
Adaptive TDFs from Injective TDFs

Xinyu Mao ∗ Hongxu Yi †

June 1, 2025

Abstract

Adaptive trapdoor functions (ATDFs) and tag-basedATDFs (TB-ATDFs) are variants of trap-
door functions proposed by Kiltz, Mohassel, and O’Neill (EUROCRYPT 2010). They are both
sufficient for constructing chosen-ciphertext secure public-key encryption (CCA-secure PKE),
and their definitions are closely related to CCA-secure PKE.Hohenberger, Koppula, andWaters
(CRYPTO 2020) showed that CCA-secure PKE can be constructed from injective TDFs; however,
the relations among TDF, ATDF, and TB-ATDF remain unclear.

We provide black-box constructions of ATDFs and TB-ATDFs from injective TDFs, answer-
ing the question posed by Kiltz, Mohassel, and O’Neill (EUROCRYPT 2010). Our results indi-
cate that ATDF, TB-ATDF, and TDF are equivalent under mild restrictions.

1 Introduction

Trapdoor function (TDF) is a fundamental primitive in public-key cryptography [DH76, RSA78].
Roughly speaking, a TDF is a function family where each function is indexed by an evaluation key
and associated with a trapdoor; the function is easy to compute given the evaluation key, and easy
to invert given the trapdoor. The security requirement is that the function should be hard to invert
given only the evaluation key.

For public-key encryption (PKE), security under chosen ciphertext attack (CCA) is necessary
in various applications, which provides security guarantees against active adversaries. This raises
an immediate question: Can we construct CCA-secure PKE from TDFs? Towards answering this
question, Kiltz, Mohassel, and O’Neill introduced the notion of adaptive TDF (ATDF), where the
adversary can access the inversion oracle except for the challenge image; they also considered an
extension called tag-basedATDF (TB-ATDF) and presented simple black-box constructions of CCA-
secure PKE from both ATDF and TB-ATDF [KMO10]. In a beautiful work, Hohenberger, Koppula,
and Waters (henceforth HKW [HKW20]) addressed the question conclusively, giving a black-box
construction of CCA-secure PKE from injective TDFs.

Though (injective) TDF is sufficient for CCA-secure PKE, ATDF is still an instructive notion.
First, in the random oracle model, TDF, ATDF, and TB-ATDF are equivalent. Second, several con-
structions of CCA-secure PKE (e.g., [PW08, RS09, Wee12]) can be unified into the TB-ATDF frame-
work: One starts with constructing a TB-ATDF and then uses the transformation in [KMO10] to get

∗Thomas Lord Department of Computer Science, University of Southern California. Email: xinyumao@usc.edu
†School of Cyber Science and Technology, Shandong University, Qingdao 266237, China. Email:

tcs.hongxu.yi@mail.sdu.edu.cn

1

a CCA-secure PKE. ATDF is also strictly weaker than some other notions of TDF, like correlated-
product TDF [RS09] or lossy TDF [PW08].

On the complexity and constructions of ATDF and TB-ATDF. As noted in [KMO10], the re-
lations among TDF, ATDF, and TB-ATDF are unclear; moreover, ATDF is strictly weaker than
some other notions of TDF, including correlated TDF [RS09] and lossy TDF [PW08]. The con-
structions of ATDF and TB-ATDF in [KMO10] are based on a (non-standard) variant of RSA as-
sumption. Kitagawa, Matsuda, and Tanaka constructed ATDF/TB-ATDF from PKE with pseu-
dorandom ciphertexts plus secret-key encryption with key-dependent message (KDM) security
[KMT22], which can be instantiated from standard assumptions such as CDH, DDH, LPN, and
LWE (e.g., [ACPS09, BHHI10, HL17, BLSV18]).

ATDF is similar to CCA-secure PKE in the sense that they both provide security when the
adversary has access to an oracle on all inputs except for the challenge input, where the oracle
breaks the security for its input (by inversion or decryption). Owing to the similarity, the result of
HKW suggests the potential of constructing ATDF from TDF, and hence we revisit this question:

Can we construct ATDF and TB-ATDF from (injective) TDF?

In this paper, we answer this question affirmatively, showing that all three primitives are equivalent
(modulo mild restrictions).

1.1 Our Results

For X ∈ {TDF, ATDF, TB-ATDF}, we say X is canonical if it is injective, perfectly correct, and the
domain of X is an Abelian group that only depends on the security parameter 𝜅 (e.g., {0, 1}ℓ (𝜅)). In
a nutshell, we present black-box constructions of ATDF and TB-ATDF from canonical TDF:

Theorem 1.1. There exists a black-box construction of ATDF/TB-ATDF from a canonical TDF.

Remark 1.2. The resulting ATDF and TB-ATDF are not canonical. The ATDF in [KMT22] is canoni-
cal, but requires additional assumptions; if wewish to adopt a similar approach, we have to assume
that the images of the TDF also form an Abelian group, which seems to be an overly restrictive as-
sumption.

Remark 1.3. The “perfect correctness” requirement can be relaxed to almost-all-key correctness, i.e.,
with overwhelming probability over the generation of evaluation key ek and trapdoor td, it holds
that Inv(Eval(ek, 𝑥)) = 𝑥 for all input 𝑥 , where Eval, Inv are the evaluation and inversion algorithm
for the TDF respectively.

ATDF and TB-ATDF trivially imply TDF, and the resulting TDF is canonical if one starts with
a canonical ATDF or TB-ATDF. Therefore, we establish that

Theorem 1.4. For X,Y ∈ {TDF, ATDF, TB-ATDF}, there exists a black-box construction of Y from a
canonical X.

This completes the picture of the relations between variants of trapdoor functions in [KMO10],
as shown in fig. 1.

2

TDF

TB-ATDF

ATDF CP-TDF Lossy TDF

sec.5
sec.4

[KMO10]

[KMO10]

[RS09]

[RS09]

Figure 1: Relations among the variants of trapdoor functions. “→” denotes an implication and
“↛” denotes a black-box separation; dashed lines indicate trivial implications. Constructions in
this paper require the starting primitive to be canonical. CP-TDF stands for correlated-product
TDF.

1.2 Technical Overview

We start with a tag-based version of the CCA-secure PKE construction due to HKW. The construc-
tion uses a randomness-recoverable, CPA-secure PKE (Gen,Enc,Dec,Recover). That is, besides decryp-
tion, the message𝑚 can also be recovered using the randomness 𝑟 underlying the ciphertext ct, i.e.,
𝑚 = Recover(pk, ct, 𝑟) if ct = Enc(pk,𝑚; 𝑟); moreover, we also require the decryption algorithm to re-
cover 𝑟 as well as𝑚. For example, Yao’s construction of PKE from TDF is randomness-recoverable
[Yao82].

Consider encrypting themessage using𝑁 key pairs (pk𝑖 , sk𝑖)𝑖∈[𝑁] , namely, ct := (ct𝑖)𝑖∈[𝑁] where
ct𝑖 := Enc(pk𝑖 ,𝑚; 𝑟𝑖). The decryption algorithm decrypts all 𝑁 ciphertexts and if all messages are
the same (well-formedness check), it outputs the commonmessage. Imagine that wewant to prove
the CCA-security of this naive construction, then one step should be switching ct𝑖 to a dummy
ciphertext by a reduction to the CPA-security of the 𝑖-th key pair. The reduction algorithm has
no access to sk𝑖 , so it cannot conduct the well-formedness check; however, it has to answer the
decryption queries made by the adversary in the CCA game. Therefore, the crux of the proof of
HKW is to devise a mechanism that allows one to simulate the decryption oracle using only (𝑁 −1)
key pairs.

This is done by introducing a correlation between random coins 𝑟1, . . . , 𝑟𝑁 . Note thatwith (𝑁−1)
key pairs (sk 𝑗) 𝑗≠𝑖 , the reduction algorithm can recover the random coins (𝑟 𝑗) 𝑗≠𝑖 . Hence, as long as
the correlation allows us to recover 𝑟𝑖 from (𝑟 𝑗) 𝑗≠𝑖 , we can use the randomness-recovery mecha-
nism to “decrypt” ct𝑖 by 𝑧𝑖 := Recover(pk𝑖 , ct𝑖 , 𝑟𝑖). A naive attempt is to choose 𝑟1, . . . , 𝑟𝑁 such that⊕𝑁

𝑖=1 𝑟𝑖 = 0ℓ (where 𝑟1, . . . , 𝑟𝑁 ∈ {0, 1}ℓ and ⊕ denotes bit-wise XOR). However, this correlation
hinders the reduction to CPA-security since the random coins for encryption are no longer chosen
uniformly at random. Instead, HKW uses a statistically weak correlation: choose a subset 𝑆 ⊆ [𝑁]
of size 𝐵 uniformly at random, and sample 𝑟1, . . . , 𝑟𝑁 ← {0, 1}ℓ conditioned on

⊕
𝑖∈𝑆 𝑟𝑖 = 0ℓ . For

proper choice of parameter (i.e.,
(𝑁
𝐵

)
≫ 2ℓ), the distribution of 𝑟1, . . . , 𝑟𝑁 is statistically close to uni-

form.
To make this correlation useful, we also modify the construction to indicate in the plaintext

whether 𝑖 ∈ 𝑆 : for 𝑖 ∈ 𝑆 , ct𝑖 := Enc(pk𝑖 , 1∥𝑚; 𝑟𝑖); otherwise, ct𝑖 := Enc(pk𝑖 , 0∥𝑚; 𝑟𝑖); the decryption
aborts unless there are exactly 𝐵 ciphertexts that decrypt to 1∥𝑚 and the randomness underlying
these ciphertexts XOR to zero. Call an index 𝑖 ∈ [𝑁] active if ct𝑖 decrypts to 1∥𝑚. If ct is well-formed
in the sense that there are at most 𝐵 active indices, we can simulate decryption using only (sk 𝑗) 𝑗≠𝑖

3

as follows: Let 𝑈 := { 𝑗 ∈ [𝑁] \ {𝑖} : 𝑗 is active}.

• If |𝑈 | = 𝐵, the decryption is successful if the randomness underlying (ct𝑖)𝑖∈𝑈 XOR to zero;
there is no need to decrypt ct𝑖 .

• If |𝑈 | = 𝐵 − 1, set 𝑟𝑖 =
⊕

𝑗∈𝑈 𝑟 𝑗 and 𝑧𝑖 := Recover(pk𝑖 , ct𝑖 , 𝑟𝑖); the decryption is successful if
𝑧𝑖 = 1∥𝑚 and Enc(pk𝑖 , 1∥𝑚; 𝑟𝑖) = ct𝑖 .

• If |𝑈 | < 𝐵 − 1, outputs ⊥; the real decryption algorithm must also abort in this case.

The above simulation coincides with the real decryption algorithm on well-formed ciphertexts.
The last missing piece is a tagged mechanism, called tagged set commitment, that allows us to

enforce well-formedness on all tags except for the challenge tag 𝑇 ∗. More specifically, we want
to violate the well-formedness on tag 𝑇 ∗ so that later we can make all indices in the challenge
ciphertext ct∗ active, removing the information about 𝑆∗ (the 𝐵-size set used in the generation of
ct∗) in the plaintexts. Once the information about 𝑆∗ is only leaked by the correlation among the
random coins used for generating ct∗, the correlation statistically vanishes as mentioned earlier.

Tagged set commitment. A tagged set commitment (TSC) is a scheme that allows one to commit
to a 𝐵-size set 𝑆 ⊆ [𝑁] with a tag𝑇 (where 𝑁, 𝐵 are given to generate public parameters pp). That is,
Commit(pp, 𝑆,𝑇) outputs a commitment com and openings (𝜎𝑖)𝑖∈𝑆 for each element. The verification
algorithm checks the opening 𝜎𝑖 to verify that 𝑖 ∈ 𝑆 under tag 𝑇 . The soundness property roughly
says any commitment has at most 𝐵 valid openings. The scheme supports an alternative setup
algorithm AltSetup that takes in a tag 𝑇 ∗ and produces public parameters together with a special
commitment com∗ and openings (𝜎∗𝑖)𝑖∈[𝑁] for all 𝑁 elements; it violates the soundness property
under tag 𝑇 ∗ while retaining soundness for other tags. We require that the two modes of setup
are indistinguishable for efficient adversaries. HKW showed that TSC can be constructed from
pseudorandom generators.

A tag-based version of the HKW construction is obtained by integrating TSC into the afore-
mentioned construction:

• The encryption algorithm, on input tag 𝑇 and message 𝑚, chooses 𝑆, 𝑟1, . . . , 𝑟𝑁 , computes
(com, (𝜎𝑖)𝑖∈𝑆) ← Commit(pp, 𝑆,𝑇), and outputs (com, (ct𝑖)𝑖∈[𝑁]) where ct𝑖 = Enc(pk𝑖 , 𝜎𝑖 ∥𝑚)
for 𝑖 ∈ 𝑆 and for 𝑖 ∉ 𝑆 , ct𝑖 is a dummy ciphertext.

• The decryption algorithm, on input tag 𝑇 and ciphertext (com, (ct𝑖)𝑖∈[𝑁]), decrypts 𝑧𝑖 :=
Dec(sk𝑖 , ct𝑖) and also recover the randomness 𝑟𝑖 ; if there are exactly 𝐵 indices 𝑖 such that (1)
𝑧𝑖 = 𝜎𝑖 ∥𝑚, (2) 𝜎𝑖 is an opening of com under tag 𝑇 , and (3) these 𝑟𝑖 ’s XOR to zero, then it
outputs𝑚; otherwise, it outputs ⊥.

From tag-based CCA-secure PKE to TB-ATDF. First, we observe that, in the TSC construction
proposed by HKW, the randomness used by Commit can be fully recovered from the openings
(𝜎𝑖)𝑖∈𝑆 . At first glance, the above tag-based CCA-secure PKE is directly a TB-ATDF—all random-
ness used in encryption can be recovered during decryption. Nevertheless, when simulating
the inversion oracle (in a reduction to the CPA-security), the reduction cannot always recover all
the randomness. Consider simulating the inversion oracle with (sk 𝑗) 𝑗≠𝑖 and an inversion query
(𝑇, com, (ct𝑗) 𝑗∈[𝑁]). If the index 𝑖 is active in the sense that ct𝑖 encrypts an opening of com, then we

4

can recover 𝑟𝑖 from (𝑟 𝑗) 𝑗≠𝑖 . However, if 𝑖 is not active, then there is no way to recover 𝑟𝑖 from ct𝑖
without sk𝑖 .

To address this issue, we note that the PKE constructed from a canonical TDF has the property
that the encryption of a randommessage is uniformly distributed over the ciphertext space C. Our
remedy is as follows: for 𝑖 ∉ 𝑆 , we set ct𝑖 ← C instead of a dummy ciphertext, and put (ct𝑖)𝑖∈[𝑁]\𝑆
directly into the input. In other words, the input of our TB-ATDF is of the form

𝑥 =
(
𝑟com, 𝑆, (ct𝑖)𝑖∈[𝑁]\𝑆 , (𝑟𝑖 𝑗) 𝑗∈[𝐵−1]

)
,

where 𝑆 = {𝑖1, . . . , 𝑖𝐵} ⊆ [𝑁] and 𝑟com is the randomness used for commitment. And to evaluate on
input 𝑥 under tag 𝑇 , one sets 𝑟𝑖𝐵 :=

⊕
𝑗<𝐵 𝑟𝑖 𝑗 and compute

𝑦 =
(
com, (ct𝑖)𝑖∈[𝑁]

)
as the function value, where (com, (𝜎𝑖)𝑖∈𝑆) ← Commit(pp, 𝑆,𝑇 ; 𝑟com), and ct𝑖 := Enc(pk𝑖 , 𝜎𝑖 ; 𝑟𝑖) for
𝑖 ∈ 𝑆 . This is reminiscent of the ATDF construction in [KMT22], but we adopt the HKW-style
construction to allow simulation of the inversion oracle with partial secret keys, avoiding the use
of KDM-secure SKE.

Remark 1.5. Our TB-ATDF construction requires a domain sampling algorithm to sample ct𝑖 ← C
for 𝑖 ∉ 𝑆 (by encrypting a randommessage). Therefore, it is important that the output of our domain
sampling algorithm is uniformly distributed over the domain; without the restriction of uniform
domain sampling, there are trivial (and meaningless) constructions of TDFs [HKW20].

