
Separating Pseudorandom Codes from Local Oracles

Nico Döttling1⋆, Anne Müller1,2 , and Mahesh Sreekumar Rajasree1⋆

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{doettling,anne.mueller}@cispa.de, srmahesh1994@gmail.com

2 Graduate School of Computer Science, Saarland University, Germany

Abstract. Pseudorandom codes (PRCs) are error-correcting codes with the distinguishing
feature that their codewords are computationally indistinguishable from random strings. In-
troduced by Christ and Gunn (CRYPTO 2024), PRCs have found applications in areas such
as AI watermarking, where both robustness and pseudorandomness are essential. All known
constructions of PRCs rely on coding-theoretic hardness assumptions. In this work, we study
how inherent the use of coding-theoretic hardness is in the construction of pseudorandom
codes.
We show that there is no black-box construction of PRCs with binary alphabets capable of
decoding from a constant fraction of Bernoulli noise from a class of oracles we call local oracles.
The class of local oracles includes random oracles and trapdoor permutation oracles, and can be
interpreted as a meaningful notion of oracles that are not resilient against noise. Our separation
result is cast in the Impagliazzo-Rudich framework and crucially relies on the Bonami-Beckner
hypercontractivity theorem on the Boolean hypercube.
As a complementary result, we show that PRCs with large alphabets that can tolerate high error
rates can indeed be constructed in a black-box manner from one-way functions.
Keywords. pseudorandom codes, black-box separation

1 Introduction

Both coding theory and cryptography are deeply rooted in information theory, but their objectives
and principles differ in fundamental ways. Coding theory primarily addresses the challenge of
reliable communication and storage of information in the presence of noise. In the problem of error
correction, the goal is to encode data so that even if a portion of it is corrupted during transmission
or storage, the original message can still be recovered accurately. This is achieved by introducing
structured redundancy into the message, which allows errors to be detected and corrected by the
receiver.

The most basic task of cryptography, on the other hand, is to ensure secrecy of data. A central
concept in cryptography is pseudorandomness: the idea that one can efficiently generate strings
that are computationally indistinguishable from truly random ones. Hence pseudorandomness
hides any discernible structure. This property underlies many cryptographic primitives, such as
pseudorandom generators (PRGs), which expand short random seeds into long pseudorandom
outputs. PRGs are a cornerstone of modern cryptography and are known to be constructible from
the minimal assumption of one-way functions (OWFs) [Yao82, BM84, HILL99].

Pseudorandom Codes (PRCs) [CG24] are an exciting new notion that unites these two concepts
which are seemingly at odds. In a nutshell, a pseudorandom code is an error correcting code in
the sense that noisy codewords can be efficiently decoded from a bounded number of Hamming

⋆ Funded by the European Union (ERC, LACONIC, 101041207). Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of the European Union or the European
Research Council. Neither the European Union nor the granting authority can be held responsible for them.

https://orcid.org/0000-0002-4468-2651
https://orcid.org/0000-0002-8219-8270

errors given a secret key. At the same time, codewords are indistinguishable from uniformly random
strings to any outsider who does not possess the secret key.

This notion was first formalized by Christ and Gunn [CG24], with the purpose of studying
watermarking of AI models [ZDR19, KJGR21, Aar22, KGW+23, FGJ+25, ZALW24, KTHL24]. Their
work introduces a model which allows to embed data (e.g., a watermark) into machine learning
models in such a way that the watermark is resilient to small perturbations (errors), yet concealed
to anyone without the appropriate secret.

Constructing PRCs. Building PRCs turns out to be a highly non-trivial task [CG24, GM24, GG24,
AAC+24]. The naive approach of masking codewords of a standard error correcting code with a
pseudorandom function is flawed; if encoder and decoder are not synchronized (i.e. do not share
a common state) this does not yield a correct scheme. The basic premise to make this approach
work is to let the encoder include an encryption of such a state into the codeword. But now this
state must be protected against noise, hence we also need to encode it! It turns out that this is a
hen-and-egg problem: In order to build a pseudorandom code in this way we need to start with a
pseudorandom random code!

To break out of this loop, current constructions of PRCs rely on strong and sometimes non-
standard cryptographic assumptions strongly related to coding theory, such as the McEliece prob-
lem [McE78], the Learning Parity with Noise (LPN) assumption [Kea93, BFKL93], the planted
XOR or planted hyperloop assumptions [BKR23] or the existence of Local Weak Pseudorandom
Functions (LWPRFs) [GM24], etc. These assumptions go significantly beyond the foundational
concept of one-way functions and are typically viewed as strong assumptions in the hierarchy of
cryptographic assumptions, and they are explicitly linked to coding theory. In other words, each of
these assumptions more or less explicitly conjectures that some basic construction is, in essence, a
weak form of a pseudorandom code.

Given this landscape, a fundamental and natural question arises:

Can we construct pseudorandom codes from (minimal) cryptographic standard assumptions that do not
relate to coding theory?

The question of identifying the minimal assumptions required for constructing cryptographic
primitives lies at the heart of cryptographic theory. Understanding the weakest possible assumption
not only sheds light on the intrinsic complexity of a primitive but also helps delineate the boundaries
of what is cryptographically feasible. A landmark result in this direction is the seminal work of
Impagliazzo and Rudich [IR89], which showed that public-key encryption schemes cannot be
constructed from one-way functions using black-box techniques.

In a black-box construction of a cryptographic primitive P from an assumption A, the primitive
A is accessed solely as an oracle. Its internal structure is never exploited. Concretely, Impagliazzo
and Rudich [IR89] model one-way functions as random oracles, i.e. functions with a uniformly
random function table over some finite domain. This framework is attractive for its generality
and modularity, often leading to simpler and more broadly applicable constructions. A black-
box separation shows that no such construction is possible: that is, if a black-box construction of
P from A did exist, then there always exists an unbounded adversary breaking the security of
P which is efficient in the sense that it only makes a polynomial number of queries to A. The
Impagliazzo–Rudich [IR89] framework laid the foundation for a rich body of work establishing
black-box separations between various cryptographic primitives, illuminating the landscape of
cryptographic assumptions and revealing the limitations of black-box constructions in building
advanced cryptographic functionalities [Rud88, Rud91, Sim98, GKM+00, GMR01, HR04, BMG09,
BKSY11, MM11, MP12, Mat14, FR23].

2

1.1 Our Results

We consider the most basic setting of symmetric key pseudorandom codes against a Bernoulli
channel. In a symmetric key pseudorandom code, both the encoder Encode and the decoder Decode
use the same secret key sk. In a Bernoulli channel with bias-parameter ρ ∈ [0, 1], each transmitted bit
is independently flipped with probability 1

2 −
1
2 ρ. More generally, we say that an error e ∈ {0, 1}n

follows the Bernoulli distribution 3 Bern
ρ , if each bit ei of e is independently 1 with probability

1
2 −

1
2 ρ. Before we describe our technical main result, we will first discuss a consequence of this

result.

Theorem 1 (Informal). For any constant ρ, there is no black-box construction of symmetric key pseu-
dorandom codes against the Bernoulli channel with parameter ρ from random oracles or even trapdoor
permutations.

That is, we can black-box-separate symmetric key pseudorandom codes from the most common
generic assumptions used in both symmetric and public key cryptography, namely one-way func-
tions and trapdoor permutations.

Our actual separation encompasses an even larger class of oracles, namely any oracle we call
local. Consider the following experiment. An adversary A makes queries qi to an oracle O and
obtains responses yi. Let Z denote the set of query-response pairs (qi, yi). Assume now that we
want to simulate the output ofO on a query q without actually queryingO. Under what conditions
on q can we simulate the output consistently with the set Z without actually knowing Z?

In the case of random oracles this condition is simple: As long as q is distinct from all qi in
the set Z, we can just choose a fresh random output yq to simulate O, as in this case O(q) itself is
uniformly random and independent of Z. That is, our simulation of the random oracle is faithful
as long as q is not an intersection query. Further observe that if we are given back oracle access to the
random oracle O after simulating the response for q, we can faithfully simulate any future query
q′, irrespective of whether q′ is an intersection query or not: If q′ = q we answer with yq, otherwise
we query O on q′.

In general, we say that an oracle O is local, if for any (adversarially generated) set Z of query-
response pairs of polynomial size, there exists a set Qrel of related queries such that |Qrel | is of size
polynomial in |Z|. We further require that for any q /∈ Qrel there is a way to simulate the response of
O(q) without knowledge of Z and without actually querying O, such that the simulated response
is consistent with Z. Finally, we require that all future queries q′ can be simulated consistently with
respect to both Z and q, given oracle access to O (but without knowledge of Z).

While by the above discussion it is immediately clear that random oracles are local, in Section 4
we show that the trapdoor permutation oracle is also local.

Our main result is a separation of pseudorandom codes from any local oracle.

Theorem 2 (Informal). For any constant ρ, there is no black-box construction of symmetric key pseudo-
random codes against the Bernoulli channel with parameter ρ from a local oracle O.

By the above discussion Theorem 1 is immediately implied by Theorem 2.

Pseudorandom Code Oracles are not local. It is instructive to realize why oracles OPRC that implement
ideal pseudorandom codes are not local. Say that OPRC can decode from r = αn Hamming errors.
If we make an encoding query m to OPRC and obtain a codeword c, then by the error correction
property of OPRC any decoding query c + e must return m as long as the Hamming weight of e

3 Here we use the notation commonly used in the Boolean functions literature [O’D14], where the Bernoulli
distribution is parametrized in terms of the bias rather than the bit-flip probability.

3

is smaller than r. However, there are 2H(α)n such errors e 4, which means there is an exponential
number of related queries c + e!

Consequently, one way to interpret our result is that in order to construct a pseudorandom
code in a black-box way, we need to start with a primitive that is non-local and therefore already
exhibits strong pseudorandom code-like properties. This is consistent with our understanding of
current constructions of pseudorandom codes, which essentially bootstrap pseudorandom codes
with weak correctness and security properties into pseudorandom codes with strong correctness
and security properties [CG24, GM24, GG24, AAC+24].

A complementary result. As a complementary result, we show that symmetric key pseudorandom
codes over large alphabets, i.e. alphabets of size 2λ can be constructed from minimal cryptographic
assumptions.

Theorem 3. Assuming one-way functions there exists a symmetric-key pseudorandom code construction
over an alphabet of size 2λ with code parameters approaching the Singleton bound.

This demonstrates that the assumption of working over a small field is in fact critical for our
separation.

2 Technical Overview

Wewill now provide a high level outline of the main ideas of our oracle separation. For concreteness
assume thatO is a randomoracle and thatwe are given a candidate symmetric key PRC construction
PRCO = (KeyGen,EncodeO ,DecodeO) relative to O. Without loss of generality, we assume that the
key-generator KeyGen does not make any oracle queries; since we are in the symmetric key setting
any O-queries made by KeyGen can be deferred to both EncodeO and DecodeO . Hence assume that
KeyGen just outputs a uniformly random string sk ∈ {0, 1}λ. EncodeO and DecodeO are efficient in
the sense that they only make a poly(λ) number of O-queries.

Security of such a construction holds with respect to a distinguisher DO,F which has access to
the oracle O and an additional oracle F . D is allowed to make a polynomial number of queries to
its oracles, but is otherwise computationally unbounded, so as to model that O is the only source of
computational hardness [IR89].

The goal of the distinguisher is to distinguish the following two cases:

– The oracle F implements EncodeO(sk, ·) for sk ← KeyGen. I.e. given a query m it outputs
c = EncodeO(sk, m) ∈ {0, 1}n, choosing fresh random coins for Encode at each query.

– The oracle F outputs a fresh uniformly random string u ∈ {0, 1}n for each query. Note that F
is not a random oracle as querying F twice on the same input will lead to two independent
uniformly random outputs.

We say a pseudorandom code PRCO is secure (or satisfies the pseudorandomness property), if
every distinguisher D that makes at most poly(λ) queries has at most negligible advantage in this
experiment.

