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Abstract

Forward-secure public key encryption (FS-PKE) is a key-evolving public-key
paradigm that ensures the confidentiality of past encryptions even if the secret
key is compromised at some later point in time. However, existing FS-PKE
schemes are considerably complex and less efficient compared to standard public-
key encryption. Updatable public-key encryption (UPKE), introduced by Jost et
al. (Eurocrypt 2019), was designed to achieve forward security in secure group
messaging while maintaining efficiency. However, existing UPKE constructions
either lack post-quantum security or do not support an unbounded number
of updates. We focus on isogeny-based cryptosystems due to their suitability
for handling an unbounded number of updates in long-term secure messaging.
Existing isogeny-based UPKE schemes lack strong security guarantees and for-
mal security proofs. They do not support asynchronous key updates and require
sender-receiver coordination.

In this work, we present two isogeny-based UPKE schemes. The first scheme
UhPKE extends Moriya et al.’s hash-based public key encryption scheme hPKE
to support key updates while the second scheme USimS is an updatable version
of Fouotsa et al.’s public key encryption scheme simplified sigamal (SimS). The
scheme UhPKE relies on the commutative supersingular isogeny Diffie-Hellman
(CSSIDH) assumption and achieves indistinguishability under chosen random-
ness and chosen plaintect attack (IND-CR-CPA). The scheme USimS derives
its security under the hardness of the CSSIDH problem and the commutative
supersingular isogeny knowledge of exponent (CSSIKoE) problem. It is the first
isogeny-based UPKE scheme that exhibits indistinguishability under chosen ran-
domness and chosen ciphertext attack (IND-CR-CCA). The security of UhPKE
and USimS is established by proving that their underlying schemes, hPKE and



SimS are circular secure and leakage resilience (CS + LR). We emphasized that
our constructions support an unlimited number of key updates while retaining
the efficiency of their underlying public key encryption schemes. Besides, pro-
posed UPKEs enable asynchronous key updates, allowing senders to update the
public key independently. More affirmatively, UhPKE and USimS offer improved
storage, computation and communication efficiency compared to existing UPKE
schemes.

Furthermore, we extend and refine the security notion of the updatable key
encapsulation mechanism (UKEM) introduced by Haidar et al. (Asiacrypt 2023)
from the bounded number of updates to the unbounded number of updates.
We present the first post-quantum secure UKEM that does not rely on zero-
knowledge proofs. More precisely, we introduce two UKEM schemes which are
the first of their kind in the isogeny setting. Our first scheme UKEM}, is derived
from our UhPKE and achieves IND-CR-CPA security. Our second construction,
UKEM,, is based on our USimS scheme and achieves IND-CR-CCA security.
We provide security for our UKEMs in our proposed enhanced security frame-
work that supports an unbounded number of key updates. More positively, our
UKEM’s not only support unlimited key updates but also enable independent
encapsulation and decapsulation key updates without requiring sender-receiver
synchronization similar to our UPKE’s. Both UKEM; and UKEM exhibit com-
pact storage and communication costs with minimal size ciphertexts while their
computational efficiency differs in decapsulation and key updates where UKEMy
incurs an additional discrete logarithm computation in decapsulation phase, but
potentially offering stronger IND-CR-CCA security in contrast to UKEM; which
is IND-CR-CPA secure.

Keywords: Updatable public key encryption, Updatable key encapsulation
mechanism, Isogeny, Forward Security.

1 Introduction

Ensuring secure communication over an untrusted channel is a fundamental challenge
in cryptography. In group messaging scenarios where multiple users engage in long-
term conversations, a critical security goal is to protect past communications even if a
participant’s secret key is later compromised. Forward security addresses this challenge
by ensuring that previous messages remain confidential despite future key exposure. In
symmetric-key systems, forward security can be implemented using a pseudo-random
generator. Given an initial seed s, key updates follow the transformation G(s;—1) =
(si, ki) where k; is a session key for encryption and s; is used for subsequent key
derivation. While this approach is computationally efficient, it presents a significant
limitation in dynamic groups where securely adding or removing users becomes difficult
without complex key management overhead. An alternative is group key agreement
protocols which allow participants to negotiate a shared secret key interactively. In
practical scenarios, group members may frequently go offline, making such synchronous
operations impractical for secure messaging applications.



While forward security is well understood in symmetric-key cryptography, extend-
ing it to the public-key setting is challenging and introduces significant complexity.
The concept of forward-secure public-key encryption (FS-PKE) was first formalized
by Canetti et al. [1] where the key generation process produces an initial key pair
(pk(()u), sk(()u)) for a user u. This implicitly defines evolving public key chains pk(()”) —
pk’§u) — pkéu) — --- and evolving secret key chains skéu) — sk‘gu) — sk‘éu) —
These key updates are designed to enable multiple senders to encrypt messages for
a receiver who independently updates their secret key over time. Canetti et al. [1]
demonstrated that FS-PKE can be built using hierarchical identity-based encryption
(HIBE) [2, 3]. This connection led to a surge in research in FS-PKE over the last two
decades with numerous constructions based on diverse cryptographic assumptions [4—
7). Despite these advancements, existing FS-PKE schemes remain significantly more
complex and less efficient than standard public-key encryption (PKE).