From TB-ATDF to ATDF by using stronger properties of TSC. The transformation in [KMO10]
from tag-basedCCA-secure PKE to onewithout tags uses a strong one-time signature (OTS) scheme,
and HKW also adopts this transformation. The transformation works as follows: The encryption
algorithm generates a signing key sk and a verification key vk for the OTS, and uses vk as tag in
the tag-based scheme to get ciphertext 𝑐, then it signs 𝑐 with sk and outputs the signature along
with (vk, c). The decryption algorithm uses vk as tag and proceeds as the tag-based scheme if
the signature verifies, and it aborts if the signature does not verify. Although strong OTS can be
based on one-way functions due to a classic result by Lamport [Lam79], Lamport’s scheme is not
randomness-recoverable: Some random coins used in the key generation of (sk, vk) cannot be re-
covered given vk and a valid signature. Hence, one cannot draw on this transformation to get ATDF
from TB-ATDF.

One possible approach to address this issue is replacing the OTS with target collision-resistant
(TCR) hash functions (also known as universal one-way hash functions), which can also be based
on one-way functions [Rom90, HHR+10, MMZ23]. Specifically, one can use H(ct1∥ · · · ∥ct𝑁) as tag
for TSC, where H is a TCR hash function. The replacement of OTS by TCR hash functions is used in
[MH15] and [KMT22], which requires the underlying tag-based scheme to have special structures.
We show that this replacement can be applied to our HKW-style TB-ATDF construction, as long as
the TSC satisfies the following stronger properties:

• Adaptive indistinguishability of setup. Roughly speaking, we require that no efficient adver-
sary can distinguish the two modes of setup, even if it submits the challenge tag after seeing
openings (𝜎𝑖)𝑖∈𝑆 .

5

• Uniqueness. For each 𝐵-size set 𝑆 and openings (𝜎𝑖)𝑖∈𝑆 , there is a unique commitment com
such that the following holds: For com′ ≠ com, there exists some 𝑖∗ ∈ 𝑆 such that 𝜎𝑖∗ does not
verify under com′, i.e.,

com′ ≠ com =⇒ ∃𝑖∗ ∈ 𝑆 TSC.Verify(pp, com′, 𝑖∗, 𝜎𝑖∗,𝑇) = 0.

In other words, com is the unique commitment such that all 𝜎𝑖 ’s verify.

We show that the TSC scheme by HKW does satisfy both properties, and thus we conclude that
ATDF can be constructed from a canonical TDF.

Remarkably, we observe that TCR hash functions are not necessary in our case. This is because
the TSC scheme by HKW has the property that the length of openings (𝜎𝑖)𝑖∈𝑆 does not depend on
the length of the tag, and hence we can directly use ct1∥ · · · ∥ct𝑁 as tag without hashing.

1.3 Discussion

On the almost-all-keys correctness of TDFs. It is unclear how to transform a TDF with ordi-
nary correctness into one with almost-all-keys correctness. Such a transformation exists for PKE
[DNR04], but it does not generalize to TDF.

Domain of TDFs. Our constructions require that the domain of TDFonly depends on the security
parameter and does not depend on the evaluation key ek, which is also assumed in [HKW20]. This
requirement is met by many TDF constructions, such as those from the LWE assumption [PW08]
and from the DDH assumption [GGH19, DGI+19, DGH+19]. It is not always the case: For example,
the RSA trapdoor permutation does not satisfy the requirement, since its domain is ℤ∗𝑛 and 𝑛 is
part of the evaluation key. It is an interesting question whether the CCA-secure PKE construction
by HKW and our constructions can be adapted to allow more flexible domains.

2 Preliminaries

Notation. We use [𝑁] to denote {1, 2, . . . , 𝑁 } and
([𝑁]
𝐵

)
to denote the set of all 𝐵-size subsets of

[𝑁]. We use← to denote sampling from a distribution, choosing an element from a set uniformly
at random, or collecting the output of a randomized algorithm. For two distributions 𝜒1 and 𝜒2, we
write 𝜒1 ≈𝑠 𝜒2 if 𝜒1 and 𝜒2 are statistically close; and 𝜒1 ≈𝑐 𝜒2 means that they are computationally
indistinguishable. For a function 𝜈 : ℕ → [0, 1], we write 𝜈 = negl(𝜅) if for every 𝑐 ∈ ℕ, 𝜈 (𝜅) ≤
1/(𝑐𝜅𝑐) for sufficiently large 𝜅. PPT stands for probabilistic polynomial time.

2.1 Randomness-Recoverable Public-Key Encryption

Let ℓmsg : ℕ → ℕ be a length function. A randomness-recoverable public-key encryption scheme
(RR-PKE) with message space {0, 1}ℓmsg is a tuple of four algorithms PKE = (Gen,Enc,Dec,Recover)
with the following syntax.

• Gen(1𝜅) ↦→ (pk, sk): The key generation algorithm takes as input the security parameter 𝜅
and outputs a public key pk and secret key sk. Public key pk implicitly defines a randomness
space Rndpk and efficient procedures to recognize and uniformly sample from Rndpk given
pk.

6

• Enc(pk,𝑚; 𝑟) ↦→ ct: Then encryption algorithm takes as input a public key pk, a message
𝑚 ∈ {0, 1}ℓmsg and randomness 𝑟 ∈ Rndpk, and outputs a ciphertext ct. Let Cpk denote the set
of all possible ciphertext, i.e., Cpk

def
=

{
Enc(pk,𝑚; 𝑟) :𝑚 ∈ {0, 1}ℓmsg , 𝑟 ∈ Rndpk

}
.

• Dec(sk, ct) ↦→ (𝑚, 𝑟) ∈ {0, 1}ℓmsg × Rnd /⊥: The (deterministic) decryption algorithm takes as
input a secret key sk and a ciphertext ct, and either outputs ⊥ or a message𝑚 ∈ {0, 1}ℓmsg .

• Recover(pk, ct, 𝑟) ↦→ 𝑧 ∈ {0, 1}ℓmsg /⊥: The (deterministic) recovery algorithm takes as input
a public key pk and a ciphertext ct and randomness 𝑟 ∈ Rndpk, and outputs ⊥ or a message
𝑚 ∈ {0, 1}ℓmsg .

Definition 2.1 (𝜀-Almost-all-keys perfect correctness). We say PKE is 𝜀-almost-all-keys perfectly cor-
rect if there exists a negligible function 𝜀 (·) such that for all 𝜅 ∈ ℕ,

Pr
(pk,sk)←Gen(1𝜅)

[
∃𝑚 ∈ {0, 1}ℓmsg , 𝑟 ∈ Rnd : Dec(sk,Enc(pk,𝑚; 𝑟)) ≠ (𝑚, 𝑟)

]
≤ 𝜀 (𝜅)

and
Pr

(pk,sk)←Gen(1𝜅)

[
∃𝑚 ∈ {0, 1}ℓmsg , 𝑟 ∈ Rnd : Rec(sk,Enc(pk,𝑚)) ≠𝑚

]
≤ 𝜀 (𝜅) .

We sometimes omit 𝜀 if it is a negligible function.

Definition 2.2 (IND-CPA security). We say PKE is IND-CPA secure if for every PPT adversray A,
it holds that Advind-cpa

PKE,A (𝜅)
def
=

���Pr [Exprind-cpa,0
PKE,A (𝜅) ⇒ 1

]
− Pr

[
Exprind-cpa,1

PKE,A (𝜅) ⇒ 1
] ��� ≤ negl(𝜅), where

Exprind-cpa,𝑏
PKE,A (𝜅) is the following experiment:

1. Challenger generate (pk, sk) ← Gen(1𝜅) and sends pk to A.

2. A submits𝑚0,𝑚1 ∈ {0, 1}ℓmsg to challenger.

3. Challenger runs ct𝑏 ← Enc(pk,𝑚𝑏) and sends ct𝑏 to A.

4. A outputs its guess 𝑏′ ∈ {0, 1}; the experiment outputs 1 iff 𝑏′ = 1.

Definition 2.3 (Uniform ciphertext for random message). We say PKE has uniform ciphertext for
random message if for all (pk, sk) ← Gen(1𝜅), Enc(pk,𝑚; 𝑟) is uniformly distributed over Cpk where
𝑚 ← {0, 1}ℓmsg , 𝑟 ← Rndpk.

We recall the Goldreich-Levin Lemma, which is useful for building PKE from TDF.

Lemma 2.4 (Goldreich-Levin hardcore). Let ℓ : ℕ → ℕ be a length function and let F = (F𝜅)𝜅∈ℕ be a
keyed function where F𝜅 =

{
𝑓𝐾 : X𝜅 → {0, 1}∗

}
𝐾∈K𝜅

and X𝜅 is a subset of {0, 1}ℓ (𝜅) . If F is one-way, i.e.,
for every PPT algorithm I,

Advow
F,I (𝜅)

def
= Pr

𝐾←K𝜅 ,𝑥←X𝜅
[𝑓𝐾 (I(𝑓𝐾 (𝑥))) = 𝑓𝐾 (𝑥)] = negl(𝜅),

then for every PPT adversary A, it holds that

|Pr [A(1𝜅, 𝐾, 𝑓𝐾 (𝑥), 𝑟 , ⟨𝑥, 𝑟 ⟩) = 1] − Pr [A(1𝜅, 𝐾, 𝑓𝐾 (𝑥), 𝑟 , 𝑏) = 1] | = negl(𝜅),

where 𝐾 ← K𝜅, 𝑥 ← X𝜅, 𝑟 ← {0, 1}ℓ (𝜅) , 𝑏 ← {0, 1}.
Remark 2.5. The domain of 𝑓𝐾 could be arbitrary, as long as its elements can be encoded injectively
into {0, 1}ℓ , and both encoding and decoding are efficient.

7

2.2 Trapdoor Functions and Variants

When it comes to trapdoor functions and their variants, we always assume they are injective.

Trapdoor functions. An (injective) trapdoor function (TDF) is a collection T = {𝑇𝜅}𝜅∈ℕ where
each 𝑇𝜅 is probability distribution over a set of injective trapdoor functions indexed by the evalu-
ation key ek. With input space Domek and output space Imek, an injective trapdoor function TDF =
(Setup, Samp,Eval, Inv) consists of four PPT algorithms with the following syntax.

• Setup(1𝜅) ↦→ (ek, td): The setup algorithm takes as input a security parameter 𝜅 and outputs
an evaluation key ek and a trapdoor key td. The evaluation key ek is public and implicitly
determines necessary public parameters Domek and Imek.

• Samp(ek, 1𝜅) ↦→ 𝑥 : The sample algorithm takes as input a security parameter 𝜅 and an evalu-
ation key ek and outputs a uniformly distributed element 𝑥 of Domek.

• Eval(ek, 𝑥) ↦→ 𝑦: The evaluation algorithm takes as input a domain element 𝑥 ∈ Domek and an
evaluation key ek, and outputs 𝑦 ∈ Imek.

• Inv(td, 𝑦) ↦→ 𝑥 /⊥: The inversion algorithm takes as an image element𝑦 ∈ Imek and a trapdoor
td, and outputs 𝑥 , which is either ⊥ or an element of Domek.

Definition 2.6 (𝜈-almost-all-keys perfect correctness). We say TDF has 𝜈-almost-all-keys perfect cor-
rectness, if there exists a negligible function 𝜈 (·) such that for all 𝜅 ∈ ℕ,

Pr [∃ 𝑥 ∈ Domek : Inv(td,Eval(ek, 𝑥)) ≠ 𝑥 | (ek, td) ← Setup(1𝜅); 𝑥∗ ← Samp(ek, 1𝜅)] ≤ 𝜈 (𝜅).

Definition 2.7 (One-wayness). We say an injective TDF is one-way if for any PPT adversaryA, there
exists a negligible negl(·) such that for all 𝜅 ∈ ℕ,

Advow
TDF,A (𝜅) = Pr

[
𝑥 = 𝑥∗

���� (ek, td) ← Setup(1𝜅); 𝑥∗ ← Samp(ek, 1𝜅)
𝑦∗ ← Eval(ek, 𝑥∗); 𝑥 ← A(ek, 𝑦∗)

]
≤ negl(1𝜅).

Compared to traditional TDFs, adaptive trapdoor functions (ATDFs) require stronger security,
which demands one-wayness holds evenwhen the adversarymay query an inverse oracle on images
except for the challenge image.

𝛼-almost-all-keys 𝜈-correctness ([DNR04]). We say TDF has 𝛼-almost-all-keys 𝜈-correctness, if
for all 𝜅 ∈ ℕ,

Pr
(ek,td)←Setup(1𝜅)

[Pr [Inv(td,Eval(ek, 𝑥)) ≠ 𝑥 | 𝑥∗ ← Samp(ek, 1𝜅)] ≥ 𝜈 (𝜅)] ≤ 𝛼 (𝜅).

Definition 2.8 (Adaptive one-wayness). We say TDF is adaptively one-way if for any PPT adversary
A, there exists a negligible negl(·) such that for all 𝜅 ∈ ℕ,

Advaow
TDF,A (𝜅) = Pr

[
𝑥 = 𝑥∗

���� (ek, td) ← Setup(1𝜅); 𝑥∗ ← Samp(ek, 1𝜅)
𝑦∗ ← Eval(ek, 𝑥∗); 𝑥 ← AInv(td,·) (ek, 𝑦∗)

]
≤ negl(𝜅).

where we demand that A does not make a query Inv(td, 𝑦∗) to its oracle.

8

Tag-based adaptive trapdoor functions. A tag-based adaptive trapdoor function (TB-ATDF) ex-
tends the notion of ATDF by incorporating a tag space {0, 1}𝑡 where 𝑡 is the length function of
the tag. With input space Domek and output space Imek, a tag-based adaptive trapdoor function
tATDF = (Setup, Samp,Eval, Inv) consists of four PPT algorithms with the following syntax.

• tSetup(𝑇, 1𝜅) ↦→ (ek, td): The setup algorithm takes as input a security parameter 𝜅 and a tag
𝑇 ∈ {0, 1}𝑡 , and outputs an evaluation key ek and a trapdoor key td. The evaluation key ek is
public and implicitly determines necessary public parameters, such as Domek and Imek.

• Samp(ek, 1𝜅) ↦→ 𝑥 : The sample algorithm takes as input a security parameter 𝜅 and an evalu-
ation key ek and outputs a uniformly distributed element 𝑥 of Domek.

• tEval(𝑇, ek, 𝑥) ↦→ 𝑦: The evaluation algorithm takes as input a tag𝑇 ∈ {0, 1}𝑡 , a domain element
𝑥 ∈ Domek and an evaluation key ek, and outputs 𝑦 ∈ Imek.

• tInv(𝑇, td, 𝑦) ↦→ 𝑥 /⊥: The inversion algorithm takes as input a tag 𝑇 ∈ {0, 1}𝑡 , 𝑦 ∈ Imek and a
trapdoor td, and outputs 𝑥 , which is either ⊥ or an element of Domek.

𝛼-almost-all-keys 𝜈-correctness. We say a tATDF has 𝛼-almost-all-keys 𝜈-correctness, if for all𝜅 ∈ ℕ,
𝑇 ∈ {0, 1}𝑡 , it holds that

Pr
(ek,td)←Setup(1𝜅)

[Pr [Inv(𝑇, td, tEval(𝑇, ek, 𝑥)) ≠ 𝑥 | 𝑥∗ ← Samp(ek, 1𝜅)] ≥ 𝜈 (𝜅)] ≤ 𝛼 (𝜅)

Definition 2.9 (Tag-based adaptive one-wayness). We say a tATDF has (tag-based) adaptive one-
wayness if for any PPT adversary A, it holds that

Advtaow
tATDF,A (𝜅) = Pr

𝑥 = 𝑥∗

������
(𝑇 ∗, 𝑠𝑡) ← A1(1𝜅); (ek, td) ← tSetup(𝑇 ∗, 1𝜅);
𝑥∗ ← Samp(ek, 1𝜅); 𝑦∗ ← tEval(𝑇 ∗, ek, 𝑥∗);

𝑥 ← AtInv(·,td,·)
2 (ek, 𝑡∗, 𝑦∗, 𝑠𝑡)

 = negl(1𝜅).

where we demand that A2 does not make any query of the form tInv(𝑡∗, td, ·) to the oracle.

