
Leader Election with Poly-logarithmic Communication Per Party

Amey Bhangale5, Chen-Da Liu-Zhang4, Julian Loss1,2⋆, Kartik Nayak3, and Sravya Yandamuri1,2,3⋆⋆

1 Common Prefix
2 CISPA Helmholtz Center for Information Security

3 Duke University spy4@duke.edu
4 Lucerne University of Applied Sciences and Arts & Web3 Foundation

5 University of California Riverside

Abstract. The leader election problem requires a set of n parties, out of which up to t can be Byzantine,
to elect a leader uniformly at random such that no two parties disagree on the elected leader and an
honest leader is elected with constant probability. The Scalable Leader Election protocol published in
SODA’2006 is an important breakthrough in solving this problem efficiently for all but o(1) of the
parties. They achieve a protocol for t < (1

3
− ε)n (for ε = o(1)) in the full-information setting such that

every party only sends polylog(n) bits.
In this paper, we revisit their work and show that there are subtleties in the protocol that are not dealt
with in the analysis. In particular, two mechanisms related to “silencing” parties and dealing with
“bad nodes” are at odds with each other, which is why the existing analysis is insufficient. We present
these concerns in detail and subsequently present a modification to their protocol with a corresponding
analysis to solve leader election with the desired metrics.

1 Introduction

Leader election, introduced by Ben-Or and Linial [BL85], is an important problem in distributed computing.
At a high level, the leader election problem among a set of n parties out of which up to t can be Byzantine
(arbitrarily malicious) requires the following properties to hold when electing a leader uniformly at random:
(i) Agreement: no two honest (non-Byzantine) parties disagree on the elected leader, (ii) Validity: with
constant probability, the elected leader is an honest party, and (iii) Termination: All honest parties output
a leader. Leader election is an important problem in distributed computing, and it particularly finds several
applications for solving related consensus problems [LSP82,CL+99] (such as Byzantine Broadcast, Byzantine
agreement, and state machine replication), all of which form the core underpinning of blockchains.

Owing to the requirements of modern-day blockchains, scaling consensus and, thus, correspondingly
scaling leader election protocols to a large number of parties is an important line of work. One such key
metric to scale is communication complexity, i.e., the number of bits sent by honest parties during a protocol
execution. Through the Dolev-Reischuk [DR85] lower bound, it is known that a deterministic BA/BB incurs
at least O(t2) messages. Thus, obtaining a leader election protocol with sub-quadratic communication forms
an important stepping stone toward a sub-quadratic communication BA/BB protocol.

The “Scalable Leader Election” protocol [KSSV06a] published in SODA’2006 is an important break-
through result towards achieving this goal. Particularly, they show a leader election protocol for t < (13 −ε)n
(for some ε = o(1)) that incurs sub-quadratic communication complexity in such a way that every party
sends messages to, and receives messages from only a polylogarithmic (in n) number of parties during an
execution. In addition, the protocol has a latency polylogarithmic in n, and works in a full-information model
(and thus does not rely on cryptography). Several followup works have used this result as a building block
towards designing BA/BB protocols with sub-quadratic communication complexity [KSSV06a,KS10].The
core idea in this work is very elegant. It involves using a layered network of nodes where the network is
constructed using samplers. On each of the layers, elections are conducted among these nodes containing
polylogarithmically many parties. Elections in each layer reduces the number of parties by a factor of lnn;

⋆ This work is funded by the European Union, ERC-2023-STG, Project ID: 101116713. Views and opinions expressed
are however those of the author(s) only and do not nec- essarily reflect those of the European Union. Neither the
European Union nor the granting authority can be held responsible for them.

⋆⋆ Lead Author.

2 A. Bhangale et al.

eventually reducing the number of parties to a polylogarithmic number out of which one party is elected as
the leader. Owing to the use of samplers, their guarantees on agreement and liveness hold for all but o(1)
fraction of honest parties.

Our contribution. In this paper, we revisit this result and make the following key contributions:

1. Concerns with the analysis in [KSSV06a]. We show that there are subtleties that are not dealt with
by their analysis. In particular, their protocol relies on two key aspects. First, due to the use of samplers,
there are a few nodes in each layer that are “bad” (w.r.t. the assumptions on the Byzantine fraction);
their protocol analysis relies on bounding the number of such bad nodes. Second, their protocol relies on
silencing parties if the parties are about to send too many messages in a given layer; thus, the silencing
mechanism ensures that the per-party communication complexity is bounded. In our work, we show that
the way to tackle bad nodes is at odds with the silencing mechanism. Without additional analysis, it is
possible for a linear fraction of parties to go silent in a given layer, potentially causing the protocol to
not terminate.

2. Towards achieving a scalable leader election protocol. The main problem with the above analysis
is that, in principle, anything can happen in a bad node. To address the above issue, we present and
provide a non-trivial modification and new analysis of their protocol and show that the desired properties
can again be obtained for the modified protocol. Our modification includes the usage of graphs with
improved expander properties and a novel mechanism to perform sequential election procedures with the
guarantee that adversarial capabilities are highly restricted even in bad nodes, which in turn allows us
to bound the impact on the remaining ones. Specifically, we obtain the following result:

Theorem 1. Consider a network of n parties, s.t. fewer than 1
3 − ε for ε = O(1

ln lnn) are Byzantine. There
is a protocol in the full information setting that elects an honest leader with constant probability that:

1. incurs only polylog(n) bits of communication complexity per party

2. ensures that all but o(1) of the parties know the leader

3. completes in polylog(n) rounds

Further Related work. The seminal work by Ben-Or and Linial [BL85] introducing leader election lead to a
significant line of work focused on improving its efficiency [AN90,BN93,ORV94,RZ98,Fei99,KSSV06a,KS10].
Similarly, several works have proposed Byzantine agreement protocols with subquadratic communication.
The works [Mic17,PS17,ACD+19,GPS19] gave improved protocols with subquadratic communication com-
plexity using the “player replaceability paradigm,” which requires setup in the form of verifiable random
functions. Abraham et al. [ACD+19] show a BA protocol with adaptive security and subquadratic commu-
nication complexity in the partially synchronous model. Cohen et al. [CKS20] show an adaptively secure
asynchronous BA protocol with o(n2) communication, in a model in which the adversary cannot arbitrarily
schedule delivery of messages. Blum et al.[BKLZL20] proposes a protocol for adaptively secure asynchronous
BA without the assumption on message scheduling but that uses stronger computational assumptions and
a trusted dealer to get subquadratic communication complexity, as well as an alternate construction that
avoids those assumptions but gets only amortized subquadratic communication complexity. Recent works
have presented round-efficient Byzantine Agreement protocols in the information theoretic, asynchronous
setting [HPZ22], [HPZ24]. In [BCG21], the authors focus on balanced Byzantine agreement protocols, in
which all parties send the same number of bits.

Technical Overview

We present an overview of the key ideas in this work. The description is split into three parts. First, we present
a brief overview of the Scalable Leader Election protocol [KSSV06a] (Section 1.1). We refer to this protocol
as SLE. Second, we present the key subtleties and concerns with the analysis of the protocol (Section 1.2).
Finally, in Section 1.3, we present the modifications necessary to fix the protocol.

Leader Election with Poly-logarithmic Communication Per Party 3

1.1 The SLE Protocol

The goal of SLE is to elect an honest leader from a distributed network of n parties with constant probability
in a scalable manner without the use of cryptography. We assume that (13 − ε)n of the parties (for ε =
O(1

ln lnn)) in the network are faulty. Faulty parties are Byzantine, i.e., they may deviate arbitrarily from the
protocol. Toward scalability, this protocol aims for a per-party communication complexity that is sublinear (in
fact, polylogarithmic) in the number of parties and, thus, an overall sub-quadratic communication complexity.

Using a layered network to reduce communication complexity. In SLE, every party speaks with only poly-
logarithmically many other parties. This is achieved using a layered network structure (cf. Figure 1) where,
as the layers increase, the number of parties per layer decreases by a lnn factor. The topmost layer contains
polylogarithmically many parties, out of which a leader can be elected. It is necessary that the number of
parties decreases from layer ℓ to layer ℓ+ 1 without all of the parties on a given layer communicating with
each other. Otherwise, at least at the bottom-most layers, this would incur at least quadratic communication
complexity.

In the SLE protocol, each layer is made up of nodes, each of which contains polylogarithmically many
parties. Only the parties from a specific set of nodes on a given layer may be chosen to occupy a specific
node on the next layer. The parties that occupy a node are chosen from the parties in the nodes adjacent
to that node on the previous layer. Both the nodes adjacent to a node on the previous layer, as well as the
parties within them, are referred to as its committee, and the parties that are chosen to occupy the node
from the committee are referred to as its subcommittee. As an example, in the figure, node A on layer ℓ has
in its committee all the parties in ∪5

i=1Ai whereas its subcommittee consists of only parties in A (while we
use set notation for simplicity, in reality the same node may appear multiple times in a committee). Looking
ahead, the parties in a node’s committee participate in an election, and the winners of the election occupy
the node on the next layer, forming its subcommittee.

A näıve assignment of parties to nodes and creation of edges between nodes on consecutive layers can
result in many nodes containing too many (13 or more fraction) Byzantine parties. For this reason, samplers
are used to assign parties to the layer 0 nodes and to create edges between nodes on successive layers.6 The
samplers ensure the following: (1) on the bottom-most layer, all but 1

ln2 n
fraction of the nodes contain fewer

than 1
3 Byzantine parties. (2) For any two layers ℓ and ℓ+ 1, let S be a set of nodes on layer ℓ that makes

up s fraction of the nodes on layer ℓ; then all but 1
ln2 n

fraction of the nodes on layer ℓ + 1 have s + 1
lnn

fraction of their neighbors from S. This limits the power of the adversary to sabotage the protocol because
it ensures that the less-than- 13 corruption level of the entire network is preserved for most nodes and most
elections. This is necessary because the election protocol requires that fewer than 1

3 of the participants are
Byzantine. Given this and the fact that polylogarithmically many parties participate in each election, the
election participants may run a broadcast and it is possible to use a black-box election protocol to run the
elections.

A depiction of the layered network and the samplers used to construct it are shown in Figure 1. On the
left is the layer number followed by the number of nodes on that layer. The edges between the nodes on
layers ℓ − 1 and ℓ are assigned using the bipartite graph G(Lℓ, Rℓ), for layers ℓ = 1 . . . ℓ⋆ − 1. Parties are
assigned to layer 0 nodes using the graph G(L0, R0). The bipartite graphs are samplers. The penultimate
layer contains polylogarithmically many nodes, which all have edges to the single node on layer ℓ⋆. In each
bipartite G(Lℓ, Rℓ), the nodes in Lℓ have degree ln4 n, and the nodes in Rℓ have degree ln5 n. For a node on
layer ℓ, the parties in the nodes adjacent to it on layer ℓ − 1 (its committee) participate in the election to
determine who will occupy this node and form its subcommittee. As per the use of samplers, the same node
(and hence, the parties within it) participate in multiple (polylogarithmically many) elections on the next
layer.

Electing parties to a node. SLE uses the lightest bins protocol by Feige [Fei99] to run elections. Briefly, in
this protocol, each participant chooses a “bin” among a set of bins uniformly at random, and sends their
choice to all of the other parties. The lightest bin, i.e. the one that is chosen by the fewest number of parties,
is the winning bin. The parties that chose that bin are determined to be the winners. Observe that due to
the presence of Byzantine parties, it is necessary that the parties run consensus to agree on the bin choices of

6 See Definition 3 in Section 2.2 for the formal definition of a sampler.

4 A. Bhangale et al.

…
Lℓ

Rℓ

ln!𝑛

ln"𝑛

0: "
#$ "

𝐿%

R%
…

𝑝# 𝑝$

ℓ − 1: "
&"ℓ$

ℓ: "
&"ℓ"#$

…

ℓ⋆: 1

ℓ⋆ −1	: polylog(𝑛)

G(𝐿ℓ, 𝑅ℓ)

…

A

A1 A2 A3 A4 A5

Fig. 1. The Layered Network.

the parties so that they all agree on the lightest bin (and the winning parties). Achieving consensus requires
that fewer than 1

3 of the parties participating in the election are Byzantine. When this condition is met, it
is guaranteed that there is agreement on the bin choices of all the parties and, therefore, on the winning
bin and the winning parties. The lightest bins protocol is robust because, due to the ε slack in the overall
corruption threshold, the fraction of elected parties that are Byzantine remains less than 1

3 . Intuitively, this
follows from the fact that honest parties choose their bins uniformly at random and adversarially adding
Byzantine parties to a bin makes it heavier.

Communicating the leader to all parties. Together, the above approach ensures that there are only a poly-
logarithmic number of parties in the penultimate layer from which a single party can be elected as a leader.
The protocol relies on a communication tree to communicate this leader to all parties. The communication
tree is rooted at the single node on layer ℓ⋆, and all of the nodes in the layered network are nodes in the
communication tree. The edges in the communication tree are only a specific subset of the edges in the
layered network. Specifically, the i-th node on layer ℓ has as its children in the communication tree the nodes
i lnn, . . . , (i + 1) lnn − 1, where the nodes on layer ℓ are numbered 0, . . . , n

lnℓ+1 n
− 1. The single node on

layer ℓ⋆ has as its children all the nodes on the penultimate layer. The communication tree ensures that all
but o(1) of the partyors know the winner of the leader election. Each time an election completes, the parties
in the nodes that participated in that election pass the list of winners to all parties in their child nodes.
This method of passing information to child nodes in the communication tree occurs recursively until the
information is passed to the leaf nodes of the respective trees.

1.2 Subtleties and Concerns with the SLE Protocol

While the above approach is elegant and intuitively seems to work, there are several subtleties and concerns
that need to be addressed. First, to participate in an election protocol, a party needs to know which parties
occupy other nodes. For example, for an election to node A in the figure, parties in nodes A1 need to know
parties that won the election to a peer node, say, node A2. Second, while the above idea seems to suggest
that the communication complexity is sub-quadratic, it is not clear whether every party incurs sub-linear
communication complexity. For instance, it is possible that a party may win many elections up the layered
network and exceed the desired per-party communication complexity as a result. Finally, while the samplers
ensure good properties for most nodes, and hence most elections, on a layer, there are O(1

ln2 n
) fraction “bad”

nodes. How are these elections handled?