UPKE. The notion of updatable public key encryption (UPKE) was initially intro-
duced by Jost et al. [8] in 2019, as a relaxation of FS-PKE. In addition to standard
PKE functionality, UPKE schemes allow encryption and decryption keys to be asyn-
chronously updated with fresh entropy, thereby healing the protocol by restoring
security even after exposure of secret values. The main difference between UPKE and
FS-PKE is that in the former, new updated keys can be derived at any point of time
by any sender whereas in FS-PKE only the recipient can update the key. In UPKE,

to update the public-secret key pair (pkl(.u), skz(.u)) of a target recipient at epoch ¢, any
sender can compute and send a public update consisting of a pair (pkgj_)l, up,; 1) where

pkl(-i)1 is the updated public key of the target recipient at epoch 7+ 1 using a random-
ness p; and up;, is updated ciphertext which is an encryption of the randomness p;

)

under the public key pkgu at epoch 7. The targe recipient can recover the randomness

p; by decrypting up,, ; using its secret key skl(-u) at epoch 7 and can transform skgu) to
the secret key skz(«i)1 at epoch i + 1 corresponding to pkgfr)l.

The security of UPKE ensures that ciphertexts encrypted under a user’s public key
at any epoch t remain confidential even if an adversary later compromises the secret
key for some j > t. This guarantee holds as long as at least one of the key updates
between epochs ¢ and j was performed by an honest user, meaning the update was
generated using private randomness unknown to the attacker. This security property
is formally defined by the notion of indistinguishability under chosen randommness
and chosen plaintext attack (IND-CR-CPA) where the adversary can impose updates
on the target user’s public key while selecting the randomness used in the update
mechanism. However, stronger security requires granting the adversary to have access
to a decryption oracle corresponding to the secret key of the current epoch. The formal
definition of this enhanced security property is captured by the indistinguishability
under chosen randomness and chosen ciphertezt attack (IND-CR-CCA) security notion.

The UPKE constructions are Jost et al. [8] based on the hashed ElGamal public-key
encryption scheme and rely on the computational Diffie-Hellman (CDH) assumption
in the random oracle model (ROM). Over time, security definitions for UPKE have
evolved, leading to more rigorous formalizations. A major advancement was made

by Dodis et al. [9] in 2021 who introduced IND-CR-CPA and IND-CR-CCA security



notions for UPKE as standard definitions. Removing the dependence on random ora-
cles, they proposed two concrete UPKE schemes in the standard model. Their first
scheme derives its security from the hardness of the decisional Diffie-Hellman (DDH)
problem and the second one relies on the learning with errors (LWE) assumption.
However, these constructions for UPKE are bitwise encryption. To further advance
UPKE without random oracles, Haidar et al. [10] introduced in 2022 a construction
based on the hardness of the decisional composite residuosity (DCR) problem. More
recently, in 2023, Haidar et al. [11] proposed an UPKE scheme based on the LWE
assumption by significantly enhancing efficiency compared to Dodis et al. [9], making
it a stronger candidate for practical deployment. In 2023, Asano and Watanabe [12]
came up with an UPKE construction that further expands the landscape of updat-
able encryption schemes. Although Albrecht et al.’s [13] in 2024 achieves unbounded
updatable encryption from LWE and PCE, it relies on large parameters due to the
Leftover Hash Lemma and complex reductions.

Recent advancements in quantum computing [14] have reinforced the urgency
of developing quantum-resistant cryptographic alternatives. Lattice-based cryptosys-
tems are promising, but face inherent challenges due to error accumulation with each
additional operation, thereby imposing limits on key updates or requiring the use of
complex compression techniques to manage error accumulation. Consequently, these
approaches are not ideal for secure messaging where long-term communication requires
cryptographic protocols that are capable of supporting an unlimited number of key
updates. Unlike other post-quantum approaches, isogeny-based cryptography provides
algebraic structures that align well with UPKE requirements and naturally support
an indefinite number of updates, making them strong desirable candidates for secure
messaging applications that may span months or even years.

Currently, there exist two works on UPKE within the isogeny setting [15, 16].
In 2021, Eaton et al. [15], proposed two constructions for UPKE - one is based on
the Supersingular Isogeny Diffie-Hellman (SIDH) assumption and the other derives
its security from the Commutative Supersingular Isogeny Diffie-Hellman (CSSIDH)
assumption. However, none of the schemes support asynchronous key updates for
encryption and decryption, thereby limiting their practical applicability. Additionally,
SIDH is later found to be insecure [17-19] due to attacks exploiting the accessi-
ble images of torsion points. These attacks leverage Kani’s Lemma [20] to extract
the secret isogeny. More recently, Duparc et al. [16] introduced in 2024 an UPKE
scheme leveraging both the Deuring Correspondence and Kani’s Lemma. However,
their scheme is one-way under chosen randomness and chosen plaintext attacks
(OW-CR-CPA) secure and lacks a formal security proof. Notably, none of the exist-
ing isogeny-based UPKE schemes achieve IND-CR-CCA security which is critical for
resisting stronger adversarial attacks.