2.3 RR-PKE from Injective TDFs

The following construction is essentially the IND-CPA secure PKE construction in [Yao82].

Construction 2.10. Let TDF be an injective TDF associated with Goldreich-Levin hardcore ℎek :
Domek → {0, 1} (see lemma 2.4).

• Gen(1𝜅) ↦→ (pk, sk): The key generation algorithm chooses (ek, td) ← Setup(1𝜅). The public
key is set to be pk := ek, and the secret key is sk := td.

• Enc(pk = (ek, 𝑥),𝑚 = (𝑚1, · · · ,𝑚ℓmsg)) ↦→ ct: For each 𝑖 ∈ [ℓmsg], the encryption algorithm
proceeds as follows.

– chooses a random string 𝑥𝑖 ← Samp(1𝜅, ek).
– sets ct1,𝑖 = ℎ(𝑥𝑖) ⊕𝑚𝑖 and ct2,𝑖 = Eval(ek, 𝑥𝑖).

Let ct𝑏 = (ct𝑏,1, · · · , ct𝑏,ℓℓmsg) for 𝑏 ∈ {0, 1}, and outputs (ct1, ct2).

9

• Dec(sk, ct = (ct1, ct2)) ↦→ (𝑚, 𝑟): For each 𝑖 ∈ [ℓmsg], the decryption algorithm computes 𝑥𝑖 =
Inv(td, ct2,𝑖); if 𝑥𝑖 =⊥, it outputs ⊥ and aborts; otherwise, it sets 𝑚𝑖 = ct1,𝑖 ⊕ ℎ(𝑥𝑖). Finally, it
outputs𝑚 = (𝑚1, · · · ,𝑚ℓℓmsg) and 𝑟 = (𝑥1, . . . , 𝑥ℓmsg).

• Rec(pk, ct = (ct1, ct2), 𝑟 = (𝑥1, · · · , 𝑥ℓmsg)) ↦→ 𝑧 /⊥: The recovery algorithm performs the follow-
ing subroutine for each 𝑖 ∈ [ℓmsg]:

– 𝑦𝑖 := Eval(pk, 𝑥𝑖).
– If 𝑦𝑖 ≠ ct2,𝑖 , outputs ⊥ and aborts; otherwise sets𝑚𝑖 = ct1,𝑖 ⊕ ℎ(𝑥𝑖).

Finally, it outputs𝑚 = (𝑚1, · · · ,𝑚ℓmsg).

If TDF is a canonical TDF, the above construction satisfies the following properties.

• Almost-all-keys perfect correctness and IND-CPA security.

• It has uniform ciphertext for random message due to the injectivity of TDF.

• It also has a key-independent randomness space, which is an Abelian group. 1

3 Tagged Set Commitment with Randomness Opening

Let ℓ𝜎 : ℕ → ℕ be a length function. A tagged set commitment with randomness opening and
opening space {0, 1}ℓ𝜎 is a tuple of four algorithms TSC = (Setup,Commit,Verify,AltSetup) with the
following syntax.

• Setup(1𝜅, 1𝑁 , 1𝐵, 1𝑡) ↦→ pp: The setup algorithm takes as input the security parameter 𝜅, the
universe size 𝑁 , bound 𝐵 on committed sets and tag length 𝑡 ; it outputs public parameters
pp.

• Commit(pp, 𝑆,𝑇 ∈ {0, 1}𝑡 , (𝜎𝑖)𝑖∈𝑆) ↦→ com: The commit algorithm takes as input the public
parameter pp, a subset 𝑆 ⊂ [𝑁] of size 𝐵, a tag 𝑇 , and randomness (𝜎𝑖)𝑖∈𝑆 ; it deterministically
outputs a commitemnt com. Each 𝜎𝑖 ∈ {0, 1}ℓ𝜎 will be used as opening for 𝑖 ∈ 𝑆 .

• Verify(pp, com, 𝑖, 𝜎𝑖 ,𝑇) ↦→ 0/1: The verification algorithm takes as input the public parameters,
an index 𝑖 ∈ [𝑁], an opening 𝜎𝑖 ∈ {0, 1}ℓ𝜎 , and a tag 𝑇 ∈ {0, 1}𝑡 ; it outputs 1 to indicate
acceptance and 0 otherwise.

• AltSetup(1𝜅, 1𝑁 , 1𝐵, 1𝑡 ,𝑇 , (𝜎𝑖)𝑖∈[𝑁]) ↦→ (pp, com): The alternative setup algorithm takes as input
the security parameter 𝜅, a set 𝑆 of size 𝐵, tag 𝑇 ∈ {0, 1}𝑡 , openings (𝜎𝑖)𝑖∈𝑁 ; it (could use
additional randomness and) outputs public parameters pp and a commitment com.

Remark 3.1. ℓ𝜎 , the length of openings, is independent of the parameters 𝑁, 𝐵, 𝑡 and only depends
on the security parameter.

1This is because Goldreich-Levin hardcore only adds uniform random bits to the random coins, and we assumed the
domain of TDF is an Abelian group that does not depend on the evaluation key.

10

Correctness. A TSC scheme should satisfy the following correctness requirements.

1. Correctness of Setup and Commit: For all 𝜅, 𝑁, 𝑡 ∈ ℕ, 𝐵 ≤ 𝑁,𝑇 ∈ {0, 1}𝑡 and set 𝑆 ⊂ [𝑁] of size
𝐵, it holds that for all 𝑖 ∈ 𝑆 ,

Pr

[
Verify(pp, com, 𝑖, 𝜎𝑖 ,𝑇) = 1

���� pp← Setup(1𝜅, 1𝑁 , 1𝐵, 1𝑡); (𝜎𝑖)𝑖∈𝑆 ← ({0, 1}ℓ𝜎)𝐵
com← Commit(pp, 𝑆,𝑇 , (𝜎𝑖)𝑖∈𝑆)

]
= 1.

2. Correctness of AltSetup: For all 𝜅, 𝑁, 𝑡 ∈ ℕ, 𝐵 ≤ 𝑁 and𝑇 ∈ {0, 1}𝑡 , it holds that for any 𝑖 ∈ [𝑁]:

Pr

[
Verify(pp, com, 𝑖, 𝜎𝑖 ,𝑇) = 1

���� (𝜎𝑖)𝑖∈[𝑁] ← ({0, 1}ℓ𝜎)𝑁 ;
(pp, com) ← AltSetup(1𝜅, 1𝑁 , 1𝐵, 1𝑡 ,𝑇 , (𝜎𝑖)𝑖∈[𝑁])

]
= 1.

Remark 3.2. The above two correctness requirements define perfect correctness. Similarly, we
can define almost-all-keys perfect correctness for TSC as well. A TSC with almost-all-keys perfect
correctness can be easily transformed into one with perfect correctness: The commit algorithm
can check whether each commitment verifies using the public verification algorithm, as noted in
[HKW20]. If the check fails, the commitment algorithm can fall back to a trivial scheme that is per-
fectly correct, but has no security guarantee. This fallbackmechanism only adds an extra negligible
probability to the adversary’s advantage. Therefore, without loss of generality, adopt perfect cor-
rectness in the definition above.

TSC should satisfy the following two security properties.

Soundness. A tagged set commitment schemeTSC = (Setup,Commit,Verify,AltSetup) enjoys sound-
ness if for any PPT adversary A = (A1,A2), there exists a negligible function negl(·) such that for
all 𝜅 ∈ ℕ,

Pr


𝑇 ′ ≠ 𝑇 ∧ 𝑆 ′ ⊂ [𝑁] ∧ |𝑆 ′ | > 𝐵

∀ 𝑖 ∈ 𝑆 ′ :
Verify(pp, com′, 𝑖, 𝜎 ′𝑖 ,𝑇 ′) = 1

��������
(1𝑁 , 1𝐵, 1𝑡 ,𝑇 , 𝑠𝑡) ← A1(1𝜅), s.t. 𝐵 ≤ 𝑁,𝑇 ∈ {0, 1}𝑡

(𝜎𝑖)𝑖∈[𝑁] ← ({0, 1}ℓ𝜎)𝑁
(pp, com) ← AltSetup(1𝜅, 1𝑁 , 1𝐵, 1𝑡 ,𝑇 , (𝜎𝑖)𝑖∈[𝑁])
(𝑇 ′, 𝑆 ′, (𝜎𝑖)𝑖∈𝑆 ′) ← A2(𝑠𝑡, pp, com, (𝜎𝑖)𝑖∈[𝑁])

 ≤ negl(𝜅) .

Adaptive indistinguishability of Setup. A tagged set commitment scheme TSC satisfies adaptive
indistinguishability of setup if for any PPT adversary A, there exists a negligible function negl(·)
such that for all 𝜅 ∈ ℕ,

Advind-setup
TSC,A (𝜅)

def
=

���Pr [Exprind-setup,0
TSC,A (𝜅) ⇒ 1

]
− Pr

[
Exprind-setup,1

TSC,A (𝜅) ⇒ 1
] ��� ≤ negl(𝜅),

where Exprind-setup,𝑏
TSC,A (𝜅) is defined as follows:

1. On input 1𝜅 , A sends (1𝑁 , 1𝐵, 1𝑡 , 𝑆) with 𝐵 ≤ 𝑁 and |𝑆 | = 𝐵 to the challenger.

2. Challenger samples (𝜎𝑖)𝑖∈[𝑁] ← ({0, 1}ℓ𝜎)𝑁 and sends (𝜎𝑖)𝑖∈𝑆 to A.

3. A receives (𝜎𝑖)𝑖∈𝑆 and sends a tag 𝑇 ∈ {0, 1}𝑡 to the challenger.

4. Challenger proceeds according to 𝑏:

11

• 𝑏 = 0: Compute pp← Setup(1𝜅, 1𝑁 , 1𝐵, 1𝑡) and com← Commit(pp, 𝑆,𝑇 , (𝜎𝑖)𝑖∈𝑆).
• 𝑏 = 1: Run (pp, com) ← AltSetup(1𝜅, 1𝑁 , 1𝐵, 1𝑡 ,𝑇 , (𝜎𝑖)𝑖∈[𝑁]).

5. Challenger sends (pp, com) to A.

6. A outputs its guess 𝑏′; the experiment outputs 𝑏′.

Our definition strengthens the indistinguishability of Setup defined in [HKW20] by adding a
level of adaptivity: The challenger chooses the challenge tag 𝑇 after seeing openings (𝜎𝑖)𝑖∈𝑆 .

3.1 Construction from PRG

The scheme in [HKW20], as presented below, can be adapted to fit into the syntax of TSC with
randomness opening.

Construction 3.3 (TSC with randomness opening from PRG). Let PRG :
(
{0, 1}𝜅 , 1ℓ

)
→ 𝔽2ℓ be a

pseudorandom generator. Let emb be an injective and efficiently-computable function that maps
strings in {0, 1}ℓ (tags) to elements in 𝔽2ℓ . Below the notation 𝑝 ← 𝔽2ℓ [𝑥]𝐵−1 means that 𝑝 is set to be
a random degree 𝐵 − 1 polynomial over variable 𝑥 , where 𝑝 is represented in canonical form with
𝐵 randomly chosen coefficients in 𝔽2ℓ .

• Setup(1𝜅, 1𝑁 , 1𝐵, 1𝑡) ↦→ pp: The setup algorithm sets ℓ = 2𝑡 + (𝐵 + 1) · log𝑁 + 𝜅 · (𝐵 + 1) + 𝜅, and
chooses 𝑁 random elements 𝐴𝑖 , 𝐷𝑖 ← 𝔽2ℓ for all 𝑖 ∈ [𝑁]. The public parameters is set to be
pp = (1ℓ , (𝐴𝑖 , 𝐷𝑖)𝑖∈[𝑁]).

• Commit(pp = (1ℓ , (𝐴𝑖 , 𝐷𝑖)𝑖∈[𝑁]), 𝑆 ⊂ [𝑁],𝑇 , (𝜎𝑖)𝑖∈𝑆) ↦→ com: The commitment algorithm first
chooses the degree 𝐵 − 1 degree polynomial 𝑝 (·) over 𝔽2ℓ such that for all 𝑖 ∈ 𝑆 , 𝑝 (𝑖) =
PRG(𝜎𝑖 , 1ℓ) + 𝐴𝑖 + 𝐷𝑖 · emb(𝑇). The commitment com is the polynomial 𝑝, and (𝜎𝑖)𝑖∈𝑆 is the
opening proofs for the set 𝑆 .

• Verify(pp = (1ℓ , (𝐴𝑖 , 𝐷𝑖)𝑖∈[𝑁]), com = 𝑝, 𝑖, 𝜎𝑖 ,𝑇) ↦→ {0, 1}: The verification algorithm outputs 1
iff 𝑝 (𝑖) = PRG(𝜎𝑖 , 1ℓ) +𝐴𝑖 + 𝐷𝑖 · emb(𝑇).

• AltSetup(1𝜅, 1𝑁 , 1𝐵, 1𝑡 ,𝑇 , (𝜎𝑖)𝑖∈[𝑁]) ↦→ (pp, com): The alternative setup algorithm chooses ran-
dom strings 𝑠𝑖 ← {0, 1}𝜅 , 𝐷𝑖 ← 𝔽2ℓ for each 𝑖 ∈ [𝑁], 𝑝 ← 𝔽2ℓ [𝑥]𝐵−1 and sets 𝐴𝑖 = 𝑝 (𝑖) −
PRG(𝜎𝑖 , 1ℓ) − 𝐷𝑖 · emb(𝑇).

The above construction satisfies correctness and soundness; for detailed proofs, we refer the
reader to [HKW20]. In the rest of this section, we prove that it also satisfies our notion of adaptive
indistinguishability of Setup.

Theorem 3.4. If PRG :
(
{0, 1}𝜅 , 1ℓ

)
→ 𝔽2ℓ is a pseudorandom generator, then construction 3.3 satisfies

adaptive indistinguishability of Setup.

Proof. Let TSC denote the scheme in construction 3.3. LetA be an adversary attacking the adaptive
indistinguishability of Setup of TSC. We shall devise an adversary B such that���Pr [Exprprg,0

PRG,B (𝜅) ⇒ 1
]
− Pr

[
Exprprg,1

PRG,B (𝜅) ⇒ 1
] ��� ≥ Advind-setup

TSC,A (𝜅), (1)

where the experiment Exprprg,𝑏
PRG,B (𝜅) is the following experiment:

12

1. On input 1𝜅 , B sends a number 𝑄 and ℓ to the challenger.

2. Challenger proceeds according to 𝑏 ∈ {0, 1}:

• if 𝑏 = 0, it samples 𝑎𝑖 ← 𝔽2ℓ for 𝑖 ∈ [𝑄], and sends (𝑎𝑖)𝑖∈[𝑄] to B.
• if𝑏 = 1, it samples 𝑠𝑖 ← {0, 1}𝜅 for 𝑖 ∈ [𝑄], and sends (𝑎𝑖)𝑖∈[𝑄] toB, where 𝑎𝑖 = PRG(𝑠𝑖 , 1ℓ).

3. B outputs a bit 𝑏′ ∈ {0, 1} and the experiment outputs 𝑏′.

It is easy to see that the above experiment captures the pseudorandomness of PRG.
Consider the following adversary B:

1. B sends 1𝜅 to A.

2. On receiving (1𝑁 , 1𝐵, 1𝑡 , 𝑆) from A with 𝐵 ≤ 𝑁 and |𝑆 | = 𝐵 from A, it sets 𝑄 := 𝑁 − 𝐵 and
ℓ := 2𝑡 + (𝐵 + 1) · log𝑁 + 𝜅 · (𝐵 + 1) + 𝜅 and submit (𝑄, ℓ) to the challenger.

3. On receiving (𝑎𝑖)𝑖∈[𝑄] from the challenger, B samples 𝜎𝑖 ← {0, 1}ℓ𝜎 for 𝑖 ∈ 𝑆 , and sends (𝜎𝑖)𝑖∈𝑆
to A; B also renames (𝑎𝑖)𝑖∈[𝑄] as (𝑑𝑖)𝑖∈[𝑁]\𝑆 . (Note that | [𝑁] \ 𝑆 | = 𝑄 .)