Communicating the parties in peer nodes. To learn the parties in the peer nodes, SLE uses the notion of
monitoring sets in the communication tree. Each node has a predefined monitoring set, a list of layer 0
nodes. Specifically, the monitoring set of a node is the leaf nodes of the communication trees rooted at each

Leader Election with Poly-logarithmic Communication Per Party 5

node in its committee. Using the communication pattern analogous to learning the leader, the monitoring
set of a node learns the list of election winners for that node. It is the job of the monitoring set of a node
on layer ℓ to provide this information to the monitoring sets of appropriate peer nodes on layer ℓ so the
parties in those nodes may know the appropriate set of parties in elections to nodes in layer ℓ+1. Given that
the monitoring sets of two nodes on the same layer contain the same number of layer 0 nodes, conveying
this information via one-to-one communication between the nodes in the monitoring sets ensures that the
necessary communication complexity is preserved. See Figure 2 for a depiction of the monitoring set of a
node. Similarly to how up to 1

ln2 n
fraction of the nodes per layer may have 1

3 or more fraction Byzantine

parties participating in their elections, with the use of samplers, it is also the case that up to 1
ln2 n

nodes
per layer may have many nodes in their monitoring set with many Byzantine parties. The monitoring sets
of such nodes may equivocate and convey the wrong election results to the parties in other nodes. Since a
party in a node learns the parties in other nodes through its own monitoring set, a party in such a node
may also learn the wrong contents of other nodes. We will describe this problem in more detail as well as
the implications of the lack of communicability of election results later.

Fig. 2. Communication tree rooted at a layer ℓ + 1 node A vs. the monitoring set of a layer ℓ + 1 node B. The
monitoring set of a node consists of the leaf nodes of the trees rooted at each node in its committee, while the
children of a node in the communication tree consist of a subset of the nodes in its committee.

Ensuring sublinear communication complexity per party and tackling “bad” nodes. Recall that it is potentially
possible that a party may win many elections up the layered network and exceed the desired communication
complexity. In fact, without additional modifications, this does happen for at least a small fraction of the
parties. SLE addresses this using a silencing mechanism. If a party is elected more than eight times on a
given layer, the party goes silent for all nodes beyond the first eight to which it wins elections on that layer (it
is not specified how exactly a party chooses which of those nodes to go silent in). Silencing is necessary from
the standpoint of ensuring the desired per-party communication complexity; however, from the perspective
of a given node, silencing an honest party implies the presence of one fewer honest party in that election.
If a node contains many silent parties, the non-silent parties could contain a majority of Byzantine parties.
Thus, it is necessary to show that too many honest parties do not go silent on a given layer.

In the analysis of SLE, [KSSV06a, Lemma 5.1] claims that if X is the total number of parties on layer
ℓ of the network (counting multiplicities), then at most O(X/ ln3 n) parties are silent on the next layer
(counting multiplicities). This bound is sufficiently small so that the silent parties in (most of) the nodes
can be absorbed in the ε slack in the Byzantine fraction of the network overall (recall that the protocol
tolerates (13 − ε)n Byzantine parties). So, the honest-Byzantine ratio in a vast majority of the nodes stays at
the desirable threshold. However, while the idea intuitively makes sense, it turns out that there is a subtle
flaw in the proof, which is why the statement does not hold.

6 A. Bhangale et al.

This flaw is related to the third concern on how bad nodes are tackled, so let us first reason about it.
Recall that the use of samplers implies that there are O(1

ln2 n
) fraction of bad nodes in a given layer. In

such nodes, the elections may contain 1
3 or more fraction Byzantine parties. The protocol analysis assumes

that elections in such nodes still essentially work despite the protocol assumption on the Byzantine fraction
not holding true. From [KSSV06a, Lemma 5.1]: “Being overly generous, suppose that for each election the
adversary is able to choose which bin is elected.” The adversary can certainly choose the winning bin in such
an election; however, when using a black-box agreement protocol if the assumption on Byzantine fraction
is not satisfied, the agreement property may not hold either. In effect, the adversary may choose to have
multiple participating parties think that theirs is the winning bin, even if they all chose different bins.

We proceed to describe the concerns with silencing and bad nodes in more detail.

Approach to bad elections and silencing in [KSSV06a, Lemma 5.1]. The approach to proving the bound on
the number of silent parties on each layer is as follows:

1. Assuming that a party is silent for all but 8 nodes on layer ℓ, they only participate in elections to nodes
adjacent to those eight nodes on layer ℓ+ 1.

2. For each of those elections it participates in, the party chooses a bin uniformly at random in the lightest
bins procedure.

3. In the worst case, the adversary can choose the single winning bin for each election, and only parties
that chose that bin believe that they are elected.

4. Given that there may only be one winning bin per election, and honest parties choose their bin for each
election uniformly at random, the number of honest parties that win eight or more elections on the next
layer is very low, even with adversarially chosen winning bins.

The flaw in this approach is in step 3. Because the layered network is created using samplers, and parties
are assigned to nodes on layer 0 of the network using samplers, there are elections to which more than 1

3
fraction of the parties participating are Byzantine.

For the elections in which this is the case, there is no consensus, and hence there is no agreement nor
validity on the bin choices of the parties. This is the case even for the bin choices of the honest parties. For
instance, if honest party p1 chooses bin 5, honest party p2 participating in the same election protocol may
learn that p1 chose bin b ̸= 5. Another honest party p3 may learn that p1 chose bin b′ ̸= b ̸= 5. The result is
that each honest party participating in the election may have a completely different view of the bin choices
of all the parties. They may therefore each think that the bin they chose is the winning bin. As a result, it
did not matter that each honest party participating in the election chose a bin uniformly at random; the
adversary did not have to choose a single winning bin, and all of the parties thought the bin they chose was
the winning bin. For the rest of this section, we will refer to this phenomenon as multiple-winning-bins.

Potential shadow elections in bad nodes. If this problem occurs for the election to a node on layer ℓ, a
natural question is whether a party could notice something had gone wrong during the elections to layer
ℓ+1; however, the potential lack of communicability of election results hampers this possibility. Recall that
in order to participate in the election protocol, parties need to learn which parties occupy the other nodes in
the committee. This requires that the election results are reliably communicable, but we cannot ensure this
for all nodes. The reason for this is that this information is learned using the monitoring sets. For parties in
node A1 (i.e. those in its subcommittee) to learn what parties are in node A2, A2’s monitoring set needs to
convey the correct information to A1’s monitoring set. After this, the monitoring set of A1 needs to convey
the correct information to the parties in A1. So for parties in a layer ℓ node A1 that is in the committee of
layer ℓ+1 node A to learn the other parties in the committee for the purposes of running the election for A,
it requires that the monitoring sets of both nodes are mostly made up of nodes with a majority of honest
parties. When the monitoring set of A1 is not made up of many such nodes, and therefore may not reliably
communicate information, a party in A1 can learn the wrong list of parties in the committee of A2. The
adversary can convince this party that all of the other parties in the committee are a wrong list of Byzantine
parties. In this case, the party participates in what we refer to as a shadow election to node A. For the
remainder of this section, we will refer to nodes whose monitoring sets do not reliably convey information as
nodes with an equivocating monitoring set.

Leader Election with Poly-logarithmic Communication Per Party 7

A shadow election is an election to a node that occurs in parallel to the actual election to that node. The
actual election is the one run among the honest parties in the nodes without an equivocating monitoring
set in the committee of that node. In the shadow elections run for the same node, the adversary is able
to tailor a view of the election particularly for each party because the monitoring set can convey to each
party a separate and wrong list of parties in the other nodes in the committee. Since the adversary has full
control over shadow elections, and the committees in which they are run have no bound on the Byzantine
fraction, the adversary can ensure that every honest party believes they won every shadow election they
participate in. The result is that, once an honest party is elected to a single node with the multiple-winning-
bins problem, they are convinced by the adversary that they won this election. If this node also has an
equivocating monitoring set, they may also be convinced that they win every election in every node adjacent
to this node on the next layer.

One question then is whether a party that believes wrongly that it was elected to a node whose monitoring
set is able to convey the correct information, could learn that it was in fact not elected to that node. It is
true that a party could conceivably learn that an election it thought it won was actually a shadow election
from a monitoring set that is able to reliably convey information. But for all shadow elections it wins to
nodes with equivocating monitoring sets, this party may still be convinced it’s elected. And as long as it is
elected to eight such nodes, it goes silent for all other nodes on that layer. Unfortunately, the SLE analysis
does not separately bound the number of nodes with an equivocating monitoring set so that it is sufficiently
low; such a bound is essential to argue that the above concern does not arise.

The end result of the combination of the silencing mechanism with the phenomenon of shadow elections
is that all of the honest parties may cease participation in the protocol within the first few layers, because
they are only not silent for the shadow elections that they win. Since Byzantine parties can defy the protocol
and choose not to go silent, only Byzantine parties may be elected to the topmost node or the protocol may
simply not terminate. 7

Potential simple fixes that do not work. We discuss potential fixes that do not work. One approach is to
increase the silencing threshold from eight elections to some O(lnk n) elections; however, this would not
help. First, this would increase the total number of elections that a party participates in on the next layer,
causing the number of legitimate silent parties on the next layer to increase. Secondly, increasing the silencing
bound may reduce the number of silenced parties from one layer to the next, but with the shadow election
phenomenon and the fact that a node is in the committee of polylogarithmically many nodes on the next
layer, it may result in the same number of silenced parties overall.

A second approach may be to simply change the sampler properties to reduce the fraction of such nodes
on each layer from 1

ln2 n
to a smaller fraction; however, this would not help either, as changing the sampler

properties in such a way would necessitate increasing the degrees of the bipartite graphs. So while the
fraction of “bad” nodes on a given layer may decrease, the number of nodes in its committee, and therefore
the number of parties affected by it, would increase, rendering the fix ineffective.

Corrigendum to [KSSV06a]. The authors of [KSSV06a] have added a corrigendum to address the problem
with SLE. It references ([KSSV06b]), which presents a protocol (which we refer to as P2P) that solves the
scalable leader election problem in a peer to peer network with a degree that is polylogarithmic in its size.
The authors claim that the solution to P2P addresses the problem with SLE. Like SLE, P2P uses a silencing
mechanism to ensure load-balancing. If a party wins more than 8 elections on a given layer, it goes silent
for the remaining elections that it wins on that layer, as in SLE. To show that this does not cause too
many honest parties to go silent on each layer, [KSSV06b, Lemma 7.2] contains a claim similar to that
of [KSSV06a, Lemma 5.1]. However, the paper does not include a proof for this lemma, and only claims
that [KSSV06a] contains a proof to a similar lemma, which would be [KSSV06a, Lemma 5.1]. As shown
earlier in this technical overview, the proof of this lemma contains a crucial flaw because it fails to address
the multiple-winning-bins problem. Without a full, standalone proof of P2P we are unable to verify the
correctness of P2P and whether this work does in fact fix the problems with the SLE protocol.

7 Note that what we have shown is an issue with the proofs; it does not imply a concrete attack, while one may exist.

8 A. Bhangale et al.

1.3 Fixing the SLE Protocol

Consider the hypothetical scenario in which, for each node, there exists an agreed upon list of parties that
could learn the election results, filter them so that there is only a single winning bin, and pass the results
back to the committee, and that it could do so using only polylogarithmic communication complexity per
party. If this existed, the parties participating in an election could consult this group of parties after running
the lightest bins protocol, and it would ensure that the assumption that there is a single winning bin for
every election holds. A candidate for this scenario is the monitoring set of a node. However, as mentioned
previously, we are unable to derive a bound on the fraction of nodes per layer with equivocating monitoring
sets. Perhaps instead, every node could have a predefined group of monitoring sets which could do this
filtering of election results. While the bound on the number of nodes with an equivocating monitoring set
may be high, the number of nodes whose groups of monitoring sets contain many equivocating monitoring
sets may be much lower. We use this intuition to arrive at our fix, which we describe next.

Our fix to the protocol can be divided into two main components. First, we modify the samplers that
are used to construct the layered network so that they are also good expanders. While the original samplers
ensured that the layer ℓ nodes adjacent to most layer ℓ+ 1 nodes comprise a “representative sample” of the
layer ℓ nodes, they did not make any such guarantees in the opposite direction. To see why this addition is
helpful, we come to the second part of our fix.

The second component of our fix is to introduce a new procedure to be run after the lightest bins
protocol to confirm to parties whether or not they won an election. This procedure, ConfirmElectionWinner,
uses specific monitoring sets of nodes 3 layers above an election node to perform this confirmation. Let
adj+(A) be the nodes adjacent to layer ℓ node A on layer ℓ+1, and let adj+2 (A) refer to adj+(adj+(A)), and
so on. We use the monitoring sets of the nodes in adj+3 (A) for confirmation of the winners to A. The key is
that the fraction of nodes A per layer that have many monitoring sets of the nodes in adj+3 (A) containing
many layer 0 nodes with more than 1

3 Byzantine parties is far lower than the original fraction of problematic
nodes per layer that were given using samplers. This is due to the additional expander properties of the
bipartite graphs that are used to construct the layered network. The election winner confirmation procedure
ensures that even if a node A has more than 1

3 Byzantine parties participating in its election, the adversary
is forced to choose a single winning bin. The fraction of nodes per layer that are resistant to this procedure is
sufficiently small, and as a result we are able to derive a bound on the fraction of silent parties per layer that
does not inhibit completion of the protocol. We show that this procedure limits the power of the adversary
in most elections per layer using the expansion properties of the network. They key to this fix is that it
sufficiently reduces the number of “problematic” nodes in the network without a commensurate increase in
the degrees of the network (and therefore the number of parties impacted by those nodes).