UKEM. In an effort to develop practical forward-secure cryptographic con-
structions, Haidar et al. [11] introduced the updatable key encapsulation mechanism
(UKEM), an extension of the standard key encapsulation mechanism (KEM) that incor-
porates key update capabilities. They gave a generic construction of IND-CR-CCA
secure UKEM from IND-CR-CPA secure UPKE along with a LWE-based instantiation.



It allows asynchronous key updates, but the formulation of their UKEM ensures cor-
rectness and security only under a predefined bound on the number of updates. The
security of UKEM ensures that an encapsulated key generated under a user’s public

key pk,gu) at epoch t remains secure even if an adversary later compromises the cor-

responding secret key skg-u) for some j > t provided that at least one update between

epochs ¢t and j is performed honestly using the private randomness unknown to the
adversary.

1.1 Contributions

Ensuring efficient and scalable cryptographic operations over extended periods is cru-
cial when frequent key updates are necessary. Despite significant advancements in
UPKE, existing constructions remain inefficient or impractical for real-world deploy-
ment, particularly in the context of post-quantum security. Lattice-based UPKE
schemes [9, 11] while offering strong security guarantees, but accumulate noise with
each update that enables only bounded updates or requires expensive compression
techniques. On the other hand, existing isogeny-based UPKE constructions either need
sender-receiver coordination due to a lack of asynchronous key updates or fail to
achieve IND-CR-CCA security or rely on insecure assumptions like SIDH. As isogeny-
based cryptography provides compact keys and compact ciphertexts with quantum
resistance, a provably secure, efficient isogeny-based UPKE scheme is highly desir-
able. Our work aims to design a viable candidate for long-term secure messaging in a
post-quantum world and design computationally efficient asynchronous UPKE in the
isogeny setting that supports unbounded key updates with IND-CR-CCA security.

We propose two isogeny-based UPKE schemes with these elegant features that
enhance their practical applicability in real-world scenarios. Our first scheme UhPKE
integrates key update functionality in the existing isogeny-based hashed public key
encryption scheme hPKE [21] and achieves IND-CR-CPA security based on the CSSIDH
assumption. Our second construction USimS is based on the public key encryption
such simplified sigamal (SimS) [22] and proven to be IND-CR-CCA secure under the
CSSIDH and commutative supersingular isogeny knowledge of exponent (CSSIKoE)
assumptions. Both UhPKE and USimS maintain efficiency comparable to their under-
lying PKE counterparts, support an unbounded number of key updates and enable
asynchronous key updates for both encryption and decryption, eliminating the need
for sender-receiver coordination. We sum up our contribution below.

We first prove that both the public key encryption schemes hPKE and SimS achieve f-
circular-secure and leakage-resilient (f-CS + LR) security under the CSSIDH assump-
tion. We provide rigorous security analysis and formally establish the IND-CR-CPA
security of UhPKE under the CSSIDH assumption and the IND-CR-CCA security of
USimS under the CSSIDH and CSSIKoE assumptions using the f-CS 4+ LR security of
hPKE and SimS respectively. We emphasized that USimS is the first isogeny-based
UPKE scheme that exhibits IND-CR-CCA security with a formal security proof in the
standard security model. The existing isogeny-based UPKE scheme of Eaton et al. [15]
achieves IND-CR-CPA security while the scheme of Duparc et al. [16] provides only
OW-CR-CPA security which is a weaker security framework. Besides, none of them



Table 1 Comparative analysis of existing isogeny-based UPKE schemes with respect to storage
and communication cost

Key size Ciphertext size Size of updated

Scheme ciphertext Asynchronous
|sk| |pk| |ctm| |up|

[15] Lin [—p,p)™ 1inTF, ‘1&155&’ - NO

[16] 10inF,  2inFp 2?:}5%;) - NO

URPKE  Lin [—p )" 1inF, . h)l’nlff;ien(k) i 16?115,",’1;“@) YES

USimS  lin [—p,u|® 1inT, 1 111111%15%;) 1 1151%%[;;) YES

|pk|= the size of the public key, |sk|= the size of the secret key, |ctm| = the size of the
ciphertext and |up|= the size of the updated ciphertext. The field F;, consists of p elements
where p is a prime number and F,, represents its algebraic closure. The notation E(Fyp)
denotes an elliptic curve defined over a field Fp. The function mlen(\) is a polynomial
dependent on the security parameter A. u and n are integers such that (2u+1)" > #Cl(O)
where CI(O) represents the ideal class group of an order O.