4. On receiving 𝑇 from A, B chooses a degree-(𝐵 − 1) polynomial 𝑝 ← 𝔽2ℓ [𝑋]𝐵−1 uniformly at
random and samples 𝐷𝑖 ← 𝔽2ℓ for 𝑖 ∈ [𝑁]; then it sets𝐴𝑖 := 𝑝 (𝑖) −PRG(𝜎𝑖 , 1ℓ) −𝐷𝑖 · emb(𝑇) for
𝑖 ∈ 𝑆 , and 𝐴𝑖 := 𝑝 (𝑖) −𝑑𝑖 −𝐷𝑖 · emb(𝑇) for 𝑖 ∈ [𝑁] \ 𝑆 . B sends (pp = (1ℓ , (𝐴𝑖 , 𝐷𝑖)𝑖∈[𝑁]), com = 𝑝)
to A.

5. Finally, A outputs a bit 𝑏′ and B outputs 𝑏′.

For 𝑏 ∈ {0, 1}, if B is in the experiment Exprprg,𝑏
PRG,B (𝜅), it perfectly simulates Exprind-setup,𝑏

TSC,A (𝜅) for A.
This finishes the proof. □

4 TB-ATDFs from Canonical TDFs

This section presents our construction of TB-ATDF.

4.1 Construction

Our TB-ATDF uses building blocks TSC,PKE with the following properties.

1. TSC is a TSC with randomness opening; let ℓ𝜎 = ℓ𝜎 (𝜅) denote the length of the openings.

2. PKE = (Gen,Enc,Dec,Rec) is a randomness-recoverable PKE with message space {0, 1}ℓmsg ,
where ℓmsg

def
= 𝜅 + ℓ𝜎 . We require PKE to have a key-independent randomness space Rnd =

(Rnd𝜅)𝜅∈ℕ that does not depend on the public key, and each Rnd𝜅 is an Abelian group.

Construction 4.1 (TB-ATDF). Let ℓtag be the length of tags. Choose parameters 𝑁 = 𝑁 (𝜅), 𝐵 = 𝐵(𝜅)
used for TSC such that

(𝑁
𝐵

)
≥ |Rnd| · 2𝜅 .We construct a TB-ATDF with tag space {0, 1}ℓtag as follows.

• tSetup(𝑇 ∈ {0, 1}ℓtag , 1𝜅) ↦→ (ek, td):

1. pp← TSC.Setup(1𝜅, 1𝑁 , 1𝐵, 1ℓtag).

13

Check

– Hardwired: ek,𝑇 ,𝑦 = (com, (ct𝑗) 𝑗∈[𝑁]).
– Input: 𝑖 ∈ [𝑁], 𝑧 ∈ ({0, 1}𝜅 × {0, 1}ℓmsg) ∪ {⊥}, 𝑟 ∈ Rnd.

Output 1 if and only if the following conditions are satisfied:
(a) 𝑧 ≠ ⊥. Parse 𝑧 = 𝑔∥𝜎 where 𝑔 ∈ {0, 1}𝜅 .
(b) 𝑔 = 1𝜅 .
(c) TSC.Verify(pp, com, 𝑖, 𝜎,𝑇) = 1.
(d) ct𝑖 = Enc(pk𝑖 , 𝜎 ; 𝑟).

Figure 2: Subroutine Check(𝑖, 𝑧, 𝑟)

2. Generate (pk𝑖 , sk𝑖) ← Gen(1𝜅) for 𝑖 ∈ [𝑁].
3. Return ek =

(
pp, (pk𝑖)𝑖∈[𝑁]

)
and td = (sk𝑖)𝑖∈[𝑁] .

• Samp(ek, 1𝜅) ↦→ 𝑥 :

1. Choose a size-𝐵 subset 𝑆 ⊂ [𝑁] uniformly at random. Let 𝑆 = {𝑖1, 𝑖2, · · · , 𝑖𝐵} where
𝑖1 < 𝑖2 < · · · < 𝑖𝐵 . Then sample 𝑟𝑖 𝑗 ← Rnd for 𝑗 ∈ [𝐵 − 1].

2. 𝜎𝑖 ← {0, 1}ℓ𝜎 for 𝑖 ∈ 𝑆 .
3. For 𝑖 ∈ [𝑁] \ 𝑆 , ct𝑖 = Enc(pk𝑖 ,𝑚𝑖) where𝑚𝑖 ← {0, 1}ℓmsg .

4. Return
(
𝑆, (𝑟𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎𝑖)𝑖∈𝑆 , (ct𝑖)𝑖∈[𝑁]\𝑆

)
.

• tEval(𝑇, ek, 𝑥) ↦→ 𝑦:

1. Parse 𝑥 =
(
𝑆, (𝑟𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎𝑖)𝑖∈𝑆 , (ct𝑖)𝑖∈[𝑁]\𝑆

)
, ek =

(
pp, (pk𝑖)𝑖∈[𝑁]

)
.

2. com← TSC.Commit(pp, 𝑆,𝑇 , (𝜎𝑖)𝑖∈𝑆).
3. Sets 𝑟𝑖𝐵 = −∑𝐵−1

𝑗=1 𝑟𝑖 𝑗 .
4. For 𝑖 ∈ 𝑆 , computes ct𝑖 = Enc(pk𝑖 , 1𝜅 ∥𝜎𝑖 ; 𝑟𝑖).

5. Return
(
com, (ct𝑖)𝑖∈[𝑁]

)
.

• tInv(𝑇, td, 𝑦) ↦→ 𝑥 /⊥:

1. Parse td = (sk𝑖)𝑖∈[𝑁] and 𝑦 =
(
com, (ct𝑖)𝑖∈[𝑁]

)
.

2. For each 𝑖 ∈ [𝑁], (𝑧𝑖 , 𝑟𝑖) := Dec(sk𝑖 , ct𝑖).
3. Initialize a set 𝑈 := ∅. For each 𝑖 ∈ [𝑁], add 𝑖 into 𝑈 if Check(𝑖, 𝑧𝑖 , 𝑟𝑖) = 1, where Check is

defined in fig. 2.
4. If the set |𝑈 | ≠ 𝐵, output ⊥.
5. If

∑
𝑖∈𝑈 𝑟𝑖 ≠ 0, output ⊥.

6. For 𝑖 ∈ 𝑈 , parse 𝑧𝑖 = 1𝜅 ∥𝜎𝑖 ; let 𝑈 = {𝑖1, . . . , 𝑖𝐵} where 𝑖1 < 𝑖2 < · · · < 𝑖𝐵 .

14

7. Return
(
𝑈 , (𝑟𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎𝑖)𝑖∈𝑈 , (ct𝑖)𝑖∈[𝑁]\𝑈

)
.

Regarding the correctness and security of construction 4.1, we have the next two theorems.

Theorem 4.2 (Correctness). If PKE satisfies 𝜀-almost-all-keys correctness, then construction 4.1 satisfies
𝛼-almost-all-keys 𝜈-correctness, where 𝛼 = 𝑁 · 𝜀 and 𝜈 = (𝑁 − 𝐵) · 2−𝜅 .

Theorem 4.3 (Adaptive one-wayness). Assume TSC is a TSC with randomness opening, and PKE is an
RR-PKE with (i) almost-all-keys perfect correctness and (ii) uniform ciphertext for random message. Then
construction 4.1 satisfies adaptive one-wayness.

We prove theorem 4.2 and theorem 4.3 in section 4.2 and section 4.3 respectively.

Uniform domain sampling. Assume that PKE has uniform ciphertext for random message. For
a perfectly correct key-pair (pk, sk), we have |Cpk | = 2ℓmsg · |Rnd𝜅 |, which is independent of pk. If all
𝑁 key pairs are perfectly correct, each input is sampled by Samp with equal probability, namely,

1(𝑁
𝐵

) · 1

(|Rnd𝜅 |)𝐵−1
· (2−ℓ𝜎)𝐵 · 1

(2ℓmsg · |Rnd𝜅 |)𝑁−𝐵
.

Thus, we achieve uniform domain sampling (with overwhelming probability over the generation
of (ek, td)).

4.2 Proof of Theorem 4.2: Correctness

Let GoodKey be the event that all 𝑁 key pairs are error-free. By the 𝜀-almost-all-keys perfect cor-
rectness of PKE and union bound, we have

Pr [GoodKey] ≥ 1 − 𝑁 · 𝜀.

Conditioned on GoodKey, the decryption errors are solely owing to the bad 𝑦 = (com, (ct𝑖)𝑖∈[𝑁])
evaluation where

• 𝑥 is sampled uniformly from Dom and 𝑦 = Eval(ek, 𝑥).

• There exists 𝑖 ∈ [𝑁] \ 𝑆 , ct𝑖 = Enc(pk𝑖 ,𝑚𝑖 ; 𝑟𝑖) such that Check(𝑖,𝑚𝑖 , 𝑟𝑖) = 1.

Weuse GoodMsg to denote that the above bad𝑦 evaluationdoes not happen. Observe that (𝑚𝑖)𝑖∈[𝑁]\𝑆
are chosen uniformly at random. The first 𝜅-bits of𝑚𝑖 happens to be 𝜅-bits ones with probability
2−𝜅 , which is a sub-check in Check. Then by union bound, we have

Pr [GoodMsg] ≥ 1 − (𝑁 − 𝐵) · 2−𝜅 .

Therefore, the theorem theorem 4.2 holds with 𝛼 = 𝑁 · 𝜀 and 𝜈 = (𝑁 − 𝐵) · 2−𝜅 .

15

4.3 Proof of Theorem 4.3: Adaptive One-Wayness

Let tATDF denote the TB-ATDF in construction 4.1 and let A = (A1,A2) be a PPT adversary that
aims at attacking the adaptive one-wayness of tATDF. The proof proceeds via a sequence of secu-
rity games Game𝑖 (𝑖 ∈ [3]), where Game1 is exactly the adaptive one-wayness experiment. There-
fore,

Advtaow
tATDF,A (𝜅) = Pr [Game1 ⇒ 1]

≤ Pr [Game3 ⇒ 1] +
∑
𝑗∈[2]
|Pr [Game𝑖 ⇒ 1] − Pr [Game𝑖+1 ⇒ 1] | . (2)

We finish the proof of theorem 4.3 by showing that all terms in eq. (2) are negligible in the following
lemmas.

Game1. This game corresponds to the adaptive one-wayness experiment.

• Choosing the challenge tag: The adversary A1 sends a tag 𝑇 ∗ to the challenger as the chal-
lenge tag, and maintains an internal state 𝑠𝑡 for A2, i.e., (𝑇 ∗, 𝑠𝑡) ← A1(1𝜅).

• Generating the challenge image: In this stage, the challenger runs the setup, sampling, and
evaluation algorithms of the TB-ATDF scheme.

1. pp← TSC.Setup(1𝜅, 1𝑁 , 1𝐵, 1ℓtag).
2. For 𝑖 ∈ [𝑁], generate (pk𝑖 , sk𝑖) ← Gen(1𝜅)
3. ek :=

(
pp, (pk𝑖)𝑖∈[𝑁]

)
and td := (sk𝑖)𝑖∈[𝑁] .

4. Choose 𝑆∗ = {𝑖1, . . . , 𝑖𝐵} ⊂ [𝑁] uniformly at random where 𝑖1 < · · · < 𝑖𝐵 .
5. Sample 𝑟 ∗𝑖 𝑗 ← Rnd for 𝑗 ∈ [𝐵 − 1] and set 𝑟 ∗𝑖𝐵 := −∑𝐵−1

𝑗=1 𝑟
∗
𝑖 𝑗
.

6. For 𝑖 ∈ 𝑆∗, choose 𝜎∗𝑖 ← {0, 1}
ℓ𝜎 and ct∗𝑖 := Enc(pk𝑖 , 1𝜅 ∥𝜎∗𝑖 ; 𝑟 ∗𝑖); for 𝑖 ∈ [𝑁] \ 𝑆∗, ct∗𝑖 ←

Enc(pk𝑖 ,𝑚∗𝑖) where𝑚∗𝑖 ← {0, 1}
ℓmsg .

7. com∗ := Commit(pp, 𝑆∗,𝑇 ∗, (𝜎∗𝑖)𝑖∈𝑆∗).

8. 𝑥∗ :=
(
𝑆∗, (𝑟 ∗𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎

∗
𝑖)𝑖∈𝑆∗, (ct∗𝑖)𝑖∈[𝑁]\𝑆∗

)
, 𝑦∗ :=

(
com∗, (ct∗𝑖)𝑖∈[𝑁]

)
.

• Answering inversion queries: In this stage, the challenger runs A2(𝑠𝑡,𝑦∗) and each inversion
query 𝑦 = (com, (ct𝑖)𝑖∈[𝑁]) is answered as follows:

1. Compute (𝑧𝑖 , 𝑟𝑖) := Dec(sk𝑖 , ct𝑖) for all 𝑖 ∈ [𝑁].
2. Initialize𝑈 = ∅; for 𝑖 ∈ [𝑁], add 𝑖 to𝑈 if Check(𝑖, 𝑧𝑖 , 𝑟𝑖) = 1.
3. If |𝑈 | ≠ 𝐵 or

∑
𝑖∈𝑈 𝑟𝑖 ≠ 0, return ⊥.

4. For each 𝑖 ∈ 𝑈 , parse 𝑧𝑖 = 1𝜅 |𝜎𝑖 ; let 𝑈 = {𝑖1, . . . , 𝑖𝐵} where 𝑖1 < 𝑖2 < · · · < 𝑖𝐵 .

5. Return
(
𝑈 , (𝑟𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎𝑖)𝑖∈𝑈 , (ct𝑖)𝑖∈[𝑁]\𝑈

)
.

• Deciding winning condition: Finally, A2 outputs 𝑥 ′ and the game outputs 1 if and only if
𝑥 ′ = 𝑥∗.

16

Game2. This game is identical to Game1 except that the challenger runs AltSetup rather than Setup
during the stage of generating the challenge image. Moreover, it puts the index opening proofs
and commitment generated by AltSetup into 𝑥∗.

• Generating the challenge image:

1. For 𝑖 ∈ [𝑁], generate (pk𝑖 , sk𝑖) ← Gen(1𝜅)
2. Choose 𝑆∗ = {𝑖1, . . . , 𝑖𝐵} ⊂ [𝑁] uniformly at random where 𝑖1 < · · · < 𝑖𝐵 .
3. Sample 𝑟 ∗𝑖 𝑗 ← Rnd for 𝑗 ∈ [𝐵 − 1] and set 𝑟 ∗𝑖𝐵 := −∑𝐵−1

𝑗=1 𝑟
∗
𝑖 𝑗
.

4. For 𝑖 ∈ [𝑁], choose 𝜎∗𝑖 ← {0, 1}ℓ𝜎 ; for 𝑖 ∈ 𝑆∗, ct∗𝑖 := Enc(pk𝑖 , 𝜎∗𝑖 ; 𝑟 ∗𝑖); for 𝑖 ∈ [𝑁] \ 𝑆∗,
ct∗𝑖 ← Enc(pk𝑖 ,𝑚∗𝑖) where𝑚∗𝑖 ← {0, 1}

ℓmsg .
5. (pp, com) ← AltSetup(1𝜅, 1𝑁 , 1𝐵, 1𝑡 ,𝑇 ∗, (𝜎∗𝑖)𝑖∈[𝑁]).
6. ek :=

(
pp, (pk𝑖)𝑖∈[𝑁]

)
and td := (sk𝑖)𝑖∈[𝑁] .

7. 𝑥∗ :=
(
𝑆∗, (𝑟 ∗𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎

∗
𝑖)𝑖∈𝑆∗, (ct∗𝑖)𝑖∈[𝑁]\𝑆∗

)
, 𝑦∗ :=

(
com∗, (ct∗𝑖)𝑖∈[𝑁]

)
.