We will now outline why no such candidate construction PRCO = (KeyGen,EncodeO ,DecodeO)
can meet this security notion. That is, for every such candidate construction PRCO wewill construct
an efficient (i.e. poly-query) distinguisher which breaks the pseudorandomness property of PRCO
with 1/poly(λ) advantage.

4 Here H is the binary entropy function.

4

Warmup:DecodeO makes noO-queries. As a starting point,we observe that ifPRCO = (KeyGen,EncodeO ,DecodeO)
is such that Decode does not make any O queries, then unsurprisingly PRCO is insecure. Re-
call that |sk| = λ. Our distinguisher D queries its oracle F on (say) 2λ uniformly random bits
b1, . . . , b2λ ∈ {0, 1} and obtains the outputs x1, . . . , x2λ. First assume that x1, . . . , x2λ are distributed
uniformly. Fix any sk∗ ∈ {0, 1}λ. Since the bi ∈ {0, 1} are chosen uniformly and are independent
of the xi, the probability that it holds for all i that Decode(sk∗, xi) = bi is at most 2−2λ. Hence, a
union-bound shows that the probability that there exists and sk ∈ {0, 1}λ with this property is at
most 2−λ.

On the other hand, if the xi are codewords of PRCO , i.e. xi = EncodeO(sk, bi), then it holds by
the correctness of PRCO that Decode(sk, xi) = bi. Consequently, in this case we know that there
exists an sk such that Decode(sk∗, xi) = bi for all i ∈ [2λ].

This observation leads to a simple distinguishing strategy: Our distinguisherD just brute-forces
over all sk ∈ {0, 1}λ; if it finds an skwhich decodes all xi correctly it guesses 1 (with the meaning
that the oracle F implements EncodeO(sk, ·)), otherwise 0.

Decoders with correctness errors. The argument in the last paragraph assumed that if we use the
correct key sk, DecodeO(sk, x) will always output the correct message. The attack does not work
if Decode has a correctness error. However, even if the (honest) decoder has a correctness error,
the distinguisher can still measure whether a decoder works most of the time. Specifically, the
distinguisher can count the number of indices i ∈ [2λ] for which Decode(sk∗, xi) = bi holds. Call
this number Z.

If the xi are chosen uniformly, we expect Z to be close to 2λ/2 = λ. This can be made precise
using a Chernoff bound. On the other hand, if the xi are codewords, we would expect Z to be closer
to 2λ often enough. We can make this concrete using a Markov bound.

Observe that at this point none of our distinguishers so far relies on the fact that Decode can
correct errors. This will become crucial in the following paragraphs.

DecodeO makes one single O-query. Now consider the case that DecodeO makes one single O-query.
In this case our previous argument no longer works, the distinguisher cannot brute force over all
2λ many sk ∈ {0, 1}λ and test whether decoding works, as this would quickly exhaust its poly(λ)
budget of O-queries.

Hence, let’s have a closer look at how DecodeO may use its sole O-query. The decoder gets
as inputs a secret key sk and a word x ∈ {0, 1}n and formulates a query q for O. Hence, we can
describe this process by a function 5 Quersk : {0, 1}n → Q, where Q is the input domain of O, the
query space. Recall that we are analyzing a decoder for the Bernoulli channel. So what happens if
we obtain x by adding Bernoulli noise to a codeword c? We have that DecodeO(sk, c + e) queries O
on Quersk(c + e) and obtains O(Quersk(c + e)). Assume for now that O(Quersk(c + e)) actually
has an influence on the output of the decoder, if not we have essentially and oracle-free decoder
and the attack discussed above applies.

Observe that the random oracle O itself is not noise-robust; for any error e the oracle outputs
O(q) and O(q + e) are independently uniform. Now, as the Bernoulli error e has high entropy,
we claim that in order to achieve correctness the query-function Quersk must be noise robust!
Otherwise, if Quersk somehow allowed the error e to pass through, the response O(Quersk(c + e))
would be completely unpredictable from the view of the encoder. In other words, as it would be
very unlikely that the decoder ever queried O on Quersk(c + e), the codeword c is independent of
this value and the decoder does not actually need to query O, but could just locally simulate it!
Hence, if this happens too frequently, the decoder does not actually need O and we are once again
in the oracle-free decoder setting discussed above.
5 Assume for now that this process is deterministic. However, our techniques readily generalize to the case
where Quersk(x) takes additional random coins.

5

Hence, we conclude that the function Quersk must be noise robust on codewords! How can we
use this fact to construct an attack against the one-query decoder?

Strategy Our basic high-strategy will leverage the ideas sketched in the last paragraph to construct
an equivalent decoder that does not make use of the oracle! The discussion in the next paragraphs of
this outline will be somewhat technical, so this is a good point to reflect what goals we want to
achieve in each step.

– We will first establish that the only query functions Quersk that are robust on noisy codewords
are essentially almost constant functions, i.e. functions that produce only a small number of
heavy queries. This argument will rely on both sophisticated Fourier-analytic properties of
boolean functions (refer Section 5.1 and Section 5.2) and the pseudorandomness of PRCO (refer
Lemma 4).

– Once we have established this, we can argue that heavy queries computed by Quersk can be
learned from the function Quersk alone by an offline learner. This allows us to include query-
response pairs for such heavy queries into an augmented secret key. That is, we can effectively
compile out the single oracle query made by DecodeO and the previous attack against oracle-free
decoders applies. See Lemma 5 in the main section.

– If the decoder DecodeO makes more O-queries, we can compile out the oracle queries one at
a time. Some care is needed to ensure that successive queries to O are answered consistently
with the query that has been compiled out. See Theorem 9 in the main section.

Noise-robustness of Boolean Functions We will now bound the amount of noise robustness we can
expect from a query function. Towards this goal, we will make a small detour through the realm of
Fourier analysis of boolean functions. We will first introduce some terminology. Fix any function 6

Quer : {0, 1}n → Q. We will define two quantities with respect to Quer.

– For a query q ∈ Q, we define the global weight of q by w(q) = Pru[Quer(u) = q], i.e. the
probability that Quer outputs q when queried on a uniformly random u← {0, 1}n.

– For an x ∈ {0, 1}n and a query q ∈ Qwedefine the local weight of q by ℓx(q) = Pre[Quer(x+ e) =
q], where e← Bern

ρ follows a Bernoulli distribution. Intuitively, ℓx(q) measures how heavy q is
around x.

How are the global and the local weight of a query q related? Intuitively, if we have a query
q which has small global weight ϵ but large local weight δ around a word x, then we can think
of the function Quer as exhibiting error correcting properties around x; we can think of x as an
error-correcting encoding of q which can be decoded even under noise by evaluating Quer(x).

How frequent are such exceptional words x? Basic coding bounds such as the Hamming bound
(aka sphere-packing bound) suggest that such x are extremely rare, as each of them must come
with a Hamming ball around it that occupies a considerable portion of the boolean hypercube
{0, 1}n.

To make this intuition concrete, we will rely on the Bonami-Beckner hypercontractivity theo-
rem [Bon70, Bec75], a celebrated result in Fourier-analysis of Boolean functions. In broad terms
the result enables us to bound higher order moments of a noisy version of a Boolean function in
terms of lower order moments of the function itself. In our concrete case, the hypercontractivity
theorem allows us to bound the second moment of the local weight ℓu(q) (for a uniformly random
u ∈ {0, 1}n) in terms of the global weight w(q). Specifically we get for every q ∈ Q that

E
u←{0,1}n

[ℓu(q)2] ≤ w(q)1+c

6 In this paragraph we will ignore that there is a secret key involved.

6

for some constant c ∈ (0, 1) that only depends on the Bernoulli noise-rate ρ, but is independent of
the query function Quer!

Now, we call an x ∈ {0, 1}n (ϵ, δ)-exceptional (just exceptional for short) if there exists a q ∈ Q
with w(q) < ϵ and ℓx(q) > δ. We can now bound the probability that a uniformly random
u← {0, 1}n is exceptional by

Pr[u exceptional] = Pr[∃q ∈ Q with w(q) < ϵ s.t. ℓu(q) > δ]

≤ ∑
q∈Q

w(q)<ϵ

Pr[ℓu(q) > δ]

= ∑
q∈Q

w(q)<ϵ

Pr[ℓu(q)2 > δ2]

≤ ∑
q∈Q

w(q)<ϵ

w(q)1+c

δ2 ,

wherewehave just used the union bound and theMarkov inequality. Using the fact that∑q∈Q w(q) =
∑q∈Q Pr[Quer(u) = q] = 1 we can use a basic norm-interpolation inequality to conclude that

Pr[u exceptional] ≤ ϵc/δ2.

For the details, refer to Section 5.1.

Exceptionality of codewords. So far we have established a bound that a uniformly random string u←
{0, 1}n is exceptional. However, returning to our prior discussion, what we are actually interested
in is the noise-robustness of the query function Quersk when we evaluate it on a noisy codeword
c + e. As by the discussion in the last paragraph, this immediately relates to the exceptionality of c.

We also gained the insight that exceptional words are rare under the uniform measure on
{0, 1}n.

Wewill now translate these insights to codewords ofPRCO by relying on the pseudorandomness
of PRCO . Specifically, we can bound the probability that a codeword c is exceptional with respect
to the query function Quersk (using the correct secret key sk) by

Pr[c exceptional] ≤ 3ϵc/δ2.

In the following, let p∗ = ϵc/δ2. Assume towards contradiction that the probabilityPr[c exceptional] >
3p∗. Recall that it holds Pr[u exceptional] ≤ p∗. Note that if we are given a key sk we can deter-
mine whether a word x is exceptional without using the oracle O, i.e. just check whether there
is a q ∈ Q with w(q) < ϵ and ℓx(q) > δ. The distinguisher D queries its challenge oracle
N ≈ (|sk| + λ)/p∗ = poly(λ) times, obtaining words x1, . . . , xN . Now, for each candidate key
sk ∈ {0, 1}λ it determines the number of xi that are exceptional with respect to Quersk. If there
exists an sk such that this number is greater than 2p∗N it outputs 1, otherwise it outputs a uniformly
random bit. Using a Chernoff and a union-bound we can routinely show that if the xi ∈ {0, 1}n are
distributed uniformly, then no such sk exists, except with negligible probability 2−λ. On the other
hand, if the xi are valid codewords with respect to some key sk, then the event that we count more
than 2p∗N exceptional words for this key sk is at least p∗. Hence we obtain a distinguisher with
advantage p∗/2 = 1/poly(λ).

We conclude that the query function Quersk behaves essentially the same on noisy codewords
as it does on uniformly random words.

7

Compiling-out O-queries. Now we have all the tools in place to provide and analyze our main
technical step: Compiling out O-queries from the decoder.

Fix a secret key sk and hence a query function Quersk. We can we compile out theO-query from
the decoder as follows:

– Wewill introduce an offline-learner which queriesO on all globally ϵ-heavy queries. Then all of
the corresponding query-response pairs are included in into an augmented secret key (together
with sk). Observe that there can be at most 1/ϵ = poly(λ) many queries of global weight > ϵ,
hence this learner is efficient (in terms of its number of O-queries)

– The augmented key is given to an augmented decoder, which proceeds as follows. Given an input
x, it first computes q = Quersk(x) to determine whether q is in the list of queries that have been
learned by the offline learner. If so it takes the corresponding response from the list provided in
the augmented secret key. If not it locally simulates O by choosing a uniformly random output.

We will now analyze the correctness of the augmented decoder. Fix a secret key sk and thus
a query function Quersk. Further fix a codeword c = EncodeO(sk, b). Let QEncode be the set of
O-queries made by the encoder EncodeO during the encoding process for c.

Further run the offline-learner on sk to obtain an augmented secret key. When we run the
augmented decoder on c+ e (for a Bernoulli error e) the decoder formulates a query q = Quersk(c+
e). We now distinguish 3 different cases.

1. q is globally heavy, i.e. w(q) > ϵ. In this case the offline-learner has made this query and the
augmented decoder will find the corresponding response in the augmented secret key. Thus
the simulation is perfect, i.e. the oracle-free augmented decoder and the decoder DecodeO
behave identically.