Table 2 Complexity of our UKEM schemes in terms of storage cost and communication cost.

Storage cost Communication cost
Scheme

|sk| |pk| |het] |up]
UKEM; Lin[—p,p® 1inFp 1inFp, Lin {0,1}™"N  1inF,, 1 in {0,1} ™"
UKEMy 1lin [—p,p]™ 1inTF 1in Fp, 1 in E(Fp) 1in Fp, 1 in E(Fp)

|pk|= the size of the public key, |sk|= the size of the secret key, |hct| = the size of the header
ciphertext, |up|= the size of the updated ciphertext. The field Fp consists of p elements
where p is a prime number. The notation E(Fp) denotes an elliptic curve defined over a
field Fp. The function mlen(}) is a polynomial dependent on the security parameter . u
and n are integers such that (2u + 1) > #CI(O) where CI(O) represents the ideal class
group of an order O.

Table 3 Complexity of our UKEM schemes in terms of computation cost.

Computation cost

Scheme K
ey . Enc Dec pk sk
Generation update update
UKEM; 1 GA 2 GA 1GA 3 GA 1 GA

UKEMg 1 GA 2GA 1GA,1DL 3GA 1GA, 1DL
GA = Group action and DL = Discrete Logarithm.

supports asynchronous key updates for the encryption and decryption key, unlike our
constructions for UPKE.

Table 1 presents a comparative analysis of our proposed schemes UhPKE and USimS
against existing UPKE constructions [15, 16] in terms of storage and communication
overhead. We exclude the SIDH-based UPKE construction of [15] from our analysis as
it is no longer considered secure. The secret and public keys of our proposed schemes
are a single element from [—p, p]™ and an element from F,, respectively, similar to the



UPKE scheme of [15]. In contrast, the UPKE scheme in [16] is more expensive in terms
of secret key size and public key size as it requires ten elements from F, for secret
key and two elements from I, for public keys. The ciphertext in UhPKE consists of
one element from F, and one element from {0,1}™"(") whereas that of USimS has
one element from F, and one element from E(F,). In comparison, the ciphertext of
UPKE in [16] requires two element from F,, and two elements from E(F,). In contrast,
the ciphertext in [15] comprises of one element in [, along with a ciphertext ctpem
from a Data Encapsulation Mechanism (DEM). In order to facilitate asynchronous
key updates, our UPKE schemes send an additional updated ciphertext up that is
required by none of the schemes [15] and [16]. However, the UPKE of [15, 16] are not
synchronous and require sender-receiver coordination, making them unsuitable for key
management.

In the UPKE scheme of Eaton et al. [15], the secret key is randomly chosen from the
range [—pu, p]™ and the public key is generated using group actions. The encryption
process involves two group actions along with additional encryption via a generic DEM
scheme. Decryption requires one group action and decryption via the DEM scheme.
In the UPKE scheme by Duparc et al. [16], the secret key is a long isogeny walk of
length ¢ starting from a base supersingular curve Ey. The walk involves a sequence of
isogeny computations including generating isogenies from kernels, evaluating torsion
points and performing isogeny computations in higher dimensions. The public key is
the resulting curve F;. Encryption in this scheme involves a single isogeny computation
and masking of torsion points while decryption requires computing the inverse isogeny
in higher dimensions and solving a discrete logarithm problem over a cyclic group.
The secret key in our proposed schemes UhPKE and USimS is chosen uniformly from
[—p, u]™ and the public key is generated through group actions similar to [15]. In our
UhPKE, encryption and decryption require two and one group actions respectively, but
do not require any DEM ciphertext formation and decryption unlike [15]. In our USim$S
scheme, encryption involves two group actions while decryption requires one group
action and computing a discrete logarithm in a cyclic group. Updating the public and
secret keys in the UPKE schemes of [16], [15] involves similar computations as those in
their key generation algorithm. In contrast, our UhPKE scheme requires three group
actions for an encryption key update and one for a decryption key update. In USim$S,
an encryption key update involves three group actions while a decryption key update
requires one group action and computing a discrete logarithm in a cyclic group.

Beyond UPKE, research on UKEM remains relatively sparse. Haidar et al. [11] intro-
duced the notion of UKEM, but their work primarily focuses on constructions with a
bounded number of updates. Expanding UKEM to support unbounded key updates
remains an open challenge with significant implications for the security and efficiency
of long-term cryptographic protocols. We extend and refine the formal definition and
security model of UKEM introduced in [11]. The framework in [11] defines UKEM with
correctness and security constraints under a bounded number of updates. We gener-
alize this model to support an unbounded number of updates to significantly enhance
its flexibility and practical utility. We introduced two constructions for UKEM with



comprehensive security analysis in our proposed security framework. More concretely,
our proposed UKEM constructions have the following salient features.

