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Abstract

Forward-secure public key encryption (FS-PKE) is a key-evolving public-key
paradigm that ensures the confidentiality of past encryptions even if the secret
key is compromised at some later point in time. However, existing FS-PKE
schemes are considerably complex and less efficient compared to standard public-
key encryption. Updatable public-key encryption (UPKE), introduced by Jost et
al. (Eurocrypt 2019), was designed to achieve forward security in secure group
messaging while maintaining efficiency. However, existing UPKE constructions
either lack post-quantum security or do not support an unbounded number
of updates. We focus on isogeny-based cryptosystems due to their suitability
for handling an unbounded number of updates in long-term secure messaging.
Existing isogeny-based UPKE schemes lack strong security guarantees and for-
mal security proofs. They do not support asynchronous key updates and require
sender-receiver coordination.
In this work, we present two isogeny-based UPKE schemes. The first scheme
UhPKE extends Moriya et al.’s hash-based public key encryption scheme hPKE
to support key updates while the second scheme USimS is an updatable version
of Fouotsa et al.’s public key encryption scheme simplified sigamal (SimS). The
scheme UhPKE relies on the commutative supersingular isogeny Diffie-Hellman
(CSSIDH) assumption and achieves indistinguishability under chosen random-
ness and chosen plaintext attack (IND-CR-CPA). The scheme USimS derives
its security under the hardness of the CSSIDH problem and the commutative
supersingular isogeny knowledge of exponent (CSSIKoE) problem. It is the first
isogeny-based UPKE scheme that exhibits indistinguishability under chosen ran-
domness and chosen ciphertext attack (IND-CR-CCA). The security of UhPKE
and USimS is established by proving that their underlying schemes, hPKE and
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SimS are circular secure and leakage resilience (CS + LR). We emphasized that
our constructions support an unlimited number of key updates while retaining
the efficiency of their underlying public key encryption schemes. Besides, pro-
posed UPKEs enable asynchronous key updates, allowing senders to update the
public key independently. More affirmatively, UhPKE and USimS offer improved
storage, computation and communication efficiency compared to existing UPKE
schemes.
Furthermore, we extend and refine the security notion of the updatable key
encapsulation mechanism (UKEM) introduced by Haidar et al. (Asiacrypt 2023)
from the bounded number of updates to the unbounded number of updates.
We present the first post-quantum secure UKEM that does not rely on zero-
knowledge proofs. More precisely, we introduce two UKEM schemes which are
the first of their kind in the isogeny setting. Our first scheme UKEM1, is derived
from our UhPKE and achieves IND-CR-CPA security. Our second construction,
UKEM2, is based on our USimS scheme and achieves IND-CR-CCA security.
We provide security for our UKEMs in our proposed enhanced security frame-
work that supports an unbounded number of key updates. More positively, our
UKEM’s not only support unlimited key updates but also enable independent
encapsulation and decapsulation key updates without requiring sender-receiver
synchronization similar to our UPKE’s. Both UKEM1 and UKEM2 exhibit com-
pact storage and communication costs with minimal size ciphertexts while their
computational efficiency differs in decapsulation and key updates where UKEM2

incurs an additional discrete logarithm computation in decapsulation phase, but
potentially offering stronger IND-CR-CCA security in contrast to UKEM1 which
is IND-CR-CPA secure.

Keywords: Updatable public key encryption, Updatable key encapsulation
mechanism, Isogeny, Forward Security.

1 Introduction

Ensuring secure communication over an untrusted channel is a fundamental challenge
in cryptography. In group messaging scenarios where multiple users engage in long-
term conversations, a critical security goal is to protect past communications even if a
participant’s secret key is later compromised. Forward security addresses this challenge
by ensuring that previous messages remain confidential despite future key exposure. In
symmetric-key systems, forward security can be implemented using a pseudo-random
generator. Given an initial seed s0, key updates follow the transformation G(si−1) =
(si, ki) where ki is a session key for encryption and si is used for subsequent key
derivation. While this approach is computationally efficient, it presents a significant
limitation in dynamic groups where securely adding or removing users becomes difficult
without complex key management overhead. An alternative is group key agreement
protocols which allow participants to negotiate a shared secret key interactively. In
practical scenarios, group members may frequently go offline, making such synchronous
operations impractical for secure messaging applications.
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While forward security is well understood in symmetric-key cryptography, extend-
ing it to the public-key setting is challenging and introduces significant complexity.
The concept of forward-secure public-key encryption (FS-PKE) was first formalized
by Canetti et al. [1] where the key generation process produces an initial key pair

(pk
(u)
0 , sk

(u)
0 ) for a user u. This implicitly defines evolving public key chains pk

(u)
0 →

pk
(u)
1 → pk

(u)
2 → · · · and evolving secret key chains sk

(u)
0 → sk

(u)
1 → sk

(u)
2 → · · · .

These key updates are designed to enable multiple senders to encrypt messages for
a receiver who independently updates their secret key over time. Canetti et al. [1]
demonstrated that FS-PKE can be built using hierarchical identity-based encryption
(HIBE) [2, 3]. This connection led to a surge in research in FS-PKE over the last two
decades with numerous constructions based on diverse cryptographic assumptions [4–
7]. Despite these advancements, existing FS-PKE schemes remain significantly more
complex and less efficient than standard public-key encryption (PKE).

UPKE. The notion of updatable public key encryption (UPKE) was initially intro-
duced by Jost et al. [8] in 2019, as a relaxation of FS-PKE. In addition to standard
PKE functionality, UPKE schemes allow encryption and decryption keys to be asyn-
chronously updated with fresh entropy, thereby healing the protocol by restoring
security even after exposure of secret values. The main difference between UPKE and
FS-PKE is that in the former, new updated keys can be derived at any point of time
by any sender whereas in FS-PKE only the recipient can update the key. In UPKE,

to update the public-secret key pair (pk
(u)
i , sk

(u)
i ) of a target recipient at epoch i, any

sender can compute and send a public update consisting of a pair (pk
(u)
i+1, upi+1) where

pk
(u)
i+1 is the updated public key of the target recipient at epoch i+1 using a random-

ness ρi and upi+1 is updated ciphertext which is an encryption of the randomness ρi

under the public key pk
(u)
i at epoch i. The targe recipient can recover the randomness

ρi by decrypting upi+1 using its secret key sk
(u)
i at epoch i and can transform sk

(u)
i to

the secret key sk
(u)
i+1 at epoch i+ 1 corresponding to pk

(u)
i+1.

The security of UPKE ensures that ciphertexts encrypted under a user’s public key
at any epoch t remain confidential even if an adversary later compromises the secret
key for some j > t. This guarantee holds as long as at least one of the key updates
between epochs t and j was performed by an honest user, meaning the update was
generated using private randomness unknown to the attacker. This security property
is formally defined by the notion of indistinguishability under chosen randomness
and chosen plaintext attack (IND-CR-CPA) where the adversary can impose updates
on the target user’s public key while selecting the randomness used in the update
mechanism. However, stronger security requires granting the adversary to have access
to a decryption oracle corresponding to the secret key of the current epoch. The formal
definition of this enhanced security property is captured by the indistinguishability
under chosen randomness and chosen ciphertext attack (IND-CR-CCA) security notion.

The UPKE constructions are Jost et al. [8] based on the hashed ElGamal public-key
encryption scheme and rely on the computational Diffie–Hellman (CDH) assumption
in the random oracle model (ROM). Over time, security definitions for UPKE have
evolved, leading to more rigorous formalizations. A major advancement was made
by Dodis et al. [9] in 2021 who introduced IND-CR-CPA and IND-CR-CCA security
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notions for UPKE as standard definitions. Removing the dependence on random ora-
cles, they proposed two concrete UPKE schemes in the standard model. Their first
scheme derives its security from the hardness of the decisional Diffie–Hellman (DDH)
problem and the second one relies on the learning with errors (LWE) assumption.
However, these constructions for UPKE are bitwise encryption. To further advance
UPKE without random oracles, Haidar et al. [10] introduced in 2022 a construction
based on the hardness of the decisional composite residuosity (DCR) problem. More
recently, in 2023, Haidar et al. [11] proposed an UPKE scheme based on the LWE
assumption by significantly enhancing efficiency compared to Dodis et al. [9], making
it a stronger candidate for practical deployment. In 2023, Asano and Watanabe [12]
came up with an UPKE construction that further expands the landscape of updat-
able encryption schemes. Although Albrecht et al.’s [13] in 2024 achieves unbounded
updatable encryption from LWE and PCE, it relies on large parameters due to the
Leftover Hash Lemma and complex reductions.

Recent advancements in quantum computing [14] have reinforced the urgency
of developing quantum-resistant cryptographic alternatives. Lattice-based cryptosys-
tems are promising, but face inherent challenges due to error accumulation with each
additional operation, thereby imposing limits on key updates or requiring the use of
complex compression techniques to manage error accumulation. Consequently, these
approaches are not ideal for secure messaging where long-term communication requires
cryptographic protocols that are capable of supporting an unlimited number of key
updates. Unlike other post-quantum approaches, isogeny-based cryptography provides
algebraic structures that align well with UPKE requirements and naturally support
an indefinite number of updates, making them strong desirable candidates for secure
messaging applications that may span months or even years.

Currently, there exist two works on UPKE within the isogeny setting [15, 16].
In 2021, Eaton et al. [15], proposed two constructions for UPKE - one is based on
the Supersingular Isogeny Diffie-Hellman (SIDH) assumption and the other derives
its security from the Commutative Supersingular Isogeny Diffie-Hellman (CSSIDH)
assumption. However, none of the schemes support asynchronous key updates for
encryption and decryption, thereby limiting their practical applicability. Additionally,
SIDH is later found to be insecure [17–19] due to attacks exploiting the accessi-
ble images of torsion points. These attacks leverage Kani’s Lemma [20] to extract
the secret isogeny. More recently, Duparc et al. [16] introduced in 2024 an UPKE
scheme leveraging both the Deuring Correspondence and Kani’s Lemma. However,
their scheme is one-way under chosen randomness and chosen plaintext attacks
(OW-CR-CPA) secure and lacks a formal security proof. Notably, none of the exist-
ing isogeny-based UPKE schemes achieve IND-CR-CCA security which is critical for
resisting stronger adversarial attacks.

UKEM. In an effort to develop practical forward-secure cryptographic con-
structions, Haidar et al. [11] introduced the updatable key encapsulation mechanism
(UKEM), an extension of the standard key encapsulation mechanism (KEM) that incor-
porates key update capabilities. They gave a generic construction of IND-CR-CCA
secure UKEM from IND-CR-CPA secure UPKE along with a LWE-based instantiation.
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It allows asynchronous key updates, but the formulation of their UKEM ensures cor-
rectness and security only under a predefined bound on the number of updates. The
security of UKEM ensures that an encapsulated key generated under a user’s public

key pk
(u)
t at epoch t remains secure even if an adversary later compromises the cor-

responding secret key sk
(u)
j for some j > t provided that at least one update between

epochs t and j is performed honestly using the private randomness unknown to the
adversary.