2. q is globally light, i.e, w(q) ≤ ϵ but q /∈ QEncode, i.e. q is not an intersection query between
encoder and decoder. In this case the augmented decoder will simulate the oracle output locally.
As the query q was not made by the encoder, this is also a perfect simulation.

3. q is globally light, i.e, w(q) ≤ ϵ and q ∈ QEncode, i.e. q is an intersection query between encoder
and decoder. From the view of the decoder, this case is indistinguishable from the second case
as it does not have access to QEncode. Hence, it will locally simulate the oracle on the query q,
which will however be inconsistent with the query made by the encoder. We cannot provide
any guarantees in this case and need to assume that a decoding error happens.

Hence, to bound the probability of a decoding error we need to bound the probability that case
3 happens. First assume that c is not exceptional. Then it holds for any q ∈ QEncode with w(q) ≤ ϵ
that ℓc(q) < δ. Hence we can bound the probability that q = Quersk(c + e) ∈ QEncode via a union
bound by |QEncode| · δ. Now observe that the probability that c is exceptional is bounded by 3ϵc/δ2.
Therefore, we can bound the overall probability that case 3 happens by |QEncode| · δ + ϵc/δ2. Since
|QEncode| is a fixed polynomial in λ, we can control this term by choosing δ = 1/(|QEncode|poly(λ))
and ϵ = δ2/c/poly(λ) as sufficiently small inverse polynomials to achieve any desired inverse
polynomial error bound.

Note that by making ϵ smaller we increase the runtime of the offline learner, which is 1/ϵ. This
trade-off allows us to buy a smaller correctness error by increasing the runtime of the offline learner
and thus the size of the augmented secret key. Finally, note that the correctness analysis provided in
this paragraph crucially relies on the fact that we add noise! Hence we cannot provide a correctness
guarantee for our augmented decoder for noise-free codewords.

Attacking the Augmented Decoder. We have thus shown that a decoder DecodeO that makes a single
oracle query can be compiled into an augmented decoder that uses an augmented (and thus longer)
secret key, but does not make any oracle queries. Furthermore, this augmented decoder has a small

8

correctness error which can, however, be controlled by increasing the size of the augmented secret
key. We can thus implement the distinguisher against oracle free decoders sketched above, with
the small modification that the distinguisher now needs to add noise to the xi to ensure correctness
of the augmented decoder.

Compiling out multiple O-queries. The final step in our argument is to deal with decoders that make
multiple O-queries. However, as suggested above, the argument for compiling out a single O
query can be applied recursively, thus eliminating oracle queries one by one. The only slightly
complicating factor in this case is that we need to ensure that future oracle queries made by the
decoder are answered consistently. In essence, the augmented decoder has to check for each future
query if it is identical to the query that has been compiled out. If so it has to respond consistently,
either with a response from the augmented secret key, or with the same locally simulated response.
Any fresh query will be answered by an O-query.

This concludes the technical overview.

2.1 Related Work

Black-box separations. The seminal result by Impagliazzo and Rudich [IR89] (IR) famously demon-
strated the impossibility of a black-box construction of key-agreement (KA) protocols from one-way
permutations (OWPs). This work highlighted fundamental barriers in achieving public-key cryp-
tography from weaker primitives.

Building on this, Rudich, in his thesis [Rud88], established a black-box separation between
one-way functions (OWFs) and OWPs. This result, combined with the IR separation, implies that
OWFs are also insufficient for black-box constructions of KA and other public-key primitives. Later,
Rudich [Rud91] specifically showed a black-box separation between trapdoor functions (a stronger
primitive often used for public-key encryption) and KA protocols.

Further delineating the cryptographic hierarchy, Simon [Sim98] demonstrated a black-box
separation between OWPs and collision-resistant hash functions (CRHFs). The original IR separa-
tion itself has been subject to further investigation: Barak and Mahmoody [BMG09] presented a
stronger separation (a more efficient attack in the black-box model), while Brakerski et al. [BKSY11]
provided a simpler proof technique for the IR result.

Matsuda and Matsuura [MM11] showed that there is no fully black-box construction of OWPs
from length-increasing injective OWFs, even if the latter are only 1-bit-increasing. Mahmoody
and Pass [MP12] established that non-interactive commitment schemes cannot be constructed
from OWFs in a black-box manner. Döttling and Mour [DM24] showed that any fully-black-box
construction of correlation intractable hash for any t-wise independent class of relations from
collision-resistant hash, or one-way permutations, must make at least O(t) calls to the underlying
base primitive(s).

In the quantum setting, considerable effort has focused on understanding the implications of
quantum computation for these classical separations. Several works have investigated the separation
between post-quantum one-way functions (PQ-OWFs) and post-quantum key-agreement (PQ-KA)
protocols, including [ACC+22, BGV+23, LLLL24, LLLL25b, LLLL25a].

Watermarking. An important application of pseudorandom codes is the watermarking of large
language models (LLMs). A large language model takes as input a prompt and a random seed
x ← {0, 1}n and creates a response. The model samples output tokens based on the prompt, the
seed and the previously sampled tokens. A watermarking scheme for an LLM needs to fulfill the
following properties:

– Undetectability: The presence of a watermark in the output of the LLM cannot be detected
even if the model is queried multiple times adaptively.

9

– Robustness: The watermarked text should be detected as such even if a limited number of bits
are adversarially altered.

– Soundness: The watermark scheme should not create false positives, i.e., an independently
generated text should not be accepted by the detection algorithm.
The approach of [CG24] follows a line of work [CGZ24, KGW+23, ZALW24, KTHL24, FGJ+25]

that embeds watermarks in the output of LLMs by biasing the sampling of each token of the output.
When the output of the LLM has high entropy the tokens can be biased towards a codeword
of a pseudorandom code which can then be detected by the decoder of the PRC. Due to the
pseudorandomness of the PRC, a codeword can be use instead of the random seed. Then, the first
condition is fulfilled, which ensures that the quality of the output of the language model is not
degraded.

This watermarking technique has also been extended to image-generating models [GZS25].
A shortcoming of this watermarking technique is that the detection of the watermark requires
a secret key. The work of [FGJ+25] constructs a watermarking scheme with public detectability,
but they only achieve a weaker form of robustness. A strong form of robustness was ruled out by
[ZEF+24] for secret-key as well as public-key detectable watermarks. For a review of watermarking
techniques, see [ZGC+24].

Constructions of Pseudorandom Codes. In their original work [CG24] defined the error-correction
capabilities of the code with respect to random errors and in a follow-up work they showed that
the constructions are secure with respect to adversarially sampled errors [AAC+24]. Both works
consider the notion of secret-key as well as public-key PRCs. In a public-key PRC the encoding
algorithm is a public-key algorithm and the decoder is a secret-key algorithm, while in a secret-key
PRC both Encode and Decode rely on the secret key.

A zero-bit PRC7 is constructed in [GM24] under the assumption of local weak PRFs which are
implied by the hardness of learning log(n)-juntas over the uniform distribution of n-bit strings. A
recent work shows that the problem of learning k-junta distributions is computationally equivalent
to the problem of learning k-parity functions with noise [Ber25].

Further constructions of pseudorandom codes are explored in [GG24]. They construct public-
key pseudorandom codes from the planted hyperloop assumption [BKR23] and PRGs and they
also construct statistically secure pseudorandom codes assuming a space bounded adversary.
Additionally, they provide a construction assuming only one-way functions but the scheme tolerates
only o(1) errors introduced by a non-adaptive error channel.

In an earlier work [KKRT16] define a notion of pseudorandom codes that differs from the work
of [CG24]. Their notion of pseudorandom codes does not require efficient decoding and they do
not require actual pseudorandomness. Their codewords only need to be far apart. Such a notion
can be constructed from one-way functions.

3 Preliminaries

Notations: Let PPT denote probabilistic polynomial-time. We denote the set of all positive integers
upto n as [n] := {1, . . . , n}. For any set S, we denote P(S) as the power set of S. We denote
vectors/binary strings using bold font. For any two binary strings x, y, we use the notation x∥y to
denote x concatenated with y. Here, xi denotes the ith bit of x. We denote Ham(x) as the Hamming
weight of x, i.e., the number of ‘1’ in the binary string x. And, Ham(x, y) denotes the Hamming
distance between the binary strings x and y, i.e., the number of indices where x and y differ. We
denote Bn

r (x) as the set {x′ ∈ {0, 1}n∥Ham(x, x′) ≤ r}, i.e., the set of all strings with Hamming
distance of r from x. For any finite set S, x ← S denotes a uniformly random element x from the set
S. Similarly, for any distribution D, x ← D denotes an element x drawn from distribution D.
7 A zero-bit PRC can only encode a single message m = 0.

10

3.1 Probability and Linear Algebra over the Reals

Definition 1 (Bernoulli distribution). A binary random variable x ∈ {0, 1} is said to follow a
Bernoulli distribution with bias parameter ρ ∈ [0, 1], denoted as Berρ, if Pr[x = 1] = 1−ρ

2 . We say that
x ∈ {0, 1}n follows Bern

ρ , if each component xi of x independently follows Berρ.

Theorem 4 (Markov Inequality). Let X ∈ R≥0 be a non-negative random variable with expectation
E[X]. Then it holds for any δ > 0 that

Pr[X ≥ δ] ≤ E[X]/δ

We will also use the following simple Markov-like lemma.

Lemma 1. Let Z ∈ [0, 1] be a (discrete) random variable. Then it holds for all t ∈ [0, 1] that Pr[Z > t] ≥
E[Z]− t.

Proof. It holds that

E[Z] = ∑
z

z · Pr[Z = z]

= ∑
z≤t

z · Pr[Z = z] + ∑
z>t

z︸︷︷︸
≤1

·Pr[Z = z]

≤ t Pr[Z ≤ t]︸ ︷︷ ︸
≤1

+Pr[Z > t]

≤ t + Pr[Z > t],

It follows that Pr[Z > t] ≥ E[Z]− t.

Theorem 5 (Chernoff bound). Suppose X1, . . . , Xn are independent random variables taking values in
{0, 1}. Let X = ∑n

i=1 Xi denote their sum and let µ = E[X] denote the sum’s expected value. Then, for any
δ ≥ 0,

Pr(X ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ

Claim 1. Let r, n ∈N such that r ≤ n/2. Then, for ρ = 1− r
n ,

Pr
x←Bern

ρ

[Ham(x) ≥ r] ≤ e−r/3

Proof. We have Pr
x←Bern

ρ

[xi = 1] = r
2n . Now, using Chernoff bound, we have µ = r/2, and setting

δ = 1, we get the required bound.

Recall that over a vector space Rn, we define the Lp norm ∥ · ∥p via

∥x∥p = (
n

∑
i=1
|xi|p)1/p

for p ≥ 1 and ∥x∥∞ = maxi∈[n] |xi|. We will make use of the following very basic version of the
Riesz-Thorin Theorem [Tho48] that bounds ∥x∥p (for 1 ≤ p < ∞) in terms of ∥x∥1 and ∥x∥∞.

Lemma 2 (Norm-Interpolation). It holds for all 1 ≤ p < ∞ and all x ∈ Rn that

∥x∥p ≤ ∥x∥1−1/p
∞ · ∥x∥1/p

1 .

11

Proof. Fix 1 ≤ p < ∞. It holds for all x ∈ Rn that

∥x∥p
p =

n

∑
i=1
|xi|p =

n

∑
i=1

(|xi|︸︷︷︸
≤maxi |xi |
=∥x∥∞

)p−1 · |xi| ≤ ∥x∥
p−1
∞ ·

n

∑
i=1
|xi| = ∥x∥

p−1
∞ · ∥x∥1.

The statement follows by raising both sides to the power of 1/p.