Our first UKEM construction UKEM; is derived from UhPKE and achieves IND-CR-CPA
security under CSSIDH assumption in our proposed security framework that supports
unbounded number of key updates. Our second UKEM construction UKEM; is based
on USimS and exhibits IND-CR-CCA security under CSSIDH and CSSIKoE assumptions
in our proposed security framework allowing an unbounded number of key updates.
In UKEMy, the storage cost includes a secret key in [—p, pu]™ and a public key in F).
The communication cost involves a header ciphertext and an updated ciphertext each
consisting of one element in F,, and one in {0, 1}mlen(N) | The computation cost includes
two group actions for encapsulation, one for decapsulation and key updates requiring
three group actions for encryption key updates and one for decryption key updates.
In UKEM,, the storage and communication costs remain similar as that of UKEM;
shown [see Table 2, 3|, but the computation cost differs as decapsulation involves
one group action and computation of one discrete logarithm in a cyclic group. Key
updates in UKEMs require three group actions for an encapsulation key update while
a decapsulation key update involves one group action and computation of one discrete
logarithm in a cyclic group.

To the best of our knowledge, the UKEM construction of Haidar et al. [11] is the only
existing post-quantum secure UKEM scheme. They have proposed a generic construc-
tion of UKEM from any IND-CR-CPA secure UPKE and presented an instantiation
based on their IND-CR-CPA secure UPKE under the LWE assumption. Furthermore,
they have achieved IND-CR-CCA secure UKEM supporting only a bounded number of
updates. In contrast, our proposed UKEM; satisfies IND-CR-CPA security and USimS
achieves IND-CR-CCA security with unbounded key updates. Our UKEM constructions
do not require any zero-knowledge proofs unlike [11] and are computationally more
friendly.

1.2 Technical Overview

IND-CR-CPA secure updatable encryption scheme UhPKE. The starting point of
our UPKE constructions UhPKE is the hash-based public key encryption scheme hPKE
from [21] in the isogeny setting where we skillfully introduced key update techniques

asynchronously. A user u randomly generates its initial secret key sk(()u) =ag € [—pu, pu”

and the corresponding public key is pk(()u) = [ao]Ey € Ell,(O) where Ej denotes the
publicly available base elliptic curve y? = 23 + 2 and Ell,(O) represents the set of F-

~

isomorphic classes of supersingular curves E whose F-endomorphism ring Endr, (E) =
O = 7Z[/=p]. The encryption of a message m € {0,1}™"») under the public key pkl(.u)
at epoch 7 is an hPKE ciphertext ct,, = (ctﬁ) = [b]Ej, ctld) = mEBHk(MC([b]ka(-”))))
for some b € [—u,p]" where Hy : F, — {0,1}™"(M) is entropy smoothing hash
function and M¢(FE) denotes the Montgomery coefficient of the elliptic curve E. To

)

update a public key ka(Au at the ¢-th epoch, one can simply sample randomness p; €

(u)

)

{0, 1}""5”@) and encrypts p, to generate updated ciphertext up;,; = ct,, under pk



with ct, = (ct(pli) = [b’]EO,ctE,Qi) =p;® H;@(MC([b'}pkl(u)))) for some b’ € [—pu, u]™
while pkl(-”) to pkl(-i)1 = [—KDF(pi)]pkgu) for epoch i+ 1 using a key derivation function

KDF : {0, 1} — [y, u]™. The updated secret key is skgi)l = sk{") — KDF(p,).

An IND-CR-CPA attacker first observes the initial public key pk(()“) = [ag]Ey and can
make an initial sequence of updates using private randomness p, ..., p,_;. At epoch
t, the adversary requests a challenge ciphertext corresponding to a pair of plaintexts
(mg,m¥) € {0,1}™e"N) x {0, 1}™en(V) | The challenge ciphertext Ctyn; = (ctfﬁ%,ctg%)
is an encryption of m; under the updated public key pkgu) =[- Zf;é KDF(pi)]pkéu)
where b € {0, 1} is chosen randomly by the challenger. The adversary may then con-
tinue updating the public key with additional randomness p,, . .., p,,_; before deciding
to compromise the secret key. At this point, the challenger performs an additional
honest update using a randomness p* unknown to the adversary, yielding the com-
promised secret key sk™ = sk(()”) - Zf:ol KDF(p,;) — KDF(p*) and the corresponding
public key pk* = [— Zf/:_ol KDF(p;) — KDF(p*)]pkéu). The adversary’s goal is to guess
the correct bit b using the challenge ciphertext ct,,» given access to the secret key sk*,
the public key pk™ and the updated ciphertext up* which encrypts the randomness
p* under pk®. The IND-CR-CPA security of UhPKE requires the hPKE to construc-
tion satisfy f-CS + LR security. The f-CS + LR security framework for hPKE allows an
adversary against the IND-CPA security of hPKE additionally receives a leakage func-
tion f(skg“)7 p*) = skg“) — KDF(p*) of skg“) along with an encryption up = ct,« of p*

under pk(()u). The proof is under the CSSIDDH assumption and follows three key steps:

i. eliminating all information about skéu) except skéu) — KDF(p*) while treating
KDF(p*) as the secret key,

ii. replacing sk(()”) —KDF(p*) with a uniformly random element from [—p, ] to ensure
that the adversary’s view is independent of sk and

iii. leveraging the CSSIDDH assumption and the entropy smoothness property of Hj, to
argue that distinguishing the correct plaintext remains computationally infeasible
for the adversary.