1.1 Contributions

Ensuring efficient and scalable cryptographic operations over extended periods is cru-
cial when frequent key updates are necessary. Despite significant advancements in
UPKE, existing constructions remain inefficient or impractical for real-world deploy-
ment, particularly in the context of post-quantum security. Lattice-based UPKE
schemes [9, 11] while offering strong security guarantees, but accumulate noise with
each update that enables only bounded updates or requires expensive compression
techniques. On the other hand, existing isogeny-based UPKE constructions either need
sender-receiver coordination due to a lack of asynchronous key updates or fail to
achieve IND-CR-CCA security or rely on insecure assumptions like SIDH. As isogeny-
based cryptography provides compact keys and compact ciphertexts with quantum
resistance, a provably secure, efficient isogeny-based UPKE scheme is highly desir-
able. Our work aims to design a viable candidate for long-term secure messaging in a
post-quantum world and design computationally efficient asynchronous UPKE in the
isogeny setting that supports unbounded key updates with IND-CR-CCA security.

We propose two isogeny-based UPKE schemes with these elegant features that
enhance their practical applicability in real-world scenarios. Our first scheme UhPKE
integrates key update functionality in the existing isogeny-based hashed public key
encryption scheme hPKE [21] and achieves IND-CR-CPA security based on the CSSIDH
assumption. Our second construction USimS is based on the public key encryption
such simplified sigamal (SimS) [22] and proven to be IND-CR-CCA secure under the
CSSIDH and commutative supersingular isogeny knowledge of exponent (CSSIKoE)
assumptions. Both UhPKE and USimS maintain efficiency comparable to their under-
lying PKE counterparts, support an unbounded number of key updates and enable
asynchronous key updates for both encryption and decryption, eliminating the need
for sender-receiver coordination. We sum up our contribution below.

− We first prove that both the public key encryption schemes hPKE and SimS achieve f -
circular-secure and leakage-resilient (f -CS+ LR) security under the CSSIDH assump-
tion. We provide rigorous security analysis and formally establish the IND-CR-CPA
security of UhPKE under the CSSIDH assumption and the IND-CR-CCA security of
USimS under the CSSIDH and CSSIKoE assumptions using the f -CS+ LR security of
hPKE and SimS respectively. We emphasized that USimS is the first isogeny-based
UPKE scheme that exhibits IND-CR-CCA security with a formal security proof in the
standard security model. The existing isogeny-based UPKE scheme of Eaton et al. [15]
achieves IND-CR-CPA security while the scheme of Duparc et al. [16] provides only
OW-CR-CPA security which is a weaker security framework. Besides, none of them
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Table 1 Comparative analysis of existing isogeny-based UPKE schemes with respect to storage
and communication cost

Scheme
Key size Ciphertext size

Size of updated
ciphertext

Asynchronous
|sk| |pk| |ctm| |up|

[15] 1 in [−µ, µ]n 1 in Fp
1 in Fp,
|ctDEM| − NO

[16] 10 in Fp 2 in Fp
2 in Fp,

2 in E(Fp) − NO

UhPKE 1 in [−µ, µ]n 1 in Fp
1 in Fp,

1 in {0, 1}mlen(λ)
1 in Fp,

1 in {0, 1}mlen(λ) YES

USimS 1 in [−µ, µ]n 1 in Fp
1 in Fp,

1 in E(Fp)
1 in Fp,

1 in E(Fp)
YES

|pk|= the size of the public key, |sk|= the size of the secret key, |ctm| = the size of the
ciphertext and |up|= the size of the updated ciphertext. The field Fp consists of p elements

where p is a prime number and Fp represents its algebraic closure. The notation E(Fp)
denotes an elliptic curve defined over a field Fp. The function mlen(λ) is a polynomial
dependent on the security parameter λ. µ and n are integers such that (2µ+1)n ≥ #Cl(O)
where Cl(O) represents the ideal class group of an order O.

Table 2 Complexity of our UKEM schemes in terms of storage cost and communication cost.

Scheme
Storage cost Communication cost

|sk| |pk| |hct| |up|
UKEM1 1 in [−µ, µ]n 1 in Fp 1 in Fp, 1 in {0, 1}mlen(λ) 1 in Fp, 1 in {0, 1}mlen(λ)

UKEM2 1 in [−µ, µ]n 1 in Fp 1 in Fp, 1 in E(Fp) 1 in Fp, 1 in E(Fp)
|pk|= the size of the public key, |sk|= the size of the secret key, |hct| = the size of the header
ciphertext, |up|= the size of the updated ciphertext. The field Fp consists of p elements
where p is a prime number. The notation E(Fp) denotes an elliptic curve defined over a
field Fp. The function mlen(λ) is a polynomial dependent on the security parameter λ. µ
and n are integers such that (2µ + 1)n ≥ #Cl(O) where Cl(O) represents the ideal class
group of an order O.

Table 3 Complexity of our UKEM schemes in terms of computation cost.

Scheme
Computation cost

Key
Generation Enc Dec

pk
update

sk
update

UKEM1 1 GA 2 GA 1 GA 3 GA 1 GA
UKEM2 1 GA 2 GA 1 GA, 1 DL 3 GA 1 GA, 1 DL

GA = Group action and DL = Discrete Logarithm.

supports asynchronous key updates for the encryption and decryption key, unlike our
constructions for UPKE.

− Table 1 presents a comparative analysis of our proposed schemes UhPKE and USimS
against existing UPKE constructions [15, 16] in terms of storage and communication
overhead. We exclude the SIDH-based UPKE construction of [15] from our analysis as
it is no longer considered secure. The secret and public keys of our proposed schemes
are a single element from [−µ, µ]n and an element from Fp respectively, similar to the
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UPKE scheme of [15]. In contrast, the UPKE scheme in [16] is more expensive in terms
of secret key size and public key size as it requires ten elements from Fp for secret
key and two elements from Fp for public keys. The ciphertext in UhPKE consists of
one element from Fp and one element from {0, 1}mlen(λ) whereas that of USimS has
one element from Fp and one element from E(Fp). In comparison, the ciphertext of
UPKE in [16] requires two element from Fp and two elements from E(Fp). In contrast,
the ciphertext in [15] comprises of one element in Fp along with a ciphertext ctDEM

from a Data Encapsulation Mechanism (DEM). In order to facilitate asynchronous
key updates, our UPKE schemes send an additional updated ciphertext up that is
required by none of the schemes [15] and [16]. However, the UPKE of [15, 16] are not
synchronous and require sender-receiver coordination, making them unsuitable for key
management.

− In the UPKE scheme of Eaton et al. [15], the secret key is randomly chosen from the
range [−µ, µ]n and the public key is generated using group actions. The encryption
process involves two group actions along with additional encryption via a generic DEM
scheme. Decryption requires one group action and decryption via the DEM scheme.
In the UPKE scheme by Duparc et al. [16], the secret key is a long isogeny walk of
length t starting from a base supersingular curve E0. The walk involves a sequence of
isogeny computations including generating isogenies from kernels, evaluating torsion
points and performing isogeny computations in higher dimensions. The public key is
the resulting curve Et. Encryption in this scheme involves a single isogeny computation
and masking of torsion points while decryption requires computing the inverse isogeny
in higher dimensions and solving a discrete logarithm problem over a cyclic group.
The secret key in our proposed schemes UhPKE and USimS is chosen uniformly from
[−µ, µ]n and the public key is generated through group actions similar to [15]. In our
UhPKE, encryption and decryption require two and one group actions respectively, but
do not require any DEM ciphertext formation and decryption unlike [15]. In our USimS
scheme, encryption involves two group actions while decryption requires one group
action and computing a discrete logarithm in a cyclic group. Updating the public and
secret keys in the UPKE schemes of [16], [15] involves similar computations as those in
their key generation algorithm. In contrast, our UhPKE scheme requires three group
actions for an encryption key update and one for a decryption key update. In USimS,
an encryption key update involves three group actions while a decryption key update
requires one group action and computing a discrete logarithm in a cyclic group.

Beyond UPKE, research on UKEM remains relatively sparse. Haidar et al. [11] intro-
duced the notion of UKEM, but their work primarily focuses on constructions with a
bounded number of updates. Expanding UKEM to support unbounded key updates
remains an open challenge with significant implications for the security and efficiency
of long-term cryptographic protocols. We extend and refine the formal definition and
security model of UKEM introduced in [11]. The framework in [11] defines UKEM with
correctness and security constraints under a bounded number of updates. We gener-
alize this model to support an unbounded number of updates to significantly enhance
its flexibility and practical utility. We introduced two constructions for UKEM with
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comprehensive security analysis in our proposed security framework. More concretely,
our proposed UKEM constructions have the following salient features.

− Our first UKEM construction UKEM1 is derived from UhPKE and achieves IND-CR-CPA
security under CSSIDH assumption in our proposed security framework that supports
unbounded number of key updates. Our second UKEM construction UKEM2 is based
on USimS and exhibits IND-CR-CCA security under CSSIDH and CSSIKoE assumptions
in our proposed security framework allowing an unbounded number of key updates.

− In UKEM1, the storage cost includes a secret key in [−µ, µ]n and a public key in Fp.
The communication cost involves a header ciphertext and an updated ciphertext each
consisting of one element in Fp and one in {0, 1}mlen(λ). The computation cost includes
two group actions for encapsulation, one for decapsulation and key updates requiring
three group actions for encryption key updates and one for decryption key updates.
In UKEM2, the storage and communication costs remain similar as that of UKEM1

shown [see Table 2, 3], but the computation cost differs as decapsulation involves
one group action and computation of one discrete logarithm in a cyclic group. Key
updates in UKEM2 require three group actions for an encapsulation key update while
a decapsulation key update involves one group action and computation of one discrete
logarithm in a cyclic group.

− To the best of our knowledge, the UKEM construction of Haidar et al. [11] is the only
existing post-quantum secure UKEM scheme. They have proposed a generic construc-
tion of UKEM from any IND-CR-CPA secure UPKE and presented an instantiation
based on their IND-CR-CPA secure UPKE under the LWE assumption. Furthermore,
they have achieved IND-CR-CCA secure UKEM supporting only a bounded number of
updates. In contrast, our proposed UKEM1 satisfies IND-CR-CPA security and USimS
achieves IND-CR-CCA security with unbounded key updates. Our UKEM constructions
do not require any zero-knowledge proofs unlike [11] and are computationally more
friendly.