3.2 Secret-key Pseudorandom Codes for Bernoulli Channel

Asecret-key PRCwith κ-correctness ρ-robustness is described by three algorithms (KeyGen,Encode,Decode)
parameterized by a secret key sk, satisfying the following criteria:

– (Syntax) There exist functions s, n, d, r, r′, r′′ ∈ N → N such that for all λ ∈ N, KeyGen :
1λ × {0, 1}r′′(λ) → {0, 1}s(λ), Encode : {0, 1}s(λ) × {0, 1}d(λ) × {0, 1}r′(λ) → {0, 1}n(λ), and
Decode : {0, 1}s(λ) × {0, 1}n(λ) × {0, 1}r(λ) → {0, 1}d(λ) ∪⊥.

– (Error correction, or robustness) For any λ ∈N, message m ∈ {0, 1}d(λ),

Pr

Decode(sk, c + e) ̸= m

∣∣∣∣∣∣∣
sk← KeyGen(1λ)

c← Encode(sk, m)

e← Bern
ρ

 ≤ κ(λ).

where the probability is over the randomness of KeyGen,Encode and error e.
– (Pseudorandomness) For any polynomial-time adversary A,

Pr
sk←KeyGen(1λ)

[
AOsk(·)(1λ) = 1

]
− Pr

U

[
AU(1λ ,·)(1λ) = 1

]
≤ negl(λ),

where Osk on any (even previously queried) input m samples a random r ∈ {0, 1}r′(λ) and
outputs Encode(sk, m; r) and U denotes an oracle that on any (even previously queried) input
returns a fresh uniform string in {0, 1}n.

Remark 1. Note that robustness is defined with respect to the Bernoulli distribution. In the context
of error-correcting codes, one typically specifies a decoding radius α such that any word of the
form c + e, where Ham(e) < αn, can be successfully decoded. By setting ρ = 1− α, we ensure that
an error vector e ← Bern

ρ satisfies Ham(e) < αn with high probability, provided α is a constant.
This follows from Claim 1 and the fact that for pseudorandomness, n = O(λ).

Remark 2. In [CG24], the authors also define a property called soundness which is not significant
in our work – (Soundness) For any fixed c ∈ Σn(λ),

Pr
sk←KeyGen(1λ)

[
Decode(sk, c) = ⊥

]
≥ 1− negl(λ).

If the scheme can only encode a singular message (i.e., k = 0), it is called a zero-bit PRC. Christ
and Gunn [CG24] required the soundness condition to ensure that the construction of zero-bit
PRCs is non-trivial.

12

3.3 Secret key encryption

A secret key encryption scheme SKE = (KeyGen,Enc,Dec) for unbounded length messages consists
of the following PPT algorithms.

– KeyGen(1λ) : The setup algorithm is a randomized algorithm that takes as input the security
parameter λ and outputs a secret key sk.

– Enc(sk, m ∈ {0, 1}∗) : The encryption algorithm is a randomized algorithm that takes as input
a secret key sk and a message m and outputs a ciphertext ct.

– Dec(sk, ct) : The decryption algorithm takes as input a secret key sk and a ciphertext ct and
outputs either a message m ∈ {0, 1}∗ or ⊥.

Correctness. For correctness, we require that for all λ ∈N, m ∈ {0, 1}∗ and sk← KeyGen(1λ),

Pr[Dec(sk,Enc(sk, m)) = m] = 1

where the probability is over the random bits used in the encryption algorithm.

$CPA-SKE Security. Consider the following experiment with an adversary A that takes 1λ and 1n

as input.

– Initialization Phase: The challenger runs sk← KeyGen(1λ).
– Pre-Challenge Query Phase: A is allowed to make polynomially many encryption queries. For

each query m, the challenger computes ct← SKE.Enc(sk, m) and returns ct to A.
– Challenge Phase: The challenger randomly chooses b ∈ {0, 1}. A sends a message m ∈ {0, 1}n

to the challenger. If b = 0, it samples a truly random string ct∗ from the ciphertext space. Else,
it computes a ciphertext ct∗ = Enc(sk, m) and sends it to A.8

– Post-Challenge Query Phase: A is allowed to make polynomially many encryption queries.
For each query m, the challenger computes ct← SKE.Enc(sk, m) and returns ct to A.

– Response Phase: A outputs b′ ∈ {0, 1} and wins the experiment if b = b′.

Definition 2. An SKE scheme is said to be $-CPA secure if for all PPT adversariesA, there exists a negligible
function negl(·) such that for all λ ∈N, n ∈N,

Pr[A wins in the above experiment] ≤ 1
2
+ negl(λ)

3.4 Pseudorandom Permutations

ApseudorandompermutationPRP = (KeyGen,Eval) consists of PPT algorithmsKeyGen : {0, 1}λ →
{0, 1}s(λ) and Eval : {0, 1}s(λ) × {0, 1}n(λ) → {0, 1}n(λ) such that for any sk ← KeyGen(1λ),
Eval(sk, ·) : {0, 1}n → {0, 1}n is a permutation. Also, for any PPT adversary A, there exists a negli-
gible function negl(·) such that for any λ ∈N, the following advantage function AdvPRPf (λ,A) is
negl(λ):

AdvPRP(λ,A) = Pr

x′ = x∗

∣∣∣∣∣∣∣
sk← KeyGen(1λ)

y∗ ← Eval(sk, x∗)

x′ ← A(1λ, y∗)

where the probability is over the randomness of A,KeyGen and the random choice of x∗.
8 Note that this security notion implies the standard indistinguishability security notion where the adversary
sends two messages m0, m1 and receives an encryption of one of the messages.

13

3.5 Linear Error-Correcting Codes

Definition 3 (Linear Error-Correcting Code). Let q be a power of 2 and Fq be the finite field of order q.
A linear [n, k, d] code C over Fq is a k-dimensional subspace of Fn

q where n is the codeword length, k is the
message length and d is the minimum distance. The minimum distance d is defined as

d = min
u,v∈C
u ̸=v

Ham(u, v)

The code is defined by two efficient algorithms Encode,Decode such that the following properties hold:

– Correctness: A code C is correct for all m ∈ Fk
q, Decode(Encode(m)) = m

– Robustness: A code C is robust for up to t errors if for all m ∈ Fk
q and e ∈ Fn

q such that the number of
non-zero symbols in e is less than t, it holds that Decode(Encode(m) + e) = m

Reed-Solomon codes are [n, k, n− k + 1] linear error-correcting codes [RS60].

3.6 Black-Box Constructions and Separations

Definition 4 (Black-boxConstruction). A construction of a PseudorandomCodePRC = (KeyGen,Encode,Decode)
from a family of oracle-sets

{
Oλ

}
is black-box if the following properties hold for anyO from the familyOλ

– Construction Efficiency: The algorithms KeyGenO , EncodeO , and DecodeO run in time polynomial
in λ ∈N (and input lengths) and make at most poly(λ) queries to O.

– Correctness: For any λ ∈N, message m ∈ {0, 1}d(λ),

Pr

DecodeO(sk, c + e) ̸= m

∣∣∣∣∣∣∣
sk← KeyGenO(1λ)

c← EncodeO(sk, m)

e← Bern
ρ

 ≤ κ(λ).

where the probability is over the randomness of KeyGen,Encode and error e.
– Security: For any (unbounded) adversary A that makes only polynomially many queries, there exists a

negligible function negl(·) such that for all λ ∈N,

Pr
O←Oλ

sk←KeyGenO(1λ)

[
AO(·),Osk(·)(1λ) = 1

]
− Pr

U

[
AO(·),U(1λ ,·)(1λ) = 1

]
≤ negl(λ),

where Osk on any (even previously queried) input m, samples a random r ∈ {0, 1}r′(λ) and outputs
EncodeO(sk, m; r) and U denotes an oracle that on any (even previously queried) input returns a fresh
uniform string in Σn.

Definition 5 (Black-box Separation). We say a PRC is black-box separated from a family of oracle sets if
for any black-box construction of a PRC from

{
Oλ

}
there exists an (unbounded) adversary A which makes

only polynomially many oracle queries, breaks the pseudorandomness of the PRC.

4 Local Oracles

In this section, we introduce a new class of oracles, called local oracles. A query q is said to be
related to a set of query-response pairs {(qi,O(qi))}i if the oracle’s response to q can be computed
or meaningfully constrained using the information in the set. Intuitively, this captures semantic

14

dependency among queries. An oracle is said to be local if, for any set Z of query-response pairs,
the number of queries q such that q is related to Z is bounded by a polynomial in |Z|.

Local oracles also possess a simulation strategy for two-stage algorithms, described as follows.
In the first stage, the algorithm issues a bounded number of queries, each of which is answered by
the oracle. It then outputs a new query q, which is required to be unrelated to any of the previous
queries. The simulator responds to q with a value r, without accessing the oracle. In the second
stage, the algorithm continues interacting with the oracle. These subsequent queries are simulated
by a stateful simulator that has access to the original oracle and the pair (q, r).

Because the simulator’s response r may not match the oracle’s actual output on q, it must
carefully handle new queries. If a new query is related to (q, r), the simulator generates a consistent
answer. Otherwise, it forwards the query to the oracle to ensure consistency with the responses
provided in the first phase.

Definition 6. A family of local oracles is a collection of oracle-relation pairs {(Oi,λ,Ri,λ)}i,λ such that
for each i, the oracle Oi,λ has domain Xλ and range Yλ, and Ri,λ is a relation between a query and a set
of query-response pairs: Ri,λ ⊆ Xλ × P(Zi,λ), where Zi,λ = {(x,Oi,λ(x)) | x ∈ Xλ}. The following
conditions must also be satisfied:

1. Locality: There exists a polynomial poly such that for any Z ∈ P(Zi,λ), the number of queries q ∈ Xλ

for which (q, Z) ∈ Ri,λ is at most poly(|Z|).
2. Simulatability: There exist an algorithm S1, a stateful oracle-aided algorithm S2 and a negligible

functionnegl(·) such that for any pair of oracle-aided algorithmsA = (A1,A2), the output distributions
of the following two experiments are statistically close:
– Sample (O,R) from the distribution {(Oi,λ,Ri,λ)}i.
– The adversary AO1 (1λ,R) makes poly(λ) queries to the oracle and outputs a query q and internal

state stA. Let T be the set of all query-response pairs collected during A1’s execution. If (q, T) ∈ R,
abort the experiment.
• Realworld:Compute r := O(q), and runA2 with oracle access toO(·) and input (1λ, q, r, stA).
• Simulated world: Run S1 on input q to obtain (r, stS) := S1(1λ, q). Then, runA2 with oracle

access to SO2 (1λ, stS, ·) and input (1λ, q, r, stA).
– The second adversary A2 outputs a bit in {0, 1} after making poly(λ) many oracle queries.

Let ExpReal denote a run of the experiment where A interacts with the real world and let ExpSim denote a
run of the experiment where A interacts with the simulated world, then

|Pr[ExpReal(1λ,A) = 1]− Pr[ExpSim(1λ,A) = 1]| < negl(λ)

This definition encompasses a wide class of oracles. Here, we explain how some common
functionalities achieve the definition.

Random oracles are local. Consider a random oracle which is typically used tomodel a OWF or a OWP.
Here, the relationR simply checks whether q is a query present as a query in Z. For an unrelated
query q, the simulator S1(q) returns a random r ∈ Y and sets the state as stS = (q, r). The simulator
SO2 (st, t) then responds with O(t) for t ̸= q whereas returns r for t = q. This simulation is exact
in the case of OWFs. However, In the case of OWPs, this simulation is imperfect with negligible
probability, since S1 might choose a value r already present in the image of some previous query in
Z, which could violate injectivity.

Trapdoor permutation oracles are local. Amore intricate example of a local oracle arises in the context of
trapdoor permutations. Here, the oracle is defined as a tuple (KeyGen,Eval, Inv) with the following
components:

KeyGen : SK → PK, Eval : PK×M→ N , Inv : SK ×N →M,

15

where KeyGen maps a secret key sk ∈ SK to a public key pk ∈ PK, Eval evaluates the permutation
under the public key, and Inv inverts it using the secret key.