This security argument demonstrates that the hPKE construction can be trans-
formed into an efficient IND-CR-CPA secure UPKE scheme. Moreover, our approach
of choosing randomness from the message space enables single-shot encryption of the
entire update information p, avoiding bit-by-bit encryption overhead. More concretely,
we have the following theorems.

Theorem 1 (Informally). The scheme hPKE provides f-CS + LR security under the
CSSIDDH assumption assuming H = {Hy }rexc is an entropy smoothing hash function
and KDF is a secure key derivation function.

Theorem 2 (Informally). If hPKE is f-CS + LR secure then the isogeny based UhPKE
construction provides IND-CR-CPA security.



Definition 3 (Randomizing Function [22]). A function Rg : F, — F, indezed by
supersingular curves E defined over Fy, is said to be a randomizing function if it
satisfies the following properties:

i. The function Rg is bijective and both Rg and its inverse gp = ngl can be
efficiently computed when the curve E is given.
it. For any x € Fp, an adversary without access to x and E cannot distinguish Rg(x)
from a random element of IF),.
iti. For any © € F, and any non-identical rational function R(x) € F,(X), an
adversary without access to x and E cannot compute Rg(R(z)) given Rg(x).

Ezample 1 Consider the function Rp : F, — F, defined by Rg(z) =
int (bin(z) @ bin(M¢c(E))) where bin(-) and int(-) denote the operations that convert an ele-
ment in F, to its binary representation and vice versa, respectively and Mo (E) is the
Montgomery coefficient of the elliptic curve E.

IND-CR-CCA secure updatable encryption scheme USimS. Our UPKE construc-
tion USimS builds upon the simplified sigamal scheme SimS introduced in [22].
We handle the asynchronous key update by employing a key derivation function
KDF : Zgs—2 — [—p, u]™. A user u randomly generates its initial secret key sk(()”) =
ap € [—p,pu]™ with the corresponding public key pk((Ju) = [ag]Ey € Ell,(O) where
Ej represents the base elliptic curve y2 = 2% + x. The encryption corresponding to

)

a message m € Zoq—2 under the public key pkgu at epoch i is an SimS ciphertext

Cty, = (ctﬁ,ll) = [b|Ey, D) = RE[b]pk(.u) (z([2m + 1]P[b]pk§u)))) for some b € [—u, u]”

where Rp is a randomizing function. To update the public key pkl(-u) at the i-th
epoch, the user samples randomness p, € Zos—2 and generates an updated cipher-

text up;; = ct, by encrypting p; under pk(u) where ct, = (ctE,li) = [b']Ey,

)

ctpy, = RE[b]pk§“> (z([2p; + 1]P[b,]pk5u)))) for some b’ € [—pu, u]™ and Rg is a random-

izing function. The public key is then updated as pkgj_)l = [—KDF(pi)]pkgu) and the

updated secret key is updated as skgi)l = skgu) — KDF(p,).

To establish that USimS is an IND-CR-CCA secure updatable encryption scheme,
we first demonstrate it’s IND-CR-CPA secure under the hardness of the CSSIDDH
assumption and then provide a reduction-based proof showing that IND-CR-CPA secu-
rity of USimS implies its IND-CR-CCA security by additionally assuming the hardness
of commutative supersingular isogeny knowledge of exponent (CSSIKoE) assumption.
The IND-CR-CPA security of USimS requires SimS to satisfy f-CS + LR security which
we prove by using a similar technique as f-CS + LR security of the hPKE and employ-
ing the second properties of the randomizing function Rg. We then follow the same
approach as the IND-CR-CPA security proof of UhPKE to establish the IND-CR-CPA
security of USimS. In contrast to the IND-CR-CPA security setting, the IND-CR-CCA
game grants the adversary access to a decryption oracle. To prove that USimS is
IND-CR-CCA secure, it suffices to prove that this decryption oracle is effectively useless.

10



This follows directly from the CSSIKoE assumption, which states that given Ey, [b]Ey
and a valid ciphertext ct,, = (cts,ll) = [b]EO,ctsg) = RE[b] © (z([2m + 1]P[b}pk<u)))) a
pk; i

probabilistic polynomial time (PPT) adversary cannot construct a valid new ciphertext
ct from a previously obtained ciphertext unless ct is generated using the encryption
algorithm. This ensures that decryption queries do not provide the adversary with any
advantage, thereby establishing the IND-CR-CCA security of USimS. More precisely,
we have the following theorems.

Theorem 4 (Informally). The scheme SimS is f-CS + LR secure under the assump-
tion that Rg satisfies the second property of a randomizing function, KDF is a secure
key derivation function and the CSSIDDH assumption.