To use this approach, we must overcome certain challenges. One such challenge comes from the reliance on
the monitoring sets to send messages to the election winners. Since monitoring sets are not of polylogarithmic
size for all layers of the network, a näıve approach may result in violating our desired communication
complexity bound. To overcome this challenge, we introduce a polling mechanism so that parties never
receive messages from an entire monitoring set, but they are still guaranteed to learn the correct information
with high probability. Another challenge is related to the protocol analysis. As described, the adversary may
choose to silence all of the honest parties participating in a layer ℓ bad election via the silencing mechanism at
once on layer ℓ. On the other hand, the adversary could choose not to immediately silence these parties, and
silence many such parties on some higher layer via shadow elections8. Our analysis must show that even if
the adversary takes this second approach, collecting many honest parties layer by layer that it has the power
to silence and choosing to silence them at once at some higher layer, the total number of honest parties that
may be silenced on any given layer is sufficiently low to ensure that the protocol completes. In Section 6.1, we
combine the additional expansion properties of our layered network, the ConfirmElectionWinner procedure for
election winner confirmation, and a robust worse-case analysis of adversarial behavior to present a revised,
corrected version of [KSSV06a, Lemma 5.1].

Our solution preserves the sub-quadratic communication complexity per-party as follows. For the election
to a node A, the additional communication for ConfirmElectionWinner consists of communication of election
winners from the monitoring set of each node in A’s committee to the monitoring sets of the nodes in adj+3 (A).
The size of the monitoring sets of the nodes increase by a polylogarithmic factor for each layer up the

8 See Section 6.1 for a more detailed description of this problem, which we refer to as latently silent honest parties.

Leader Election with Poly-logarithmic Communication Per Party 9

network. Because of this, the nodes in the monitoring sets of nodes in A’s committee each communicate with
polylogarithmically many nodes in the monitoring sets of nodes in adj+3 (A). The parties in the monitoring
sets of the nodes in adj+3 (A) determine the election winners based on the information they received, and send
a confirmation message only to the (at most) ln8 n winners of the election from which they have received
polling messages. A party that wishes to confirm whether it has won an election chooses polylogarithmically
many nodes to poll. As in SLE, we use a silencing mechanism, so that parties go silent for all but 10 nodes
to which they win elections on a given layer. While we increase degrees of the network to ensure that the
samplers are also good expanders, we maintain that the degrees are still polylogarithmic. This ensures that
a party is in polylogarithmically many monitoring sets per layer, preserving the sub-quadratic per-party
communication complexity.

1.4 Organization

The rest of the paper is organized as follows. In Section 2, we present the model and preliminaries. This
includes a description of the bipartite graphs that we use, along with proofs related to their sampler and
expander properties. In Section 3, we present an overview of the entire supreme committee election protocol,
including details on the construction of the layered network. In Section 4, we present the subcommittee
election protocol in detail. Then in Section 5, we present our addition to the subcommittee election protocol,
in the form of ConfirmElectionWinner, which address the concerns raised with SLE. Finally, in Section 6, we
analyze the full protocol. First, we show a bound on the number of silenced honest parties per layer. Finally,
we analyze the full protocol, culminating in the proof of Theorem 1.

2 Model and Preliminaries

We assume a network P of n parties, where each party is connected via a point-to-point authenticated
channel. We assume static corruptions. The adversary may corrupt t < (13 − ε)n parties prior to the start
of the protocol, where ε = O(1

ln lnn). Corrupted parties are Byzantine, meaning that they may arbitrarily
deviate from the protocol.

Our protocol works in the information theoretic model, meaning that we do not rely on any cryptographic
assumptions. We assume a synchronous network, in which messages are guaranteed to arrive by some delay∆.
We say that an event occurs with high probability (w.h.p.) if it happens with probability at least 1−n−ω(1).

2.1 Important Problems

Our protocol is designed to solve leader election, which is defined as follows.

Definition 1 (Leader Election). Let Π be a protocol executed by a set of parties P = {p1 . . . pn}, where
each party pi outputs an index of a party p⋆i ∈ P. Π is a Leader Election protocol if the following properties
hold whenever at most t < (13 − ε)n parties are corrupted:

– Validity: With constant probability, p⋆i is the index of an honest party.
– Agreement: For all but o(1) fraction of the honest parties pi and pj, p

⋆
i = p⋆j .

– Liveness: All but at most o(1) honest parties output a value.

2.2 Samplers

In order to achieve polylogarithmic per process communication complexity, we follow the approach of [KSSV06a]
in constructing a layered network using a series of bipartite graphs that are both samplers and good ex-
panders.

We now present the lemma describing the sampler used in our work. We also need a stronger expansion
property (property 5 below) in our layered network for our proof.

Lemma 1. There exists a set of bipartite graphs G(Li, Ri) for i = 0 . . . ℓ⋆ such that ℓ⋆ is the maximal integer
such that n

ln5l⋆ n
≤ ln20 n and for all i, |Li| = n/ ln5i n and |Ri| = n/ ln5i+5 n. In addition, for all i = 0 . . . ℓ⋆

the bipartite graphs have the following properties:

10 A. Bhangale et al.

1. The degree of each node in Li is ln6 n.
2. The degree of each node in Ri is ln11 n.

3. For any subset L′
i of Li, at most 400

ln2 n
fraction of the nodes in Ri have more than

|L′
i|

Li
+ 1

ln2 n
fraction of

their neighbors from L′
i.

4. Label each node in Ri as 0 . . . |Ri| and each node in Li as 0 . . . |Li|. The k-th node in Ri is incident to
nodes k · ln5 (n) . . . (k + 1) · ln5 (n)− 1 in Li.

5. (Expander-mixing property) For every subsets S ⊆ Li and T ⊆ Ri, we have∣∣∣∣e(S, T)− |S||T |dL
|Ri|

∣∣∣∣ ≤ λ
√
|S||T |+max{|S|, |T |},

where e(S, T) is the number of edges between S and T in G, dL = ln6 n and λ = 10 ln5.5 n.

Biregular Expander Graphs Consider a bipartite graph on L and R with the left degree dL and the right
degree dR.

Definition 2. A biregular graph G(L,R,E) with the left degree dL and the right degree dR is called a λ-
expander if all of the eigenvalues of its adjacency matrix AG except one have absolute value at most λ.

Brito, Dumitriu, and Kameron [BDH22] showed that a random biregular bipartite graph is a good
expander.

Lemma 2 ([BDH22]). There exists a randomized construction of λ-expanders with λ ≤ 10
√
max{dL, dR}.

A useful property of expander graphs is the so-called Expander Mixing Lemma. Roughly, this lemma
states that the number of edges between two subsets of vertices in an expander graph is what is expected in
a random graph, up to an additive error that depends on the second eigenvalue. In the case of a bipartite
graph, the above condition holds for any two subsets, one from each side of the bipartite graph.

Lemma 3 (Expander-mixing lemma [Hae94]). Fix a λ-expander biregular graph G(L,R,E) with the
left degree dL and the right degree dR, then for every subsets S ⊆ L and T ⊆ R, we have∣∣∣∣e(S, T)− |S||T |dL

|R|

∣∣∣∣ ≤ λ
√
|S||T |,

where e(S, T) is the number of edges between S and T in G.

Property 3 from Lemma 1 is called a sampler property of a graph, and we define the general property
here.

Definition 3. A graph G(L,R,E) is called a (θ, ω)-sampler if for every X ⊆ L, the reaction of i ∈ R such

that |Γ (i)∩X|
dR

> |X|
|L| + θ is at most ω.

The next lemma shows that a good expander is also a good sampler.

Lemma 4. Every λ-expander biregular graph G(L,R,E) with the left degree dL and the right degree dR, is
a (θ, ω) sampler for any θ and ω satisfying the following condition

ω ≥
(

λ

θdR

)2 |L|
|R|

.

Proof. Fix a λ-expander biregular graph G(L,R,E). Fix an arbitrary subset X ⊆ L. Suppose T is the set

of vertices i ∈ R such that |Γ (i)∩X|
dR

> |X|
|L| + θ, where Γ (i) ⊆ L are the neighbors of i in L. By the definition

of T , we have

e(X,T) ≥ |T |
(
|X|
|L|

+ θ

)
dR.

Leader Election with Poly-logarithmic Communication Per Party 11

Using the expander mixing lemma, we have

e(X,T) ≤ |X||T |dL
|R|

+ λ
√

|X||T |.

Combining the above two, we get

|T |
(
|X|
|L|

+ θ

)
dR ≤ |X||T |dL

|R|
+ λ

√
|X||T |.

Dividing both the sides by |T |dR, (
|X|
|L|

+ θ

)
≤ |X|dL

|R|dR
+

λ

dR

√
|X|
|T |

.

Simplifying this above using the fact that |R|dR = |L|dL, we get(
|X|
|L|

+ θ

)
≤ |X|

|L|
+

λ

dR

√
|X|
|T |

,

and hence

θ ≤ λ

dR

√
|X|
|T |

.

Finally, we get

|T |
|R|

≤
(

λ

θdR

)2 |X|
|R|

≤
(

λ

θdR

)2 |L|
|R|

.

Therefore, this shows that at most ω fraction of vertices i ∈ R are such that |Γ (i)∩X|
dR

> |X|
|L| + θ.

Proof (Proof of Lemma 1). Take an expander G′(Li, Ri, E
′) between Li and Ri given by Lemma 2 with

d′L = ln6 n− 1 and d′R = ln11 n− ln5 n and λ = 10 ln5.5 n. By Lemma 4, G′ is a (1
2 ln2 n

, 400
ln2 n

) sampler.
Update the graph G′ to G(Li, Ri, E) as follows. For a vertex labelled k in Ri add additional edges to

nodes labelled k · ln5 (n) . . . (k + 1) · ln5 (n)− 1 in Li. Denote the new graph by G. The left degree increase
by 1 in G compared to G′ which implies dL = ln6 n. The new right degree of G is dR = d′R + ln5 n = ln11 n
as required. The graph G satisfies properties 1, 2, and 4 from the lemma.

These additional edges will not affect the sampler and expansion properties much, as shown below.

Sampler property. For every set X ⊆ Li and v ∈ Ri with
|ΓG′ (v)∩X|

d′
R

< |X|
|Li| +

1
2 ln2 n

, we have

|ΓG(v) ∩X|
dR

≤ |ΓG′(v) ∩X|+ ln5 n

dR

≤ |X|
|Li|

dR
dR′

+
1

2 ln2 n

dR
dR′

+
ln5 n

dR

≤ |X|
|Li|

(
1 +

1

ln4 n

)
+

1

2 ln2 n

(
1 +

1

ln4 n

)
+

ln5 n

ln11 n

≤ |X|
|Li|

+
1

ln2 n
,

where we used the fact that dR

d′
R
≤

(
1 + 1

ln4 n

)
.

Therefore if for a given set X ⊆ Li at most an 400
ln2 n

fraction of all vertices v ∈ Ri have |ΓG′ (v)∩X|
d′
R

>
|X|
|Li| +

1
2 ln2 n

, then at most an 400
ln2 n

fraction of all vertices v ∈ Ri have
|ΓG(v)∩X|

dR
> |X|

|Li| +
1

ln2 n
. This proves

property 3 from the lemma for the graph G.
Expander-mixing property. For any S ⊆ Li, T ⊆ Ri, the additional number of edges added between S
and T in G (compared to the edges in G′) is at most max{|S|, |T |}. Thus, for the updated graph G, we have,∣∣∣∣e(S, T)− |S||T |dL

|R|

∣∣∣∣ ≤ λ
√
|S||T |+max{|S|, |T |}.

This proves property 5 from the lemma for the graph G.

12 A. Bhangale et al.

3 Protocol Overview

In this section, we present an overview of the protocol. We start with the setup for the protocol: the con-
struction of the layered network in Section 3.1. This is followed by a description of the communication tree
Section 3.2. Finally, we describe the way in which parties are elected to nodes layer by layer up the tree in
Section 3.3.

3.1 The Layered Network

We present the pseudocode for the construction of the layered network in Figure 4.
The layered network construction starts with a series of ℓ∗ bipartite graphs that satisfy the properties of

Lemma 1. The end result of this procedure is a layered network with ℓ∗ + 1 layers. There are edges between
every two consecutive layers, and layer 0 nodes have parties assigned to them.

First, n/ ln5 n layer 0 nodes are created, and parties are assigned to those nodes based on the graph
G(L0, R0). Figure 3 contains a depiction of such a bipartite graph. For each edge in G(L0, R0) between node
j in L0 and node k in R0, party pj is assigned to the kth layer 0 node. We specify the assignment in this
way because a party may be assigned to the same node multiple times. Ultimately, each layer 0 is assigned
ln11 n parties, counting multiplicities.

The nodes and edges in the remainder of the layered network are constructed in the same fashion. For
layers ℓ < ℓ∗, n/ ln5ℓ+5 n nodes are created, and an edge is created between the j-th node on layer ℓ− 1 and
the k-th node on layer ℓ for each edge between the j-th node in Lℓ and the k-th node in Rℓ in G(Lℓ, Rℓ).

A single node is created for layer ℓ∗, and it is connected to every node on layer ℓ∗ − 1.

Fig. 3. The bipartite graph G(Lℓ, Rℓ) used to create edges between nodes on layers ℓ − 1 and ℓ. The nodes of Rℓ

correspond to the layer ℓ nodes and the nodes of Lℓ correspond to the layer ℓ− 1 nodes. For layer 0, L0 corresponds
to the n parties, and G(L0, R0) is used to assign the parties to the layer 0 nodes.

Input: Bipartite graphs G(Li, Ri) for i = 0, . . . , ℓ∗

1: Create n/ ln5 n nodes for layer 0
2: for each edge in G(L0, R0) do
3: if the edge is between the jth node in L0 and the kth node in R0 then
4: Assign party pj to the kth node on layer 0

5: for ℓ = 1, . . . , ℓ∗ do
6: if ℓ < ℓ∗ then
7: Create n/ ln5ℓ+5 n nodes for layer ℓ
8: for each edge in G(Lℓ, Rℓ) do
9: if the edge is between the jth node in Lℓ and the kth node in Rℓ then
10: Connect the jth node on layer ℓ− 1 and the kth node on layer ℓ

11: else
12: Create one node for layer ℓ∗ and connect it to each node on layer ℓ∗ − 1

Fig. 4. BuildLayeredNetwork

Leader Election with Poly-logarithmic Communication Per Party 13

3.2 The Communication Tree and Monitoring Sets

The communication tree consists of all of the nodes in the original layered network, while the edges in the
tree are only a subset of the edges in the original layered network. For the j-th node on layer ℓ of the network
for 0 < ℓ < ℓ∗, its children in the communication tree are nodes j · ln5 n, . . . , (j +1) · ln5 n− 1 on layer ℓ− 1.
Note that these nodes are already connected in the layered network due to property 4 of the bipartite graphs
from Lemma 1. The children of the single node on layer ℓ∗ are all of the nodes on layer ℓ∗−1. The leaf nodes
of the communication tree are the layer 0 nodes.