1.2 Technical Overview

IND-CR-CPA secure updatable encryption scheme UhPKE. The starting point of
our UPKE constructions UhPKE is the hash-based public key encryption scheme hPKE
from [21] in the isogeny setting where we skillfully introduced key update techniques

asynchronously. A user u randomly generates its initial secret key sk
(u)
0 = a0 ∈ [−µ, µ]n

and the corresponding public key is pk
(u)
0 = [a0]E0 ∈ Ellp(O) where E0 denotes the

publicly available base elliptic curve y2 = x3 + x and Ellp(O) represents the set of Fp-
isomorphic classes of supersingular curves E whose Fp-endomorphism ring EndFp(E) ∼=
O = Z[

√
−p]. The encryption of a message m ∈ {0, 1}mlen(λ) under the public key pk

(u)
i

at epoch i is an hPKE ciphertext ctm = (ct
(1)
m = [b]E0, ct

(2)
m = m⊕Hk(MC([b]pk

(u)
i )))

for some b ∈ [−µ, µ]n where Hk : Fp −→ {0, 1}mlen(λ) is entropy smoothing hash
function and MC(E) denotes the Montgomery coefficient of the elliptic curve E. To

update a public key pk
(u)
i at the i-th epoch, one can simply sample randomness ρi ∈

{0, 1}mlen(λ) and encrypts ρi to generate updated ciphertext upi+1 = ctρi
under pk

(u)
i
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with ctρi
= (ct

(1)
ρi

= [b′]E0, ct
(2)
ρi

= ρi ⊕ Hk(MC([b
′]pk

(u)
i ))) for some b′ ∈ [−µ, µ]n

while pk
(u)
i to pk

(u)
i+1 = [−KDF(ρi)]pk

(u)
i for epoch i+1 using a key derivation function

KDF : {0, 1}mlen(λ) −→ [−µ, µ]n. The updated secret key is sk
(u)
i+1 = sk

(u)
i − KDF(ρi).

An IND-CR-CPA attacker first observes the initial public key pk
(u)
0 = [a0]E0 and can

make an initial sequence of updates using private randomness ρ0, . . . ,ρt−1. At epoch
t, the adversary requests a challenge ciphertext corresponding to a pair of plaintexts

(m∗
0,m

∗
1) ∈ {0, 1}mlen(λ) × {0, 1}mlen(λ). The challenge ciphertext ctm∗

b
= (ct

(1)
m∗

b
, ct

(2)
m∗

b
)

is an encryption of m∗
b under the updated public key pk

(u)
t = [−

∑t−1
i=0 KDF(ρi)]pk

(u)
0

where b ∈ {0, 1} is chosen randomly by the challenger. The adversary may then con-
tinue updating the public key with additional randomness ρt, . . . ,ρt′−1 before deciding
to compromise the secret key. At this point, the challenger performs an additional
honest update using a randomness ρ∗ unknown to the adversary, yielding the com-

promised secret key sk∗ = sk
(u)
0 −

∑t′−1
i=0 KDF(ρi) − KDF(ρ∗) and the corresponding

public key pk∗ = [−
∑t′−1

i=0 KDF(ρi)−KDF(ρ∗)]pk
(u)
0 . The adversary’s goal is to guess

the correct bit b using the challenge ciphertext ctm∗
b
given access to the secret key sk∗,

the public key pk∗ and the updated ciphertext up∗ which encrypts the randomness
ρ∗ under pk∗. The IND-CR-CPA security of UhPKE requires the hPKE to construc-
tion satisfy f -CS+ LR security. The f -CS+ LR security framework for hPKE allows an
adversary against the IND-CPA security of hPKE additionally receives a leakage func-

tion f(sk
(u)
0 ,ρ∗) = sk

(u)
0 − KDF(ρ∗) of sk

(u)
0 along with an encryption up = ctρ∗ of ρ∗

under pk
(u)
0 . The proof is under the CSSIDDH assumption and follows three key steps:

i. eliminating all information about sk
(u)
0 except sk

(u)
0 − KDF(ρ∗) while treating

KDF(ρ∗) as the secret key,

ii. replacing sk
(u)
0 −KDF(ρ∗) with a uniformly random element from [−µ, µ]n to ensure

that the adversary’s view is independent of sk and
iii. leveraging the CSSIDDH assumption and the entropy smoothness property of Hk to

argue that distinguishing the correct plaintext remains computationally infeasible
for the adversary.

This security argument demonstrates that the hPKE construction can be trans-
formed into an efficient IND-CR-CPA secure UPKE scheme. Moreover, our approach
of choosing randomness from the message space enables single-shot encryption of the
entire update information ρ, avoiding bit-by-bit encryption overhead. More concretely,
we have the following theorems.

Theorem 1 (Informally). The scheme hPKE provides f -CS+ LR security under the
CSSIDDH assumption assuming H = {Hk}k∈K is an entropy smoothing hash function
and KDF is a secure key derivation function.

Theorem 2 (Informally). If hPKE is f -CS+ LR secure then the isogeny based UhPKE
construction provides IND-CR-CPA security.
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Definition 3 (Randomizing Function [22]). A function RE : Fp → Fp indexed by
supersingular curves E defined over Fp is said to be a randomizing function if it
satisfies the following properties:

i. The function RE is bijective and both RE and its inverse gE = R−1
E can be

efficiently computed when the curve E is given.
ii. For any x ∈ Fp, an adversary without access to x and E cannot distinguish RE(x)

from a random element of Fp.
iii. For any x ∈ Fp and any non-identical rational function R(x) ∈ Fp(X), an

adversary without access to x and E cannot compute RE(R(x)) given RE(x).

Example 1 Consider the function RE : Fp → Fp defined by RE(x) =
int (bin(x)⊕ bin(MC(E))) where bin(·) and int(·) denote the operations that convert an ele-
ment in Fp to its binary representation and vice versa, respectively and MC(E) is the
Montgomery coefficient of the elliptic curve E.

IND-CR-CCA secure updatable encryption scheme USimS. Our UPKE construc-
tion USimS builds upon the simplified sigamal scheme SimS introduced in [22].
We handle the asynchronous key update by employing a key derivation function

KDF : Z2q−2 → [−µ, µ]n. A user u randomly generates its initial secret key sk
(u)
0 =

a0 ∈ [−µ, µ]n with the corresponding public key pk
(u)
0 = [a0]E0 ∈ Ellp(O) where

E0 represents the base elliptic curve y2 = x3 + x. The encryption corresponding to

a message m ∈ Z2q−2 under the public key pk
(u)
i at epoch i is an SimS ciphertext

ctm =

(
ct

(1)
m = [b]E0, ct

(2)
m = RE

[b]pk
(u)
i

(
x([2m+ 1]P

[b]pk
(u)
i
)
))

for some b ∈ [−µ, µ]n

where RE is a randomizing function. To update the public key pk
(u)
i at the i-th

epoch, the user samples randomness ρi ∈ Z2q−2 and generates an updated cipher-

text upi+1 = ctρi
by encrypting ρi under pk

(u)
i where ctρi

=
(
ct

(1)
ρi

= [b′]E0,

ct
(2)
ρi

= RE
[b]pk

(u)
i

(
x([2ρi + 1]P

[b′]pk
(u)
i
)
))

for some b′ ∈ [−µ, µ]n and RE is a random-

izing function. The public key is then updated as pk
(u)
i+1 = [−KDF(ρi)]pk

(u)
i and the

updated secret key is updated as sk
(u)
i+1 = sk

(u)
i − KDF(ρi).

To establish that USimS is an IND-CR-CCA secure updatable encryption scheme,
we first demonstrate it’s IND-CR-CPA secure under the hardness of the CSSIDDH
assumption and then provide a reduction-based proof showing that IND-CR-CPA secu-
rity of USimS implies its IND-CR-CCA security by additionally assuming the hardness
of commutative supersingular isogeny knowledge of exponent (CSSIKoE) assumption.
The IND-CR-CPA security of USimS requires SimS to satisfy f -CS+ LR security which
we prove by using a similar technique as f -CS+ LR security of the hPKE and employ-
ing the second properties of the randomizing function RE . We then follow the same
approach as the IND-CR-CPA security proof of UhPKE to establish the IND-CR-CPA
security of USimS. In contrast to the IND-CR-CPA security setting, the IND-CR-CCA
game grants the adversary access to a decryption oracle. To prove that USimS is
IND-CR-CCA secure, it suffices to prove that this decryption oracle is effectively useless.

10



This follows directly from the CSSIKoE assumption, which states that given E0, [b]E0

and a valid ciphertext ctm = (ct
(1)
m = [b]E0, ct

(2)
m = RE

[b]pk
(u)
i

(x([2m + 1]P
[b]pk

(u)
i
))) a

probabilistic polynomial time (PPT) adversary cannot construct a valid new ciphertext
c̃t from a previously obtained ciphertext unless c̃t is generated using the encryption
algorithm. This ensures that decryption queries do not provide the adversary with any
advantage, thereby establishing the IND-CR-CCA security of USimS. More precisely,
we have the following theorems.

Theorem 4 (Informally). The scheme SimS is f -CS+ LR secure under the assump-
tion that RE satisfies the second property of a randomizing function, KDF is a secure
key derivation function and the CSSIDDH assumption.

Theorem 5 (Informally). If SimS is f -CS+ LR secure then our isogeny based UPKE
construction USimS is IND-CR-CPA secure.

Theorem 6 (Informally). If CSSIKoE assumption holds then our isogeny based
IND-CR-CPA secure UPKE construction USimS provides IND-CR-CCA security.

Updatable key encapsulation mechanism UKEM1 and UKEM2. We transform
our updatable public key encryption schemes UhPKE and USimS to updatable key
encapsulation mechanism UKEM1 and UKEM2 respectively using an inherently simi-
lar technique. In this transformation, the key generation and key update algorithms
remain unchanged. The encapsulation process samples a random message m from
the message space, computes KDF(m), encrypts it under the recipient’s public key to
generate a header ciphertext hct and sends hct to the recipient. The decapsulation
process run by the recipient to decrypt hct using its secret key, recovers m and com-
putes KDF(m) using the public key derivation function KDF : Z2q−2 −→ {0, 1}klen(λ).
This transformation ensures that the resulting UKEM inherits the security properties
of the underlying UPKE, supporting asynchronous unlimited key updates. Specifically,
we have the following theorems.

Theorem 7 (Informally). If UhPKE is IND-CR-CPA secure and KDF is a secure key
derivation function then UKEM1 provides IND-CR-CPA security.

Theorem 8 (Informally). If USimS is IND-CR-CCA secure and KDF is a secure key
derivation function then UKEM2 provides IND-CR-CCA security.

2 Preliminaries

Notation. Throughout the paper, we adopt the following notations. Let #S denote

the cardinality of the set S, i.e., the number of elements in S. The notation a
$←− A

indicates that a is uniformly sampled from the set A. A function ϵ(·) is called negligible
if, for every positive integer c, there exists an integer k such that for all λ > k,
|ϵ(λ)| < 1/λc.

11



Elliptic curves and isogenies [23]. Let K be a finite field and K be its algebraic
closure. An elliptic curve E over K is a non-singular projective cubic curve having
genus one with a special point O, called the point at infinity. The set of K-rational
points of the elliptic curve E forms an additive abelian group with O as the identity
element. If P is a point on E, its coordinates are denoted as P = (x(P ), y(P )) where
x(P ) and y(P ) represent its x- and y-coordinates, respectively. The set E(K) consists
of all points on E whose coordinates belong to K , i.e., E(K) = {P = (x, y) | x, y ∈
K,P satisfies E}∪{O}. The ℓ-torsion subgroup of E, denoted as E[ℓ], is the set of all
points in E(K) that satisfy ℓP = O. The Montgomery coefficient of the Montgomery
elliptic curve EA : y2 = x3+Ax2+x is denoted by MC and defined by MC(EA) = A.