The oracle O accepts queries of the form (mode, q), where mode ∈ {KeyGen,Eval, Inv} and q
belongs to the domain of the corresponding function. Suppose an adversary observes the set of
query-response pairs

Z = {((KeyGen, sk), pk), ((Eval, pk, x), y)}.

Then the query (Inv, sk, y) is related to Z, because given both (KeyGen, sk) = pk and (Eval, pk, x) = y,
one can deduce that (Inv, sk, y) = x. Thus, a simulator without oracle access cannot correctly
respond to (Inv, sk, y) unless this information is already known.

In contrast, queries that are unrelated to Z do not pose this issue. For example, for a fresh secret
key sk′ ̸= sk, the simulator S1 can simulate (KeyGen, sk′) by generating a fresh public key pk′.
However, to ensure consistency across the simulation, this key pair must be retained and passed
to the stateful simulator S2, since the second-stage adversary A2 may issue follow-up queries
involving (pk′, sk′) (e.g., (Eval, pk′, x) or (Inv, sk′, y)) and expect coherent answers.

In general, a query (Inv, sk, y) is related to Z if it is explicitly present in Z, or if both ((KeyGen, sk), pk)
and ((Eval, pk, x), y) appear in Z. A similar statement holds for queries of the form (Eval, pk, x).
Similarly, a query (KeyGen, sk) is related to Z if it appears explicitly, or if there exist queries
((Eval, pk, x), y) and ((Inv, sk, y), x) such that KeyGen(sk) = pk.

Since each pair of query-response elements in Z can relate to at most a single query, the total
number of queries related to Z is bounded by O(|Z|2). This quadratic bound implies that the oracle
satisfies the locality property.

Pseudorandom code oracles are not local. It is important to observe that high-error-tolerant PRC oracles
are not local. The reason is that, for a single Encode query producing a codeword c, all Decode
queries corresponding to codewords within the Hamming sphere centered at c are considered
related. Since the number of such queries is exponential in the dimension of the codeword, the
locality condition which requires only a polynomial number of related queries, cannot be satisfied.

5 Black-box Impossibility of Pseudorandom Codes

In this section, we present the proof of Theorem 2, i.e., there does not exist a black-box construction
of PRC from any local oracle O.

For any oracle O, let PRCO = (KeyGenO ,EncodeO ,DecodeO) denote a pseudorandom error-
correcting code. Without loss of generality, we can assume that KeyGen does not make any oracle
queries. Concretely, one simply treats its internal randomness as part of the secret key, and modifies
Encode and Decode to internally run KeyGen at the start, using this randomness to generate the
required key.

Theorem 6. Let O be a local oracle and PRCO = (KeyGen,EncodeO ,DecodeO) be a single-bit ρ-robust
PRC where ρ is any constant between 0 and 1/2. Then, there exists an (unbounded) distinguisher D and a
polynomial poly such that for all λ ∈N,

– D makes poly(λ) many oracle queries.
– D breaks the pseudorandomness property of PRCO with inverse polynomial advantage.

The proof proceeds in two main steps. In the first part, we show that for any given secret key sk,
there exists a corresponding augmented secret key sk′ such that, for a randomly chosen (errorless)
codeword c, the adversary A can correctly decode c using sk′ without querying the random oracle.
In the second part, we prove that no such augmented secret key sk′ can successfully decode many

16

uniformly random strings with non-negligible probability, thus allowing the adversary to distin-
guish between codewords and uniformly random strings. This contradicts the pseudorandomness
property of the PRC.

For the first part, we need to show that every query can either be learned or simulated. To
this end, we divide the queries made by the decoder into global and local queries and prove key
properties in the following section.

5.1 Global and Local Heavy Queries

Let Q be a finite set and let Quer : {0, 1}n × {0, 1}r → Q be an arbitrary function which maps an
input word x ∈ {0, 1}n and a string r ∈ {0, 1}r to a query Quer(x, r) ∈ Q. We think of r ∈ {0, 1}r

as random coins provided to Quer. In the following, if not specified, assume that u ← {0, 1}n is
chosen uniformly random, r ← {0, 1}r are uniformly random coins and that e← Bern

ρ follows a
Bernoulli distribution.

We will now define two weight functions for queries, namely a global and local weight function
which assign weights to queries.
– The global weight function w(q) measures how likely it is that a uniformly random input word

leads to the query q. It is defined via

w(q) = Pr
u,r
[Quer(u, r) = q],

where the probability is taken over the uniform choice of u← {0, 1}n.
– The local weight function ℓx(q) measures how likely it is that we get the query q, if we start from
a fixed word x and add Bernoulli noise e. It is defined by

ℓx(q) = Pr
e,r
[Quer(x + e, r) = q],

where e← Bern
ρ follows a Bernoulli distribution.

We will make critical use of the Bonami-Beckner hypercontractivity inequality [Bon70, Bec75].
We will first need some terminology concerning boolean functions.

Definition 7 (Lp-Norm and Smoothing of Boolean Functions). Let f : {0, 1}n → R be a boolean
function. For a 1 ≤ p < ∞, we define the Lp-norm of f via

∥ f ∥(p) = (Eu[| f (u)|p])1/p

and
∥ f ∥∞ = max

x∈{0,1}n
[| f (x)|].

Furthermore, for a 0 < ρ < 1/2, the noise operator Tρ maps f to a boolean function Tρ f : {0, 1}n → R

given by
(Tρ f)(x) = Ee←Bern

ρ
[f (x + e)].

Note that while very similar to the standard Lp norm on Rn, ∥ f ∥(p) norm is not the same as
the Lp norm on the truth table of f . The difference is a normalization factor 2−n/p, i.e. it holds for
all f that

∥ f ∥(p) = 2−n/p · ∥ f ∥p.

One effect of this normalization is that the relationship of the Lp and Lq norms reverses, i.e. while it
holds for all x that ∥x∥q ≤ ∥x∥p for 1 ≤ p < q, it holds that ∥ f ∥(p) ≤ ∥ f ∥(q) for 1 ≤ p < q 9. Hence,
to avoid confusion, we opted to use a slightly different notation for ∥ · ∥(p).

9 This fact is easily established via the Hölder inequality

17

Theorem 7 (Hypercontractivity Theorem [Bon70, Bec75, O’D14]). Let f : {0, 1}n → R be a
boolean function, let 0 ≤ s ≤ t < ∞ and let 0 ≤ ρ ≤

√
s
t . Then it holds that

∥Tρ f ∥(1+t) ≤ ∥ f ∥(1+s).

We will now use the hypercontractivity theorem to relate the global and local weights defined
above. The following lemma allows us to bound the r-th moment of ℓu(q) (for a uniform u ←
{0, 1}n) by a low degree term in the global weight w(q).

Lemma 3. Let 0 < ρ < 1 and let t ≥ 0. Fix a query q ∈ Q. Then it holds that

Eu[ℓu(q)1+t] ≤ (w(q))(1+t)/(1+ρ2t).

Furthermore, for 0 < δ ≤ 1, we have the tail-bound

Pr
u
[ℓu(q) ≥ δ] ≤ (w(q))(1+t)/(1+ρ2t)

δ1+t .

Proof. Define the function pq : {0, 1}n → R by pq(x) = Prr[Quer(x, r) = q]. First note that

(Tρ pq)(x) = Ee←Bern
ρ
[pq(x + e)] = Pr

e,r
[Quer(x + e, r) = q] = ℓx(q).

Hence it holds by hypercontractivity (Theorem 7) with s = ρ2 · t (which satisfies the requirements
of the theorem) that

Eu[ℓu(q)r] = ∥Tρ pq∥1+t
(1+t) ≤ ∥pq∥1+t

(1+s). (1)

It further holds that

∥pq∥1+s
(1+s) = Eu[pq(u)1+s] = Eu[Pr

r
[Quer(u, r) = q]1+s]

≤ Eu[Pr
r
[Quer(u, r) = q]] = Pr

u,r
[Quer(u, r) = q]

= w(q),

where the inequality Prr[Quer(u, r) = q]1+s ≤ Prr[Quer(u, r) = q] holds as 1 + s > 1 and
Prr[Quer(u, r) = q] ≤ 1. Hence, combining with (1) we obtain that

Eu[ℓu(q)1+t] ≤ (w(q))(1+t)/(1+s) = (w(q))(1+t)/(1+ρ2t).

The furthermore part of the lemma-statement now follows routinely from theMarkov-inequality (The-
orem 4): As ℓx(q) = Pre,r[Quer(x + e, r) = q] ≥ 0, it holds that

Pr
u
[ℓu(q) ≥ δ] = Pr

u
[(ℓu(q))1+t ≥ δ1+t]

≤ Eu[(ℓu(q))1+t] ≤ (w(q))(1+t)/(1+ρ2t)/δ1+t.

5.2 Exceptionality

We will now define a notion of exceptionality for words x ∈ {0, 1}n. In a nutshell, we call an x
exceptional if it exhibits code-word like properties, in the sense that for such an x there exists a
query q ∈ Q which has low global weight but high local weight with respect to x. Intuitively, this
can be interpreted as the set Cq = {y ∈ {0, 1}n | Quer(y) = q} having a large intersection with the
hamming ball around x.

18

Definition 8. Fix 0 < ϵ < δ < 1. We say that a word x ∈ {0, 1}n is (ϵ, δ)-exceptional with respect to a
query function Quer : {0, 1}n × {0, 1}r → Q, in short we say the event EXCQuer,ϵ,δ(x) happens, if there
exists a query q ∈ Q such that w(q) < ϵ and ℓx(q) ≥ δ (with respect to the query function Quer).

Looking ahead, we will use the notion of exceptionality at the core-part of our separation,
namely to argue that the probability that there are globally non-heavy intersection queries between
encoder and decoder is necessarily low. Hence, it will suffice for our learner to learn the globally
heavy queries, which are independent of the word to be decoded.

We will now use Lemma 3 to establish our main result of this section, which shows that when
we choose u ← {0, 1}n uniformly random, then the probability that u is (ϵ, δ)-exceptional is at
most ϵ(1+t)/(1+ρ2t)−1

δ1+t . Note that this bound is independent of |Q| and even the query function Quer.
Theorem 8. Fix an integer n > 0 and fix a ρ > 0. Fix an integer r > 0, any finite set Q, and any query
function Quer : {0, 1}n × {0, 1}r → Q. Let w, ℓ be defined as above.Fix any 0 < ϵ < δ < 1 and let
EXCQuer,ϵ,δ(·) be as defined in Definition 8. Let u← {0, 1}n. Then it holds that

Pr
u
[EXCQuer,ϵ,δ(u)] ≤

ϵ(1+t)/(1+ρ2t)−1

δ1+t

Note that n and r are only stated for syntactical reasons. Before we go into the proof of the theorem,
notice that the exponent (1 + t)/(1 + ρ2t)− 1 is greater than 0 for any choice of ρ ∈ (0, 1) and any
t > 0. Hence the choice of the concrete t will not be critical when we use Theorem 8, hence for
convenience we can choose t = 1. Note that we can control this bound by making ϵ small, which
will effectively translate to making our learner learn more queries.
Proof. For notational convenience, denote γ = (1+ t)/(1+ ρ2t) > 0 in this proof. By a union-bound
and Lemma 3 it holds that

Pr
u
[EXCQuer,ϵ,δ(u)] = Pr

u
[∃q ∈ Q s.t. w(q) < ϵ and ℓu(q) ≥ δ]

≤ ∑
q∈Q

w(q)<ϵ

Pr
u
[ℓu(q) ≥ δ]

≤ ∑
q∈Q

w(q)<ϵ

w(q)γ/δ1+t

=
1

δ1+t · ∑
q∈Q

w(q)<ϵ

w(q)γ.

Now define a vector w ∈ RQ such that wq = w(q) if w(q) < ϵ and otherwise wq = 0. By the above
it holds that

Pr
u
[EXCQuer,ϵ,δ(u)] ≤

1
δ1+t · ∥w∥

γ
γ.

Furthermore, since every component of w is ϵ-bounded (and greater equal 0) we have that
∥w∥∞ = max

q∈Q
|wq| < ϵ.