Game3. This game is identical to Game2 except that for 𝑖 ∈ [𝑁] \𝑆∗, ct∗𝑖 is switched to an encryption
of 𝜎∗𝑖 during the stage of enerating the challenge image. That is, we additionally pick 𝑟 ∗𝑖 ← Rnd for
𝑖 ∈ [𝑁] \ 𝑆∗ and generate (ct∗𝑖)𝑖∈[𝑁] as follows: for 𝑖 ∈ [𝑁], ct∗𝑖 := Enc(pk𝑖 , 𝜎∗𝑖 ; 𝑟 ∗𝑖).

• Generating the challenge image:

1. For 𝑖 ∈ [𝑁], generate (pk𝑖 , sk𝑖) ← Gen(1𝜅)
2. Choose 𝑆∗ = {𝑖1, . . . , 𝑖𝐵} ⊂ [𝑁] uniformly at random where 𝑖1 < · · · < 𝑖𝐵 .
3. Sample 𝑟 ∗𝑖 𝑗 ← Rnd for 𝑗 ∈ [𝐵−1] and set 𝑟 ∗𝑖𝐵 := −∑𝐵−1

𝑗=1 𝑟
∗
𝑖 𝑗
; sample 𝑟 ∗𝑖 ← Rnd for 𝑖 ∈ [𝑁] \𝑆∗.

4. For 𝑖 ∈ [𝑁], choose 𝜎∗𝑖 ← {0, 1}
ℓ𝜎 ; for 𝑖 ∈ [𝑁], ct∗𝑖 := Enc(pk𝑖 , 𝜎∗𝑖 ; 𝑟 ∗𝑖).

5. (pp, com) ← AltSetup(1𝜅, 1𝑁 , 1𝐵, 1𝑡 ,𝑇 ∗, (𝜎∗𝑖)𝑖∈[𝑁]).
6. ek :=

(
pp, (pk𝑖)𝑖∈[𝑁]

)
and td := (sk𝑖)𝑖∈[𝑁] .

7. 𝑥∗ :=
(
𝑆∗, (𝑟 ∗𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎

∗
𝑖)𝑖∈𝑆∗, (ct∗𝑖)𝑖∈[𝑁]\𝑆∗

)
, 𝑦∗ :=

(
com∗, (ct∗𝑖)𝑖∈[𝑁]

)
.

We first show that A has negligible advantage in Game3:

Lemma 4.4. Pr [Game3 ⇒ 1] ≤ |Rnd |
(𝑁𝐵)
≤ 2−𝜅 .

Proof. We define an auxiliary game Game4: This game is identical Game3 except that we choose
(𝑟 ∗𝑖)𝑖∈𝑆∗ uniformly at random and use them to generate the challenge image. At this point, 𝑦∗ con-
tains no information about 𝑆∗; however, for Game4 to output 1, A must guess 𝑆∗ correctly, as 𝑆∗ is
part of 𝑥∗. Therefore, Pr [Game4 ⇒ 1] ≤ 1

(𝑁𝐵)
.

It suffice to show that Pr [Game4 ⇒ 1] ≥ 1/|Rnd| · Pr [Game3 ⇒ 1] holds. Fix 𝑆∗ = {𝑖1, 𝑖2, · · · , 𝑖𝐵}
where 𝑖1 < 𝑖2 < · · · < 𝑖𝐵 . Since 𝑟 ∗𝑖𝐵 in Game4 is sampled from Abelian group Rnd uniformly at
random, it holds that

Pr
𝑟 ∗𝑖1 ,...,𝑟

∗
𝑖𝐵
←Rnd

[
𝑟 ∗𝑖𝐵 = −

𝐵−1∑
𝑗=1

𝑟 ∗𝑖 𝑗

]
= 1/|Rnd|.

17

In Game4, if the condition 𝑟 ∗𝑖𝐵 = −∑𝐵−1
𝑗=1 𝑟

∗
𝑖 𝑗
holds, the adversaryA behaves identically to its behavior

in Game3, i.e.,

Pr

[
Game4 ⇒ 1

����� 𝑟 ∗𝑖𝐵 = −
𝑗=𝐵−1∑
𝑗=1

𝑟 ∗𝑖 𝑗

]
= Pr [Game3 ⇒ 1] .

Then lemma 4.4 follows from the law of total probability. □

Lemma 4.5. There exists a PPT adversary B1 attacking the indistinguishability of TSC’s setup such that

|Pr [Game2 ⇒ 1] − Pr [Game1 ⇒ 1] | = Advind-setup
TSC,B1 (𝜅) .

Proof. Consider the following adversary B1 attacking the adaptive indistinguishability of TSC’s
setup, where C1 is the challenger in the experiment Exprind-setup,𝑏

TSC,B1 (𝜅).

1. B1 receives input
(
1𝜅, 1𝑁 , 1𝐵, 1ℓtag

)
and runs (𝑇 ∗, 𝑠𝑡) ← A1(1𝜅, 1ℓtag) to obtain the challenge tag

𝑇 ∗. B1 samples 𝑆∗ = {𝑖1, . . . , 𝑖𝐵} ←
([𝑁]
𝐵

)
where 𝑖1 < · · · < 𝑖𝐵 , and sends

(
1𝑁 , 1𝐵, 1ℓtag , 𝑆∗

)
to C1.

2. On receiving
(
1𝑁 , 1𝐵, 1ℓtag , 𝑆∗

)
, C1 samples 𝜎𝑏∗𝑖 ← {0, 1}

ℓ𝜎 for all 𝑖 ∈ [𝑁] and sends (𝜎𝑏∗𝑖)𝑖∈𝑆∗) to
B1.

3. B1 receives (𝜎𝑏∗𝑖)𝑖∈𝑆∗) and set 𝑇 ∗ to C1.

4. On receiving 𝑇 ∗, C1 proceeds according to 𝑏:

• If 𝑏 = 0, C1 runs pp0 ← Setup(1𝜅, 1𝑁 , 1𝐵, 1ℓtag) and computes

com0∗ ← TSC.Commit(pp0, 𝑆∗,𝑇 ∗, (𝜎0∗𝑖)𝑖∈𝑆)) .

• If 𝑏 = 1, C1 samples 𝜎1∗𝑖 ← {0, 1}
ℓ𝜎 for 𝑖 ∈ [𝑁] and computes

(pp1, com1∗) ← AltSetup(1𝜅, 1𝑁 , 1𝐵, 1ℓtag ,𝑇 ∗, (𝜎1∗𝑖)𝑖∈[𝑁]).

Next, C1 sends
(
pp𝑏, com𝑏∗) to B1.

5. B1 receives
(
pp𝑏, com𝑏∗) , and computes 𝑥∗ and 𝑦∗ as follows:

• For 𝑖 ∈ [𝑁], generate (pk𝑖 , sk𝑖) ← Gen(1𝜅)
• Sample 𝑟 ∗𝑖 𝑗 ← Rnd for 𝑗 ∈ [𝐵 − 1] and set 𝑟 ∗𝑖𝐵 := −∑𝐵−1

𝑗=1 𝑟
∗
𝑖 𝑗
.

• For 𝑖 ∈ 𝑆∗, ct∗𝑖 := Enc(pk𝑖 , 𝜎𝑏∗𝑖 ; 𝑟 ∗𝑖); for 𝑖 ∈ [𝑁] \𝑆∗, ct𝑖 ← Enc(pk𝑖 ,𝑚∗𝑖) where𝑚∗𝑖 ← {0, 1}
ℓmsg .

• ek :=
(
pp𝑏, (pk𝑖)𝑖∈[𝑁]

)
and td := (sk𝑖)𝑖∈[𝑁] .

• 𝑥∗ :=
(
𝑆∗, (𝑟 ∗𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎

𝑏∗
𝑖)𝑖∈𝑆∗, (ct∗𝑖)𝑖∈[𝑁]\𝑆∗

)
, 𝑦∗ :=

(
com𝑏∗, (ct∗𝑖)𝑖∈[𝑁]

)
.

6. B1 runs A2(𝑠𝑡,𝑦∗) and uses all key pairs (pk𝑖 , sk𝑖)𝑖∈[𝑁] as td to simulate the inversion oracle
Inv(·, td, ·) for A2(𝑠𝑡,𝑦∗). Finally, B1 obtains output 𝑥 from A2(𝑦∗, 𝑠𝑡).

7. If 𝑥 = 𝑥∗, B1 sends 1 to C1; otherwise, B1 sends 0 to C1.

It is easy to see that from the point ofA, if 𝑏 = 0, B1 perfectly simulates Game1; if 𝑏 = 1, B1 perfectly
simulates Game2. This concludes the proof. □

18

Lemma 4.6. There exists PPT adversaries B2 and B3 such that

|Pr [Game2 ⇒ 1] − Pr [Game3 ⇒ 1] | = 2(𝑁 − 𝐵) · Advsound
TSC,B2 (𝜅) + 2(𝑁 − 𝐵)𝑁 · 𝜀 (𝜅)

+ (𝑁 − 𝐵) · Advind-cpa
PKE,B3 (𝜅) .

Proof. For ease of presentation, we define intermediate games Game2, 𝑗 for 𝑗 ∈ [𝑁 + 1]:

• Game2, 𝑗 is identical to Game2 except that (ct∗𝑖)𝑖∈[𝑁]\𝑆∗ is generated as follows: for 𝑖 ∈ [𝑁] \ 𝑆∗,
if 𝑖 < 𝑗 , ct∗𝑖 := Enc(pk𝑖 , 𝜎∗𝑖 ; 𝑟 ∗𝑖); if 𝑖 ≥ 𝑗 , ct∗𝑖 ← Enc(pk𝑖 ,𝑚∗𝑖) where𝑚∗𝑖 ← {0, 1}

ℓmsg .

Clearly, Game2,1 is identical to Game2, and Game2,𝑁+1 is identical to Game3. For 𝑗 ∈ [𝑁], we fur-
ther define intermediate games Game2, 𝑗,Alt,0 and Game2, 𝑗,Alt,1 to facilitate the switch from Game2, 𝑗 to
Game2, 𝑗+1:

• Game2, 𝑗,Alt,0 is identical to Game2, 𝑗 except that the inversion oralce is replaced by ALTINV− 𝑗
defined in fig. 3, which only uses (sk𝑖)𝑖≠𝑗 .

• Game2, 𝑗,Alt,1 is identical to Game2, 𝑗,Alt,0 except that (ct∗𝑖)𝑖∈[𝑁]\𝑆∗ is generated as follows: for 𝑖 ∈
[𝑁] \ 𝑆∗, if 𝑖 ≤ 𝑗 , ct∗𝑖 := Enc(pk𝑖 , 𝜎∗𝑖 ; 𝑟 ∗𝑖); if 𝑖 > 𝑗 , ct∗𝑖 ← Enc(pk𝑖 ,𝑚𝑖) where𝑚∗𝑖 ← {0, 1}

ℓmsg .

A More detailed description of these intermediate games can be found in appendix A. In the fol-
lowing three lemmas (lemma 4.7, lemma 4.8, and lemma 4.9), we establish that

Game2, 𝑗 ≈𝑐 Game2, 𝑗,Alt,0 ≈𝑐 Game2, 𝑗,Alt,1 ≈𝑐 Game2, 𝑗+1

for all 𝑗 ∈ [𝑁]; and this finishes the proof of lemma 4.6.
□

Lemma 4.7. Suppsee that PKE satisfies 𝜀 (𝜅)-almost-all-keys perfect correctness. For 𝑣 ∈ [𝑁], there exists
a PPT adversary B2 against the soundness of TSC such that��Pr [Game2,𝑣 ⇒ 1

]
− Pr

[
Game2,𝑣,Alt,0 ⇒ 1

] �� ≤ Advsound
TSC,B2 (𝜅) + 𝑁 · 𝜀 (𝜅) .

Proof. In Game2,𝑣 , the challenger uses td = (sk𝑖)𝑖∈[𝑁] to simulate the inversion oracle Inv, while
in Game2,𝑣,Alt,0, the challenger uses (sk𝑖)𝑖≠𝑣 to simulate the alternative inversion oracle ALTINV−𝑣 .
We use GoodKey to denote the event that all key pairs (pk𝑖 , sk𝑖)𝑖∈[𝑁] sampled from Gen are perfectly
correct. The event GoodKey only depends on the Gen, and happens with overwhelming probability.
By union bound,

Pr [GoodKey] ≥ 1 − 𝑁 · 𝜀 (𝜅) .

Conditioned on GoodKey,A’s behavior diverges between Game2,𝑣 and Game2,𝑣,Alt,0 solely for queries(
𝑇 ≠ 𝑇 ∗,

(
com, (ct𝑖)𝑖∈[𝑁]

))
where exactly𝐵+1 indices, especially including 𝑣 , pass the checkCheck(𝑖, 𝑧𝑖 , 𝑟𝑖) =

1. We use Bad to denote this bad event, and we have��Pr [Game2,𝑣 ⇒ 1 ∧ GoodKey
]
− Pr

[
Game2,𝑣,Alt,0 ⇒ 1 ∧ GoodKey

] �� ≤ Pr [Bad ∧ Goodkey] .

Therefore, conditioned on GoodKey, ifA = (A1,A2) candistinguish betweenGame2,𝑣 andGame2,𝑣,Alt,0,
then the Bad event happens with non-negligible probability in Game2,𝑣 , which can be utilized to at-
tack the soundness of TSC. Consider the following adversary B2 attacking the soundness of TSC,
where C2 is the challenger in the soundness game of TSC.

19

ALTINV− 𝑗

• Hardwired: pk, (sk𝑖)𝑖≠𝑗 ,𝑇 ∗.

• Input:
(
𝑇,𝑦 =

(
com, (ct𝑖)𝑖∈[𝑁]

))
.

• Operations:

1. If 𝑇 = 𝑇 ∗, return ⊥.
2. Compute (𝑧𝑖 , 𝑟𝑖) := Dec(sk𝑖 , ct𝑖) for all 𝑖 ∈ [𝑁] \ { 𝑗}.
3. Initialize𝑈 = ∅; for 𝑖 ∈ [𝑁] \ { 𝑗}, add 𝑖 to𝑈 if Check(𝑖, 𝑧𝑖 , 𝑟𝑖) = 1.
4. If |𝑈 | = 𝐵 − 1, set 𝑟 𝑗 = −∑𝑖∈𝑈 𝑟𝑖 and compute 𝑧 𝑗 := Recover(pk 𝑗 , ct𝑗 , 𝑟 𝑗); if

Check(𝑗, 𝑧 𝑗 , 𝑟 𝑗) = 1, add 𝑗 to𝑈 .
5. If |𝑈 | ≠ 𝐵 or

∑
𝑖∈𝑈 𝑟𝑖 ≠ 0, return ⊥.

6. For each 𝑖 ∈ 𝑈 , parse 𝑧𝑖 = 𝜎𝑖 ; let𝑈 = {𝑖1, . . . , 𝑖𝐵} where 𝑖1 < 𝑖2 < · · · < 𝑖𝐵 .

7. Return
(
𝑈 , (𝑟𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎𝑖)𝑖∈𝑈 , (ct𝑖)𝑖∈[𝑁]\𝑈

)
.

Figure 3: Inversion oralce ALTINV− 𝑗

1. B2 receives input
(
1𝜅, 1𝑁 , 1𝐵, 1ℓtag

)
and runs (𝑇 ∗, 𝑠𝑡) ← A1(1𝜅, 1ℓtag) to obtain the challenge tag

𝑇 ∗. B2 samples 𝑆∗ = {𝑖1, . . . , 𝑖𝐵} ←
([𝑁]
𝐵

)
where 𝑖1 < · · · < 𝑖𝐵 , and sends

(
1𝑁 , 1𝐵, 1ℓtag ,𝑇 ∗

)
to the

soundness game’s challenger C2.

2. C2 receives
(
1𝑁 , 1𝐵, 1ℓtag ,𝑇 ∗

)
, then computes (pp, com∗, (𝜎∗𝑖)𝑖∈[𝑁]) ← AltSetup(1𝜅, 1𝑁 , 1𝐵, 1ℓtag ,𝑇 ∗),

and sends (pp, com∗, (𝜎∗𝑖)𝑖∈[𝑁]).