Monitoring Sets. Each node in the network is assigned a monitoring set whose purpose is to maintain the
information of which parties are in that node, and to convey this information to parties that wish to learn
it. The monitoring set of a node is a specific set of layer 0 nodes. We define a monitoring set as follows.

Definition 4 (Monitoring Set). The monitoring set of node A, ms(A) on layer ℓ for 0 < ℓ < ℓ∗ is the
leaf nodes of the trees rooted at each node adjacent to it on layer ℓ− 1.

In Figure 2, one can find depiction of the communication tree rooted at a node A and the monitoring set of
a node B for two nodes A and B on the same layer. The monitoring set of the single node on layer ℓ∗ is all
of the layer 0 nodes. We use the notation ms(A) to refer to the monitoring set of node A.

3.3 Supreme Committee Election

Now that we have shown how the layered network is constructed and how the communication tree and
monitoring sets are defined, we are ready for the supreme committee election protocol. Recall that during
the layered network setup, parties are assigned to the layer 0 nodes. During the supreme committee election
protocol, parties are elected to nodes layer by layer up the tree. The parties participating in the election to
a given node are the parties in the nodes adjacent to it on the previous layer. For this purpose, we will use
the following terminology.

Definition 5 (Subcommittee). The subcommittee of a node is the parties within that node.

We refer to a the parties within a node, as well as the subcommittee of a node, interchangeably.

Definition 6 (Committee). The committee of a node is the nodes adjacent to that node on the previous
layer, as well as the parties within those nodes.

The parties in a node’s commitee participate in an election, and the election winners become the subcom-
mittee of that node. 9 Observe that in order to participate in an election to a node, a party must learn the
other parties with whom to run the election protocol. This is because only the parties in the commitee of a
node participate in the election to that node, and thus know the results of the election to that node. This is
where the monitoring sets are used. The purpose of the monitoring set of a node is to keep track of which
parties are in that node. It is the responsibility of the monitoring set to communicate this information to the
monitoring sets of other nodes so that the parties in those nodes may learn this information. The monitoring
set of a node learns the winners of the election to that node through SendMsgDownTree (Figure 5). The list
of election winners to node A are sent from the nodes in A’s commitee to the nodes in A’s monitoring set,
which are also their layer 0 descendants in the communication tree. To do this, SendMsgDownTree, is invoked
recursively on the down the trees until reaching the layer 0 nodes. A party sends the message m to all of the
parties in its child nodes in the communication tree.

9 When we describe the protocol in this section, we assume that a party acts as a separate entity for each “slot” it
occupies in a given node. That is, a party may win the election for (or in the case of layer 0, be assigned to) the
same node multiple times, in which case it acts as a separate entity for each of those times that it wins, even to
the same node. For example, if an instruction says that all parties in a node A do x, if a party pi has been elected
to A multiple times, or has been assigned to it multiple times in the case of layer 0, then pi does x twice, and
it will have two different states associated being in A. When describing the election protocol in further detail in
subsequent sections, we are more precise on how we consider the slots in a node and how the parties occupying
them behave.

14 A. Bhangale et al.

Input: Each party pj in A has input a message mj

1: if ℓ > 0 then
2: Each party pj in A sends mj to each party in the nodes i · ln5 n, i · ln5 n+ 1, . . . , (i+ 1) · ln5 n− 1 on layer

ℓ− 1
3: for each child node B of A do
4: For each party pk in B, let mk be the message received from a majority of the parties in A and null

otherwise
5: Invoke SendMsgDownTree on each node i · ln5 n, i · ln5 n+ 1, . . . , (i+ 1) · ln5 n− 1 in layer l− 1, where party

pk has input message mk

Fig. 5. SendMsgDownTree for node A, the ith node on layer ℓ

Input: Each party in each node in ms(A) has a message m containing the parties in A
1: Every party in the ith node in ms(A) sends m to every party in the ith node of ms(B)
2: A party in ms(B) considers the parties in A to be the list it received from a majority of the parties in the

corresponding node in ms(A)
3: Each party in B selects a set of ln8 n nodes in ms(B) uniformly at random and sends to all parties in those

nodes a message ⟨learn processors, A⟩
4: for each party in ms(B) do
5: let poll list be the parties in B from which it received ⟨learn processors, A⟩
6: for each party pj in poll list do
7: send m to pj

8: for each party in B do
9: consider the parties in A to be the list received from a majority of the polled parties

Fig. 6. LearnProcessors in which party pi in node B wishes to learn the parties in node A

Once the monitoring set of a node knows the parties that won the election to that node, the nodes in
the monitoring set are able to communicate this information to other monitoring sets that need to learn it.
This communication is done via LearnProcessors (Figure 6). In LearnProcessors, if the parties in node B wish
to learn the parties in node A, first every party in the i-th node of the monitoring set of node A on layer ℓ
tells every party in the i-th node of the monitoring set of node B on layer ℓ the winners of the election to A.
Then every party in B selects ln8 n parties in ms(B) to poll. Each party in ms(B) responds to the parties in
B that have polled it. Because a party in ms(B) already has an idea of which parties are in B, this ensures
that it only responds to polylogarithmically many parties that are polling it.

In Figure 7, we present the full election protocol, SupremeCommitteeElection. The protocol starts with
the construction of the layered network. Then, the elections occur for each node, layer by layer. Prior to
the elections, LearnProcessors is invoked to ensure that the parties in the committee of a node know which
parties to communicate with for the election. After the election procedure, SendMsgDownTree is invoked so
that the monitoring set of a node knows the election winners.

In Section 4, we present the election protocol, SubcommitteeElection. We start with the base of the elec-
tion protocol: the lightest bins protocol, LightestBins. SubcommitteeElection uses an additional sub-protocol,
ConfirmElectionWinner, to fix the problem in the original protocol. We present the full election protocol
SubcommitteeElection in Section 4.4, which combines LightestBins and ConfirmElectionWinner. We describe
ConfirmElectionWinner in more detail in Section 5 after discussing the problem with the original protocol in
detail and motivating our solution.

4 Elections

In this section, we present the election protocol which is used to populate the nodes in the layered network.
To begin, each node starts with ln8 n empty slots. These slots are filled through an election, and the

parties that win the election occupy the slots and make up that node’s subcommittee (Definition 5). The
participants in the election to the node are the parties occupying the slots in the nodes adjacent to the
election node on the previous layer, and we call these nodes (and the parties within them) on the previous
layer the node’s committee (Definition 6).

Leader Election with Poly-logarithmic Communication Per Party 15

Input: Set of bipartite graphs G(Lℓ, Rℓ) for ℓ = 0, . . . , ℓ⋆, Set N of n parties
1: Invoke BuildLayeredNetwork on inputs G(Lℓ, Rℓ), N for ℓ = 0, . . . , ℓ⋆

2: for ℓ = 1, . . . , ℓ⋆ do
3: if ℓ < ℓ⋆ − 4 then
4: A party goes silent for all slots that it is elected to on layer ℓ after the first 10

5: if ℓ > 1 then
6: Invoke LearnProcessors on every pair of layer ℓ− 1 nodes adjacent to the same layer ℓ node

7: Invoke SubcommitteeElection for each layer ℓ node on the parties that occupy its committee and let W,aux
be the output

Fig. 7. SupremeCommitteeElection

For the success of the overall protocol, certain properties need to be satisfied by the election protocol.
First, in order for any election protocol to be executed, the parties in each node in the committee must
learn which parties occupy the slots in the other nodes in the committee. Since nodes are populated through
elections, this implies that the results of the election protocols are communicable in a reliable way so that
the parties in other nodes may learn the correct results. A second necessary property is related to the actual
election results. It must be the case that sufficiently many honest parties are elected and that the committee
(at least most of the honest parties within it) agree on this outcome.

Parties in each node of the committee learn the occupants of every other node in the committee using
LearnProcessors discussed in Section 3.3. Each party pi maintains an array σi that indicates which party
it believes occupies each slot of the committee. In the good case, most of the slots in the committee are
occupied by honest parties that agree on the occupants of nearly all of the slots in the committee. To be
precise, if this is the case, we say that the committee contains a core set, which we define in Definition 7. We
show in this section that if there exists a core set, then the election protocol is successful: there is a random
set of sufficiently many honest parties elected, and most of the honest parties participating in the election
(those in the core set) agree on the election winners. Furthermore, when the node to which the election is
occurring is to a specific class of nodes that make up most nodes of the network, which we refer to as a good
node, there is a specific core set in the committee of such a node, and the election results agreed upon by
the parties in this core set are communicable. We define a good node and discuss the communicability of
election results later. In this section, we only show that when an election to a good node occurs, the lightest
bins protocol is successful due to the existence of a core set. In Section 5, we analyze what could go wrong
when an election is to a node that is not in this category of nodes and present our solution.

4.1 The Lightest Bins Protocol

In Figure 8, we depict the state of node A and its committee prior to the election to A from the perspective
of two honest parties, px and py. px and py each have their belief of which party occupies each slot in A’s
committee. In the good case, A contains a core set, and if px and py are in a core set, they agree on the
occupants of all of the slots in most of the nodes in A’s committee. They may still disagree on the occupants
of the slots in a few nodes, e.g. for those nodes whose monitoring set doesn’t reliably convey their contents
(as indicated for the red node).

In Algorithm 9 we describe the lightest bins protocol, which is used in the subcommittee election procedure
to determine the election winners. In this procedure, pi only communicates with and accepts messages from
the parties in σi. Crucially, because the same party may occupy multiple slots in the committee, a party
behaves as a separate entity, and is treated as a separate entity (executing a separate instance of the protocol),
for each slot it occupies. Because of this, pi includes its slot in each message it sends. When pi receives a
message from pj containing slot sj , pi first verifies that σi[sj] = pj before accepting the message.

At a high level, the lightest bins protocol starts with a predefined polylogarithmic number of bins. Each
party chooses a bin uniformly at random and broadcasts their choice. The parties come to agreement on
the bin choices of each of the parties. The the bin chosen by the fewest parties is the winning bin, and the
parties that chose that bin are the winners.

In the LightestBins protocol, pi participates in a single instance of BroadcastCS for each slot in the
commitee. The purpose of BroadcastCS is to agree on the bin chosen by the party in the corresponding slot,

16 A. Bhangale et al.

as well as which party occupies that slot. Toward this end, when a party acts as a sender in BroadcastCS (which
they do if they believe they occupy the corresponding slot), they input to BroadcastCS the concatenation
of their id with their bin choice. The outcome of BroadcastCS is that even if parties pi and pj disagree on
which party occupies a given slot τ (i.e. σi[τ] ̸= σj [τ]), their outputs from BroadcastCS for the instance
corresponding to slot τ will be the same. This ensures that they both see the same winning bin b, since they
output ∗||b the same number of times. They also see the same list of winning parties that fill that bin. The
validity property of the BroadcastCS protocol ensures that for every instance of BroadcastCS corresponding
to a slot in the core set, the outcome of BroadcastCS is the input of the party occupying that slot in the core
set.10

Fig. 8. The state of the committee of node A on layer ℓ > 1 prior to the election. Each node contains exactly c = ln8 n
slots. px and py maintain arrays σx and σy of the parties they believe are in A’s committee. As long as A’s committee
contains a core set, most of the parties in the slots are honest parties that agree on the parties occupying most of
the slots. Note that A may have multiple edges to the same layer ℓ node, and for each edge there is a distinct set of
numbered slots.

We would like to show that the lightest bins protocol succeeds when there is a core set. We define a core
set as follows:

Definition 7 (Core Set). Let there be a network P of parties, where each party pi has an array σi of length
m ∈ N+. The core set C is a set of tuples (pj , in), where pj ∈ P and in ∈ [m] such that:

1. ∀(pj , ∗) ∈ C, pj is an honest party
2. ∀in s.t. (∗, in) ∈ C, |{(∗, in)}| = 1
3. ∀(pj , in) ∈ C and ∀(pi, ∗) ∈ C σi[in] = pj
4. |C| > 2m

3

Note that there may be multiple core sets, or no core set, for a given set of parties.
As shown in Algorithm 9, BroadcastCS is a core building block of the lightest bins protocol. In Section 4.2,

we describe the BroadcastCS protocol, and show that it satisfies the properties of broadcast for a core set when
a core set exists. In Section 4.3, we prove that the lightest bins protocol achieves the necessary properties
under certain conditions.

10 In the original protocol, they ensure that exactly c parties are elected by adding parties to the lightest bin using an
arbitrary procedure. However, the honest parties are no longer choosing their bins at random, so doing so renders
their calculations showing that very few honest parties are elected more than a constant number of times incorrect.
We found that filling up the lightest bin is unnecessary, as long as we can show that sufficiently many honest
parties are elected. An empty slot is akin to a Byzantine party, which can be tolerated as long as the total number
of empty slots and Byzantine parties is less than c

3
s, and the remaining slots are filled by honest parties.