Finally, it holds that
∥w∥1 ≤ ∑

q∈Q
w(q) = ∑

q∈Q
Pr
u,r
[Quer(u, r) = q] = 1.

Hence, we have that ∥w∥1 ≤ 1 and ∥w∥∞ < ϵ. By the norm-interpolation lemma (Lemma 2) we
get that ∥w∥γ

γ < ϵγ−1. We conclude that

Pr
u
[EXCQuer,ϵ,δ(u)] ≤

ϵγ−1

δ1+t =
ϵ(1+t)/(1+ρ2t)−1

δ1+t

19

5.3 Compiling-Out Oracle Queries

We now describe how to eliminate oracle queries from the decoding algorithm, thereby obtaining
an oracle-free decoder. We start by defining PRCs with an augmented decoding procedure.

Definition 9 (Augmented Decoding). A secret-key PRC PRCO = (KeyGen,EncodeO ,DecodeO) has
κ-augmented correctness with respect to augmented decoding algorithms (LearnQueryO ,ADecodeO) if
the following holds. ADecode is a PPT oracle algorithm and for all λ ∈N,

Pr

ADecodeO(sk, aux, c + e) ̸= m

∣∣∣∣∣∣∣∣∣∣∣

sk← KeyGen(1λ)

m← {0, 1}d, e← Bern
ρ

c← EncodeO(sk, m)

aux← LearnQueryO(sk, ϵ)

 ≤ κ

Before we can prove our lemma for this section, we will prove a technical lemma which estab-
lishes that exceptional queries are almost as rare for codewords of pseudorandom codes as they
are for uniformly random words. The basic idea is that, since we can determine exceptionality
of a word without using the oracle, if exceptionality of codewords was noticeably different than it
is for random words, we would obtain a distinguisher (without using the oracle), contradicting
pseudorandomness. In the following, we will use EXCsk,ϵ,δ(x) as a shorthand for EXCQuersk,ϵ,δ(x)

Lemma 4. Let PRCO = (KeyGen,EncodeO ,DecodeO , LearnQueryO ,ADecodeO) be an augmented pseu-
dorandom code. Fix a query function Quersk′ : {0, 1}n × {0, 1}r → Q which depends on an augmented

key sk′ = (sk, aux). Let p∗ = p∗(ϵ, δ) = ϵ(1−ρ2)/(1+ρ2)

δ2 . Assume that sk′ = (sk, aux), where sk′ ∈ {0, 1}k

and c are generated as in the experiment described in Definition 9. If Pr[EXCsk′ ,ϵ,δ(c)] > 3p∗, then there
exists a distinguisher D distinguishing codewords of PRCO from the uniform distribution on {0, 1}n with
advantage 1

2 p∗ − 2−λ given N = (k + λ)/p∗ samples, but neither sk nor access to O. Equivalently, if
PRCO is pseudorandom, then Pr[EXCsk′ ,ϵ,δ(c)] ≤ 3p∗.

Note that the distinguisher D does not know the secret key sk. Further note that due to the oracle
O, codewords of PRCO may be arbitrarily correlated.

Proof. The distinguisher D proceeds as follows, given N samples x1, . . . , xN obtained from its
encoding oracle. If there exists an sk ∈ {0, 1}k such that 1

N ∑N
i=1 EXCsk,ϵ,δ(xi) > 2p∗ guess 1 with

the meaning that the samples x1, . . . , xN are codewords of PRCO . Otherwise output a uniformly
random bit.

Wewill first show that if the x1, . . . , xN are chosen uniformly random, thenD outputs a uniformly
random bit, except with negligible probability 2−λ. Fix an sk∗ ∈ {0, 1}k and let u1, . . . , uN ← {0, 1}n

be chosen i.i.d. uniformly random. Then it holds that

Eu1,...,uN

[
N

∑
i=1

EXCsk∗ ,ϵ,δ(ui)

]
=

N

∑
i=1

Eui [EXCsk∗ ,ϵ,δ(ui)]

=
N

∑
i=1

Pr
ui
[EXCsk∗ ,ϵ,δ(ui)]︸ ︷︷ ︸

=p∗

= N · p∗.

20

Hence, by the Chernoff bound we obtain that

Pr
u1,...,uN

[
1
N

N

∑
i=1

EXCsk∗ ,ϵ,δ(ui) > 2 · p∗] = Pr
u1,...,uN

[
N

∑
i=1

EXCsk∗ ,ϵ,δ(ui) > 2 · p∗ · N]

≤ e−4/3·p∗ ·N

≤ 2−p∗ ·N

Hence, via a union-bound we obtain

Pr[∃sk∗ ∈ {0, 1}k :
1
N

N

∑
i=1

EXCsk∗ ,ϵ,δ(ui) > 2 · p∗]

≤ ∑
sk∗∈{0,1}k

Pr
u1,...,uN

[
1
N

N

∑
i=1

EXCsk∗ ,ϵ,δ(ui) > 2 · p∗]

≤ 2k · 2−p∗ ·N = 2k−p∗ ·N .

Hence, choosing N ≥ (k + λ)/p∗ we get that on input u1, . . . , uN , D outputs a uniformly random
bit, except with negligible probability 2−λ.

Now assume that c1, . . . , cN were generated by PRCO . Define that random variable

Z =
1
N

N

∑
i=1

EXCsk′ ,ϵ,δ(ci).

First note that Z ∈ [0, 1] as for all i ∈ [N] we have EXCsk′ ,ϵ,δ(ci) ∈ {0, 1}. Furthermore, it holds that

Esk′ ,O,c1,...,cn
[Z] =

1
N

N

∑
i=1

Esk′ ,O,ci
[EXCsk′ ,ϵ,δ(ci)] =

1
N

N

∑
i=1

Pr
sk′ ,O,ci

[EXCsk′ ,ϵ,δ(ci)]︸ ︷︷ ︸
>3p∗

> 3p∗.

Hence it holds by Lemma 1 that Pr[Z > 2p∗] ≥ E[Z]− 2p∗ > p∗. It follows that

Pr[Z > 2p∗] > p∗.

Hence we have that

Pr[D((ci)i) = 1]
= Pr[D((ci)i) = 1|Z > 2p∗]︸ ︷︷ ︸

=1

Pr[Z > 2p∗] + Pr[D((ci)i) = 1|Z ≤ 2p∗]︸ ︷︷ ︸
=1/2

Pr[Z ≤ 2p∗]

= Pr[Z > 2p∗] +
1
2
(1− Pr[Z > 2p∗])

=
1
2
+

1
2

Pr[Z > 2p∗]

>
1
2
+

1
2

p∗.

We conclude that our distinguisher has advantage 1
2 p∗ − 2−λ.

Theorem 9. Fix the oracle O : {0, 1}∗ → {0, 1}∗. Let PRCO = (KeyGen, EncodeO , DecodeO) be a
pseudorandom code with κ-correctness and ρ-robustness. Then, there exists an (unbounded) oracle algorithm
LearnQueryO and an efficient deterministic decoderDecode′ such that for allλ ∈N, (KeyGen, LearnQueryO ,EncodeO ,Decode′)
is a PRC with κ + 1/p(λ)-augmented correctness and ρ-robustness for any polynomial p(·).

21

We will prove Theorem 9 via the following Lemma, which enables us to remove oracle queries
iteratively.

Lemma 5. Let PRCO = (KeyGen,EncodeO ,DecodeO) be a PRC which has an augmented decoder
(LearnQueryO ,ADecodeO) with correctness error κ and ρ robustness relative to an oracle O. Let S =
(S1,SO2) be a simulator relative to the oracle O. Assume that ADecode makes at most ℓ O-queries and
KeyGen makes no oracle queries. Then for every κ′ = 1/poly(λ), there exists an augmented decoder
(LearnQuery′O ,ADecode′O) for PRCO with the following properties.

1. ADecode′ makes (ℓ− 1) O-queries.
2. For all λ ∈ N, (KeyGen, LearnQueryO ,EncodeO , ADecode′O) is a PRC with κ + κ′-augmented

correctness and ρ-robustness.
3. The number of O-queries made by LearnQuery′ is at most the sum of the number of O-queries made by

LearnQuery and 1/ϵ where ϵ only depends on κ′ and ρ.
4. The size of the output of LearnQuery′ is atmost poly(λ)/ϵ.

Proof. We start by describing the LearnQuery′ and ADecode′ algorithms.

Description of LearnQuery′: On input (sk, ϵ), LearnQuery′ proceeds as follows:

1. Run aux← LearnQueryO(sk, ϵ).
2. Set sk′ = (sk, aux) and let Quersk′ : {0, 1}n × {0, 1}r → Q be the function that computes the

first O-query of ADecodeO(sk, aux, ·). Define the global weight function w(·) with respect to
Quersk′ .

3. Let Q̃ = {q ∈ Q : w(q) ≥ ϵ} be the set of all globally ϵ-heavy queries. Query the oracle O on
all q ∈ Q̃ and store all query-response pairs in a list L.

4. Define aux′ = aux∥L and output aux′.

Description of ADecode′: On input (sk, aux′, c), where aux is a list of query-response pairs. ADecode′
does the following

1. Parse aux′ = aux∥L.
2. Run ADecodeO(sk, aux, c) until it makes the first query q, check if the query q is in L. If so reply

with the corresponding stored response, if not then run the simulator (y, st)← S1(q) and reply
y.

3. If the response to the query q was taken from L, answer the remaining O-queries of ADecode
normally using O. Otherwise, if the response to q was simulated by the first simulator, i.e.,
(y, st)← S1(q), answer the remaining queries using SO2 (st).

4. Output the final output of ADecode.

Correctness of ADecode′ - From Exceptionality to Intersection Queries: We will now analyze the correct-
ness error of the augmented decoder (LearnQuery′,ADecode′). First, note that the size of the set Q̃
is at most 1/ϵ. As all q ∈ Q̃ are ϵ-heavy it holds that

|Q̃| · ϵ ≤ ∑
q∈Q̃

w(q) = ∑
q∈Q̃

Pr[Quersk′(u, r) = q] = Pr[Quersk′(u, r) ∈ Q̃] ≤ 1.

It follows that |Q̃| ≤ 1/ϵ. Hence, the learner LearnQuery′ makes at most 1/ϵ oracle queries and
thus satisfies the efficiency requirement.

Nowconsider the correctness experiments of (LearnQuery,ADecode) and (LearnQuery′,ADecode′).
In both experiments:

– Sample an oracle O

22

– Run sk← KeyGen(1λ)
– m← {0, 1}d

– c← EncodeO(sk, m)
– e← Bern

ρ

In (LearnQuery,ADecode) we then compute

– aux← LearnQueryO(sk, ϵ)

– If ADecodeO(sk, aux, c + e) = m output 1, otherwise 0

Whereas in (LearnQuery′,ADecode′) we continue by

– aux′ ← LearnQuery′
O
(sk, ϵ)

– If ADecode′O(sk, aux, c + e) = m output 1, otherwise 0

Now let ZEncode be the set of query-response pairs (qi, yi)made and obtained by EncodeO(sk, m),
i.e. EncodeO(sk, m) has made queries qi toO and obtained the responses yi = O(qi). By the locality
property ofO, the size of the set Qrel ⊂ Q of queries related to ZEncode is atmost |Qrel | ≤ f (|ZEncode|)
for some fixed polynomial f which only depends on O. Consequently, as |ZEncode| = poly(λ) we
obtain that M = |Qrel | = poly(λ).

Now let q = Quersk′(c + e) and consider the following 3 cases:

1. q has weight w(q) ≥ ϵ. In this case LearnQuery′
O queries q, consequently a corresponding

query-response pair for q is in the list L. All further queries are answered using O. Hence
ADecode′ simulates ADecode perfectly, i.e. their outputs are identically distributed.

2. q has weight w(q) < ϵ but q /∈ Qrel . In this case ADecode′ simulates the response y to query
q via (y, st) ← S1(q). All further queries are answered via SO2 (st). Hence, as q /∈ Qrel by the
simulatability property of the local oracle O it holds that the output distribution of ADecode′ is
statistically close to that of ADecode.