Let E1 and E2 be two elliptic curves over a field K. An isogeny from E1 to
E2 is a non-constant morphism φ : E1 → E2 over K preserving the point at
infinity O. The isogeny φ : E1 → E2 can be expressed in its simplest form as

φ(x, y) =
(

p(x)
q(x) ,

r(x)
s(x)y

)
where the polynomial p(x) and q(x) have no common fac-

tor and the polynomial r(x) and s(x) have no common factor. The degree of a
nonzero isogeny is defined as the degree of the associated morphism and is given by
deg(φ) = max{deg(p(x)), deg(q(x))}. A non-zero isogeny φ is called separable if and
only if deg(φ) = #ker(φ) where ker(φ) = φ−1(OE2) where OE2 is the identity element
of the elliptic curve E2.
Endomorphism ring. The set of all isogenies from E to itself defined over K forms a
ring under pointwise addition and composition. This ring is called the endomorphism
ring of the elliptic curve E and is denoted by End(E). By EndK(E), we mean the set
of all isogenies from E to itself defined over K. If End(E) is isomorphic to an order
in a quaternion algebra, the curve E is said to be supersingular. On the other hand,
if End(E) is isomorphic to an order in an imaginary quadratic field, we say the curve
E is ordinary.

Theorem 9 ([24]). Let p ≥ 5 be a prime such that p ≡ 3 (mod 8) and let E/Fp be a
supersingular elliptic curve. Then Endp(E) ∼= Z[

√
−p] if and only if there exists A ∈ Fp

such that E is Fp-isomorphic to the curve EA : y2 = x3 + Ax2 + x. Additionally, in
the presence of such an A, it is guaranteed to be unique.

Theorem 10 ([25]). Let E1 be a curve and G be its finite subgroup. Then there is
a unique curve E2 and a separable isogeny φ : E1 → E2 with ker(φ) = G such that
E2
∼= E1/G which can be computed using Vélu’s formulae (see Algorithm 1).

Ideal class group. [21] Let O be an order in the imaginary quadratic field F . A
fractional ideal a of O is a finitely generated O-submodule of F . Let I(O) be a set
of invertible fractional ideals of O. Then I(O) is an abelian group derived from the
multiplication of ideals with the identity O. Let P(O) be a subgroup of I(O) defined
by P(O) = {a | a = αO for some α ∈ F \ {0} }. The abelian group Cl(O), defined by
I(O)/P(O), is called the ideal class group of O. An element of Cl(O), denoted by [a],
is an equivalence class of a.
The class group action. Let p be a prime and Ellp(O) denotes the set of
Fp-isomorphic classes of supersingular curves E whose Fp-endomorphism ring

12



EndFp(E) ∼= O = Z[
√
−p]. The ideal class group Cl(O) acts freely and transitively on

Ellp(O). An element [a] in Cl(O) consists of endomorphisms α in a which an isogenies
from E to itself over Fp. For the curve E ∈ Ellp(O), the action ∗ of [a] ∈ Cl(O) on E
is denoted by [a] ∗ E and defined as follows:

• Form the subgroup E[a] =
⋂

α∈a ker(α).
• Apply Vélu’s formula (see Algorithm 1) to compute the elliptic curve E/E[a] and

an isogeny φa : E → E/E[a].
• Return the elliptic curve E/E[a].

Henceforth, we will use the notation [a]E instead of [a]∗E to denote the elliptic curve
E/E[a] obtained by the action of class group element [a] ∈ Cl(O) on the elliptic curve
E ∈ Ellp(O).

Theorem 11 ([25]). Let p be prime and O be an order of an imaginary quadratic field
and E be an elliptic curve defined over Fp. If Ellp(O) contains the Fp-isomorphism
class of supersingular elliptic curves then the action of the ideal class group Cl(O) on
Ellp(O), defined by

Cl(O)× Ellp(O)→ Ellp(O)
([a], E)→ E/E[a]

is free and transitive where a is an integral ideal of O and E[a] is the intersection of
the kernels of elements in a.

Let p be prime and E be an elliptic curve defined over the finite field Fp. Consider
the map π acting on the coordinates of points in E(Fp), given by π(x, y) = (xp, yp)
and π(O) = O. This map π is an endomorphism of E and is known as the Frobenius
endomorphism. For every small odd prime ℓi dividing p + 1, there are two prime
ideals li = ⟨ℓi, π − 1⟩ and li = ⟨ℓi, π + 1⟩ in Cl(O). Also, the kernel of the isogeny
corresponding to the action of the prime ideals li = ⟨ℓi, π − 1⟩ and li = ⟨ℓi, π + 1⟩
is generated by Pli ∈ E0[ℓi] ∩ ker(π − 1) \ {0} and Pli

∈ E0[ℓi] ∩ ker(π + 1) \ {0}
respectively. For the sake of simplicity, we will write [a]E instead of [a]E for any
element [a] = [la1

1 · · · lan
n ] ∈ Cl(O) where a = (a1, . . . , an) and li = ⟨ℓi, π − 1⟩ and

[a + b]E in the place of [a][b]E for any two elements [a], [b] ∈ Cl(O). Let λ be the
security parameter, E0 be the supersingular elliptic curve y2 = x3 +x defined over Fp

and [a], [b] and [c] be uniformly random ideal classes in Cl(O).

Definition 12 (CSSICDH[24]). The commutative supersingular isogeny computational
Diffie-Hellman (CSSICDH) assumption holds if for any Probabilistic Polynomial Time
(PPT) algorithm A,

Pr
[
E = [b][a]E0 | E = A(E0, [a]E0, [b]E0)

]
≤ ϵ(λ)
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Definition 13 (CSSIDDH[24]). The commutative supersingular isogeny decisional
Diffie-Hellman (CSSIDDH) assumption holds if for any PPT distinguisher D,

AdvCSSIDDH
D (λ) =

∣∣∣∣∣Pr [D(E0, [a]E0, [b]E0, [b][a]E0) = 1 | [a], [b], [c] $←− Cl(O)
]
−

Pr
[
D(E0, [a]E0, [b]E0, [c]E0) = 1 | [a], [b], [c] $←− Cl(O)

]∣∣∣∣∣ ≤ ϵ(λ).

Definition 14 (CSSIKoE [22]). Let λ be a security parameter and p = 2qℓ1 · · · ℓn − 1
be a prime such that λ+ 2 ≤ q ≤ 1

2 log p. Let [a], [b] be uniformly sampled elements of
Cl(O). Let (RE)E∈Cl(O) be a family of randomizing functions as defined in Definition
3 such that each of these functions satisfies the third property.

The commutative supersingular isogeny knowledge of exponent (CSSIKoE)
assumption states that for every PPT adversary A that takes E0, [a]E0 and(
[b]E0, R[a][b]E0

(x(P ))
)

as inputs and returns ([b′]E0, R[a][b′]E0
(x(P ′))) such that

([b′]E0, R[a][b′]E0
(x(P ′))) ̸= ([b]E0, R[a][b]E0

(x(P ))) where P ∈ [a][b]E0 and P ′ ∈
[a][b′]E0 are points of order 2q, there exists a PPT adversary A′ that takes the same
inputs and returns ([b′], [b′]E0, R[a][b′]E0

(x(P ′))).

Definition 15 (Entropy Smoothing Hash Function [21]). Let H = {Hk}k∈K be a
family of keyed hash functions where each Hk be a function that maps from G to
{0, 1}l where l denotes the length of the string. Let D be a distinguisher that takes as
input an element of key space K and an element of {0, 1}l and outputs a bit. We define

the entropy smoothing advantage AdvESD (λ) of D to be AdvESD (λ) =
∣∣∣D(k,Hk(g)) =

1 | Pr[k $←− K, g $←− G] − Pr[D(k, h) = 1 | k $←− K, h $←− {0, 1}l]
∣∣∣. We say that the

family of keyed hash functions is entropy smoothing if the entropy smoothing advantage
AdvESD (λ) of any PPT distinguisher D is negligible.

Definition 16 (Key Derivation Function (KDF)[21]). A key derivation function KDF :
S(λ)→ T (λ) is a deterministic function that takes a randomly sampled input u ∈ S(λ)
and produces an output that is computationally indistinguishable from a uniformly
random element of T (λ). A cryptographic key derivation function KDF is consid-
ered secure if AdvKDF

D (λ) is negligible for any PPT distinguisher D where AdvKDF
D (λ)

the advantage in distinguishing KDF(u) from a truly random string is defined as

AdvKDF
D (λ) =

∣∣∣Pr [D(KDF(u)) = 1 | u $←− S(λ)
]
− Pr

[
D(k) = 1 | k $←− T (λ)

]∣∣∣ .
2.1 Public Key Encryption

Definition 17 (Public Key Encryption [21]). A Public key encryption (PKE) is a
tuple of four PPT algorithms PKE = (Setup,KeyGen, Enc,Dec) associated with a secret
key space KS, a message space MS and ciphertext space CS satisfying the following
requirements:
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Setup: The challenger C computes public parameter pppke ← PKE.Setup(λ) and
secret-public key pair (sk, pk) ← PKE.KeyGen(pppke). It forwards pppke and pk to the
adversary A while keeps sk secret to itself.
Challenge Phase: After receiving (m∗

0,m
∗
1) from the adversary A, the challenger

C uniformly samples b
$←− {0, 1} and sends ctm∗

b
←− PKE.Enc(pppke, pk,m

∗
b) to A.

Guess Phase: The adversary A eventually submits a bit b′ to the challenger C. If
b = b′ then the experiment ExpIND-CPA

PKE,A (λ) returns 1, otherwise, it returns 0.

Fig. 1 ExpIND-CPA
PKE,A (λ): Indistinguishability under chosen-plaintext attacks

PKE.Setup(λ) → pppke: A trusted party runs this algorithm on input the security
parameter λ and outputs the public parameter pppke.
PKE.KeyGen(pppke)→ (sk, pk): On input the public parameter pppke, a user generates

its secret-public key pair (sk, pk) by running this algorithm.
PKE.Enc(pppke, pk, m) → ctm: Taking as input the public parameter pppke, public key

pk and a message m ∈MS, an encrypter runs this algorithm and returns a ciphertext
ctm ∈ CS.
PKE.Dec(pppke, sk, ctm)→ m/ ⊥: On input the public parameter pppke, the secret key

sk and a ciphertext ctm, the decrypter runs this algorithm and returns plaintext m or
⊥ to indicate description failure.