3. B2 receives
(
pp, com∗, (𝜎∗𝑖)𝑖∈[𝑁]

)
, and computes 𝑥∗ and 𝑦∗ as follows:

• For 𝑖 ∈ [𝑁], generate (pk𝑖 , sk𝑖) ← Gen(1𝜅).
• Sample 𝑟 ∗𝑖 𝑗 ← Rnd for 𝑗 ∈ [𝐵 − 1] and set 𝑟 ∗𝑖𝐵 := −∑𝐵−1

𝑗=1 𝑟
∗
𝑖 𝑗
.

• For 𝑖 ∈ 𝑆∗ ∪ [𝑣 − 1], ct𝑖 := Enc(pk𝑖 , 𝜎∗𝑖 ; 𝑟 ∗𝑖); for 𝑖 ∈ [𝑁] \ (𝑆∗ ∪ [𝑣 − 1]), ct𝑖 ← Enc(pk𝑖 ,𝑚∗𝑖)
where𝑚∗𝑖 ← {0, 1}

ℓmsg .
• ek :=

(
pp, (pk𝑖)𝑖∈[𝑁]

)
and td := (sk𝑖)𝑖∈[𝑁] .

• 𝑥∗ :=
(
𝑆∗, (𝑟 ∗𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎

∗
𝑖)𝑖∈𝑆∗, (ct∗𝑖)𝑖∈[𝑁]\𝑆∗

)
, 𝑦∗ :=

(
com∗, (ct∗𝑖)𝑖∈[𝑁]

)
.

4. B2 runs A2(𝑠𝑡,𝑦∗) and uses all key pairs (pk𝑖 , sk𝑖)𝑖∈[𝑁] as td to simulate the inversion oracle
Inv(·, td, ·) for A2(𝑠𝑡,𝑦∗). Simultaneously, B2 monitors every query

(
𝑇 ≠ 𝑇 ∗, (com, (ct𝑖)𝑖∈[𝑁])

)
from A2, decrypts to obtain corresponding (𝑧𝑖 , 𝑟𝑖), and checks if the event Bad happens.

5. Finally, if the event Bad happens, B2 sends the corresponding (𝑇 ≠ 𝑇 ∗,𝑈 , (𝜎𝑖)𝑖∈𝑈) to C2 where
|𝑈 | = 𝐵 + 1, 𝑣 ∈ 𝑈 and Verify(pp, com, 𝑖, 𝜎𝑖 ,𝑇) = 1 (implied by Check(𝑖, 𝑧𝑖 , 𝑟𝑖) = 1) for all 𝑖 ∈ 𝑈 ;
otherwise, B2 sends ⊥ to C2.

20

It is easy to see that
Pr [Bad ∧ GoodKey] ≤ AdvSound

TSC,B2 (𝜅).

Then we have ��Pr [Game2,𝑣 ⇒ 1
]
− Pr

[
Game2,𝑣,Alt,0 ⇒ 1

] ��
=
�� Pr [Game2,𝑣 ⇒ 1 ∧ GoodKey

]
+ Pr

[
Game2,𝑣 ⇒ 1 ∧ GoodKey

]
− Pr

[
Game2,𝑣,Alt,0 ⇒ 1 ∧ GoodKey

]
− Pr

[
Game2,𝑣,Alt,0 ⇒ 1 ∧ GoodKey

] ��
≤
��Pr [Game2,𝑣 ⇒ 1 ∧ GoodKey

]
− Pr

[
Game2,𝑣,Alt,0 ⇒ 1 ∧ GoodKey

] ��
+
��Pr [Game2,𝑣 ⇒ 1 ∧ GoodKey

]
− Pr

[
Game2,𝑣,Alt,0 ⇒ 1 ∧ GoodKey

] ��
≤ Pr [Bad ∧ GoodKey] + Pr

[
GoodKey

]
≤ AdvSound

TSC,B2 (𝜅) + 𝑁 · 𝜀 (𝜅) .

□

Lemma 4.8. For every 𝑣 ∈ [𝑁], there exists a PPT adversary B3 against the IND-CPA security of PKE
such that ��Pr [Game2,𝑣,Alt,0 ⇒ 1

]
− Pr

[
Game2,𝑣,Alt,1 ⇒ 1

] �� ≤ Advind-cpa
PKE,B3 (𝜅) .

Proof. Observe that if 𝑣 ∈ 𝑆∗, Game2,𝑣,Alt,0 is identical to Game2,𝑣,Alt,1, i.e.,

Pr
[
Game2,𝑣,Alt,0 ⇒ 1

�� 𝑣 ∈ 𝑆∗] = Pr
[
Game2,𝑣,Alt,1 ⇒ 1

�� 𝑣 ∈ 𝑆∗] .
Consider the following adversary B3 attacking the IND-CPA security of PKE, where C3 is the

challenger in the experiment Exprind-cpa,𝑏
PKE,B∋ (𝜅):

1. B3 receives input
(
1𝜅, 1𝑁 , 1𝐵, 1ℓtag

)
, runs (𝑇 ∗, 𝑠𝑡) ← A1(1𝜅, 1ℓtag) to obtain the challenge tag 𝑇 ∗,

and sends 1𝜅 to C3.

2. C3 runs (pk𝑣, sk𝑣) ← Gen(1𝜅) sends pk𝑣 to B3.

3. For 𝑗 ∈ [𝑁] \ {𝑣}, B3 generates (pk 𝑗 , sk 𝑗) ← Gen(1𝜅).

4. B3 samples 𝑆∗ = {𝑖1, . . . , 𝑖𝐵} ←
([𝑁]
𝐵

)
where 𝑖1 < · · · < 𝑖𝐵 .

5. B3 amples 𝑟 ∗𝑖 𝑗 ← Rnd for 𝑗 ∈ [𝐵 − 1] and set 𝑟 ∗𝑖𝐵 := −∑𝐵−1
𝑗=1 𝑟

∗
𝑖 𝑗
.

6. For 𝑖 ∈ [𝑁], choose 𝜎𝑖 ← {0, 1}ℓ𝜎 ; for 𝑖 ∈ (𝑆∗∪[𝑣 − 1]), ct∗𝑖 := Enc(pk𝑖 , 𝜎∗𝑖 ; 𝑟 ∗𝑖); for 𝑖 ∈ [𝑁] \
(𝑆∗∪[𝑣]) , ct∗𝑖 ← Enc(pk𝑖 ,𝑚∗𝑖) where𝑚∗𝑖 ← {0, 1}

ℓmsg .

7. B3 decides if 𝑣 belongs to 𝑆∗:

• If 𝑣 ∈ 𝑆∗, B3 already obtained ct∗𝑣 = Enc(pk𝑣, 𝜎∗𝑣 ; 𝑟 ∗𝑣). Note that in this case, B3 owns all
(ct∗𝑖)𝑖∈[𝑁] . Therefore, B3 sends ⊥ to C3.

• If 𝑣 ∉ 𝑆∗, B3 samples𝑚∗𝑣 ← {0, 1}ℓmsg , and sends (𝑚∗𝑣, 𝜎∗𝑣) to C3:
– C3 samples a random bit 𝑏 ∈ {0, 1}, and computes ct𝑣 as follows:

∗ if 𝑏 = 0, then ct∗𝑣 := Enc(pk𝑣,𝑚∗𝑣);

21

∗ if 𝑏 = 1, then ct∗𝑣 := Enc(pk𝑣, 𝜎∗𝑣).

8. B3 computes (pp, com) ← AltSetup(1𝜅, 1𝑁 , 1𝐵, 1𝑡 ,𝑇 ∗, (𝜎∗𝑖)𝑖∈[𝑁]) and sets ek :=
(
pp, (pk𝑖)𝑖∈[𝑁]

)
,

td := (sk𝑖)𝑖∈[𝑁]\{𝑣} , 𝑥∗ :=
(
𝑆∗, (𝑟 ∗𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎

∗
𝑖)𝑖∈𝑆∗, (ct∗𝑖)𝑖∈[𝑁]\𝑆∗

)
, and 𝑦∗ :=

(
com∗, (ct∗𝑖)𝑖∈[𝑁]

)
.

9. B3 runsA2(ek, 𝑦∗, 𝑠𝑡) and uses
(
ek =

(
pp, (pk𝑖)𝑖∈[𝑁]

)
, (sk𝑖)𝑖≠𝑣

)
to simulate the alternative inver-

sion oracle ALTINV−𝑣 . Finally, B3 obtains output 𝑥 from A2(𝑦∗, 𝑠𝑡).

10. If 𝑥 = 𝑥∗, B3 sends 1 to C3; else, B3 sends 0 to C3.

Conditioned on 𝑣 ∉ 𝑆∗, it is easy to see that from the point of A = (A1,A2), B3 perfectly simulates
Game3,𝑣,Alt,𝑏 when it is in experiment Exprind-cpa,𝑏

PKE,B∋ (𝜅).
Note that the event 𝑣 ∈ 𝑆∗ happens with the same probability in the two games. Therefore, by

the law of total probability, lemma 4.8 holds. □

Lemma 4.9. Suppose that PKE satisfies 𝜀 (𝜅)-almost-all-keys perfect correctness. For 𝑣 ∈ [𝑁], there exists
a PPT adversary B2 against the soundness of TSC such that��Pr [Game2,𝑣+1 ⇒ 1

]
− Pr

[
Game2,𝑣,Alt,1 ⇒ 1

] �� ≤ AdvSound
TSC,B2 (𝜅) + 𝑁 · 𝜀 (𝜅) .

Proof. The proof of this lemma is the same as that of lemma 4.7, and thus we omit it here. □

5 ATDFs from Canonical TDFs

This section presents our construction of ATDF.

5.1 Construction

Our ATDF construction uses building blocks TSC,PKE with the following properties.

1. TSC is a TSC with randomness opening; let ℓ𝜎 = ℓ𝜎 (𝜅) denote the length of the openings.
Moreover, we additionally require that TSC satisfies uniqueness (definition 5.1), defined be-
low.

2. PKE = (Gen,Enc,Dec,Rec) is a IND-CPA secure randomness-recoverable PKE with message
space {0, 1}ℓmsg , where ℓmsg

def
= 𝜅 + ℓ𝜎 . We require PKE to have a key-independent randomness

space Rnd = (Rnd𝜅)𝜅∈ℕ that does not depend on the public key, and each Rnd𝜅 is an Abelian
group. We assume that a ciphertext can be encoded by ℓct bits.

Definition 5.1 (Uniqueness). WesayTSC satisfies uniqueness, if for all pp← TSC.Setup(1𝜅, 1𝑁 , 1𝐵, 1𝑡),
𝑆 ∈

([𝑁]
𝐵

)
, (𝜎𝑖)𝑖∈𝑆 , tag 𝑇 , and com′, if com′ ≠ TSC.Commit(pp, 𝑆,𝑇 , (𝜎𝑖)𝑖∈𝑆), then there exists some

𝑖∗ ∈ 𝑆 such that TSC.Verify(pp, com′, 𝑖∗, 𝜎𝑖∗,𝑇) = 0.

We show that construction 3.3 satisfies uniqueness in appendix B.

Construction 5.2. Choose parameters 𝑁 = 𝑁 (𝜅), 𝐵 = 𝐵(𝜅) used for TSC such that
(𝑁
𝐵

)
≥ |Rnd| · 2𝜅,

and let 𝑡 def
= 𝑁 · ℓct. Our ATDF construction is as follows.

• Setup(1𝜅) ↦→ (ek, td):

22

Check

– Hardwired: ek, 𝑦 = ((ct𝑗) 𝑗∈[𝑁], com).
– Input: 𝑖 ∈ [𝑁], 𝑧 ∈

(
{0, 1}𝜅 × {0, 1}ℓtsc

)
∪ {⊥}, 𝑟 ∈ Rnd.

Output 1 if and only if the following conditions are satisfied:
(a) 𝑧 ≠ ⊥. Parse 𝑧 = 𝑔∥𝜎 where 𝑔 ∈ {0, 1}𝜅 .
(b) 𝑔 = 1𝜅 .
(c) TSC.Verify(pp, com, 𝑖, 𝜎,𝑇) = 1 where 𝑇 := ct1∥ · · · ∥ct𝑁 .
(d) ct𝑖 = Enc(pk𝑖 , 𝑧; 𝑟).

Figure 4: Subroutine Check(𝑖, 𝑧, 𝑟)

1. pp← TSC.Setup(1𝜅, 1𝑁 , 1𝐵, 1𝑡).
2. (pk𝑖 , sk𝑖) ← Gen(1𝜅) for 𝑖 ∈ [𝑁].
3. Return ek =

(
pp, (pk𝑖)𝑖∈[𝑁]

)
and td = (sk𝑖)𝑖∈[𝑁] .

• Samp(ek, 1𝜅) ↦→ 𝑥 :

1. Choose a subset 𝑆 ⊂ [𝑁] of size 𝐵 uniformly at random. Let 𝑆 = {𝑖1, 𝑖2, · · · , 𝑖𝐵} where
𝑖1 < 𝑖2 < · · · < 𝑖𝐵 . Then sample 𝑟𝑖 𝑗 ← Rnd for 𝑗 ∈ [𝐵 − 1].

2. Choose 𝜎𝑖 ← {0, 1}ℓ𝜎 for each 𝑖 ∈ 𝑆 .
3. For 𝑖 ∈ [𝑁]\𝑆 , ct𝑖 := Enc(pk,𝑚𝑖) where𝑚𝑖 ← {0, 1}ℓmsg .

4. Return
(
𝑆, (𝑟𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎𝑖)𝑖∈𝑆 , (ct𝑖)𝑖∈[𝑁]\𝑆

)
.

• Eval(ek, 𝑥) ↦→ 𝑦:

1. Parse 𝑥 =
(
𝑆, (𝑟𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎𝑖)𝑖∈𝑆 , (ct𝑖)𝑖∈[𝑁]\𝑆

)
.

2. Set 𝑟𝑖𝐵 :=
∑𝐵−1
𝑗=1 𝑟𝑖 𝑗

3. For 𝑖 ∈ 𝑆 , ct𝑖 := Enc(pk𝑖 , 1𝜅 ∥𝜎𝑖 ; 𝑟𝑖).
4. com← TSC.Commit(pp, 𝑆,𝑇 , (𝜎𝑖)𝑖∈𝑆), where 𝑇 := ct1∥ · · · ∥ct𝑁 .
5. Return

(
com, (ct𝑖)𝑖∈[𝑁]

)
.

• Inv(td, 𝑦) ↦→ 𝑥 /⊥:

1. Parse 𝑦 =
(
com, (ct𝑖)𝑖∈[𝑁]

)
and td = (sk𝑖)𝑖∈[𝑁] .

2. For each 𝑖 ∈ [𝑁], compute (𝑧𝑖 , 𝑟𝑖) := Dec(sk𝑖 , ct𝑖) for each 𝑖 ∈ [𝑁].
3. Initialize a set 𝑈 := ∅. For each 𝑖 ∈ [𝑁], add 𝑖 into 𝑈 if Check(𝑖, 𝑦𝑖 , 𝑟𝑖) = 1, where Check is

defined in fig. 4.
4. If the set |𝑈 | ≠ 𝐵, output ⊥.
5. If

∑
𝑖∈𝑈 𝑟𝑖 ≠ 0, output ⊥.

23

6. For each 𝑖 ∈ 𝑈 , parse 𝑧𝑖 = 1𝜅 ∥𝜎𝑖 ; let 𝑈 = {𝑖1, . . . , 𝑖𝐵} where 𝑖1 < 𝑖2 < · · · < 𝑖𝐵 .
7. Return

(
𝑈 , (𝑟𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎𝑖)𝑖∈𝑈 , (ct𝑖)𝑖∈[𝑁]\𝑈

)
.

The correctness and security of construction 5.2 are captured by the following two theorems.
Theorem 5.3 (Correctness). If PKE satisfies 𝜀-almost-all-keys correctness, then construction 5.2 satisfies
𝛼-almost-all-keys 𝜈-correctness, where 𝛼 = 𝑁 · 𝜀 and 𝜈 = (𝑁 − 𝐵) · 2−𝜅 .
Theorem 5.4 (Adaptive one-wayness). AssumeTSC is a TSCwith randomness opening satisfying unique-
ness, and PKE is an RR-PKE with (i) almost-all-keys perfect correctness and (ii) uniform ciphertext for
random message. Then construction 5.2 satisfies adaptive one-wayness.