3. q has weight w(q) < ϵ and q ∈ Qrel . Such queries are problematic and cannot be answered
consistently by ADecode′. Call this event BAD.

By the above discussion, conditioned on ¬BAD the outputs of the correctness experiment of
(LearnQuery′,ADecode′) is identically distributed to the output of the correctness experiment of
(LearnQuery,ADecode).

Thus we need to show that case 3, i.e. the event BAD only occurs with small probability. For
this purpose recall the notion of exceptional queries (Definition 8). EXCQuersk′ ,ϵ,δ(c) holds, if and
only if there exists a query q ∈ Q such that w(q) < ϵ and ℓc(q) ≥ δ (both with respect to the query
function Quersk′). Lemma 4 and Theorem 8 (with t = 1) establish that if c← EncodeO(sk′, m) as
above, then

Pr[EXCQuersk′ ,ϵ,δ(c)] ≤ 3p∗(ϵ, δ) = 3 · ϵ(1−ρ2)/(1+ρ2)

δ2 .

Pr[BAD] = Pr[BAD|¬EXCsk′(c)]Pr[¬EXCsk′(c)]︸ ︷︷ ︸
≤1

+Pr[BAD|EXCsk′(c)]︸ ︷︷ ︸
≤1

Pr[EXCsk′(c)]︸ ︷︷ ︸
≤3p∗

≤ Pr[BAD|¬EXCsk′(c)] + 3p∗.

It remains to bound Pr[BAD|¬EXCsk′(c)]. Hence fix any sk′ and c with EXCsk′ ,ϵ,δ(c) = 0, i.e. it holds
for all q ∈ Q with w(q) < ϵ that ℓc(q) < δ, that is Pre[Quersk′(c + e) = q] < δ. Note that this last
probability only depends on e. In the following fix any set Qrel with |Qrel | ≤ M.

23

Then it holds that

Pr[BAD] = Pr[∃q ∈ Qrel : Quersk′(c + e) = q and w(q) < ϵ]

≤ ∑
q∈Qrel
w(g)<ϵ

Pr[Quersk′(c + e) = q]︸ ︷︷ ︸
=ℓc(q)<δ

< M · δ.

We conclude that

Pr[BAD] < M · δ + 3p∗ = M · δ + 3 · ϵ(1−ρ2)/(1+ρ2)

δ2 .

Hence, to limit the additional correctness error of (LearnQuery′O ,ADecode) (which occurs exactly
when BAD happens) to a value κ∗ we can choose

– δ = κ∗
2·M

– ϵ =
(

κ∗ ·δ2

6

)(1+ρ2)/(1−ρ2)

which routinely yields Pr[BAD] < κ∗. Note that both δ and ϵ are polynomial in κ∗ and inverse
polynomial in M. Finally, notice that we can absorb the negligible correctness error resulting from
Case 2 into κ′ by e.g. choosing κ′ = κ∗/2. This concludes the proof.

Proof (Proof of Theorem 9). Let the number of oracle queries made by DecodeO(sk, ·) be bounded by
ℓ. We begin by applying Lemma 5 to the original decoding algorithm DecodeO . This yields a new
decoding algorithm ADecodeO that makes one fewer oracle query thanDecodeO , while maintaining
correctness up to an additive error of κ′. Additionally, the size of the auxiliary information required
is at most poly(λ)/ϵ because there are at most ϵ−1 many ϵ-global heavy queries and each query-
response pair is of size poly(λ).

We apply Lemma 5 iteratively ℓ times, eventually obtaining a decoder Decode′ that makes no
oracle queries. Instead, all oracle responses are simulated using the auxiliary information aux.

The total size of aux is at most ℓ · poly(λ)/ϵ. SinceDecode′ simulatesDecode by answering oracle
queries from aux, its running time increases by at most a poly(ϵ−1, λ) factor over that of Decode.
The total degradation in correctness is additive, resulting in an overall correctness error of at most
κ + (ℓ · κ′).

By setting κ′ = 1/(ℓ · p(λ)) where p is polynomial in the theorem statement, we obtain the
necessary efficiency and probability bound. This is because ℓ and M are polynomials in λ and ϵ
depends on κ′, κ and ρ.

5.4 Breaking Pseudorandomness with the Oracle-Free Decoder

Theorem 10. Let PRCO = (KeyGen,EncodeO ,DecodeO) be a PRC relative to a local oracle O. Let
LearnQueryO be a unbounded algorithm and ADecode be a decoder such that the correctness error with
respect to the augmented scheme (KeyGen, LearnQueryO , EncodeO ,ADecode) is κ where κ < 1/8. Then,
there exists an unbounded distinguisher D that breaks the pseudorandomness property of PRCO with
advantage 1

16 − 2−λ.

Proof. Assume in the following the augmented secret key sk′ for ADecode has bitlength k. Let
M = 8(k + λ).

Consider the following distinguisher D, which has access to an encoding oracle but does not
require additional access to the oracle O:

24

– Query the encoding oracle on M uniformly random bits b1, . . . , bM ← {0, 1} and obtain words
x1, . . . , xM.

– Choose Bernoulli errors e1, . . . , eM ← Bern
ρ

– If there exists a string sk′ ∈ {0, 1}k such that Z(sk′) = 1
M ∑M

i=1 zi(sk
′) > 3/4 output 1, otherwise

output a uniformly random bit. Here, we define the binary random variables zi(sk
′) to be 1 if

ADecode(sk′, xi + ei) = bi and otherwise 0.

We will now analyze the advantage of this distinguisher. Assume first that the oracle provided
to D produces uniformly random strings, i.e. for all i ∈ [M] we have xi = ui for uniformly random
ui ← {0, 1}n.

Fix a secret key sk′. Since the ui are independent of the bi, and therefore, for each i ∈ [M] that
Pr[zi(sk

′) = 1] = Pr[ADecode(sk′, xi + ei) = bi] = 1/2, as the bi are chosen uniformly random
from {0, 1}. Furthermore, as the bi are independent, so are the zi(sk

′). Consequently, it holds that

E[Z(sk′)] = E

[
1
M

M

∑
i=1

zi(sk
′)

]
=

1
M

M

∑
i=1

E[zi(sk
′)]︸ ︷︷ ︸

=Pr[zi(sk
′)=1]

=
1
M
· 1

2
·M =

1
2

.

Consequently, it holds by a Chernoff bound that

Pr[Z(sk′) > 3/4] ≤ e−
1
8 M ≤ 2−M/8 = 2−k−λ.

By a union-bound, it holds that

Pr[∃sk′ ∈ {0, 1}k s.t. Z(sk′) > 3/4] ≤ 2k · 2−k−λ = 2−λ.

Thus, we conclude that in this case D outputs a uniformly random bit, except with negligible
probability 2−λ.

On the other hand, assume that the oracle provided to D outputs well-formed codewords
c1, . . . , cM encoding the bits b1, . . . , bM. In this case it holds that

E[Z(sk)] =
1
M

M

∑
i=1

E[zi(sk)] =
1
M

M

∑
i=1

Pr[ADecode(sk, ci + ei) = bi]︸ ︷︷ ︸
≥1−κ

= 1− κ > 7/8.

over all random choices, including sk. Noting that Z ∈ [0, 1] it follows from Lemma 1 that Pr[Z >
3/4] ≥ E[Z]− 3/4 ≥ 1/8. Note that if there exists an sk such that with Z(sk) > 3/4, then D will
always output 1. Thus we get

Pr[DEncode = 1]

= Pr[DEncode = 1|Z > 3/4]︸ ︷︷ ︸
=1

Pr[Z > 3/4] + Pr[DEncode = 1|Z ≤ 3/4]︸ ︷︷ ︸
=1/2

Pr[Z ≤ 3/4]

= Pr[Z > 3/4] +
1
2
(1− Pr[Z > 3/4])

=
1
2
+

1
2

Pr[Z > 3/4]

>
1
2
+

1
16

.

Hence we conclude that our distinguisher has advantage 1
16 − 2−λ.

25

6 Construction of Large-Alphabet Pseudorandom Codes from Minimal
Assumptions

In this section, we present a construction for error-correcting codes from a PRP and a SKE, which
in turn can be based on the minimal assumption of one-way functions. The construction avoids the
impossibility result by working over a large alphabet. For error-correcting codes that work over a
large alphabet, errors are introduced per symbol10 instead of per bit.

6.1 Construction

Consider the following parameters and primitives.

– Let q = 2λ.
– Let SKE = (SKE.KeyGen,SKE.Enc,SKE.Dec) be a secret-key encryption scheme that encrypts
messages of any length ℓ and generates pseudorandom ciphertexts of size Fk

q where k =

poly(λ, ℓ).
– Let RS = (Encode,Decode) be a [n, k, n− k + 1] Reed-Solomon Code.
– Let PRP = (PRP.KeyGen,PRP.Eval) be a pseudorandom permutation over the space Fn

q .

Our construction is as follows.

KeyGen(1λ)→ sk : Run SKE.KeyGen(1λ) → sk1 and PRP.KeyGen(1λ) = sk2. Output sk =
(sk1, sk2).

Encode(m, sk = (sk1, sk2))→ c : Encrypt the message SKE.Enc(sk1, m) → ct. Encode ct using
the Reed-Solomon Code to produce Encode(ct)→ c̃. Parse c̃ as n symbols in Fq and apply
the pseudorandom permutation to each i ∈ [n], i.e., PRP.Eval(sk2, c̃i) = ci. Output c =
(c1, . . . , cn).

Decode(c, sk = (sk1, sk2))→ m/⊥ : Parse c as n symbols in Fq and apply the inverse pseudo-
random permutation to each element: PRP.Eval(sk2, ci) = c̃i. Decode c̃ = (c̃1, . . . , c̃n) using
the Reed-Solomon Decoder Decode(c̃) → ct. If the decoding was unsuccessful, output ⊥.
Otherwise decrypt the ciphertext SKE.Dec(ct, sk1)→ m and output m.

Perfect Correctness. Since a [n, k, n− k + 1]-Reed-Solomon code achieves perfect robustness against
errors below the error threshold t = (n− k)/(2n), our construction achieves perfect robustness
up to tn errors. The construction inherits correctness from the correctness of the SKE scheme, the
Reed-Solomon code and the pseudorandom permutation. Assuming that the message is ℓ′ elements
of Fq, the transmission rate of the scheme is r = ℓ′

n .

Theorem 11. Let SKE be a $-CPA secure secret-key encryption scheme and let PRP be a secure pseudoran-
dom permutation and let RS be a Reed-Solomon Code, then the above construction is pseudorandom.

Proof. We show pseudorandomness by a series of hybrid arguments.

– Hybrid 0: This is the original construction.
– Hybrid 1: In this hybrid, the SKE ciphertexts generated in Encode are replaced with truly
random strings.

– Hybrid 2: In this hybrid, the outputs of the PRP are replaced by uniformly random values. This
is equivalent to sampling the codeword uniformly at random.

10 An alphabet is a finite set of symbols

26

Analysis: Let pA,i denote probability ofA outputting 1 inGame Gi.Wewill show that this probability
is almost the same in every hybrid.

Lemma 6. Assuming the pseudorandomness property of the SKE scheme, for all PPT adversary A, there
exists a negligible function negl(·) such that for all λ ∈N,

|pA,1 − pA,0| ≤ negl(λ)

Proof. Let ℓ be the number of queries made by the adversary Adv. We consider ℓ+ 1 intermediate
hybrids {H0,i}i∈[ℓ] where in the hybrid H0,i, for all queries before the ith query made by A, the
challenger replaces the SKE ciphertexts with truly random strings. It is easy to see that if A can
distinguish H0,i from H0,i−1, it can be turned into an attacker Adv∗ against the underlying SKE

scheme. Until the (i− 1)th query, A∗ uses truly random string while responding to the queries. In
the ith query, it forwards the query m to the SKE challenger. Upon receiving a challenge ciphertext
c∗, theA∗ encodes c∗ with a Reed-Solomon code and applies a PRP. Then he forwards the message
to Adv and outputs whatever Adv outputs. For the remaining queries, it queries the $-CPA oracle to
obtain the ciphertexts. Observe that Adv∗ wins with the same probability as Adv.