Leader Election with Poly-logarithmic Communication Per Party 17

Input: Each party pi has input σi, an array consisting of a party’s id or ⊥ in each index s.t.

|σi| =

n·ln8 n

ln5ℓ∗ n
, if ℓ = ℓ⋆

ln22 n, if ℓ = 0

ln19 n, otherwise

(1)

1: let

num bins =

n·ln8 n

ln5ℓ∗ n
, if ℓ = ℓ⋆

ln14 n, if ℓ = 0

ln11 n, otherwise

(2)

2: for each edge e from A to a layer ℓ node do
3: for each slot s in node Be adjacent to A via edge e do
4: for every i ∈ [n] do
5: if pi occupies slot s then
6: let b be an integer chosen uniformly at random from [num bins]
7: invoke BroadcastCS as a sender with inputs σi[s] ∥ b, σi

8: else invoke BroadcastCS with input σi

9: let B be the array of outputs of BroadcastCS for each slot
10: let b⋆ be the bin number in B with the lowest cardinality
11: let winners be an array of the parties pj ordered by id s.t. pj ||b∗ is in B (including multiplicities)
12: return winners, b∗

Fig. 9. LightestBins for election to node A on layer ℓ+ 1

4.2 Byzantine Broadcast for a Core Set

BroadcastCS is a protocol for Byzantine Broadcast adapted from that of [BGP92]. The protocol starts with
the sender sending their input value to all of the parties. Then each party runs a Phase-King based Byzantine
agreement protocol on each bit of the sender’s input. We assume that each party pi has as input an array
σi, which corresponds to all of the slots in the nodes participating in the election. If party pi has a non-null
party pj in position τ of σi, this indicates that pi believes that pj occupies slot τ in the list of participating
nodes. We assume that c is the total number of slots in the committee participating in the election to the
node.

In Lemma 7 we prove that the protocol satisfies the necessary properties of byzantine broadcast when
there exists a core set.

In the following, we refer to lines 8-21 of the protocol as the phase-king subroutine. We refer to the king
of round k as the party σ[k]. We say that a slot s is in core set C if (∗, s) ∈ C.

Lemma 5. If BroadcastCS is occurring for a slot s in C, and all honest parties in C begin the phase-king
subroutine holding the same bit b s.t. val = b, then all honest parties in C end the subroutine with val = b.

Proof. There are more than 2c/3 honest parties in C , so they all receive > 2c/3 messages with b from parties
in σ and set cb = 1. As a result, all honest parties in C set val = b and have db > 2c/3. Honest parties only
send one message of each type, so honest parties don’t change their value if the king sends a value other
than b.

Lemma 6. If BroadcastCS is occurring for a slot s in C, and round k of the phase-king subroutine has a
king from C, then all honest parties in C have the same val by the end of that round.

Proof. If all honest parties in C adopt the king’s value, then the lemma follows from the fact that the king
is honest and does not equivocate, and the fact that since the king is in C, all parties in C agree on who the
king is. If some honest party in C doesn’t adopt the king’s value, then the king must have proposed that
party’s value due to the condition by which the king chooses their value and the condition by which the
parties decide whether to adopt the king’s value (lines 17 and 21). The lemma follows from the fact that no
honest party in C could have dval′ > 2c/3 for val′ other than the king’s value due to quorum intersection,
so all honest parties in C either adopt the king’s value or already hold the king’s value.

18 A. Bhangale et al.

Input: the sender has γ-bit input xs; every party pi has input σi an array of length c ∈ N∗, where each entry
is a party’s id or null

1: if pi = σi[s] then
2: send ⟨si, xs⟩ to all parties in σ

3: if received ⟨σi[s], x⟩ from party σi[s] then
4: let v = x
5: else set v = 0
6: for β ∈ [γ + 1] do
7: let val = v[β]
8: for k ∈ [⌈ c

3
⌉+ 1] do

9: set c1, c0, d1, and d0 to 0 and send ⟨si, val⟩ to all parties in σi

10: if received > 2c/3 distinct messages ⟨in, b⟩ from parties pj s.t. σi[in] = pj then
11: set cb = 1 and send ⟨si, c0, c1⟩ to all parties in σi

12: let d0 be the count of distinct messages ⟨in, 1, ∗⟩ received from parties pj s.t. σi[in] = pj
13: let d1 be the count of distinct messages ⟨in, ∗, 1⟩ received from parties pj s.t. σi[in] = pj
14: if d1 > ⌈ c

3
⌉ then

15: set val = 1
16: else
17: set val = 0
18: if si = k then
19: send ⟨si, val⟩ to all parties in σi

20: if received message ⟨k, valk⟩ from σi[k] and dval ≤ 2c/3 then
21: set val = valk
22: set v[β] = val

23: return v

Fig. 10. BroadcastCS for slot s for party pi occupying slot si

We are finally ready to prove that the protocol BroadcastCS satisfies the properties of Byzantine Broadcast
for all (p, s) in C.

Lemma 7. The BroadcastCS protocol satisfies the following 3 properties:

1. (Validity) If the broadcast is occurring for a slot s in C, then all parties in C output the input of party
p, s.t. (p, s) ∈ C.

2. (Agreement) If honest parties pi and pj that are both in C output values xi and xj respectively, then
xi = xj.

3. (Termination) All honest parties output a value.

Proof. We start by proving property 1. All honest parties in C start the phase king subroutine with the
sender’s input. This property therefore follows from Lemma 5.

Next, we prove property 2. There must be at least one round of the phase king subroutine with an honest
king in C. By Lemma 6, all honest parties in C end this round with the same value. The property therefore
follows from Lemma 5.

Finally, we prove property 3. This property follows from the fact that each party sets v regardless of what
they receive from the sender on line 5, and outputs v regardless of what happened in between.

4.3 LightestBins Analysis

We now prove that the lightest bins protocol achieves some desirable properties when there is a core set in
the committee. Let b be the winning bin of the lightest protocol. In the following, we refer to the winners
of the lightest bins protocol as all parties p such that the parties in the core set C 11 output p||b from some
instance of BroadcastCS.

First, we prove that there are sufficiently many winners from C.

11 We define the specific core set we are interested in in Section 6.2.

Leader Election with Poly-logarithmic Communication Per Party 19

Input: Each party pi has input σi, an array consisting of a party’s id or ⊥ in each index indicating the parties
that pi believes occupy each slot in the committee s.t.

|σi| =

n·ln8 n

ln5ℓ∗ n
, if ℓ = ℓ⋆

ln22 n, if ℓ = 1

ln19 n, otherwise

(3)

1: Each party pi initialises Wi = {}
2: Each party pi participates in LightestBins for A1 and has (W , aux) as the output
3: Invoke SendMsgDownTree on message on all nodes A in A1’s committee, where each party has input ⟨W , aux⟩
4: if ℓ < ℓ∗ − 4 then
5: Invoke ConfirmElectionWinner for node A1

Fig. 11. SubcommitteeElection to node A1 on layer 0 < ℓ < ℓ∗−1. Note that only the parties that believe they occupy
a slot in the committee of A1 participate in this protocol.

Lemma 8. With high probability, at least (1 − 1
ln2 n

) |C| ln8 n
c winners of the lightest bins protocol are from

the core set C, where c is the number of slots in the committee.

Proof. For an election to a layer 1 node, there are ln22 n slots in the committee, and more than 2
3 of those slots

contain honest parties in C. Each honest party chooses at random one of ln14 n bins. Using a straight forward

Chernoff bound, it is clear that with high probability, the lightest bin contains at least (1 − 1
ln2 n

) |C| ln8 n
c

parties from C. The case for elections on layers ℓ > 1 follow analogously.

Lemma 9. At most ln8 n parties win the lightest bins protocol.

Proof. This follows from the fact that a party considers a winning bin to be the one chosen by the fewest num-
ber of parties and the fact that there is a single bin choice (in other words, a single instance of BroadcastCS)
per slot in the committee.

Lemma 10. Fewer than 1
3 of the winners are not parties from C.

Proof. This follows from Lemmas 9 and 8.

4.4 Subcommittee Election

We present the full subcommittee election protocol in Figure 11. When SubcommitteeElection is invoked on
each node, the parties that believe they are in the committee of that node, and only those parties, participate
in the protocol. The final step of the protocol, running ConfirmElectionWinner, addresses the problems of SLE.
We describe ConfirmElectionWinner in detail in Section 5.

5 Confirming Election Winners

In Section 4, we presented the subcommittee election protocol. We stated that there is a certain category
of nodes, which we referred to as good nodes, whose subcommittee contains a specific core set. We showed
that the existence of a core set implies that the lightest bins protocol is successful, and we stated that the
election results as learned by the specifically defined core set of a good node are communicable.

In this section, we show how we reduce the power of the adversary to sabotage the protocol using the
elections that aren’t to good nodes12. We do so using a new procedure, ConfirmElectionWinner. Finally, we
present an important lemma that upper bounds the fraction of nodes on each layer that are resistant to
this procedure. We call these nodes equivocating nodes. Because this new bound is far lower than the bound
ensured by the sampler properties of the layered network alone, we are able to ensure the completion and
correctness of the overall protocol.

For the purposes of this section, we use a weak notion of bad nodes. We use a stronger definition in
Section 6.2 when analyzing the entire protocol.

12 See Section 1 for a description of how the adversary may sabotage the protocol.

20 A. Bhangale et al.

Definition 8 (Weak bad node).
A node is bad if any of the following conditions are met:

1. For a node on layer 0, it contains more than 1
3 − ε + 1

ln2 n
fraction Byzantine parties or for a node on

layer ℓ > 0 it contains 1
3or more fraction Byzantine parties.

2. For node on layer ℓ > 0, it contains more than 3
lnn fraction bad nodes in its monitoring set.

3. For node on layer ℓ > 0, it has more than 1
lnn fraction bad nodes adjacent to it on layer ℓ− 1.

Nodes that are not weak bad nodes are good nodes. In this section, when we refer to bad nodes, we are
referring to weak bad nodes.

5.1 ConfirmElectionWinner

Prior to executing ConfirmElectionWinner, each party pi knows the bin bi which they chose during the lightest
bins protocol. They also have a belief of the winning bin, b⋆i and a belief of at most ln8 n parties (counting
multiplicities) that chose that winning bin.

The purpose of this procedure is to reduce the adversary’s ability to make honest parties believe they
won many elections and thereby force them to go silent. To do this, we use the monitoring sets of nodes
three layers above the election node. The reason for this is that the number of nodes that are bad and for
whom many of the monitoring sets of the nodes three layers above them contain many bad nodes is far fewer
than nodes that are only bad. We call nodes that meet the latter category equivocating nodes, which we
define more formally in Definition 9. The end result of the procedure outlined in this section is that if a node
is not an equivocating node, all the adversary can do is choose a single winning bin for its election, even
if it is a bad node. Only the honest parties that chose that bin can be confirmed to have won the election
via ConfirmElectionWinner. We are then able to derive an upper bound on the number of parties on each
layer that participate in even a single election to an equivocating node on the next layer. This bound is
sufficiently small so that we can later use it to argue that even if all of the parties that do this go silent due
to participating in shadow elections, the number of honest parties that go silent is too small to impair the
liveness or correctness of the overall protocol.

We present ConfirmElectionWinner in Figure 12. We use the following notation:

– Let P be a node on layer ℓ > 0 of the network. Then adj−(P) refers to all nodes adjacent to P on layer
ℓ− 1 (a.k.a., the nodes in P ’s committee)

– Let P be a node on layer ℓ < ℓ∗ of the network. Then adj+(P) refers to all nodes adjacent to P on layer
ℓ+ 1 (a.k.a., the nodes for whom P is a part of their committee)

At times we abuse the notation by referring to parties p ∈ adj−(P) or p ∈ adj+(P) when we are referring
to parties in the union of all nodes in adj−(P) or adj+(P). For simplicity, we use a subscript to signify
application of the function multiple times, e.g. adj+2 (P) for adj+(adj+(P)). Although we use set notation,
note that there is multiplicity. The same party may appear multiple times in a node, and the same node
may have multiple edges to another node.

At the start of ConfirmElectionWinner, each party pi in P1’s subcommittee initializes a variable confirmedi
to 0. Later, as it receives confirmations that it won the election, it increments this variable. It considers its
status as a winner confirmed upon receiving a threshold number of confirmations. Also at the start of the
protocol, every party pk ∈ ms(adj+3 (P1)) initializes a variable winnersk to ∅ and bin = ⊥. The former
variable will refer to the list of parties that pk learns are the winners of the election to P1, and the latter
refers to the bin that pk learns was the winning bin. Following this, every party pi in P1’s subcommittee that
has bi ̸= b⋆i (pi does not believe it won the initial election) returns false from the procedure, ensuring that
only parties that believe they won the initial election may be confirmed as winners. The remaining parties in
P1’s subcommittee each choose a set P(P4) uniformly at random of ln8 n nodes in ms(P4)∀P4 ∈ adj+3 (P1),
and send a message ⟨“poll”, P1⟩ to all parties in the nodes P(P4). This step introduces a polling mechanism
for election winner confirmation, maintaining the desired communication complexity of the overall protocol.

Next, the parties in ms(adj+3 (P1)) learn the winners of the election to P1. The parties in a designated
node in ms(P1) tell the parties in a designated set of nodes in ms(adj+3 (P1)) the winners of the election. A

Leader Election with Poly-logarithmic Communication Per Party 21

Input: ∀ parties pi in nodes A ∈ adj−(P1) let bi be the bin that pi chose and let b⋆i be the bin that pi believes
won the initial election

1: All parties pi in nodes A ∈ adj−(P1) initialize confirmedi = 0
2: All parties pk ∈ ms(adj+3 (P1)) initialize winnersk = ∅ and bin = ⊥
3: for pi ∈ adj−(P1) do
4: if bi ̸= b⋆i then
5: return false
6: else
7: for P4 ∈ adj+3 (P1) do
8: Select a set P(P4) of ln

8 n nodes uniformly at random from ms(P4)
9: Send ⟨“poll”, P1⟩ to all parties in P(P4)

10: for P4 ∈ adj+3 (P1) do
11: Every party pj in the k-th node of ms(P1) tells every party in nodes k · ln15 n . . . (k + 1) · ln15 n− 1 of

ms(P4)
a a tuple (Wj , bj), where Wj is the list of winners and bj is the winning bin for the election to P1

12: for pk ∈ ms(P4) do
13: if heard the same tuple (W , b) of ≤ ln8 n initial election winners W and winning bin b from > 2

3
of the

parties in the corresponding node in ms(P1) then
14: pk sets winnersk equal to W , bin = b
15: pk sends a message (“confirmed”, bin) to all parties in winnersk from which it received a message

⟨“poll”, P1⟩
16: for pi ∈ adj−(P1) do
17: for each node P3 ∈ adj+2 (P1) do
18: if pi received ⟨“confirmed”, bi⟩ from > 2

3
of the parties in P(P4) for >

2
3
of nodes P4 ∈ adj+(P3) then

19: pi increments confirmedi

20: if confirmedi >
2 ln12 n

3
then ▷ because |adj+2 (P1)| = ln12 n

21: return true
22: else return false

a (note that |ms(P4)| = ln15 n · |ms(P1)|)

Fig. 12. ConfirmElectionWinner for election to node P1 on layer ℓ < ℓ∗ − 4

party pk ∈ ms(adj+3 (P1)) then sets winnersk to be the valid list of parties (in this case, one consisting of at
most ln8 n parties) that it received from more than 2

3 of the parties in the corresponding node in ms(P1) and
bin to be the bin number it received from more than 2

3 of the parties in the corresponding node in ms(P1).
Upon setting winnersk, pk then sends a message ⟨“confirmed”, bin⟩ to all of the parties in winnersk from
which it received a message ⟨“poll”, P1⟩.