Definition 18 (Correctness). We say that a PKE scheme is correct if for all security
parameters λ, all pppke ← PKE.Setup(λ), all (pk, sk) ← PKE.KeyGen(pppke), all m ∈
MS, it must hold that

PKE.Dec(pppke, sk,PKE.Enc(pppke, pk,m)) = m

Definition 19 (IND-CPA). A public key encryption scheme PKE is secure against
indistinguishability under chosen-plaintext attacks (IND-CPA) if the advantage
AdvIND-CPA

PKE,A (λ) of any PPT adversary A defined as

AdvIND-CPA
PKE,A (λ) =

∣∣∣∣∣Pr[ExpIND-CPA
PKE,A (λ) = 1]− 1

2

∣∣∣∣∣
is negligible where the experiment ExpIND-CPA

PKE,A (λ) between an adversary A and a
challenger C is depicted in Fig.1.

We define below circular-secure and leakage-resilient (CS+ LR) security for a public
key encryption scheme. Our notion of f -CS+ LR security differs slightly from that
defined by Dodis et al. [9]. Specifically, in our definition, the adversary is provided
with a randomized leakage f(sk,ρ) of the secret key sk along with an encryption of ρ
whereas that in [9] considers an encryption of a function of sk.

Definition 20 (f -CR+ LS). Let PKE = (Setup,KeyGen,Enc,Dec) be a PKE scheme
with secret key space KS and message space MS. We say that a PKE scheme is
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Setup: The challenger C generates public parameter pppke ← PKE.Setup(λ), secret-
public key pair (sk, pk) ← PKE.KeyGen(pppke) and function f : KS ×MS −→ KS. It
forwards pppke and pk to the adversary A while keeps sk secret to itself.
Challenge Phase: After receiving (m∗

0,m
∗
1) from the adversary A,

the challenger C samples b
$←− {0, 1} and ρ∗ $←− MS and sends

(f(sk,ρ∗),PKE.Enc(pppke, pk,m
∗
b),PKE.Enc(pppke, pk,ρ

∗)) to A.
Guess Phase: The adversary A eventually submits a bit b′ to the challenger C and
if b = b′ then the experiment Expf-CS+LR

PKE,A (λ) returns 1, otherwise, it returns 0.

Fig. 2 Expf- CS+LR
PKE,A (λ): Circular-secure and leakage-resilient

f -CS+ LR secure if the advantage Advf-CS+LR
PKE,A (λ) of any PPT adversary A defined as

Advf-CS+LR
PKE,A (λ) =

∣∣∣∣∣Pr[Expf-CS+LR
PKE,A (λ) = 1]− 1

2

∣∣∣∣∣
is negligible where the experiment Expf-CS+LR

PKE,A (λ) between an adversary A and a
challenger C is depicted in Fig.2.

2.2 Updatable Public Key Encryption

Definition 21 (Updatable Public Key Encryption). An Updatable Public Key
Encryption (UPKE) is a tuple of PPT algorithms UPKE = (Setup,KeyGen,Enc,Dec,
UpdatePk, UpdateSk) associated with a message space MS, a randomness space RS
and ciphertext space CS satisfying the following requirements:

UPKE.Setup(λ) → ppupke: A trusted party on input a security parameter λ outputs
the public parameter ppupke.

UPKE.KeyGen(ppupke)→ (sk
(u)
0 , pk

(u)
0 ): On input the public parameter ppupke, a user

generates a secret-public key pair (sk
(u)
0 , pk

(u)
0 ).

UPKE.Enc(ppupke, pk
(u)
i , m) → ctm: Taking as input the public parameter ppupke,

public key pk
(u)
i and a message m ∈MS, an encrypter runs this algorithm and returns

a ciphertext ctm ∈ CS.
UPKE.Dec(ppupke, sk

(u)
i , ctm) → m/ ⊥: On input the public parameter ppupke, the

secret key sk
(u)
i and a ciphertext ctm ∈ CS, the decrypter runs this algorithm and

returns plaintext m or ⊥ to indicate description failure.

UPKE.UpdatePk(ppupke, pk
(u)
i ;ρi) → (pk

(u)
i+1, upi+1): Given the public parameter

ppupke, a public key pk
(u)
i and a random ρi ∈ RS, any user can run this algorithm and

produce an updated ciphertext upi+1 and a new public key pk
(u)
i+1.

UPKE.UpdateSk(ppupke, sk
(u)
i , upi+1)→ sk

(u)
i+1: Given the public parameter ppupke and

an updated ciphertext upi+1, a user with secret key sk
(u)
i runs this algorithm to generate

the updated secret key sk
(u)
i+1.
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Setup: The challenger C computes ppupke ← UPKE.Setup(λ) and secret-public key

pair (sk
(u)
0 , pk

(u)
0 ) ← UPKE.KeyGen(ppupke). It forwards ppupke and pk

(u)
0 to the adver-

sary A while keeps sk
(u)
0 secret to itself. It sets epoch i = 0.

Pre-challenge Query Phase: The adversary A issues polynomially many adaptive
queries to the oracle Oup(·).
− OUPKE

up (ρi): Upon receiving a query on the ρi, the challenger C
performs UPKE.UpdatePk(ppupke, pk

(u)
i ;ρi) → (pk

(u)
i+1, upi+1) and

UPKE.UpdateSk(ppupke, sk
(u)
i , upi+1)→ sk

(u)
i+1 and increments the i to i+ 1.

Challenge Phase: After receiving (m∗
0,m

∗
1) from the adversary A, the challenger

C uniformly samples b
$←− {0, 1} and sends ctm∗

b
←− UPKE.Enc(ppupke, pk

(u)
t ,m∗

b) where
t is the current epoch.
Post-challenge Query Phase: A is allowed to make OUPKE

up (·) queries as in post-
challenge query phase.
Reveal Phase: The challenger C chooses uniformly random ρ∗

and then computes UPKE.UpdatePk(ppupke, pk
(u)
t′ ;ρ∗) → (pk∗, up∗) and

UPKE.UpdateSk(ppupke, sk
(u)
t′ , up∗) → sk∗ where t′ is the current epoch and sends

(pk∗, sk∗, up∗).
Guess Phase: The adversary A eventually submits a bit b′ to the challenger C and
if b = b′ then the experiment ExpIND-CR-CPA

UPKE,A (λ) returns 1, otherwise, it returns 0.

Fig. 3 ExpIND-CR-CPA
UPKE,A (λ): Indistinguishability under chosen-randomness chosen-plaintext attacks

Definition 22 (Correctness). Let ppupke ← UPKE.Setup(λ) and (sk0, pk0) ←
UPKE.KeyGen(ppupke). Define UPKE.UpdatePk(ppupke, pk

(u)
i−1;ρi−1)→ (pk

(u)
i , upi) and

UPKE.UpdateSk(ppupke, sk
(u)
i−1, upi) → sk

(u)
i for i ≤ ℓ and ℓ ∈ N. An UPKE scheme

provides correctness if for any m ∈ MS and all i ≤ ℓ: Pr[UPKE.Dec(ppupke,

sk
(u)
i ,UPKE.Enc(ppupke, pk

(u)
i ,m)) = m] = 1

Definition 23 (IND-CR-CPA). An updatable public key encryption scheme UPKE is
secure against indistinguishability under chosen-randomness chosen-plaintext attacks
(IND-CR-CPA) if the advantage AdvIND-CR-CPA

UPKE,A (λ) of any PPT adversary A defined as

AdvIND-CR-CPA
UPKE,A (λ) =

∣∣∣∣∣Pr[ExpIND-CR-CPA
UPKE,A (λ) = 1]− 1

2

∣∣∣∣∣ is negligible where ExpIND-CR-CPA
UPKE,A (λ)

is the experiment between an adversary A and a challenger C as depicted in Fig.3.

Definition 24 (IND-CR-CCA). An updatable public key encryption scheme UPKE is
secure against indistinguishability under chosen-randomness chosen-ciphertext attacks
(IND-CR-CCA) if the advantage AdvIND-CR-CCA

UPKE,A (λ) of any PPT adversary A defined as

AdvIND-CR-CCA
UPKE,A (λ) =

∣∣∣∣∣Pr[ExpIND-CR-CCA
UPKE,A (λ) = 1]− 1

2

∣∣∣∣∣
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Setup: The challenger C computes ppupke ← UPKE.Setup(λ) and secret-public key

pair (sk
(u)
0 , pk

(u)
0 ) ← UPKE.KeyGen(ppupke). It forwards ppupke and pk

(u)
0 to the adver-

sary A while keeps sk
(u)
0 secret to itself. It also sets epoch i = 0.

Pre-challenge Query Phase: The adversary A issues polynomially many adaptive
queries to the oracle OUPKE

up (·) and OUPKE
dec (·).

− OUPKE
up (ρi): Upon receiving a query on the ρi, the challenger C

performs UPKE.UpdatePk(ppupke, pk
(u)
i ;ρi) → (pk

(u)
i+1, upi+1) and

UPKE.UpdateSk(ppupke, sk
(u)
i , upi+1)→ sk

(u)
i+1 and increments the i to i+ 1.

− OUPKE
dec (ctm): Given a ciphertext ctm returns m = UPKE.Dec(ppupke, sk

(u)
i , ctm)

where sk
(u)
i is the secret key of the current epoch.

Challenge Phase: After receiving (m∗
0,m

∗
1) from the adversary A, the challenger

C uniformly samples b
$←− {0, 1} and sends ctm∗

b
←− UPKE.Enc(ppupke, pk

(u)
t ,m∗

b) where
t is the current epoch.
Post challenge Query Phase: The adversary A issues polynomially many adap-
tive queries to the oracle OUPKE

up (·) and OUPKE
dec (·).

− OUPKE
up (ρi): Upon receiving a query on the ρi, the challenger C

performs UPKE.UpdatePk(ppupke, pk
(u)
i ;ρi) → (pk

(u)
i+1, upi+1) and

UPKE.UpdateSk(ppupke, sk
(u)
i , upi+1)→ sk

(u)
i+1 and increments the i to i+ 1.

− OUPKE
dec (ctm): Given a ciphertext ctm, if (ctm = ctm∗

b
∧ pk

(u)
i = pk

(u)
t ) aborts, else

returns m = UPKE.Dec(ppupke, sk
(u)
i , ctm) where sk

(u)
i is the secret key of the current

epoch.
Reveal Phase: The challenger C chooses uniformly random ρ∗

and then computes UPKE.UpdatePk(ppupke, pk
(u)
t′ ;ρ∗) → (pk∗, up∗) and

UPKE.UpdateSk(ppupke, sk
(u)
t′ , up∗) → sk∗ where t′ is the current epoch and sends

(pk∗, sk∗, up∗).
Guess Phase: The adversary A eventually submits a bit b′ to the challenger C and
if b = b′ then the experiment ExpIND-CR-CCA

UPKE,A (λ) returns 1, otherwise, it returns 0.

Fig. 4 ExpIND-CR-CCA
UPKE,A (λ): Indistinguishability under chosen-randomness chosen-ciphertext attacks

is negligible where ExpIND-CR-CCA
UPKE,A (λ) is the experiment between an adversary A and a

challenger C is depicted in Fig.4.