Lemma 7. Assuming the security of the pseudorandom permutation, for all PPT adversary A, there exists
a negligible function negl(·) such that for all λ ∈N,

|pA,2 − pA,1| ≤ negl(λ)

Proof. If all the inputs to the PRP are distinct then, we can replace the outputs by uniformly random
strings due the security of the PRP. Therefore, we need to bound the probability that any symbol
in the Reed-Solomon codeword appears twice. The encoding procedure of a Reed-Solomon code
takes the message and parses it as k symbols from the alphabet Fq. Then, a polynomial is defined
by using the k symbols as coefficients for a (k− 1)-degree polynomial. The polynomial is evaluated
at n > k predetermined positions.

It is a well-known fact [CW79] that the outputs of a random polynomial f evaluated at k
positions have k-wise independence, i.e.,

Pr[f (x1) = . . . = f (xk)] ≤
1
|Fq|k

where f is chosen at random from all (k − 1)-degree polynomials over Fq. A (k − 1)-degree
polynomial can be chosen uniformly at random by choosing each coefficient uniformly at random.
Since, all the SKE ciphertexts are replaced with truly random string, this is satisfied.

Observe that any k-wise independent function f for k ≥ 2, is also a 2-wise independent function.
We know that for such a function, for all x, y,

Pr[f (x) = y] =
1
|Fq|

where the probability is over all 2-wise independent functions. Therefore, for any xi ̸= xj, we get

Pr[f (xi) = f (xj)] =
1
|Fq|

Now, we can use a union bound to show that over randomly chosen 2-wise independent functions
{ fi}i∈[ℓ] and distinct evaluation points x1, . . . , xn,

Pr[fa(xi) = fb(xj) | a ̸= b, i ̸= j] ≤ ∑
a ̸=b,i ̸=j

Pr[fa(xi) = fb(xj)] =
ℓ2n2

|Fq|

27

This is the bound for the probability that a collision occurs between any of the symbols output by
the Reed-Solomon code over all ℓ queries of the adversary. Since |Fq| = 2λ, ℓ = O(λ) and n = O(λ)
the probability of a collision is negligible.

Using the above lemmas and triangular inequality, we get |pA,0 − pA,2| ≤ negl(λ).

References

AAC+24. Omar Alrabiah, Prabhanjan Ananth, Miranda Christ, Yevgeniy Dodis, and Sam Gunn. Ideal
pseudorandom codes. arXiv preprint arXiv:2411.05947, 2024. 2, 4, 10

Aar22. Scott Aaronson. My ai safety lecture for ut effective altruism, 2022. URL https://scottaaronson. blog,
2022. 2

ACC+22. Per Austrin, Hao Chung, Kai-Min Chung, Shiuan Fu, Yao-Ting Lin, and Mohammad Mahmoody.
On the impossibility of key agreements from quantum random oracles. In Annual International
Cryptology Conference, pages 165–194. Springer, 2022. 9

Bec75. William Beckner. Inequalities in fourier analysis. Annals of Mathematics, 102(1):159–182, 1975. 6,
17, 18

Ber25. Lorenzo Beretta. New statistical and computational results for learning junta distributions, 2025.
10

BFKL93. Avrim Blum, Merrick Furst, Michael Kearns, and Richard J Lipton. Cryptographic primitives based
on hard learning problems. In Annual international cryptology conference, pages 278–291. Springer,
1993. 2

BGV+23. Samuel Bouaziz, Alex B Grilo, Damien Vergnaud, Quoc-Huy Vu, et al. Towards the impossibility
of quantum public key encryption with classical keys from one-way functions. Cryptology ePrint
Archive, 2023. 9

BKR23. Andrej Bogdanov, Pravesh K Kothari, and Alon Rosen. Public-key encryption, local pseudorandom
generators, and the low-degree method. In Theory of Cryptography Conference, pages 268–285.
Springer, 2023. 2, 10

BKSY11. Zvika Brakerski, Jonathan Katz, Gil Segev, and Arkady Yerukhimovich. Limits on the power of
zero-knowledge proofs in cryptographic constructions. In Theory of Cryptography: 8th Theory of
Cryptography Conference, TCC 2011, Providence, RI, USA, March 28-30, 2011. Proceedings 8, pages
559–578. Springer, 2011. 2, 9

BM84. Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo-
random bits. SIAM Journal on Computing, 13(4):850, 1984. 1

BMG09. Boaz Barak and Mohammad Mahmoody-Ghidary. Merkle puzzles are optimal—an o (n 2)-query
attack on any key exchange from a random oracle. In Annual International Cryptology Conference,
pages 374–390. Springer, 2009. 2, 9

Bon70. Aline Bonami. Etude des coefficients de fourier des fonctions de lp(g). In Annales de l’institut
Fourier, volume 20, pages 335–402, 1970. 6, 17, 18

CG24. Miranda Christ and Sam Gunn. Pseudorandom error-correcting codes. In Leonid Reyzin and
Douglas Stebila, editors, Advances in Cryptology – CRYPTO 2024, Part VI, volume 14925 of Lecture
Notes in Computer Science, pages 325–347, Santa Barbara, CA, USA, August 18–22, 2024. Springer,
Cham, Switzerland. 1, 2, 4, 10, 12

CGZ24. Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In The
Thirty Seventh Annual Conference on Learning Theory, pages 1125–1139. PMLR, 2024. 10

CW79. J.Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of Computer
and System Sciences, 18(2):143–154, 1979. 27

DM24. Nico Döttling and Tamer Mour. On the black-box complexity of correlation intractability. In 15th
Innovations in Theoretical Computer Science Conference (ITCS 2024), pages 40–1. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2024. 9

FGJ+25. Jaiden Fairoze, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, and
Mingyuan Wang. Publicly-detectable watermarking for language models. IACR Communica-
tions in Cryptology, 1(4), 2025. 2, 10

FR23. Marc Fischlin and Felix Rohrbach. Searching for elfs in the cryptographic forest. In Theory of
Cryptography Conference, pages 207–236. Springer, 2023. 2

28

GG24. Surendra Ghentiyala and Venkatesan Guruswami. New constructions of pseudorandom codes.
arXiv preprint arXiv:2409.07580, 2024. 2, 4, 10

GKM+00. Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh Viswanathan. The
relationship between public key encryption and oblivious transfer. In Proceedings 41st Annual
Symposium on Foundations of Computer Science, pages 325–335. IEEE, 2000. 2

GM24. Noah Golowich and Ankur Moitra. Edit distance robust watermarks for language models. arXiv
preprint arXiv:2406.02633, 2024. 2, 4, 10

GMR01. Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing trapdoor functions
on trapdoor predicates. In Proceedings 42nd IEEE Symposium on Foundations of Computer Science,
pages 126–135. IEEE, 2001. 2

GZS25. Sam Gunn, Xuandong Zhao, and Dawn Song. An undetectable watermark for generative image
models, 2025. 10

HILL99. JohanHåstad, Russell Impagliazzo, LeonidA. Levin, andMichael Luby. A pseudorandomgenerator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999. 1

HR04. Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do secure hash
functions need secret coins? In Advances in Cryptology–CRYPTO 2004: 24th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 2004. Proceedings 24, pages 92–105.
Springer, 2004. 2

IR89. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way permu-
tations. In Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 44–61,
1989. 2, 4, 9

Kea93. Michael Kearns. Efficient noise-tolerant learning from statistical queries. In Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Computing, New York, NY, USA, 1993. Association
for Computing Machinery. 2

KGW+23. John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages
17061–17084. PMLR, 23–29 Jul 2023. 2, 10

KJGR21. Gabriel Kaptchuk, Tushar M Jois, Matthew Green, and Aviel D Rubin. Meteor: Cryptographically
secure steganography for realistic distributions. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, pages 1529–1548, 2021. 2

KKRT16. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivious
prf with applications to private set intersection. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, CCS ’16, page 818–829, New York, NY, USA, 2016. Association
for Computing Machinery. 10

KTHL24. Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. Transactions on Machine Learning Research, 2024. 2, 10

LLLL24. Longcheng Li, Qian Li, Xingjian Li, and Qipeng Liu. How (not) to build quantum pke in minicrypt.
In Annual International Cryptology Conference, pages 152–183. Springer, 2024. 9

LLLL25a. Longcheng Li, Qian Li, Xingjian Li, and Qipeng Liu. Cryptomania vs minicrypt in a quantum
world. arXiv preprint arXiv:2504.05710, 2025. 9

LLLL25b. Longcheng Li, Qian Li, Xingjian Li, and Qipeng Liu. Toward the impossibility of perfect complete
quantum pke from owfs. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025),
pages 71–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2025. 9

Mat14. Takahiro Matsuda. On the impossibility of basing public-coin one-way permutations on trapdoor
permutations. In Theory of Cryptography: 11th Theory of Cryptography Conference, TCC 2014, San
Diego, CA, USA, February 24-26, 2014. Proceedings 11, pages 265–290. Springer, 2014. 2

McE78. Robert J McEliece. A public-key cryptosystem based on algebraic. Coding Thv, 4244(1978):114–116,
1978. 2

MM11. Takahiro Matsuda and Kanta Matsuura. On black-box separations among injective one-way
functions. In Theory of Cryptography: 8th Theory of Cryptography Conference, TCC 2011, Providence, RI,
USA, March 28-30, 2011. Proceedings 8, pages 597–614. Springer, 2011. 2, 9

MP12. Mohammad Mahmoody and Rafael Pass. The curious case of non-interactive commitments–on
the power of black-box vs. non-black-box use of primitives. In Annual Cryptology Conference, pages
701–718. Springer, 2012. 2, 9

29

O’D14. Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014. 3, 18
RS60. I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society for

Industrial and Applied Mathematics, 8(2):300–304, 1960. 14
Rud88. Steven Rudich. Limits on the provable consequences of one-way functions. University of California at

Berkeley, 1988. 2, 9
Rud91. Steven Rudich. The use of interaction in public cryptosystems. extended abstract. In Annual

International Cryptology Conference, pages 242–251. Springer, 1991. 2, 9
Sim98. Daniel R Simon. Finding collisions on a one-way street: Can secure hash functions be based on

general assumptions? In Advances in Cryptology—EUROCRYPT’98: International Conference on the
Theory and Application of Cryptographic Techniques Espoo, Finland, May 31–June 4, 1998 Proceedings 17,
pages 334–345. Springer, 1998. 2, 9

Tho48. G Olof Thorin. Convexity theorems generalizing those of m. riesz and hadamard with some
applications. (No Title), 1948. 11

Yao82. Andrew C Yao. Theory and application of trapdoor functions. In 23rd Annual Symposium on
Foundations of Computer Science (SFCS 1982), pages 80–91. IEEE, 1982. 1

ZALW24. Xuandong Zhao, Prabhanjan Vijendra Ananth, Lei Li, and Yu-Xiang Wang. Provable robust
watermarking for ai-generated text. In The Twelfth International Conference on Learning Representations,
2024. 2, 10

ZDR19. Zachary M Ziegler, Yuntian Deng, and Alexander M Rush. Neural linguistic steganography. arXiv
preprint arXiv:1909.01496, 2019. 2

ZEF+24. Hanlin Zhang, Benjamin L. Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese, and
Boaz Barak. Watermarks in the sand: Impossibility of strong watermarking for language models.
In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan
Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pages 58851–58880. PMLR, 21–27
Jul 2024. 10

ZGC+24. Xuandong Zhao, Sam Gunn, Miranda Christ, Jaiden Fairoze, Andres Fabrega, Nicholas Carlini,
Sanjam Garg, Sanghyun Hong, Milad Nasr, Florian Tramer, et al. Sok: Watermarking for ai-
generated content. arXiv preprint arXiv:2411.18479, 2024. 10

30

	Separating Pseudorandom Codes from Local Oracles