Each party pi in P1’s committee considers that it has received confirmation as follows. pi counts the
messages it received from parties in ms(adj+3 (P1)) that it has chosen to poll. Specifically, it considers the
count of messages ⟨“confirmed”, bi⟩ it received from parties in P(P4) for the nodes P4 ∈ adj+(P3) for each
node P3 in adj+2 (P1) individually. It increments confirmedi once for a node P3 if it received ⟨“confirmed”,
bi⟩ from more than 2

3 of the parties in P(P4) more than 2
3 of the nodes P4 ∈ adj+(P3). If pi increments

confirmedi sufficiently many times, it returns true from the procedure, considering its status as an election
winner as confirmed. Otherwise, pi considers itself as not having been confirmed as an election winner,
returning false.13

ConfirmElectionWinner Analysis We proceed to prove that the election confirmation procedure achieves
the aforementioned result with the desired communication complexity. Due to the presence of shadow elec-
tions, we specify that for an election to a good non-equivocating node there is a specific list of correct winning
parties and winning bin that we are interested in. We use the following assumption in our proofs.

13 For simplicity, we do not refer to slots in this section, but note that parties must receive confirmation separately
for each slot that they occupy in the subcommittee.

22 A. Bhangale et al.

Assumption 1 We refer to WC and b⋆ as the correct initial election winners for P1. If P1 is a non-
equivocating good node, then all but 1/ lnn fraction of the nodes in ms(P1) know the correct initial election
winners for the election to P1, i.e. Wj = WC and bj = b⋆. The list WC includes a list of parties pi s.t.
bi = b⋆.14

When analyzing the full protocol in Section 6.2, we specify what we mean by the correct election winners
(Remark 1) and show that this assumption holds.

For the purposes of the following proofs, we define a node P1 as a non-equivocating node as follows.
Let P be a node in the network. X4(P) = true if at most 3

lnn fraction of the nodes in ms(P) are
bad nodes. X3(P) = true if |{P4|P4 ∈ adj+(P) and X4(P4) = true}| > 2

3 |adj
+(P)|. X2(P) = true if

|{P3|P3 ∈ adj+(P) and X3(P3) = true}| > 2
3 |adj

+(P)|.

Definition 9 (Non-equivocating node). Let P1 be a node on layer ℓ > 0 of the network. If |{P2|P2 ∈
adj+(P1) and X2(P2) = true}| > 2

3 |adj
+(P1)|, then P1 is a non-equivocating node.

If a node on layer ℓ > 0 is not a non-equivocating node, we refer to it as an equivocating node.
We start by proving that for each non-equivocating node P1, the adversary is forced to choose a single

bin s.t. the parties that chose that bin believe they won the election, even if P1 is a bad node. Moreover,
other parties that did not choose this bin will know that they did not win the election.

Lemma 11. Let P1 be a non-equivocating node. If honest parties pi and pj chose bins bi and bj and they
both return true from Confirm-Election-Winner for the election to P1, then bi = bj.

Proof. In order for a party pi ∈ adj−(P1) to return true from Confirm-Election-Winner for the election
to P1, it must have confirmed > 2 ln12 n/3 (line 20). pi increments confirmed at most once for each node
P3 ∈ adj+(adj+(P1)) if it receives a message (“confirmed”, bi) from more than 2/3 of the parties in more
than 2/3 of the nodes in P(P4) for more than 2/3 of the nodes P4 ∈ adj+(P3) (lines 18- 19).

Consider a single node P4 s.t. at most 3
lnn fraction of the nodes in ms(P4) are bad. We show that there

can be at most a single unique bin b such that parties pi with bi = b receive preliminary confirmation
from ms(P4). We say that pi receives preliminary confirmation from P4 if it receives (“confirmed”, bi) from
> 2/3 of the parties in > 2/3 of the nodes in P(P4). Each honest party only sends messages of the type
(“confirmed”, b) for a single, unique bin b. Assume that a party pi has received preliminary confirmation

from ms(P4). Then, of the ln
8 n nodes in P(P4), from more than 2 ln8 n

3 of those nodes had more than 2/3 of
the parties send messages of the type ⟨“confirmed”, bi ⟩ to pi. At least 1− 3

lnn fraction of those nodes must
have been good nodes, so at least 2

3 − 3
lnn fraction of the nodes in P(P4) are good nodes in which > 2/3 of

the parties sent ⟨“confirmed”, bi ⟩ to pi. Since pi chose the nodes in P(P4) uniformly at random, it follows
from a Chernoff bound that with high probability, at least 2

3 −
4

lnn > 1
2 fraction of the nodes in ms(P4) must

be good nodes in which more than 1
3 fraction of the parties are honest parties with bin = bi. It follows from

a Chernoff bound and a quorum intersection argument on the honest parties in a good node in ms(P4) that
another honest party pj with bj ̸= bi cannot receive preliminary confirmation from P4.

Next, consider a single node P3 such that more than 2
3 of the nodes P4 ∈ adj+(P3) have at most 3

lnn
fraction bad nodes in ms(P4). We show that there can be at most a single unique bin b such that parties
pi with bi = b receive secondary confirmation from P3. We say that pi receives secondary confirmation from
P3 if it receives preliminary confirmation from the monitoring sets ms(P4) of more than 2

3 of the nodes
P4 ∈ adj+(P3). By the definition of P3, more than 2/3 of the nodes P4 ∈ adj+(P3) have the property
that preliminary confirmation can only be received from ms(P4) for a single bin (as shown in the previous
paragraph). From quorum intersection on the nodes P4 ∈ adj+(P3), it follows that for such a node P3,
secondary confirmation can be received from P3 for a single bin. This is because for more than 2

3 of the
nodes P4 ∈ adj+(P3), ms(P4) will only give preliminary confirmation for a single bin.

Finally, because P1 is a non-equivocating node, by the definition of a non-equivocating node, it follows
that more than 2

3 of the nodes P3 ∈ adj+2 (P1) give secondary confirmation for only a single bin b. If a party pi

14 Note that it’s possible for a party to win a shadow election to a non-equivocating good node if they learned the
parties in the committee from a monitoring set which conveyed the wrong information. In this case, we don’t
consider this party as a correct initial election winner, regardless of its bin choice, because it didn’t participate in
the “actual election” to the node. We specify what we consider the correct initial election winners in Section 6.2,
in Remark 1.

Leader Election with Poly-logarithmic Communication Per Party 23

increments confirmedi for a node P3, then they have received secondary confirmation from P3 (lines 18-19).
The lemma therefore follows from quorum intersection on the nodes P3 ∈ adj+2 (P1) from which pi and pj
received secondary confirmation, causing them to increment confirmedi and confirmedj respectively.

Next we prove a lemma showing that for all good nodes that are also non-equivocating, the election winner
confirmation procedure does not change the initial election results. Parties that won the initial election, and
only parties that won the initial election, are all confirmed as winners.

Lemma 12. If P1 is a non-equivocating good node, a party pi returns true from ConfirmElectionWinner for
the election to P1 iff bi = b⋆i and pi is in WC with high probability.

Proof. Observe that by the condition on line 5, we trivially have that if bi ̸= b⋆i a party returns false from
ConfirmElectionWinner. All that remains to prove is that all parties pi for whom bi = b⋆i return true from
ConfirmElectionWinner.

First, we show that for all nodes P4 ∈ adj+3 (P1), the parties pk in at most 4/ lnn fraction of the nodes
in ms(P4) do not learn the correct initial election winners from the parties in the corresponding node in
ms(P1), causing them to set winnersk and bin incorrectly (or never set them to anything) on lines 13-15.
To see this, for parties in a node in ms(P4) to learn incorrect or no information, the corresponding node in
ms(P1) must be bad or the honest parties in the node must have learned an incorrect list of initial election
winners by the conditions on lines 13-15). Since P1 is a good node, at most 3/ lnn fraction of the nodes in
ms(P1) can be bad nodes, and at most 1/ lnn fraction of the nodes in ms(P1) could have learned incorrect
initial election winners (by Assumption 1). It follows that no more than 4/ lnn fraction of the nodes in
ms(P4) for all nodes P4 ∈ adj+3 (P1) can have their corresponding nodes in ms(P1) be bad or have learned
the incorrect initial election winners, thus proving the statement.

By the definition of a non-equivocating election node, more than 2
3 of the nodes P2 ∈ adj+(P1) have the

property that more than 2
3 fraction of the nodes P3 ∈ adj+(P2) with more than 2

3 of the nodes P4 ∈ adj+(P3)
having at most 3

lnn fraction bad nodes in ms(P4). By the statement proved in the preceding paragraph, all
such nodes P4 have the property that more than 1 − 3

lnn − 4
lnn fraction of the nodes in ms(P4) are good

nodes in which the honest parties learned the correct initial election winners. It follows from a Chernoff
Bound that with high probability, for every good node P4 that more than 2/3 of the nodes in P(P4) are good
nodes in which the parties know the correct initial election winners, so all honest parties in WC increment

confirmed more than 2 ln12 n
3 times, thus proving the lemma.

The following lemma bounds the fraction of equivocating nodes per layer.

Lemma 13. For every layer ℓ s.t. 0 < ℓ < ℓ∗ − 4, at most 228·58
ln20 n

fraction of the nodes on layer ℓ are
equivocating election nodes.

Proof. We start the proof by showing a bound on the number of nodes A on any given layer ℓ′ = ℓ − 3
such that at least 1

3 fraction of the nodes in adj+(A) have more than 3/ lnn fraction of bad nodes in their
monitoring sets.

Let M be the set of nodes on layer ℓ′ and P be the set of nodes on layer ℓ′ + 1. By the construction of
the layered network, |M | = n/ln5ℓ′+5n and |P | = n/ln5ℓ′+10n. Additionally, the degree from nodes in M to
nodes in P is dup = ln6 n, and the degree from nodes in P to nodes in M is ddown = ln11 n. We know from
Lemma 14 below that at most 400

ln2 n
fraction of the nodes in P are bad nodes due to having more than 3/ lnn

fraction of bad nodes in their monitoring set (property 2 of Definition 8). Let S be the set of bad nodes that
are bad due to satisfying this property in P and let T ⊆ M be the set of nodes on layer ℓ′ s.t. each node
from T has at least 1/3 of its neighbors in S. By definition of the set T , e(S, T) ≥ |T |dup/3, where e(S, T)
is the number of edges between S and T .

Using property 5 of the layered network from Lemma 1, we have

24 A. Bhangale et al.

e(S, T) ≤ dup|S||T |
|P |

+ λ
√
|S||T |+max{|S|, |T |}

|T |dup
3

≤ 400dup|T |
ln2 n

+ 10 ln5.5 n
√
|S||T |+max{|S|, |T |} (Using |S|/|P | ≤ 400/ ln2 n.)

dup
3

≤ 400dup

ln2 n
+ 10 ln5.5 n

√
|S|
|T |

+max

{
|S|
|T |

, 1

}
ln6 n

4
≤ 10 ln5.5 n

√
|S|
|T |

+max

{
|S|
|T |

, 1

}
(for large enough n)

√
|T | ≤ 40

ln0.5 n

√
|S|+

4
√

|T |
ln6 n

max

{
|S|
|T |

, 1

}
If max

{
|S|
|T | , 1

}
= 1, then

√
|T | ≤ 40

ln0.5 n

√
|S|+

4
√
|T |

ln6 n
=⇒ 1

2

√
|T | ≤ 40

ln0.5 n

√
|S| =⇒ |T | ≤ 6400

lnn
|S|

else,

√
|T | ≤ 40

ln0.5 n

√
|S|+

4
√

|T |
ln6 n

|S|
|T |√

|T |
|S|

≤ 40

ln0.5 n
+

4

ln6 n

√
|S|
|T |

1

2

√
|T |
|S|

≤ 40

ln0.5 n
(for large enough n)

|T | ≤ 6400

lnn
|S|

Thus, in both the cases, we have |T | ≤ 6400
lnn |S| which implies

|T | ≤ 6400 · 400|M |
ln8 n

=
16 · 4002|M |

ln8 n
.

We apply the same line of reasoning twice more to derive the bound on the fraction of equivocating nodes
on a given layer in the lemma statement.

First, we bound the number of nodes from layer ℓ′ + 2 with at least 1/3 of its neighbors in T . Call this
set of nodes T2. This will give us an upper bound on the number of nodes A on layer ℓ′ + 2 with more than
1
3 fraction nodes A′ ∈ adj+(A) having more than 1

3 fraction of the nodes A′′ ∈ adj+(A′) with more than
3

lnn fraction bad nodes in their monitoring sets. Applying the same expander argument as above but now

replacing the role of S and P with T and M respectively, we get that |T2|
|Rℓ′+2|

≤ 162 · 4003/ ln14 n (note that

|Rℓ| is the number of nodes in layer ℓ). Finally, making the same argument again, now with the sets T2

and Rℓ′+2, we get the required bound of 163 · 4004/ ln20 n on the fraction of equivocating nodes from layer
ℓ′ + 3 = ℓ as claimed in the lemma statement.