2.3 Updatable Key Encapsulation Mechanism

Definition 25 (Updatable Key Encapsulation Mechanism). An Updatable Key
Encapsulation Mechanism (UKEM) is a tuple of PPT algorithms UKEM =
(Setup,KeyGen,Encaps,Decaps, UpdatePk, UpdateSk) associated with a secret key
space KS, a message spaceMS, a ciphertext space CS and a key space Key satisfying
the following requirements:
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UKEM.Setup(λ)→ ppukem: A trusted party on input the security parameter λ outputs
the public parameter ppukem.

UKEM.KeyGen(ppukem)→ (sk
(u)
0 , pk

(u)
0 ): On input the public parameter ppukem, a user

generates a secret-public key pair (sk
(u)
0 , pk

(u)
0 ).

UKEM.Encaps(ppukem, pk
(u)
i ) → (ctm, ek): Taking as input the public parameter

ppukem, public key pk
(u)
i , this algorithm PPT returns an encapsulation hct ∈ CS and a

key ek ∈ Key.
UKEM.Decaps(ppukem, sk

(u)
i , hct) → ek: On input the public parameter ppukem, the

secret key the decrypter sk
(u)
i and a header ciphertext hct, this algorithm returns key

ek ∈ Key.
UKEM.UpdatePk(ppukem, pk

(u)
i ;ρi) → (pk

(u)
i+1, upi+1): Given the public parameter

ppukem, a public key pk
(u)
i and a random ρ, any user can run this algorithm and produce

an updated ciphertext upi+1 and a new public key pk
(u)
i+1.

UKEM.UpdateSk(ppukem, sk
(u)
i , upi+1) → sk

(u)
i+1: Given the public parameter ppukem

and an updated ciphertext upi+1 an user with sk(u) runs this algorithm to generate

updated secret key sk
(u)
i+1.

Definition 26 (Correctness). Let ppukem ← UPKE.Setup(λ), all

(sk
(u)
0 , pk

(u)
0 ) ← UKEM.KeyGen(ppukem). Let (pk

(u)
i , upi) is generated by run-

ning UKEM.UpdatePk(ppukem, pk
(u)
i−1;ρi−1) and sk

(u)
i ← UKEM.UpdateSk(ppukem,

sk
(u)
i−1, upi) for i ≤ ℓ and ℓ ∈ N . An UKEM scheme provides correctness if for

UKEM.Encaps(ppukem, pk
(u)
i )→ (hct, ek) and all i ≤ ℓ: Pr[UKEM.Decaps(ppukem, sk

(u)
i ,

hct) = ek] = 1.

Definition 27 (IND-CR-CPA). An updatable key encapsulation mechanism scheme
UKEM is secure against indistinguishability under chosen-randomness chosen-
plaintext attacks (IND-CR-CCA) if the advantage AdvIND-CR-CCA

UKEM,A (λ) of any PPT
adversary A defined as

AdvIND-CR-CPA
UKEM,A (λ) =

∣∣∣∣∣Pr[ExpIND-CR-CPA
UKEM,A (λ) = 1]− 1

2

∣∣∣∣∣
is negligible where the experiment ExpIND-CR-CPA

UKEM,A (λ) between an adversary A and a
challenger C is depicted in Fig. 5.

Definition 28 (IND-CR-CCA). An updatable key encapsulation mechanism scheme
UKEM is secure against indistinguishability under chosen-randomness chosen-
ciphertext attacks (IND-CR-CCA) if the advantage AdvIND-CR-CCA

UKEM,A (λ) of any PPT
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Setup: The challenger C computes public parameter ppukem ← UKEM.Setup(λ) and

secret-public key pair (sk
(u)
0 , pk

(u)
0 ) ← UKEM.KeyGen(ppukem). It forwards ppukem and

pk
(u)
0 to the adversary A while keeps sk(u) secret to itself. It sets epoch i = 0.

Pre-challenge Query Phase: The adversary A issues polynomially many adaptive
queries to the oracle OUKEM

up (·).
− OUKEM

up (ρi): Upon receiving a query on the ρi, the challenger C
performs UKEM.UpdatePk(ppukem, pk

(u)
i ;ρi) → (pk

(u)
i+1, upi+1) and

UKEM.UpdateSk(ppukem, sk
(u)
i , upi+1)→ sk

(u)
i+1 and increments the i to i+ 1.

Challenge Phase: The challenger C sets ek∗0
$←− Key and (hct∗, ek∗1) ←−

UKEM.Encaps(ppukem, pk
(u)
t ). Then, it uniformly samples b

$←− {0, 1} and sends
(hct∗, ek∗b) to A where t is the current epoch.
Post-challenge Query Phase: A is allowed to make OUKEM

up (·) queries as in post-
challenge query phase.
Reveal Phase: The challenger C chooses uniformly random ρ∗ and

then computes UKEM.UpdatePk(ppukem, pk
(u)
t′ ;ρ∗) → (pk∗, up∗) and

UKEM.UpdateSk(ppukem, sk
(u)
t′ , up∗) → sk∗ where t′ is the current epoch and sends

(pk∗, sk∗, up∗).
Guess Phase: The adversary A eventually submits a bit b′ to the challenger C and
if b = b′ then the experiment ExpIND-CR-CPA

UKEM,A (λ) returns 1, otherwise, it returns 0.

Fig. 5 ExpIND-CR-CPA
UKEM,A (λ): Indistinguishability under chosen-randomness chosen-ciphertext attacks

adversary A defined as

AdvIND-CR-CCA
UKEM,A (λ) =

∣∣∣∣∣Pr[ExpIND-CR-CCA
UKEM,A (λ) = 1]− 1

2

∣∣∣∣∣
is negligible where the experiment ExpIND-CR-CCA

UKEM,A (λ) between an adversary A and a
challenger C is depicted in Fig. 6.
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Setup: The challenger C computes public parameter ppukem ← UKEM.Setup(λ) and

secret-public key pair (sk
(u)
0 , pk

(u)
0 ) ← UKEM.KeyGen(ppukem). It forwards ppukem and

pk
(u)
0 to the adversary A while keeps sk

(u)
0 secret to itself. It sets epoch i = 0.

Pre-challenge Query Phase: The adversary A issues polynomially many adaptive
queries to the oracle OUKEM

up (·) and OUKEM
dec (·).

− OUKEM
up (ρi): Upon receiving a query on the ri, the challenger C

performs UKEM.UpdatePk(ppukem, pk
(u)
i ;ρi) → (pk

(u)
i+1, upi+1) and

UKEM.UpdateSk(ppukem, sk
(u)
i , upi+1)→ sk

(u)
i+1 and increments i to i+ 1.

− OUKEM
dec (ctm): On input ctm from A, the challenger C returns ek =

UKEM.Dec(ppukem, sk
(u)
i , ctm) where sk

(u)
i is the secret key of the current epoch.

Challenge Phase: The challenger C sets ek∗0
$←− Key, (hct∗, ek∗1) ←−

UKEM.Encaps(ppukem, pk
(u)
t ). Then, it uniformly samples b

$←− {0, 1} and sends
(hct∗, ek∗b) to A where t is the current epoch.
Post-challenge Query Phase: The adversary A issues polynomially many adap-
tive queries to the oracle OUKEM

up (·) and OUKEM
dec (·).

− OUKEM
up (ρi): Upon receiving a query on the ri, the challenger C

performs UKEM.UpdatePk(ppukem, pk
(u)
i ;ρi) → (pk

(u)
i+1, upi+1) and

UKEM.UpdateSk(ppukem, sk
(u)
i , upi+1)→ sk

(u)
i+1 and increments i to i+ 1.

− OUKEM
dec (hct): On input hct from A if hct = hct∗ and pk

(u)
i = pk

(u)
t then the challenger

C returns abort, else returns ek = UKEM.Dec(ppukem, sk
(u)
i , hct) where sk

(u)
i is the

secret key of the current epoch.
Reveal Phase: The challenger C chooses uniformly random ρ∗ and

then computes UKEM.UpdatePk(ppukem, pk
(u)
t′ ;ρ∗) → (pk∗, up∗) and

UKEM.UpdateSk(ppukem, sk
(u)
t′ , up∗) → sk∗ where t′ is the current epoch and sends

(pk∗, sk∗, up∗).
Guess Phase: The adversary A eventually submits a bit b′ to the challenger C and

if b = b′ then the experiment ExpIND-CR-CCA
UKEM,A (λ) returns 1, otherwise, it returns 0.

Fig. 6 ExpIND-CR-CCA
UKEM,A (λ): Indistinguishability under chosen-randomness chosen-ciphertext attacks

3 Security Proof of Theorem 38

In this section, we establish the f -CS+ LR security of hPKE, which is essential for
proving the security of the updatable public key encryption scheme.

Theorem 29. The construction hPKE provides f -CS+ LR security for f : [−µ, µ]n×
{0, 1}mlen(λ) → [−µ, µ]n as per Definition 20 under the CSSIDDH assumption given in
Definition 13, assuming H = {Hk}k∈K is entropy smoothing function and KDF is a
secure key derivation function as per Definition 16.

21



Proof Consider a key derivation function KDF :MS = {0, 1}mlen(λ) → KS = [−µ, µ]n. We
prove hPKE is f -CS+ LR secure for f(sk,ρ) = sk− KDF(ρ) using a sequence of games. The
Changes in the adversary’s view across the sequence of games are described in Fig. 4. The
changes are highlighted by enclosing them in a box. We define Si as the event that b = b′ in
Gamei for i = 0, . . . , 6.

Game0: This is the original f -CS+ LR security game Expf-CS+LR
PKE,A (λ) between a challenger

C and an adversary A works as follows:

Setup: The challenger C generates the public parameter pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H =
{Hk}k∈K) ← hPKE.Setup(λ) and a secret-public key (sk = a ∈ [−µ, µ]n, pk = EA = [a]E0)
← hPKE.KeyGen(pp). The challenger C sends pphPKE and pk = pkG0 to A and keeps sk secret
to itself.
Challenge Phase: The adversary A sends (m∗

0,m
∗
1) ∈ {0, 1}mlen × {0, 1}mlen as chal-

lenge message pair to C. Then C samples ρ∗ $←− {0, 1}mlen(λ) and b
$←− {0, 1}, computes

r∗ = KDF(ρ∗) ∈ [−µ, µ]n and sends z = f(sk,ρ∗) = sk − r∗ = a − r∗, ctG0
m∗

b
←

hPKE.Enc(pphPKE, pk,m
∗
b ) with ctG0

m∗
b

= (ctG0,1
m∗

b
= [b]E0, ctG0,2

m∗
b

= m∗
b ⊕ Hk(MC([b]EA)))

and ctG0
ρ∗ ← hPKE.Enc(pphPKE, pk,ρ

∗) with ctG0
ρ∗ = (ctG0,1

ρ∗ = [b′]E0, ctG0,2
ρ∗ = ρ∗ ⊕

Hk(MC([b′]EA))) to A where b,b′ $←− [−µ, µ]n.
Guess Phase: The adversary A eventually submits a bit b′ to the challenger C and if b = b′

then the experiment Expf-CS+LR
hPKE,A (λ) returns 1, otherwise, it returns 0.