Since PKE and TSC with aforementioned properties can all be based on canonical TDFs, we
conclude that TB-ATDFs and ATDFs can be constructed from canonical TDFs, establishing theo-
rem 1.1.

The proof of theorem 5.3 is direct and almost identical to that of theorem 4.2, and thus we omit
it here. We prove theorem 5.4 in the rest of this section.

5.2 Proof of Theorem 5.4: Adaptive One-Wayness

Let ATDF denote the ATDF in construction 5.2 and let A be an adversary that aims to attack the
adaptive one-wayness of ATDF. We define a sequence of games Game𝑗 (𝑗 ∈ [4]), where Game1 is
exactly the adaptive one-wayness experiment.

Game1. This is the adaptive one-wayness experiment.
• Challenge generation phase: Generating (ek, td) and (𝑥∗, 𝑦∗).

1. pp← TSC.Setup(1𝜅, 1𝑁 , 1𝐵, 1𝑡).
2. For 𝑖 ∈ [𝑁], generate (pk𝑖 , sk𝑖) ← Gen(1𝜅)
3. ek :=

(
pp, (pk𝑖)𝑖∈[𝑁]

)
and td := (sk𝑖)𝑖∈[𝑁] .

4. Choose 𝑆∗ = {𝑖1, . . . , 𝑖𝐵} uniformly at random where 𝑖1 < · · · < 𝑖𝐵 .
5. sample 𝑟 ∗𝑖 𝑗 ← Rnd for 𝑗 ∈ [𝐵 − 1] and set 𝑟 ∗𝑖𝐵 := −∑𝐵−1

𝑗=1 𝑟𝑖 𝑗 .
6. For 𝑖 ∈ 𝑆∗, choose 𝜎∗𝑖 ← {0, 1}

ℓ𝜎 uniformly at random and ct∗𝑖 := Enc(pk𝑖 , 1𝜅 ∥𝜎∗𝑖 ; 𝑟 ∗𝑖); for
𝑖 ∈ [𝑁] \ 𝑆∗, ct∗𝑖 := Enc(pk,𝑚∗𝑖) where𝑚∗𝑖 ← {0, 1}

ℓmsg .
7. com := TSC.Commit(pp, 𝑆∗,𝑇 ∗, (𝜎∗𝑖)𝑖∈𝑆∗) where 𝑇 ∗ := ct1 | | · · · | |ct𝑁 .

8. 𝑥∗ :=
(
𝑆∗, (𝑟 ∗𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎

∗
𝑖)𝑖∈𝑆∗, (ct∗𝑖)𝑖∈[𝑁]\𝑆∗

)
, 𝑦∗ :=

(
com∗, (ct∗𝑖)𝑖∈[𝑁]

)
.

• Run A(ek, 𝑦∗) and each inversion query 𝑦 = (com, (ct𝑖)𝑖∈[𝑁]) is answered as follows:

1. Compute (𝑧𝑖 , 𝑟𝑖) := Dec(sk𝑖 , ct𝑖) for all 𝑖 ∈ [𝑁].
2. Initialize𝑈 = ∅; for 𝑖 ∈ [𝑁], add 𝑖 to𝑈 if Check(𝑖, 𝑧𝑖 , 𝑟𝑖) = 1.
3. If |𝑈 | ≠ 𝐵 or

∑
𝑖∈𝑈 𝑟𝑖 ≠ 0, return ⊥.

4. For each 𝑖 ∈ 𝑈 , parse 𝑧𝑖 = 1𝜅 ∥𝜎𝑖 ; let 𝑈 = {𝑖1, . . . , 𝑖𝐵} where 𝑖1 < 𝑖2 < · · · < 𝑖𝐵 .
5. Return

(
𝑈 , (𝑟𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎𝑖)𝑖∈𝑈 , (ct𝑖)𝑖∈[𝑁]\𝑈

)
.

• A outputs 𝑥 ′ and the game outputs 1 if and only if 𝑥 ′ = 𝑥∗.

24

Game2. This game is identical to Game1 except that we add an additional rejection rule in the
inversion oracle: if ct1∥ · · · ∥ct𝑁 = ct∗1∥ · · · ∥ct∗𝑁 , return ⊥.

Game3. This game is identical to Game2 except that we additionally pick 𝜎∗𝑖 ← Rnd for 𝑖 ∈ [𝑁] \ 𝑆∗
and generate pp and com∗ as follows:

• (pp, com∗) ← AltSetup(1𝜅, 1𝑁 , 1𝐵,𝑇 ∗, (𝜎∗𝑖)𝑖∈[𝑁]).

Game4. This game is identical to Game3 except that for 𝑖 ∈ [𝑁] \𝑆∗, ct∗𝑖 is switched to an encryption
of 1𝜅 |𝜎∗𝑖 . That is, we additionally pick 𝑟 ∗𝑖 ← Rnd for 𝑖 ∈ [𝑁] \ 𝑆∗ and generate (ct∗𝑖)𝑖∈[𝑁] as follows:

• For 𝑖 ∈ [𝑁], ct∗𝑖 := Enc(pk𝑖 , 1|𝜎∗𝑖 ; 𝑟 ∗𝑖).

It holds that

Advaow
ATDF,A (𝜅) = Pr [Game1 ⇒ 1]

≤ Pr [Game4 ⇒ 1] +
∑
𝑗∈[3]

��Pr [Game𝑗 ⇒ 1
]
− Pr

[
Game𝑗+1 ⇒ 1

] �� . (3)

It suffices to show that all terms in eq. (3) are negligible; the following lemmas finish the proof.

Lemma 5.5. If PKE satisfies 𝜀-almost-all-keys perfect correctness, it holds that

|Pr [Game1 ⇒ 1] − Pr [Game2 ⇒ 1] | ≤ 𝑁 · 𝜀 + (𝑁 − 𝐵) · 2−𝜅 = negl(𝜅).

Proof. In Game2, we say an inversion query 𝑦 = (com, (ct𝑖)𝑖∈[𝑁]) issued by A is tag-bad if it holds
that ct1∥ · · · ∥ct𝑁 = ct∗1∥ · · · ∥ct∗𝑁 and Inv(td, 𝑦) ≠ ⊥. Let TB denote the event that a tag-bad query
occurs in Game2. Since Game1 and Game2 are identical except that a tag-bad query occurs, it holds
that

|Pr [Game1 ⇒ 1] − Pr [Game2 ⇒ 1] | ≤ Pr
Game2

[TB] .

It remains to bound Pr [TB] from above.
Consider a tag-bad query 𝑦 = (com, (ct𝑖)𝑖∈[𝑁]). Since 𝑦 ≠ 𝑦∗ and ct1∥ · · · ∥ct𝑁 = ct∗1∥ · · · ∥ct∗𝑁 , it

must be that com ≠ com∗. By the uniqueness of TSC, there exists some 𝑖∗ ∈ 𝑆∗ such that

TSC.Verify(pp, com, 𝑖∗, 𝜎∗𝑖 ,𝑇 ∗) = 0, (4)

where 𝑇 ∗ = ct∗1∥ · · · ∥ct∗𝑁 . Let (𝑧𝑖 , 𝑟𝑖) := Dec(sk𝑖 , ct𝑖) = Dec(sk𝑖 , ct∗𝑖) and

𝑈𝑦 := {𝑖 ∈ [𝑁] : Check(𝑖, 𝑧𝑖 , 𝑟𝑖) = 1} .

Let GoodKey be the event that all 𝑁 key pairs are error-free. By the 𝜀-almost-all-key perfect correct-
ness of PKE, we have

Pr [GoodKey] ≥ 1 − 𝑁 · 𝜀.
Let GoodMsg be the event that for all 𝑖 ∈ [𝑁] \𝑆∗, the first 𝜅-bits of𝑚∗𝑖 are not all ones. Since𝑚∗𝑖 ’s are
chosen uniformly at random, by union bound we have

Pr [GoodMsg] ≥ 1 − (𝑁 − 𝐵) · 2−𝜅 .

Conditioned on GoodMsg and GoodKey, we have the following observations:

25

• For all 𝑖 ∉ 𝑆∗, Check(𝑖, 𝑧𝑖 , 𝑟𝑖) = 0. This is because, by the perfect correctness of PKE, 𝑧𝑖 = 𝑚∗𝑖 ,
and thus the first 𝜅-bits of 𝑧𝑖 are not all ones.

• For all 𝑖 ∈ 𝑆∗, by the perfect correctness of PKE, we have 𝑧𝑖 = 1𝜅 |𝜎∗𝑖 . In particular, eq. (4)
implies Check(𝑖∗, 𝑧𝑖∗, 𝑟𝑖∗) = 0, meaning that 𝑖∗ ∉ 𝑈𝑦 .

Consequently, we have |𝑈𝑦 | < 𝐵 and thus Inv(𝑡𝑑,𝑦) = ⊥, contradicting the assumption that 𝑦 is a
tag-bad query. In other words,

Pr
Game2

[TB | GoodKey ∧ GoodMsg] = 0.

Hence,

Pr [TB] ≤ Pr [TB | GoodKey ∧ GoodMsg] + Pr
[
GoodKey ∨ GoodMsg

]
≤ Pr [TB | GoodKey ∧ GoodMsg] + Pr

[
GoodKey

]
+ Pr

[
GoodMsg

]
≤ 0 + 𝑁 · 𝜀 + (𝑁 − 𝐵) · 2−𝜅 .

This completes the proof. □

Lemma 5.6. There exists a PPT adversary B1 attacking the adaptive indistinguishability of TSC’s setup
such that

|Pr [Game2 ⇒ 1] − Pr [Game1 ⇒ 1] | = Advind-setup
TSC,B1 (𝜅) .

Proof. Consider the following adversary B1 attacking the adaptive indistinguishability of TSC’s
setup, where C1 is the challenger in the experiment Exprind-setup,𝑏

TSC,B1 (𝜅).

1. B1 receives input
(
1𝜅, 1𝑁 , 1𝐵, 1𝑡

)
and samples 𝑆∗ = {𝑖1, . . . , 𝑖𝐵} ←

([𝑁]
𝐵

)
where 𝑖1 < · · · < 𝑖𝐵 , and

sends
(
1𝑁 , 1𝐵, 1ℓtag , 𝑆∗

)
to C1.

2. C1 samples (𝜎∗𝑖)𝑖∈[𝑁] ← ({0, 1}
ℓ𝜎)𝑁 and sends (𝜎∗𝑖)𝑖∈𝑆∗ to B1.

3. On receiving (𝜎∗𝑖)𝑖∈𝑆∗ , B1 does the following pre-computation for generating 𝑥∗ and 𝑦∗:

• For 𝑖 ∈ [𝑁], generate (pk𝑖 , sk𝑖) ← Gen(1𝜅).
• Sample 𝑟 ∗𝑖 𝑗 ← Rnd for 𝑗 ∈ [𝐵 − 1] and set 𝑟 ∗𝑖𝐵 := −∑𝐵−1

𝑗=1 𝑟
∗
𝑖 𝑗
.

• For 𝑖 ∈ 𝑆∗, ct∗𝑖 := Enc(pk𝑖 , 𝜎∗𝑖 ; 𝑟 ∗𝑖); for 𝑖 ∈ [𝑁] \𝑆∗, ct∗𝑖 ← Enc(pk𝑖 ,𝑚∗𝑖), where𝑚∗𝑖 ← {0, 1}
ℓmsg .

4. B1 sends 𝑇 ∗ = ct∗1 | | · · · | |ct∗𝑁 to the C1.

5. C1 proceeds according to 𝑏:

• If 𝑏 = 0, C1 runs pp0 ← Setup(1𝜅, 1𝑁 , 1𝐵, 1ℓtag), and computes com0∗ ← TSC.Commit(pp0,
𝑆∗,𝑇 ∗, (𝜎∗𝑖)𝑖∈[𝑁]).

• If 𝑏 = 1, C1 computes (pp1, com1∗) ← AltSetup(1𝜅, 1𝑁 , 1𝐵, 1ℓtag ,𝑇 ∗, (𝜎∗𝑖)𝑖∈[𝑁]).

Next, C1 sends
(
pp𝑏, com𝑏∗) to B1.

6. B1 receives
(
pp𝑏, com𝑏∗) , and finishes computing 𝑥∗ and 𝑦∗ as follows:

26

• ek :=
(
pp𝑏, (pk𝑖)𝑖∈[𝑁]

)
and td := (sk𝑖)𝑖∈[𝑁] .

• 𝑥∗ :=
(
𝑆∗, (𝑟 ∗𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎

∗
𝑖)𝑖∈𝑆∗, (ct∗𝑖)𝑖∈[𝑁]\𝑆∗

)
, 𝑦∗ :=

(
com𝑏∗, (ct∗𝑖)𝑖∈[𝑁]

)
.

7. B1 runs A(𝑠𝑡,𝑦∗) and uses all key pairs (pk𝑖 , sk𝑖)𝑖∈[𝑁] as td to simulate the inversion oracle
Inv(·, td, ·) for A(𝑠𝑡,𝑦∗). Finally, B1 obtains output 𝑥 from A(𝑠𝑡,𝑦∗).

8. If 𝑥 = 𝑥∗, B1 sends 1 to C1; otherwise, B1 sends 0 to C1.

It is easy to see that if 𝑏 = 0, B1 perfectly simulates Game1; if 𝑏 = 1, B1 perfectly simulates Game2.
This finishes the proof. □

Lemma 5.7. There exists PPT adversaries B3 and B4 such that

|Pr [Game3 ⇒ 1] − Pr [Game4 ⇒ 1] | = 2(𝑁 − 𝐵) · AdvSound
TSC,B3 (𝜅) + 2(𝑁 − 𝐵)𝑁 · 𝜀 (𝜅)

+ (𝑁 − 𝐵) · Advind-cpa
PKE,B4 (𝜅) .

Proof. For each 𝑗 ∈ [𝑁 + 1], we define an intermediate game Game3, 𝑗

• Game3, 𝑗 is identical to Game3 except that (ct∗𝑖)𝑖∈[𝑁]\𝑆∗ is generated as follows: For 𝑖 ∈ [𝑁] \𝑆∗, if
𝑖 < 𝑗 , we additionally pick 𝑟 ∗𝑖 ← Rnd and set ct𝑖 := Enc(pk𝑖 , 1𝜅 |𝜎∗𝑖 ; 𝑟 ∗𝑖); if 𝑖 ≥ 𝑗 , ct∗𝑖 := Enc(pk𝑖 ,𝑚∗𝑖)
where𝑚∗𝑖 ← {0, 1}

ℓmsg .

Observe that Game3,1 ≡ Game3 and Game3,𝑁+1 ≡ Game4. For 𝑗 ∈ [𝑁], we further define intermediate
games Game3, 𝑗,Alt,0 and Game3, 𝑗,Alt,1 to facilitate the switch from Game3, 𝑗 to Game3, 𝑗+1:

• Game3, 𝑗,Alt,0 is identical to Game3, 𝑗 except that the inversion oralce is replaced by ALTINV− 𝑗
defined in fig. 5, which only uses (sk𝑖)𝑖≠𝑗 .

• Game3, 𝑗,Alt,1 is identical to Game3, 𝑗,Alt,0 except that (ct∗𝑖)𝑖∈[𝑁]\𝑆∗ is generated as follows: for 𝑖 ∈
[𝑁] \ 𝑆∗, if 𝑖 ≤ 𝑗 , ct𝑖 := Enc(pk𝑖 , 𝜎∗𝑖 ; 𝑟 ∗𝑖); if 𝑖 > 𝑗 , ct∗𝑖 ← Enc(pk𝑖 ,𝑚∗𝑖) where𝑚∗𝑖 ← {0, 1}

ℓmsg .

It suffices to show that for all 𝑗 ∈ [𝑁], we have

Game3, 𝑗 ≈𝑐 Game3, 𝑗,Alt,0 ≈𝑐 Game3, 𝑗,Alt,1 ≈𝑐 Game3, 𝑗+1.

This follows from the same argument as in the proof of lemma 4.6. □

Lemma 5.8. Pr [Game4 ⇒ 1] ≤ |Rnd |
(𝑁𝐵)
≤ 2−𝜅 .

The proof of lemma 5.8 is the same as that of lemma 4.4, and thus is omitted.