Lemma 14. At most 400
ln2 n

fraction of the nodes on layer ℓ for 1 < ℓ < ℓ⋆ have more than 3
lnn fraction bad

nodes in their monitoring set.

Proof. By property 3 of Lemma 1, at most 400/ ln2 n fraction of the layer 0 nodes are bad due to satisfying
property 1 of Definition 8. That is, up to 400n

ln7 n
layer 0 nodes are bad. The communication tree rooted at

a node on layer ℓ has ln5ℓ n leaf nodes. It follows that at most ⌊ 400n
ln7 n

÷ ln5ℓ−1 n⌋ ≤ n
ln5ℓ+6 n

nodes on layer

Leader Election with Poly-logarithmic Communication Per Party 25

ℓ may have more than 1
lnn fraction bad leaf nodes for their communication trees. Because layer ℓ contains

n
ln5ℓ+5 n

nodes, it follows that at most 1
lnn fraction of the nodes on layer ℓ may have more than 1

lnn fraction
bad leaves in their communication trees. Refer to this set of layer ℓ nodes as the set T .

By property 3 of Lemma 1, it follows that at most 400
ln2 n

fraction of the nodes on layer ℓ+ 1 are adjacent

to more than 1
lnn + 1

ln2 n
fraction nodes from T . It follows that at most 400

ln2 n
fraction of the nodes on layer

ℓ+ 1 have more than 1
lnn + 1

lnn + 1
ln2 n

< 3
lnn fraction bad nodes in their monitoring set.

Finally, we show that the election confirmation procedure does not add more than polylogarithmic bits
of communication per process.

Lemma 15. Confirm-Election-Winner incurs polylogarithmic per process communication complexity.

Proof. Consider the election to a single node P1 on layer ℓ. Communication begins on line 11. Each party
in the ith node of ms(P1) sends a list of O(ln8 n) parties to every party in ln15 n nodes in ms(P4) for all
nodes P4 ∈adj+3 (P1). Since there are ln11 n parties per layer 0 node, a party in a node in ms(P1) sends a list
of election winners to at most ln11 n · ln15 n · |adj+3 (P1)|. Note that |adj+3 (P1)| = ln18 n. Every party is in at
most ln6 n layer 0 nodes, so each party sends a list of polylogarithmically many parties to polylogarithmically
many parties for a given election.

Next, we consider the communication on line 15. Every party in ms(P4) sends a message “confirmed” to
at most ln8 n parties. |adj−3 (P)| ≤ ln33 n for all nodes P , so parties in ms(P4) perform election confirmation
for polylogarithmically many nodes on layer ℓ. The remainder of the lemma follows from the fact that every
party is in ln6 n layer 0 nodes and the fact that parties poll only ln8 n nodes in each monitoring set ms(P4).

6 Leader Election with Sublinear Per Party Communication Complexity

In this section, we present our analysis of the full protocol with an updated proof of its correctness. In
Section 6.1, we present lemmas that are necessary to show that the protocol completes correctly with sublinear
per party communication complexity. Recall that the protocol uses a silencing mechanism to ensure that
parties don’t get elected to too many nodes per layer, blowing up the communication complexity. However,
this silencing mechanism could also harm the completion of the protocol if too many honest parties go silent.
Toward this end, we show a bound, for each layer of the network, on the fraction of nodes containing many
silent honest parties.

Finally, in Section 6.2, we analyse the full protocol. We show that with high probability, the protocol
elects a supreme committee of polylogarithmic size containing more than 2/3 fraction honest parties, and
that all but o(1) of the network is aware of. In addition, we show that the protocol satisfies the necessary
communication complexity and round complexity.

6.1 Bounding the Negative Effects of Silenced Parties

In this section, we show that for most nodes on each layer of the network, very few parties in the node are
honest parties that have gone silent (Lemma 17). A crucial part of this proof is our bound on the number of
equivocating nodes per layer proved in the preceding section in Lemma 13. We start by introducing the notion
of a potentially good node. We introduce this notion because we wish to bound the fraction of silent honest
parties in the nodes on each layer. However, we haven’t yet argued that the elections complete correctly on
each layer; we do this in Section 6.2. In this section, we only bound the fraction of nodes per layer that may
be potentially good but contain many silent honest parties. In Section 6.2 we show that most nodes on each
layer are in fact potentially good nodes, and we use the bounds proved in this section to analyse the full
protocol.

Definition 10 (Potentially good node). A potentially good node is a non-equivocating node whose com-
mittee contains a core set.

As a consequence of Lemma 8, potentially good nodes contain more than 2 ln8 n
3 > ln7 n (for sufficiently

large n) parties with high probability. We also use the notion of latently silent honest parties in our proofs,
which we motivate and define next.

26 A. Bhangale et al.

In order to prove the desired bound on the number of nodes per layer containing many silent honest
parties, we need to bound the number of silent honest parties on each layer, counting multiplicities. Each
layer ℓ has a certain fraction of equivocating nodes. Since there is no guarantee on the outcome of the election
to an equivocating node, every party that participates in an election to an equivocating node may believe
that they were elected. Since they may participate in shadow elections from that node onwards (which the
adversary can ensure that they win), they may go silent for all non-shadow elections that they win on the
next layer. Rather than immediately choosing to silence such honest parties on the next layer, the adversary
could “collect” many honest parties by having them believe they are elected to equivocating nodes, making
them latently silent honest parties, and use them to sabotage the protocol on some higher layer.

Definition 11 (Layer ℓ latently silent honest party). A party is a latently silent honest party in node
A for layer ℓ if it is (elected to) in an equivocating node on layer ℓ′ such that ℓ′ < ℓ and it knows that it is
elected to node A.

On the one hand, the adversary may choose to silence a latently silent honest party by having it win all
the elections to (equivocating and non-equivocating) nodes adjacent to an equivocating node that it is in
(via shadow elections). In this way, the adversary may immediately silence this party in all other layer ℓ+1
nodes to which it wins elections (since we assume the adversary can choose the winning bin for all elections).
But if a party is silent in a node, it will not participate in elections to the next layer connected to that node.
To be thorough in deriving our upper bound on the number of nodes containing many silent honest parties
on each layer, we must account for the fact that the adversary may not have this party go silent in all other
layer ℓ + 1 nodes to which it wins elections. The adversary can choose to have this party win fewer than
10 shadow elections and elections to equivocating nodes, so that it is not silent for all of the other nodes
to which it wins elections. This party can carry on up the layered network, winning a few shadow elections
and elections to equivocating nodes on each layer and a few elections to non-equivocating nodes on each
layer. Basically, we consider that once an honest party participates in an election to an equivocating node,
the adversary can silence this party in all nodes to which it wins an election at any point up the tree. We
call these parties “latently silent” because the adversary may choose, at some point higher in the network,
to silence these parties by having them win 10 shadow elections. At first glance, it seems like the adversary
could turn many honest parties into latently silent honest parties and then silence a huge fraction of the
parties on some higher layer of the network, causing the protocol not to terminate. However, in Lemma 16,
we show that most nodes on each layer contain a very small fraction of latently silent honest parties. This
ensures that even if the adversary silences all latently silent honest parties at once on any given layer of the
network, it still holds that most nodes per layer don’t contain too many silent honest parties.

The distinction in the definition that a party must know it is elected to node A is because the harm done
by a latently silent honest party is that it may be elected up the tree, and go silent at some point later that is
chosen by the adversary. If the party doesn’t know it is elected to node A, it will not participate in elections
to nodes adjacent to A on the next layer. 15 We assume that all parties in the committee of an equivocating
node believe they are elected to that equivocating node. In the proof of Lemma 16, we consider latently
silent honest parties as only coming from potentially good nodes and equivocating nodes. This is because
when analysing the whole protocol in Section 6.2, we implicitly assume that all of the parties coming from
the remaining nodes (those that are neither equivocating nor potentially good) are full of Byzantine parties,
and Byzantine behavior subsumes the negative effects of latently silent honest parties.

Lemma 16 shows a bound on the number of nodes on each layer of the network that contain many latently
silent honest parties. In Lemma 17, we bound the fraction of silent honest parties for most nodes per layer.
The proofs of the following two lemmas may be found in the full version of the paper.

Lemma 16. At most 400
ln2 n

fraction of the layer ℓ nodes are potentially good nodes with more than 404ℓ
ln2 n

fraction layer ℓ latently silent honest parties for 1 < ℓ < ℓ∗ with high probability.

Lemma 17. At most 412
ln 2n fraction of the nodes on layer ℓ are potentially good nodes in which more than

404ℓ+1
ln2 n

fraction of the parties are honest parties that have gone silent for 0 < ℓ < ℓ∗−4, with high probability.
15 This can happen, for example, if a party is not in a core set (Definition 7) in the committee of the node to which

the election is occurring. This implies that they may not learn the results of the election, and therefore that they
are elected.

Leader Election with Poly-logarithmic Communication Per Party 27

6.2 Full Protocol Analysis

In this section, we analyze the correctness and communication complexity of the entire protocol. We start
by defining some useful terms. In our proofs, we use the notions of good and bad nodes and good and bad
leaves which we define below.

Definition 12 (Bad node). If node A is a layer 0 node, then A is a bad node if it contains fewer than
(23 + ε − 1

ln2 n
) ln11 n honest parties. If node A is a layer 1 node, then A is a bad node if it contains fewer

than than f1 ln
8 n honest parties, where f1xxZSDsdszddsss = 2

3 + ε− 403
ln2 n

.
If A is a node on layer ℓ > 1, let B1 . . . Bd be the nodes in A’s commitee (including multiplicities). A is

a bad node if at least one of the following conditions holds:

1. More than 814
ln2 n

fraction of the nodes B1 . . . Bd are bad.

2. The fraction of bad leaves from the trees B1 . . . Bd is more than 813ℓ+400
ln2 n

.
3. A is an equivocating node.
4. A contains at least one of the following:

(a) 1
3 or more fraction parties that are Byzantine.

(b) Fewer than (fℓ−1 − 404(ℓ−1)+816
ln2 n

) ln8 n honest parties.

(c) More than 404ℓ+1
ln2 n

fraction silent honest parties.

If a node is not a bad layer ℓ node, it is a good layer ℓ node. Note that nodes that are weak bad nodes
(Definition 8) are also bad by this stronger definition. Due to shadow elections, some parties may have
different views of which parties won the election to a node, and therefore make up that node’s subcommittee.
We clarify via Definition 14 and Remark 1 below which parties we consider to be the election winners of a
node.

Recall that the leaves of the communication tree are the layer 0 nodes. Let A be a layer 0 node that is a
descendant of layer ℓ node B in the communication tree. Then pathA,ℓ refers to the list of nodes along the
path from layer 0 node A to layer ℓ node B (inclusive of both A and B). We define good and bad leaves as
follows.

Definition 13 (Bad leaf for layer ℓ). If a layer 0 node is bad, it is a bad leaf for layer 0. A layer 0 node
A is a bad leaf for layer ℓ if there is a bad node in pathA,ℓ.

If a layer 0 node is not a bad leaf for layer ℓ, it is a good leaf for layer ℓ. If node Bℓ is the layer ℓ node for
which node B0 is a layer 0 descendant in the communication tree, then we also say that B0 is a bad/good
leaf for Bℓ.

Proof Outline. Our ultimate goal is to show that there is a supreme committee of parties elected that
contains more than 2

3 honest parties and that all but o(1) of the parties in the network know which parties
are in the supreme committee. Since the supreme committee is elected among the parties in the nodes on
the penultimate layer, this requires that all but very few nodes on the penultimate layer are good nodes.
For this reason, we go layer by layer up the network, and prove that most nodes on each layer are good
nodes. Intuitively, a good node contains sufficiently many non-silent honest parties and less than 1

3 fraction
Byzantine parties, satisfying the necessary threshold for conducting elections. For a node to be a good node,
the election to that node must occur successfully, electing more than 2

3 ln
8 n honest parties. This requires

that the node has many good nodes in its committee and that the non-silent parties in the good nodes in its
committee form a core set16. In Lemmas 18 and 19, we show that this is the case for a node with sufficiently
many good nodes in its committee. In Lemma 20, we show that if these properties are satisfied for a node,
sufficiently many honest parties are elected to the node. This leaves one last piece to show that most nodes
per layer are good nodes: a good node must not have too many silent honest parties. Upon showing that the
elections to most nodes per layer occur successfully, we use the calculations from Section 6.1 which bound
the fraction of nodes per layer that contain many silent honest parties. With this, we are able to prove that
most nodes on a given layer are good nodes. This in turn enables us to bound the fraction of bad leaves

16 See Section 4 for the election protocol and core sets.

28 A. Bhangale et al.

per layer. The significance of good and bad leaves is that the leaf nodes make up the monitoring sets, which
are used to convey the contents of a node’s subcommittee to the other nodes. For this to occur correctly,
a node should have many good leaves. In Lemma 21, we show that the necessary bound on the fraction of
bad nodes and bad leaves per layer holds, and we ultimately show that the supreme committee is elected
successfully in Lemma 22. Finally, in Lemmas 23 and 24, we show that the full protocol satisfies the necessary
communication complexity and round complexity.

We now proceed with the full protocol analysis. Let A be a layer ℓ node for ℓ > 0 such that at most 814
ln2 n

fraction of the nodes adjacent to A on layer ℓ − 1 are bad nodes. In Lemma 19 we show that these parties
form a core set. Furthermore, the winners of the election run among the honest parties in these nodes form
the subcommittee of node A. Addressing Assumption 1 in Section 5, we consider the correct election winners
for the election to a good node A as follows.

Definition 14 (Communicable core set of node A, csG(A)). We refer to the communicable core set
of A, csG(A), as the honest parties in the good nodes in A’s committee that are not silent.

Remark 1. The correct election winners of node A are the winners of the election run among the parties in
csG(A).

If the non-silent honest parties in the good nodes in the committee of A do not form a core set, the correct
election winners of the node is undefined. This is okay because if a node does not contain such a core set, it
is a bad node by definition and we don’t make any guarantees regarding the outcome of its election. In the
proof of Lemma 21, we show that Assumption 1 holds. 17

We start with a lemma stating that if a node is good, then honest parties in the monitoring set of A
know the parties in A’s subcommittee.