Game1: In this game, we modify the generation of the public key and m∗
b and ρ∗ are

encrypted using the updated public key.

Setup: The challenger C generates the public parameter pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H =

{Hk}k∈K) and samples ρ∗ $←− {0, 1}mlen(λ), computes r∗ = KDF(ρ∗) ∈ [−µ, µ]n. The

challenger C sends pphPKE and pkG1 = [r∗]E0 to A.
Challenge Phase: The adversary A also sends (m∗

0,m
∗
1) as a challenge mes-

sage to C. Then C uniformly samples b
$←− {0, 1} and sends z = sk −

r∗ = a − r∗, ctG1
m∗

b
← hPKE.Enc(pphPKE, pk

G1 ,m∗
b ) with ctG1

m∗
b

= (ctG1,1
m∗

b
=

[b]E0, ctG1,2
m∗

b
= m∗

b ⊕Hk(MC([b][r∗]E0)) ) and ctG1
ρ∗ = hPKE.Enc(pphPKE, pk

G1 ,ρ∗) with

ctG1
ρ∗ = (ctG1,1

ρ∗ = [b′]E0, ctG1,2
ρ∗ = ρ∗ ⊕Hk(MC([b′][r∗]E0)) ) to A where b,b′ $←− [−µ, µ]n.

Guess Phase: The adversary A eventually submits a bit b′ to the challenger C and if b = b′

then the experiment Expf-CS+LR
hPKE,A (λ) returns 1, otherwise, it returns 0.

Note that in the setup phase, we change pkG0 = [sk]E0 in Game0 to pkG1 = [r∗]E0 in Game1
and in challenge phase ctG0

m∗
b

= (ctG0,1
m∗

b
= [b]E0, ctG0,2

m∗
b

= m∗
b ⊕ Hk(MC([b]EA))), ctG0

ρ∗ =

(ctG0,1
ρ∗ = [b′]E0, ctG0,2

ρ∗ = ρ∗ ⊕ Hk(MC([b′]EA))) in Game0 are replaced to ctG1
m∗

b
=

(ctG1,1
m∗

b
= [b]E0, ctG1,2

m∗
b

= m∗
b ⊕Hk(MC([b][r∗]E0))), ct

G1
ρ∗ = (ctG1,1

ρ∗ = [b′]E0, ctG1,2
ρ∗ = ρ∗ ⊕

Hk(MC([b′][r∗]E0))) in Game1. As pkG0 and pkG1 are identically distributed, the adversary’s
view in Game0 and Game1 is indistinguishable. Consequently, we have |Pr[S0] − Pr[S1]| ≤
ϵ1(λ) where ϵ1(λ) negligible function in λ.

Claim 1. |Pr[S0]− Pr[S1]| ≤ ϵ1
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Game Transition of the game

Game0

The original f -CS+ LR security game

pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K), pk
G0 = [sk]E0, z = sk− r∗,

ctG0

m∗
b
= (ctG0,1

m∗
b

= [b]E0, ctG0,2
m∗

b
= m∗

b ⊕Hk(MC([b]EA))),

ctG0
ρ∗ = (ctG0,1

ρ∗ = [b′]E0, ctG0,2
ρ∗ = ρ∗ ⊕Hk(MC([b

′]EA)))

for r∗ = KDF(ρ∗),b,b′ $←− [−µ, µ]n,ρ∗ $←− {0, 1}mlen(λ)

Game1

pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K), pkG1 = [r∗]E0 , z = sk− r∗,

ctG1

m∗
b
= (ctG1,1

m∗
b

= [b]E0, ctG1,2
m∗

b
= m∗

b ⊕Hk(MC([b][r
∗]E0)) ),

ctG1
ρ∗ = (ctG1,1

ρ∗ = [b′]E0, ctG1,2
ρ∗ = ρ∗ ⊕Hk(MC([b

′][r∗]E0)) )

for b,b′ $←− [−µ, µ]n,ρ∗ $←− {0, 1}mlen(λ)

Game2

pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K), pk
G2 = [r∗]E0, u ,

ctG2

m∗
b
= (ctG2,1

m∗
b

= [b]E0, ctG2,2
m∗

b
= m∗

b ⊕Hk(MC([b][r
∗]E0))),

ctG2
ρ∗ = (ctG2,1

ρ∗ = [b′]E0, ctG2,2
ρ∗ = ρ∗ ⊕Hk(MC([b

′][r∗]E0)))

for u,b,b′ $←− [−µ, µ]n,ρ∗ $←− {0, 1}mlen(λ)

Game3

pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K), pk
G3 = [r∗]E0, u,

ctG3

m∗
b
= (ctG3,1

m∗
b

= [b]E0, ctG3,2
m∗

b
= m∗

b ⊕Hk(MC([b̃]E0)) ),

ctG3
ρ∗ = (ctG3,1

ρ∗ = [b′]E0, ctG3,2
ρ∗ = ρ∗ ⊕Hk(MC([b

′][r∗]E0)))

for u,b,b′, b̃
$←− [−µ, µ]n,ρ∗ $←− {0, 1}mlen(λ)

Game4

pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K), pk
G4 = [r∗]E0, u,

ctG4

m∗
b
= (ctG4,1

m∗
b

= [b]E0, ctG4,2
m∗

b
= m∗

b ⊕ h1 ),

ctG4
ρ∗ = (ctG4,1

ρ∗ = [b′]E0, ctG4,2
ρ∗ = ρ∗ ⊕Hk(MC([b

′][r∗]E0)))

for u,b,b′ $←− [−µ, µ]n, h1
$←− {0, 1}mlen(λ)

Game5

pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K), pk
G5 = [r∗]E0, u,

ctG5

m∗
b
= (ctG5,1

m∗
b

= [b]E0, ctG5,2
m∗

b
= m∗

b ⊕ h1),

ctG5
ρ∗ = (ctG5,1

ρ∗ = [b′]E0, ctG5,2
ρ∗ = ρ∗ ⊕Hk(MC([b̃′]E0)) )

for u,b,b′, b̃′ $←− [−µ, µ]n, h1
$←− {0, 1}mlen(λ)

Game6

pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K), pk
G6 = [r∗]E0, u,

ctG6

m∗
b
= (ctG6,1

m∗
b

= [b]E0, ctG6,2
m∗

b
= m∗

b ⊕ h1),

ctG6
ρ∗ = (ctG6,1

ρ∗ = [b′]E0, ctG6,2
ρ∗ = ρ∗ ⊕ h2 )

for u,b,b′ $←− [−µ, µ]n, h1, h2
$←− {0, 1}mlen(λ)

Table 4 Changes in the adversary’s view across the sequence of games.
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Game2: The Game2 is identical to Game1 except that the leakage z = f(sk,ρ∗) = sk− r∗ ∈

[−µ, µ]n where r∗ = KDF(ρ∗) is replaced by a random element u
$←− [−µ, µ]n in the challenge

phase.

Since pkG2 = pkG1 = [r∗]E0, ctG2
m∗

b
= ctG1

m∗
b
= ([b]E0, m∗

b ⊕Hk(MC([b][r∗]E0))) and ctG2
ρ∗ =

([b′]E0, ρ∗⊕Hk(MC([b′][r∗]E0))) doe not contain any information about sk do not depend
on sk and z = sk − r∗ in Game1 and u in Game2 both are uniformly random in [−µ, µ]n, it
follows that Game1 and Game2 are statistically indistinguishable from adversaries point of
view. Hence, |Pr[S1]− Pr[S2]| ≤ ϵ2(λ) where ϵ2(λ) negligible function in λ.

Claim 2. |Pr[S1]− Pr[S2]| ≤ ϵ2(λ) where ϵ2(λ) negligible function in λ.

Game3: The game Game2 is transformed into Game3 by replacing

ctG2
m∗

b
= (ctG2,1

m∗
b

= [b]E0, ctG2,2
m∗

b
= m∗

b ⊕Hk(MC([b][r∗]E0)))

in Game2 to

ctG3
m∗

b
= (ctG3,1

m∗
b

= [b]E0, ctG3,2
m∗

b
= m∗

b ⊕Hk(MC([b̃]E0)) )

in Game3 in challenge phase where b, b̃
$←− [−µ, µ]n.

Claim 3. |Pr[S2]− Pr[S3]| ≤ ϵ3 where ϵ3(λ) negligible function in λ.

Proof We show below that if the adversary A can distinguish between Game3 and Game2 then
we can construct a distinguisher D for the CSSIDDH problem. Let the CSSIDDH challenger C
provides an instance of CSSIDDH problem IN = (E0, [α]E0, [β]E0, [γ]E0) to the distinguisher
D.
Setup: The distinguisher D generates the public parameter pphPKE =

(p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K) ← hPKE.Setup(λ) and sets pk = [α]E0. It sends pphPKE
along with pk to the adversary A.
Challenge Phase: After receiving the challenge plaintext pair (m∗

0,m
∗
1) from A, the

distinguisher D Uniformly samples b
$←− {0, 1}, computes ct

(1)
m∗

b
= [β]E0, ct

(2)
m∗

b
= m∗

b ⊕

Hk(MC([γ]E0)) and sends the ciphertext ctm∗
b
= (ct

(1)
m∗

b
, ct

(2)
m∗

b
) to A.

Guess Phase: Upon receiving b′ ∈ {0, 1} from A, the distinguisher D submits 1 to the
CSSIDDH challenger C if b = b′, otherwise, submits 0 to C.

We have the following two cases:
• Case I: If the input IN to D is of the form (E0, [α]E0, [β]E0, [β][α]E0) then computation

proceeds just as in Game2 and therefore Pr
[
D(E0, [α]E0, [β]E0, [β][α]E0) = 1 | [α], [β], [γ]

$←− Cl(O)
]
= Pr[S2]

• Case II: If the input IN to D is of the form (E0, [α]E0, [β]E0, [γ]E0) then computation pro-

ceeds just as in Game3 and therefore Pr
[
D(E0, [α]E0, [β]E0, [β][α]E0) = 1 | [α], [β], [γ]

$←−

Cl(O)
]
= Pr[S3]

Thus |Pr[S2] − Pr[S3]| ≤ ϵ3 where ϵ3 is the advantage AdvCSSIDDH
D (λ) of D in solving the

CSSIDDH problem which is negligible under the CSSIDDH assumption. □
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Game4: We now transform Game3 into Game4 by computing Hk(MC([b̃]E0)) by sim-

ply choosing h1
$←− {0, 1}mlen(λ), rather than as a hash, i.e, replacing ctG3

m∗
b

= (ctG3,1
m∗

b
=

[b]E0, ctG3,2
m∗

b
= m∗

b ⊕Hk(MC([b̃]E0))) with

ctG4
m∗

b
= (ctG4,1

m∗
b

= [b]E0, ctG4,2
m∗

b
= m∗

b ⊕ h1 )

where b
$←− [−µ, µ]n and h1

$←− {0, 1}mlen(λ).