27

ALTINV− 𝑗

• Hardwired: ek, (sk𝑖)𝑖≠𝑗 , (ct∗𝑖)𝑖∈[𝑁] .

• Input: 𝑦 = (com, (ct𝑖)𝑖∈[𝑁]).

• Operations:

1. If ct1∥ · · · ∥ct𝑁 = ct∗1∥ · · · ∥ct∗𝑁 , return ⊥.
2. Compute (𝑧𝑖 , 𝑟𝑖) := Dec(sk𝑖 , ct𝑖) for all 𝑖 ∈ [𝑁] \ { 𝑗}.
3. Initialize𝑈 = ∅; for 𝑖 ∈ [𝑁] \ { 𝑗}, add 𝑖 to𝑈 if Check(𝑖, 𝑧𝑖 , 𝑟𝑖) = 1.
4. If |𝑈 | = 𝐵 − 1, set 𝑟 𝑗 = −∑𝑖∈𝑈 𝑟𝑖 and compute 𝑧 𝑗 := Recover(pk 𝑗 , ct𝑗 , 𝑟 𝑗); if

Check(𝑗, 𝑧 𝑗 , 𝑟 𝑗) = 1, add 𝑗 to𝑈 .
5. If |𝑈 | ≠ 𝐵 or

∑
𝑖∈𝑈 𝑟𝑖 ≠ 0, return ⊥.

6. For each 𝑖 ∈ 𝑈 , parse 𝑧𝑖 = 1𝜅 |𝜎𝑖 ; let𝑈 = {𝑖1, . . . , 𝑖𝐵} where 𝑖1 < 𝑖2 < · · · < 𝑖𝐵 .

7. Return
(
𝑈 , (𝑟𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎𝑖)𝑖∈𝑈 , (ct𝑖)𝑖∈[𝑁]\𝑈

)
.

Figure 5: Inversion oralce ALTINV− 𝑗

References

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based onhard learning problems. InAdvances
in Cryptology-CRYPTO 2009: 29th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 16-20, 2009. Proceedings, pages 595–618. Springer, 2009. 2

[BHHI10] Boaz Barak, IftachHaitner, Dennis Hofheinz, and Yuval Ishai. Bounded key-dependent
message security. In Advances in Cryptology–EUROCRYPT 2010: 29th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, French Riviera,
May 30–June 3, 2010. Proceedings 29, pages 423–444. Springer, 2010. 2

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous
ibe, leakage resilience and circular security from new assumptions. In Annual Interna-
tional Conference on the Theory andApplications of Cryptographic Techniques, pages 535–564.
Springer, 2018. 2

[DGH+19] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Kevin Liu, and Giulio Malavolta.
Rate-1 trapdoor functions from the diffie-hellman problem. In International Confer-
ence on the Theory and Application of Cryptology and Information Security, pages 585–606.
Springer, 2019. 6

28

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail
Ostrovsky. Trapdoor hash functions and their applications. In Annual International
Cryptology Conference, pages 3–32. Springer, 2019. 6

[DH76] Whitfield Diffie and Martin E Hellman. New directions in cryptography. IEEE transac-
tions on Information Theory, 22(6), 1976. 1

[DNR04] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption schemes
from decryption errors. In Christian Cachin and Jan Camenisch, editors, Advances in
Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages
342–360. Springer, 2004. 6, 8

[GGH19] Sanjam Garg, Romain Gay, and Mohammad Hajiabadi. New techniques for efficient
trapdoor functions and applications. InAdvances in Cryptology–EUROCRYPT 2019: 38th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19–23, 2019, Proceedings, Part III 38, pages 33–63. Springer,
2019. 6

[HHR+10] Iftach Haitner, Thomas Holenstein, Omer Reingold, Salil Vadhan, and Hoeteck Wee.
Universal one-way hash functions via inaccessible entropy. In Advances in Cryptology–
EUROCRYPT 2010: 29th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, French Riviera, May 30–June 3, 2010. Proceedings 29, pages
616–637. Springer, 2010. 5

[HKW20] Susan Hohenberger, Venkata Koppula, and Brent Waters. Chosen ciphertext security
from injective trapdoor functions. In Annual International Cryptology Conference, pages
836–866. Springer, 2020. 1, 5, 6, 11, 12

[HL17] Shuai Han and Shengli Liu. Kdm-secure public-key encryption from constant-noise
lpn. In Information Security and Privacy: 22nd Australasian Conference, ACISP 2017, Auck-
land, New Zealand, July 3–5, 2017, Proceedings, Part I 22, pages 44–64. Springer, 2017. 2

[KMO10] Eike Kiltz, Payman Mohassel, and Adam O’Neill. Adaptive trapdoor functions and
chosen-ciphertext security. In Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 673–692. Springer, 2010. 1, 2, 3, 5

[KMT22] Fuyuki Kitagawa, Takahiro Matsuda, and Keisuke Tanaka. Cca security and trapdoor
functions via key-dependent-message security. Journal of Cryptology, 35(2):9, 2022. 2, 5

[Lam79] Leslie Lamport. Constructing digital signatures from a one way function. 1979. 5

[MH15] Takahiro Matsuda and Goichiro Hanaoka. Constructing and understanding chosen ci-
phertext security via puncturable key encapsulation mechanisms. In Yevgeniy Dodis
and Jesper Buus Nielsen, editors, Theory of Cryptography, pages 561–590, Berlin, Heidel-
berg, 2015. Springer Berlin Heidelberg. 5

[MMZ23] Xinyu Mao, Noam Mazor, and Jiapeng Zhang. Non-adaptive universal one-way hash
functions from arbitrary one-way functions. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 502–531. Springer, 2023. 5

29

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 187–196,
2008. 1, 2, 6

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures.
In Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages
387–394, 1990. 5

[RS09] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products. In The-
ory of Cryptography: 6th Theory of Cryptography Conference, TCC 2009, San Francisco, CA,
USA, March 15-17, 2009. Proceedings 6, pages 419–436. Springer, 2009. 1, 2, 3

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,
1978. 1

[Wee12] Hoeteck Wee. Dual projective hashing and its applications—lossy trapdoor functions
and more. In Advances in Cryptology–EUROCRYPT 2012: 31st Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April
15-19, 2012. Proceedings 31, pages 246–262. Springer, 2012. 1

[Yao82] Andrew C Yao. Theory and application of trapdoor functions. In 23rd Annual Sympo-
sium on Foundations of Computer Science (SFCS 1982), pages 80–91. IEEE, 1982. 3, 9

30

A Intermediate Games

Here we present detailed descriptions of intermediate games used in the proof of lemma 4.6.

Game2, 𝑗 (for 𝑗 ∈ [𝑁 + 1]). Game2, 𝑗 is identical to Game2 except that (ct∗𝑖)𝑖∈[𝑁]\𝑆∗ is generated
as follows: for 𝑖 ∈ [𝑁] \ 𝑆∗, if 𝑖 < 𝑗 , ct∗𝑖 := Enc(pk𝑖 , 𝜎∗𝑖 ; 𝑟 ∗𝑖); if 𝑖 ≥ 𝑗 , ct∗𝑖 ← Enc(pk𝑖 ,𝑚∗𝑖) where
𝑚∗𝑖 ← {0, 1}

ℓmsg .

• Generating a challenge image:

1. For 𝑖 ∈ [𝑁], generate (pk𝑖 , sk𝑖) ← Gen(1𝜅)
2. Choose 𝑆∗ = {𝑖1, . . . , 𝑖𝐵} ⊂ [𝑁] uniformly at random where 𝑖1 < · · · < 𝑖𝐵 .
3. Sample 𝑟 ∗𝑖 𝑗 ← Rnd for 𝑗 ∈ [𝐵 − 1] and set 𝑟 ∗𝑖𝐵 := −∑𝐵−1

𝑗=1 𝑟
∗
𝑖 𝑗
.

4. For 𝑖 ∈ [𝑁], choose 𝜎∗𝑖 ← {0, 1}ℓ𝜎 ; for 𝑖 ∈ (𝑆∗∪[𝑗 − 1]), ct𝑖 := Enc(pk𝑖 , 𝜎∗𝑖 ; 𝑟 ∗𝑖); for 𝑖 ∈
[𝑁] \ (𝑆∗∪[𝑗 − 1]) , ct𝑖 ← Enc(pk𝑖 ,𝑚∗𝑖), where𝑚∗𝑖 ← {0, 1}

ℓmsg .
5. (pp, com) ← AltSetup(1𝜅, 1𝑁 , 1𝐵, 1𝑡 ,𝑇 ∗, (𝜎∗𝑖)𝑖∈[𝑁]).
6. ek :=

(
pp, (pk𝑖)𝑖∈[𝑁]

)
and td := (sk𝑖)𝑖∈[𝑁] .

7. 𝑥∗ :=
(
𝑆∗, (𝑟 ∗𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎

∗
𝑖)𝑖∈𝑆∗, (ct∗𝑖)𝑖∈[𝑁]\𝑆∗

)
, 𝑦∗ :=

(
com∗, (ct∗𝑖)𝑖∈[𝑁]

)
.

• Answering inversion queries: Use Inv(·, td, ·) algorithm to answer all valid inversion queries
(𝑇𝑖 ≠ 𝑇 ∗, 𝑦𝑖)𝑖∈[𝑄] , where 𝑄 represents the number of A’s inversion queries.

Game2, 𝑗,Alt,0 (for 𝑗 ∈ [𝑁]). Game2, 𝑗,Alt,0 is identical to Game2, 𝑗 except that the inversion oralce is
replaced by ALTINV− 𝑗 defined in fig. 3, which only uses (sk𝑖)𝑖≠𝑗 .

• Answering inversion queries: UseALTINV− 𝑗 to answer all valid inversion queries (𝑇𝑖 ≠ 𝑇 ∗, 𝑦𝑖)𝑖∈[𝑄] ,
where 𝑄 represents the number of A’s inversion queries.

Game2, 𝑗,Alt,1 (for 𝑗 ∈ [𝑁]). Game2, 𝑗,Alt,1 is identical to Game2, 𝑗,Alt,0 except that (ct∗𝑖)𝑖∈[𝑁]\𝑆∗ is gener-
ated as follows: for 𝑖 ∈ [𝑁] \ 𝑆∗, if 𝑖 ≤ 𝑗 , ct∗𝑖 := Enc(pk𝑖 , 𝜎∗𝑖 ; 𝑟 ∗𝑖); if 𝑖 > 𝑗 , ct∗𝑖 ← Enc(pk𝑖 ,𝑚∗𝑖) where
𝑚∗𝑖 ← {0, 1}

ℓmsg .

• Generating a challenge image:

1. For 𝑖 ∈ [𝑁], generate (pk𝑖 , sk𝑖) ← Gen(1𝜅)
2. Choose 𝑆∗ = {𝑖1, . . . , 𝑖𝐵} ⊂ [𝑁] uniformly at random where 𝑖1 < · · · < 𝑖𝐵 .
3. Sample 𝑟 ∗𝑖 𝑗 ← Rnd for 𝑗 ∈ [𝐵 − 1] and set 𝑟 ∗𝑖𝐵 := −∑𝐵−1

𝑗=1 𝑟
∗
𝑖 𝑗
.

4. For 𝑖 ∈ [𝑁], choose 𝜎∗𝑖 ← {0, 1}
ℓ𝜎 ; for 𝑖 ∈ (𝑆∗∪[𝑗]), ct∗𝑖 := Enc(pk𝑖 , 𝜎∗𝑖 ; 𝑟 ∗𝑖); for 𝑖 ∈ [𝑁] \

(𝑆∗∪[𝑗]), ct∗𝑖 ← Enc(pk𝑖 ,𝑚∗𝑖) where𝑚∗𝑖 ← {0, 1}
ℓmsg .

5. (pp, com) ← AltSetup(1𝜅, 1𝑁 , 1𝐵, 1𝑡 ,𝑇 ∗ ∈ {0, 1}𝑡 ; (𝜎∗𝑖)𝑖∈[𝑁]).
6. ek :=

(
pp, (pk𝑖)𝑖∈[𝑁]

)
and td := (sk𝑖)𝑖∈[𝑁] .

7. 𝑥∗ :=
(
𝑆∗, (𝑟 ∗𝑖 𝑗) 𝑗∈[𝐵−1], (𝜎

∗
𝑖)𝑖∈𝑆∗, (ct∗𝑖)𝑖∈[𝑁]\𝑆∗

)
, 𝑦∗ :=

(
com∗, (ct∗𝑖)𝑖∈[𝑁]

)
.

• Answering inversion queries: UseALTINV− 𝑗 to answer all valid inversion queries (𝑇𝑖 ≠ 𝑇 ∗, 𝑦𝑖)𝑖∈[𝑄] ,
where 𝑄 represents the number of A’s inversion queries.

31

B Uniqueness of TSC

We first recall the definition of uniqueness.

Definition B.1 (Definition 5.1, restated). We say TSC satisfies uniqueness, if for all pp generated by
TSC.Setup(1𝜅, 1𝑁 , 1𝐵, 1𝑡), 𝑆 ∈

([𝑁]
𝐵

)
, (𝜎𝑖)𝑖∈𝑆 , tag 𝑇 , and com′, if com′ ≠ TSC.Commit(pp, 𝑆,𝑇 , (𝜎𝑖)𝑖∈𝑆),

then there exists some 𝑖∗ ∈ 𝑆 such that TSC.Verify(pp, com′, 𝑖∗, 𝜎𝑖∗,𝑇) = 0.

Lemma B.2. The TSC scheme described in construction 3.3 satisfies uniqueness.

Proof. Let TSC3.3 denote the TSC scheme in construction 3.3. Fix parameters 𝜅, 𝑁, 𝐵, 𝑡 , 𝑆 ∈
([𝑁]
𝐵

)
,

(𝜎𝑖)𝑖∈𝑆 , and tag𝑇 . Recall thatTSC3.3.Setup(1𝜅, 1𝑁 , 1𝐵, 1𝑡) sets ℓ := 2𝑡+(𝐵+1) ·log𝑁 +𝜅 · (𝐵+1)+𝜅 chooses
𝐴𝑖 , 𝐷𝑖 ← 𝔽2ℓ for all 𝑖 ∈ [𝑁], and outputs pp = ((𝐴𝑖 , 𝐷𝑖)𝑖∈[𝑁], 1ℓ). And TSC3.3.Commit(pp, 𝑆,𝑇 , (𝜎𝑖)𝑖∈𝑆)
outputs the unique degree-(𝐵 − 1) polynomial 𝑝 ∈ 𝔽2ℓ [𝑋] such that

∀𝑖 ∈ 𝑆, 𝑝 (𝑖) = PRG(𝜎𝑖 , 1ℓ) +𝐴𝑖 + 𝐷𝑖 · emb(𝑇).

Let 𝑝′ ∈ 𝔽2ℓ [𝑋] be an arbitrary degree-(𝐵 − 1) polynomial with 𝑝′ ≠ 𝑝. Since the degree of both 𝑝
and 𝑝′ is at most (𝐵 − 1) and |𝑆 | = 𝐵, there exists some 𝑖∗ ∈ 𝑆 such that 𝑝 (𝑖∗) ≠ 𝑝 (𝑖∗). Consequently,

𝑝′(𝑖∗) ≠ PRG(𝜎𝑖∗, 1ℓ) +𝐴𝑖∗ + 𝐷𝑖∗ · emb(𝑇),

which is equivalent to TSC3.3.Verify(pp, 𝑝′, 𝑖∗, 𝜎𝑖∗,𝑇) = 0. □

32

	Introduction
	Our Results
	Technical Overview
	Discussion

	Preliminaries
	Randomness-Recoverable Public-Key Encryption
	Trapdoor Functions and Variants
	RR-PKE from Injective TDFs

	Tagged Set Commitment with Randomness Opening
	Construction from PRG

	TB-ATDFs from Canonical TDFs
	Construction
	Proof of thm:TB-ATDF:correctness: Correctness
	Proof of thm:TB-ATDF:security: Adaptive One-Wayness

	ATDFs from Canonical TDFs
	Construction
	Proof of thm:ATDF:security: Adaptive One-Wayness

	Intermediate Games
	Uniqueness of TSC