Lemma 18. Let A be a good node on layer ℓ s.t. 0 ≤ ℓ ≤ ℓ∗. Then every honest party in every node in
ms(A) that is a good leaf node for layer ℓ− 1 knows the parties in A’s subcommittee.

Proof. By the definition of a good leaf node, every node along the path from a layer ℓ − 1 node to a good
leaf node for layer ℓ − 1 is good. By the definition of a good node, each of these nodes contains more than
2 ln8 n

3 honest parties. Observe also that every node on the path to a good leaf node contains a good node,
and thus a child node knows the exact list of parties in the parent node. It follows that every honest party
in every node along the path to a good leaf node hears the correct list of winning parties from a majority of
the parties in the node above it on the path during SendMsgDownTree, thus proving the lemma.

Lemma 19. Let A be a layer ℓ node, where 0 < ℓ ≤ ℓ∗, such that at most 814
ln2 n

fraction of the nodes in A’s
committee are bad. Then the non-silent honest parties in the good nodes in A’s committee form a core set
with high probability.

Proof. Consider a good node B on layer ℓ− 1. There are at least (fℓ−2 − 404(ℓ−2)+816−404ℓ
ln2 n

) ln8 n non-silent

honest parties in B. For some ε = O(1
ln lnn), this is more than 2 ln8 n

3 . In addition, every honest party in

all but 813ℓ+400
ln2 n

fraction of the nodes in ms(B) are in good leaves for their respective layer-ℓ − 2 trees and
know the correct list of parties in B’s subcommittee by Lemma 18. Next, we argue that LearnProcessors run
between any two good nodes B and B′ in A’s committee is successful. That is, the parties in B learn the
correct parties in B′ and vice versa. Consider the ith node in ms(B), M , and the corresponding ith node in
ms(B′), M ′. In order for the parties in M to have the wrong list of parties in B′, either B or B′ must be
bad leaves. So with probability (1− 813ℓ+400

ln2 n
)2, both M and M ′ are good leaves for B and B′, respectively.

17 We take a moment to address the phenomenon of oblivious honest parties. Recall from Section 4 that only the
parties in the core set of the committee participating in an election are guaranteed to learn the correct outcome of
that election. Because of that, it’s possible for an honest party to be elected to the subcommittee of a node but be
unaware of it because it wasn’t in the core set of the committee for that node. We refer to such parties as oblivious
honest parties. In our analysis, we assume that the bad nodes in a committee are filled only with Byzantine parties.
Since oblivious parties only come from bad nodes, and their impact is that of crashed parties, we assume they are
counted with the Byzantine parties coming from bad nodes and do not count them separately.

Leader Election with Poly-logarithmic Communication Per Party 29

In this case, clearly the honest parties in M learn the correct information about the contents of node B′,
and vice versa. Every party in B polls the parties in ln8 n nodes in ms(B) to learn the parties in B′. In
expectation, a party pi in B learns the correct contents of B′ from (1 − 813ℓ+400

ln2 n
)2 fraction of the nodes it

polls in ms(B). Using a standard Chernoff bound, we find that w.h.p., more than half of the nodes polled
by pi are good leaves whose corresponding leaf in ms(B′) is also a good leaf, and pi learns the correct list
of parties in B′. The same goes for a party pj in B′ learning the correct parties in B. Because there are
O(n2) total elections and each one involves polylogarithmically many nodes, this holds for high probability
for every pair of good nodes for every election to such a node A in the network. It follows that σi[sj] = pj
and σj [si] = pi for any two such parties in good nodes in A’s committee, where sj and si are the slots
corresponding to pj and pi, respectively, in A’s committee. The remainder of the lemma follows from the
fact that at most 814

ln2 n
nodes B in A’s commitee are bad nodes, and that each of the good nodes contains at

least (fℓ−2 − 404(ℓ−2)+816−404ℓ
ln2 n

) ln8 n honest parties, which combined makes up more than 2
3 of the slots in

the entire committee for sufficiently large n for some ε = O(1
ln lnn).

Lemma 20. If A is a layer-ℓ node with at most 814
ln2 n

fraction bad nodes in its committee, then with high

probability at least (fℓ−1 − 814
ln2 n

− 404(ℓ−1)+1
ln2 n

− 1
ln2 n

) ln8 n honest parties are elected to A’s subcommittee.

Proof. By Lemma 19, the non-silent honest parties from the good nodes in A’s committee form a core set,

csG(A) with high probability. It must be the case that csG(A) ≥ (fℓ−1− 814
ln2 n

− 404(ℓ−1)+1
ln2 n

)c by the definition

of a good layer ℓ − 1 node, where c = Ω(ln19 n) is the total number of slots in the commitee of A. From

Lemma 8, it follows that at least
|csG(A)|(1− 1

ln2 n
) ln8 n

c parties from csG(A) are elected with high probability.
The lemma statement follows for sufficiently large n for some ε = O(1

ln lnn) and due to Lemma 9.

The proof of the following lemma may be found in the full version of the paper.

Lemma 21. The following two conditions hold for all layers ℓ s.t. 0 < ℓ < ℓ⋆ − 1 with high probability:

1. At most 813
ln2 n

fraction of the layer ℓ nodes are bad.

2. The fraction of bad leaves for layer ℓ is at most 400+813ℓ
ln2 n

after the elections to layer ℓ .

Lemma 22. The protocol elects a supreme committee of O(ln8 n) parties, of which more than 2
3 are honest

parties, that is known by all but o(1) fraction of the parties with high probability.

Proof. By Lemma 21, at most 813
ln2 n

fraction of the layer ℓ⋆ − 1 nodes are bad, and the fraction of bad leaves

for layer ℓ⋆ − 1 is 813(ℓ⋆−1)+400
ln2 n

. By Lemma 20 and for some ε = O(1
ln lnn), it follows that more than 2

3 · ln
8 n

honest parties, and at most ln8 n parties, are elected to the supreme committee with high probability. Since
there is no silencing after layer ℓ⋆ − 4, the single node on layer ℓ⋆ must be a good node, and the fraction
of bad leaves for layer ℓ⋆ must be the same as the fraction of bad leaves for layer ℓ⋆ − 1. Thus, the fraction

of bad leaves for layer ℓ⋆ is at most 813(ℓ⋆−1)+400
ln2 n

. By Lemma 18, the correct list of parties in the supreme
committee is passed down to all of the good leaf nodes for layer ℓ∗, from which the lemma follows.

Lemma 23. The number of messages sent and received by each honest party, as well as the size of each
message, is polylogarithmic in n.

Proof. First, we analyse the communication done by parties as a part of monitoring sets. A layer 0 node is in
a single communication tree rooted at layer ℓ of the network, for 0 ≤ ℓ ≤ ℓ⋆. Each communication tree rooted
at layer ℓ participates in SendMsgDownTree for at most ln6 n elections on layer ℓ + 1 for 0 < ℓ < ℓ⋆ − 1. It
follows that a single layer 0 node is in at most ln6 n monitoring sets for each layer of the network. Monitoring
sets are involved in communication in LearnProcessors and in ConfirmElectionWinner. In a single invocation
of LearnProcessors, all parties in a node in the monitoring set of one node send a list of polylogarithmically
many parties to all of the parties in a single other node. For a given election, a single layer 0 node is involved
in polylogarithmically many invocations of LearnProcessors. When a party in a layer 0 node responds to
polling parties during LearnProcessors, it responds to at most ln8 n parties that it believes are in that node.
From Lemma 15, the fact that there are O(lnn

ln lnn) layers, and the fact that each party is in at most ln6 n

30 A. Bhangale et al.

layer 0 nodes, it follows that there is polylogarithmic per process communication complexity related to
communication on behalf of the monitoring sets.

Next, we analyse communication incurred by SendMsgDownTree. Each party is silent in all except 10
slots that it occupies for layers ℓ, where 0 < ℓ < ℓ⋆ − 4. It follows that a party is not silent for at most
polylogarithmically many slots per layer (for all layers of the network). As noted earlier, each communica-
tion tree rooted at layer ℓ participates in SendMsgDownTree for at most ln6 n elections on layer ℓ + 1 for
0 < ℓ < ℓ⋆ − 1. In SendMsgDownTree, all parties in a node send (for each slot they occupy in that node) a
list of polylogarithmically many election winners to O(ln11 n) parties in ln5 n child nodes in the communi-
cation tree. It follows that all invocations of SendMsgDownTree combined incur polylogarithmic per-process
communication complexity.

Finally, we analyse communication incurred by parties as a part of the committees participating in
elections. For each invocation of LightestBins, the participating parties incur polylogarithmic per-process
communication complexity for BroadcastCS for polylogarithmically many slots in the committee (note that
there are polylogarithmically many slots on layer ℓ⋆ − 1). For each slot occupied by a party in a committee,
it sends a polling message in LearnProcessors to the parties in ln8 n nodes in the monitoring set. Given
that a party goes silent for all except 10 slots that it is elected to on a given layer, and a single node is
in the committee of at most ln6 n nodes on the next layer, the parties incur polylogarithmic per process
communication complexity for communication among the parties in the committees for each election.

Lemma 24. The SupremeCommitteeElection protocol completes in polylog(n) rounds.

Proof. Each layer of the network consists of the simultaneous invocation for all nodes on that layer of
LearnProcessors, followed by SubcommitteeElection, followed by SendMsgDownTree. Each of these protocols
requires polylog in nrounds because the layered network has O(lnn

ln lnn) and the fact that every committee
contains polylog in n slots.

The lemma therefore follows from the fact that there are O(lnn
ln lnn) layers.

Proof (Proof of Theorem 1). From Lemma 22 a supreme committee of polylog(n) parties is elected, of which
more than 2

3 are honest parties. It follows from Lemma 21 that via SendMsgDownTree, a message m held by
parties in the node on layer ℓ⋆ may be learned by all but o(1) of the honest parties (due to the fraction of
bad leaves for layer ℓ⋆ − 1).

The theorem follows as a direct consequence of Lemma 23 and the fact that the layered network has
O(lnn

ln lnn) layers, as the parties in the supreme committee may run a leader election protocol, with commu-
nication and round complexity that is polynomial in the size of the supreme committee, among themselves
and disseminate the result via the communication tree.

References

ACD+19. Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine Shi.
Communication complexity of byzantine agreement, revisited. In Peter Robinson and Faith Ellen, editors,
38th ACM PODC, pages 317–326. ACM, July / August 2019.

AN90. Noga Alon and Moni Naor. Coin-flipping games immune against linear-sized coalitions (extended ab-
stract). In 31st FOCS, pages 46–54. IEEE Computer Society Press, October 1990.

BCG21. Elette Boyle, Ran Cohen, and Aarushi Goel. Breaking the o(
√
n)-bit barrier: Byzantine agreement with

polylog bits per party. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Com-
puting, pages 319–330, 2021.

BDH22. Gerandy Brito, Ioana Dumitriu, and Kameron Decker Harris. Spectral gap in random bipartite biregular
graphs and applications. Combinatorics, Probability and Computing, 31(2):229–267, 2022.

BGP92. Piotr Berman, Juan A Garay, and Kenneth J Perry. Bit optimal distributed consensus. In Computer
science: research and applications, pages 313–321. Springer, 1992.

BKLZL20. Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous byzantine agreement
with subquadratic communication. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part I,
volume 12550 of LNCS, pages 353–380. Springer, Cham, November 2020.

BL85. Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and minima of banzhaf
values. In 26th FOCS, pages 408–416. IEEE Computer Society Press, October 1985.

Leader Election with Poly-logarithmic Communication Per Party 31

BN93. Ravi B. Boppana and Babu O. Narayanan. The biased coin problem. In 25th ACM STOC, pages 252–257.
ACM Press, May 1993.

CKS20. Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a coincidence: Sub-quadratic asynchronous
byzantine agreement whp. In 34th International Symposium on Distributed Computing, 2020.

CL+99. Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OsDI, volume 99, pages
173–186, 1999.

DR85. Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement. Journal
of the ACM (JACM), 32(1):191–204, 1985.

Fei99. Uriel Feige. Noncryptographic selection protocols. In 40th FOCS, pages 142–153. IEEE Computer Society
Press, October 1999.

GPS19. Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition tolerance. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 499–529.
Springer, Cham, August 2019.

Hae94. W.H. Haemers. Interlacing eigenvalues and graphs, volume FEW 675 of Research memorandum / Tilburg
University, Department of Economics. Unknown Publisher, 1994. Pagination: 19, viii.

HPZ22. Shang-En Huang, Seth Pettie, and Leqi Zhu. Byzantine agreement in polynomial time with near-optimal
resilience. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages
502–514, 2022.

HPZ24. Shang-En Huang, Seth Pettie, and Leqi Zhu. Byzantine agreement with optimal resilience via statistical
fraud detection. Journal of the ACM, 71(2):1–37, 2024.

KS10. Valerie King and Jared Saia. Breaking the O(n2) bit barrier: scalable byzantine agreement with an
adaptive adversary. In Andréa W. Richa and Rachid Guerraoui, editors, 29th ACM PODC, pages 420–
429. ACM, July 2010.

KSSV06a. Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In 17th SODA, pages
990–999. ACM-SIAM, January 2006.

KSSV06b. Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Towards secure and scalable computation
in peer-to-peer networks. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pages 87–98. IEEE, 2006.

LSP82. Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM Transactions
on Programming Languages and Systems, 4(3):382–401, 1982.

Mic17. Silvio Micali. Very simple and efficient byzantine agreement. In Christos H. Papadimitriou, editor, ITCS
2017, volume 4266, pages 6:1–6:1, 67, January 2017. LIPIcs.

ORV94. Rafail Ostrovsky, Sridhar Rajagopalan, and Umesh V. Vazirani. Simple and efficient leader election in
the full information model. In 26th ACM STOC, pages 234–242. ACM Press, May 1994.

PS17. Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 380–409. Springer, Cham, December
2017.

RZ98. Alexander Russell and David Zuckerman. Perfect information leader election in log*n + O(1) rounds. In
39th FOCS, pages 576–583. IEEE Computer Society Press, November 1998.

	Leader Election with Poly-logarithmic Communication Per Party