Theorem 5 (Informally). If SimS is f-CS + LR secure then our isogeny based UPKE
construction USimS is IND-CR-CPA secure.

Theorem 6 (Informally). If CSSIKoE assumption holds then our isogeny based
IND-CR-CPA secure UPKE construction USimS provides IND-CR-CCA security.

Updatable key encapsulation mechanism UKEM; and UKEMs. We transform
our updatable public key encryption schemes UhPKE and USimS to updatable key
encapsulation mechanism UKEM; and UKEMy respectively using an inherently simi-
lar technique. In this transformation, the key generation and key update algorithms
remain unchanged. The encapsulation process samples a random message m from
the message space, computes KDF(m), encrypts it under the recipient’s public key to
generate a header ciphertext hct and sends hct to the recipient. The decapsulation
process run by the recipient to decrypt hct using its secret key, recovers m and com-
putes KDF(m) using the public key derivation function KDF : Zgs—2 — {0, 1}Ken(V),
This transformation ensures that the resulting UKEM inherits the security properties
of the underlying UPKE, supporting asynchronous unlimited key updates. Specifically,
we have the following theorems.

Theorem 7 (Informally). If UhPKE is IND-CR-CPA secure and KDF is a secure key
derivation function then UKEM; provides IND-CR-CPA security.

Theorem 8 (Informally). If USimS is IND-CR-CCA secure and KDF is a secure key
derivation function then UKEMsy provides IND-CR-CCA security.

2 Preliminaries

Notation. Throughout the paper, we adopt the following notations. Let #S denote

the cardinality of the set S, i.e., the number of elements in S. The notation a & a
indicates that a is uniformly sampled from the set A. A function €(-) is called negligible
if, for every positive integer c, there exists an integer k such that for all A > k,
le(A)] < 1/X°.
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Elliptic curves and isogenies [23]. Let K be a finite field and K be its algebraic
closure. An elliptic curve E over K is a non-singular projective cubic curve having
genus one with a special point O, called the point at infinity. The set of K-rational
points of the elliptic curve E forms an additive abelian group with O as the identity
element. If P is a point on F, its coordinates are denoted as P = (z(P),y(P)) where
x(P) and y(P) represent its x- and y-coordinates, respectively. The set F(K) consists
of all points on E whose coordinates belong to K , i.e., E(K) = {P = (z,y) | z,y €
K, P satisfies E} U{O}. The {-torsion subgroup of E, denoted as E[/], is the set of all
points in E(K) that satisfy /P = O. The Montgomery coefficient of the Montgomery
elliptic curve E4 : y?> = 2® + Ax® + x is denoted by M¢ and defined by Mc(E4) = A.

Let E; and Es be two elliptic curves over a field K. An isogeny from E; to
E5 is a non-constant morphism ¢ : E; — FE; over K preserving the point at

infinity O. The isogeny ¢ : E; — F5 can be expressed in its simplest form as

o(z,y) = (%, :Ei; y) where the polynomial p(z) and ¢(z) have no common fac-
tor and the polynomial r(z) and s(x) have no common factor. The degree of a
nonzero isogeny is defined as the degree of the associated morphism and is given by
deg(p) = max{deg(p(z)), deg(q(z))}. A non-zero isogeny ¢ is called separable if and
only if deg(p) = #ker(p) where ker(¢) = ¢~ 1(Op,) where Og, is the identity element
of the elliptic curve Fs.

Endomorphism ring. The set of all isogenies from E to itself defined over K forms a
ring under pointwise addition and composition. This ring is called the endomorphism
ring of the elliptic curve E and is denoted by End(E). By Endg (F), we mean the set
of all isogenies from E to itself defined over K. If End(E) is isomorphic to an order
in a quaternion algebra, the curve F is said to be supersingular. On the other hand,
if End(FE) is isomorphic to an order in an imaginary quadratic field, we say the curve
FE is ordinary.

Theorem 9 ([24]). Let p > 5 be a prime such that p =3 (mod 8) and let E/F, be a
supersingular elliptic curve. Then End,(E) = Z[\/—p| if and only if there exists A € F),
such that E is Fp-isomorphic to the curve E4 : y?> = 2° + Ax? + z. Additionally, in
the presence of such an A, it is guaranteed to be unique.

Theorem 10 ([25]). Let Ey be a curve and G be its finite subgroup. Then there is
a unique curve Ey and a separable isogeny ¢ : By — FEo with ker(p) = G such that
Es = E1/G which can be computed using Vélu’s formulae (see Algorithm 1).

Ideal class group. [21] Let O be an order in the imaginary quadratic field F. A
fractional ideal a of O is a finitely generated O-submodule of F. Let Z(O) be a set
of invertible fractional ideals of O. Then Z(O) is an abelian group derived from the
multiplication of ideals with the identity O. Let P(O) be a subgroup of Z(O) defined
by P(O) = {a | a = aO for some o € F'\ {0} }. The abelian group Cl(O), defined by
Z(0)/P(0), is called the ideal class group of O. An element of CI(O), denoted by [a],
is an equivalence class of a.

