṽ )(λ, x)⟩ = 1

]
= Pr

(i,τ)←H0

[Accepti(r̄τ , τ) = 1]

≥ Pr
(i,τ)←H1

[Accepti(r̄τ , τ) = 1]− TD(H1,H0)

≥

(
t

k
− log k√

k
− 2

√
− log ξ

k
− 2√

k
− negl(λ)

)(
1− Pr

(i,τ)←H1

[τ = ⊥]
)
− TD(H1,H0)

≥

(
t

k
− log k√

k
− 2

√
− log ξ

k
− 2√

k
− Pr

(i,τ)←H1

[τ = ⊥]− negl(λ)

)
− TD(H1,H0)

≥

(
t

k
− log k√

k
− 2

√
− log ξ

k
− 2√

k
− 1

2k
− negl(λ)

)
− 1

4k
−
√
− log ξ

k
− negl(λ)

≥ t

k
− log k√

k
− 3√

k
− 3

√
− log ξ

k
− negl(λ).
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Since we can assume without loss of generality that k > 8 (as A always suceeds with non-negative
probability), we have that

Pr
[
⟨(A, Ṽ )(λ, x)⟩ = 1

]
≥ t

k
− log k√

k
− 3√

k
− 3

√
− log ξ

k
− negl(λ)

≥ t

k
− 2 log k√

k
− 3

√
− log ξ

k
− negl(λ),

concluding the proof of Theorem 6.1.
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