The class group action. Let p be a prime and Ell,(O) denotes the set of
Fp-isomorphic classes of supersingular curves E whose Fj,-endomorphism ring
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Endg, (E) = O = Z[\/—p|. The ideal class group Cl(O) acts freely and transitively on
Ell,(O). An element [a] in CI(O) consists of endomorphisms « in a which an isogenies
from E to itself over F,. For the curve E € Ell,(0), the action x of [a] € CI(O) on E
is denoted by [a] * F and defined as follows:

¢ Form the subgroup Ela] = [, ker(a).

e Apply Vélu's formula (see Algorithm 1) to compute the elliptic curve E/FE[a] and
an isogeny ¢, : E — E/FE]a].

® Return the elliptic curve E/E][a].

Henceforth, we will use the notation [a] E instead of [a] * E' to denote the elliptic curve
E/E|a] obtained by the action of class group element [a] € CI(O) on the elliptic curve
E € Ell,(0).

Theorem 11 ([25]). Let p be prime and O be an order of an imaginary quadratic field
and E be an elliptic curve defined over Fy,. If Ell,(O) contains the F,-isomorphism
class of supersingular elliptic curves then the action of the ideal class group Cl(O) on
Ell,(O), defined by

Cl(O) x Ell,(O) = Ell,(0)
([o], E) = E/Elq]

is free and transitive where a is an integral ideal of O and El[a] is the intersection of
the kernels of elements in a.

Let p be prime and E be an elliptic curve defined over the finite field IF,,. Consider
the map 7 acting on the coordinates of points in E(F,), given by m(z,y) = (2P, yP)
and 7(O) = O. This map = is an endomorphism of E and is known as the Frobenius
endomorphism. For every small odd prime ¢; dividing p + 1, there are two prime
ideals I; = (¢;,7 — 1) and [; = (¢;,7 + 1) in CI(O). Also, the kernel of the isogeny
corresponding to the action of the prime ideals [; = (¢;,7 — 1) and [; = ({;,7 + 1)
is generated by P, € Ep[f;] Nker(m — 1)\ {0} and Py € Eplt;] Nker(m + 1) \ {0}
respectively. For the sake of simplicity, we will write [a]E instead of [a]E for any
element [a] = [[{*---19"] € CI(O) where a = (a1,...,a,) and [; = (¢;,7 — 1) and
[a@ + b]E in the place of [a][b]E for any two elements [a], [b] € CI(O). Let A be the
security parameter, Eq be the supersingular elliptic curve y? = 2 + x defined over F,
and [a], [b] and [c] be uniformly random ideal classes in CI(O).

Definition 12 (CSSICDH|[24]). The commutative supersingular isogeny computational
Diffie-Hellman (CSSICDH) assumption holds if for any Probabilistic Polynomial Time
(PPT) algorithm A,

Pr [E = [blla)Bo | E = A(Eq, [a] Eo, [b]Eo)] < ()
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Definition 13 (CSSIDDH[24]). The commutative supersingular isogeny decisional
Diffie-Hellman (CSSIDDH) assumption holds if for any PPT distinguisher D,

$

AdvEPPH(A) = | Pr [D(Eo,[a]Eo, [b]Ey, [blla]Ey) = 1][a],[b],[c] < CI(O)| -

$

Pr [D(Ey, [a] By, [b]Eo, [c]Eo) = 1] [al], [b], [e] £ CI(O) ]| < (V).

Definition 14 (CSSIKoE [22]). Let A be a security parameter and p = 2%y -+ -4, — 1
be a prime such that A+2 < q < §logp. Let [a], [b] be uniformly sampled elements of
Cl(O). Let (Rg)pecio) be a family of randomizing functions as defined in Definition
8 such that each of these functions satisfies the third property.

The commutative supersingular isogeny knowledge of exponent (CSSIKoE)
assumption states that for every PPT adversary A that takes FEy, [a]Ey and
([ Eo, Ria)p) o (x(P))) as inputs and returns ([b'|Eo, Ry e, (x(P'))) such that
([t'] Eo, Riap e, (x(P'))) # ([b]Eo, Rigyp) e, (2(P))) where P € [a][b]Ey and P €
[a][b')Eo are points of order 29, there exists a PPT adversary A’ that takes the same
inputs and returns ([0'], [b'] Eo, Riq 18, (2(P))).

Definition 15 (Entropy Smoothing Hash Function [21]). Let H = {Hi}rex be a
family of keyed hash functions where each Hy be a function that maps from G to
{0,1}" where | denotes the length of the string. Let D be a distinguisher that takes as
input an element of key space K and an element of {0,1}! and outputs a bit. We define

the entropy smoothing advantage AdVE () of D to be Advs (\) = ’D(k,Hk(g)) =
1| P