Claim 4. |Pr[S3]− Pr[S4]| ≤ ϵ4 where ϵ4(λ) negligible function in λ.

Proof We show below if the adversary A can distinguish between Game3 and Game4 then
we can construct a distinguisher D for the entropy smoothing problem of the family of keyed
hash functions H = {Hk}k∈K.

Let the entropy smoothing challenger C provides an instance of entropy smoothing hash
function IN = (k ∈ K, h1 ∈ {0, 1}mlen(λ)) to D.
Setup: The distinguisher D generates the public parameter pphPKE =

(p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K) and computes pk = [r∗]E0 where r∗
$←− [−µ, µ]n and

sends pphPKE along with pk to the adversary A.
Challenge Phase: After receiving the challenge plaintext pair (m∗

0,m
∗
1) from A, the dis-

tinguisher D uniformly samples b
$←− {0, 1}, computes ct

(1)
m∗

b
= [b]E0, ct

(2)
m∗

b
= m∗

b ⊕ h1 and

sends the ciphertext ctm∗
b
= (ct

(1)
m∗

b
, ct

(2)
m∗

b
) to A.

Guess Phase: Upon receiving b′ ∈ {0, 1} from A, the distinguisher D submits 1 to the
entropy smoothing challenger C if b = b′, otherwise, submits 0 to C.

We have the following two cases:
• Case I: If the input IN to D is of the form (k ∈ K, h1 = Hk(g)) ∈ {0, 1}mlen(λ)) for some

g ∈ Fp then computation proceeds just as in Game3 and therefore

Pr
[
D(k, h1 = Hk(g)) = 1 | k $←− K, g $←− Fp

]
= Pr[S3]

• Case II: If the input IN to D is of the form (k ∈ K, h1
$←− {0, 1}mlen(λ)) then computation

proceeds just as in Game4 and therefore

Pr
[
D(k, h1) = 1 | k $←− K, h1

$←− {0, 1}mlen(λ)
]
= Pr[S4]

Thus
|Pr[S3]− Pr[S4]| ≤ ϵ4

where ϵ4 is the entropy smoothing advantage AdvESD (λ) of D which is negligible if the family of
keyed hash functions H = {Hk}k∈K is entropy smoothing for any PPT distinguisher D. □

Game5: The game Game5 is identical to Game4 except that ctG4
ρ∗ = (ctG4,1

ρ∗ = [b′]E0, ctG4,2
m∗

b
=

r ⊕Hk(MC([b′][r∗]E0))) is replaced with

ctG5
ρ∗ = (ctG5,1

ρ∗ = [b]E0, ctG5,2
ρ∗ = r ⊕Hk(MC([b̃′]E0)) )

where b, b̃′ $←− [−µ, µ]n.
We can show that if the adversary A can distinguish between Game4 and Game5 then we
can construct a distinguisher D for the CSSIDDH problem. The proof is similar to that of
Claim 3 distinguishing between Game2 and Game3. Thus the Claim 5 below holds under
the CSSIDDH assumption.
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Claim 5. |Pr[S4]− Pr[S5]| ≤ ϵ3 where ϵ3(λ) negligible function in λ.

Game6: We now transition from Game5 to Game6 by modifying the computation of

Hk(MC([b̃′]E0)). Instead of evaluating it as a hash function, we replace it with a uniformly

random value h2 drawn from {0, 1}mlen(λ). Thus, the ciphertext in Game5

ctG5
ρ∗ =

(
ctG5,1

ρ∗ = [b′]E0, ctG5,2
m∗

b
= r ⊕Hk(MC([b̃′]E0))

)
in the challenge phase is replaced in Game6 by

ctG6
ρ∗ =

(
ctG6,1

ρ∗ = [b′]E0, ctG6,2
ρ∗ = r ⊕ h2

)
where, b′, b̃′ are sampled uniformly at random from [−µ, µ]n and h2 is drawn from

{0, 1}mlen(λ).

Similar to the proof of the Claim 3 of distinguishing between Game3 and Game4, we can show
that if the adversary A can distinguish between Game5 and Game6 then we can construct
a distinguisher D for the entropy smoothing problem of the family of keyed hash functions
H = {Hk}k∈K. Assuming the family of keyed hash functions H = {Hk}k∈K is entropy
smoothing claim follows.

Claim 6. |Pr[S5]− Pr[S6]| ≤ ϵ4 where ϵ4(λ) negligible function in λ.

Finally, in Game6, the adversary A’s input is

pkG6 = [r∗]E0, u, ctG6
m∗

b
= (ctG6,1

m∗
b

= [b]E0, ctG6,2
m∗

b
= m∗

b ⊕ h1),

ctG6
ρ∗ = (ctG6,1

ρ∗ = [b′]E0, ctG6,2
ρ∗ = ρ∗ ⊕ h2)

where u,b,b′, r
$←− [−µ, µ]n, h1, h2

$←− {0, 1}mlen(λ) and r∗ = KDF(ρ∗). Here, h1, h2 act like
one-time pad in Game6, so probability of correctly guessing b = b′ is Pr[S6] =

1
2 . Therefore,

|Pr[S0]− Pr[S6]|
≤ |Pr[S0]− Pr[S1]|+ |Pr[S1]− Pr[S2]|+ |Pr[S2]− Pr[S3]|
+ |Pr[S3]− Pr[S4]|+ |Pr[S4]− Pr[S5]|+ |Pr[S5]− Pr[S6]|

< ϵ1 + ϵ2 + 2ϵ3 + 2ϵ4

Hence, |Pr[S0]− 1
2 | < ϵ where ϵ = ϵ1 + ϵ2 + 2ϵ3 + 2ϵ4, i.e.

Advf-CS+LR
Hased-PKE,A(λ) = |Pr[Expf-CS+LR

Hased-PKE,A(λ) = 1]− 1

2
| < ϵ

for f(sk,ρ∗) = sk− KDF(ρ∗).

□

4 Security Proof of Theorem 41

In this section, we establish the f -CS+ LR security of SimS, as stated in Theorem
41 which is essential for proving the security of the updatable public key encryption
scheme.
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Theorem 30. The scheme SimS is f -CS+ LR secure for f : [−µ, µ]n ×Z2q−2 →
[−µ, µ]n as per Definition 20 under the assumption that REAB

satisfies the second
property of a randomizing function (see Definition 3), KDF is a secure key derivation
function (see Definition 16) and the CSSIDDH assumption given in Definition 13 holds.

Proof We prove SimS is f -CS+ LR secure for f(sk,ρ∗) = sk − KDF(ρ∗) using a sequence
of games between an adversary A and a challenger C where KDF : MS = Z2q−2 → KS =
[−µ, µ]n is a key derivation function. The adversary’s view across the sequence of games is
described in Fig. 5 where the changes are highlighted by enclosing them in a box. We define
Si as the event that b = b′ in Gamei for i = 0, . . . , 6.

Game0: This is the original f -CS+ LR security game Expf-CS+LR
PKE,A (λ) between a challenger

C and an adversary A that works as follows:

Setup: The challenger C generates the public parameter ppSimS =
(p, q, ℓ1, . . . , ℓn, µ, E0, RE) by running SimS.Setup(λ) and a secret-public key pair
(sk = a ∈ [−µ, µ]n, pk = EA = [a]E0) is generated by running SimS.KeyGen(ppSimS). The
challenger C sends ppSimS and pkG0 = pk to A and keeps sk secret to itself.
Challenge Phase: The adversary A sends (m∗

0,m
∗
1) ∈ Z2q−2 × Z2q−2 as challenge mes-

sage pair to C. Then C samples ρ∗ $←− Z2q−2 and b
$←− {0, 1}, computes r∗ = KDF(ρ∗) ∈

[−µ, µ]n and sends to A the tuple (z, ctG0
m∗

b
, ctG0

ρ∗) where z = sk − r∗ = a − r∗, ctG0
m∗

b
←

SimS.Enc(ppSimS, pk,m
∗
b ) with ctG0

m∗
b
= (ctG0,1

m∗
b

= [b]E0, ctG0,2
m∗

b
= R[b]EA

(x([2m∗
b+1]P[b]EA

)))

and ctG0
ρ∗ ← SimS.Enc(ppSimS, pk,ρ

∗) with ctG0
ρ∗ = (ctG0,1

ρ∗ = [b′]E0, ctG0,2
ρ∗ = R[b′]EA

(x(

[2ρ∗ + 1]P[b′]EA
))) to A and b,b′ $←− [−µ, µ]n.

Guess Phase: The adversary A eventually submits a bit b′ to the challenger C and if b = b′

then the experiment Expf-CS+LR
SimS,A (λ) returns 1, otherwise, it returns 0.

Game1: In this game, we modify the generation of the public key and m∗
b and ρ∗ are

encrypted using the updated public key.

Setup: The challenger C generates the public parameter ppSimS =

(p, q, ℓ1, . . . , ℓn, µ, E0, RE) ← SimS.Setup(λ) and samples ρ∗ $←− Z2q−2 , computes

r∗ = KDF(ρ∗) ∈ [−µ, µ]n. The challenger C sends ppSimS and pkG1 = [r∗]E0 to A.
Challenge Phase: The adversary A sends (m∗

0,m
∗
1) ∈ Z2q−2 × Z2q−2 as a

challenge message pair to C. Then C uniformly samples b
$←− {0, 1} and sends

to A the tuple (z, ctG1
m∗

b
, ctG1

ρ∗) where z = f(sk,ρ∗) = sk − r∗, ctG1
m∗

b
←

SimS.Enc(ppSimS, pk
G1 ,m∗

b ) and ctG1
ρ∗ ← SimS.Enc(ppSimS, pk

G1 ,ρ∗) with ctG1
m∗

b
=

(ctG1,1
m∗

b
= [b]E0, ctG1,2

m∗
b

= R[b][r∗]E0
(x([2m∗

b + 1]P[b][r∗]E0
)) ), ctG1

ρ∗ = (ctG1,1
ρ∗ = [b′]E0,

ctG1,2
ρ∗ = R[b′][r∗]E0

(x([2ρ∗ + 1]P[b′][r∗]E0
)) ) and b,b′ $←− [−µ, µ]n.

Guess Phase: The adversary A eventually submits a bit b′ to the challenger C and if b = b′

then the experiment Expf-CS+LR
SimS,A (λ) returns 1, otherwise, it returns 0.

Note that, pkG0 = [sk]E0 in Game0 is replaced by pkG1 = [r∗]E0 in Game1 in the setup phase
and

ctG0
m∗

b
= (ctG0,1

m∗
b

= [b]E0, ctG0,2
m∗

b
= R[b]EA

(x([2m∗
b + 1]P[b]EA

)))
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Game Transition of the game

Game0

The original f -CS+ LR security game

ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE), pk
G0 = [sk]E0 = EA, z = sk− r∗,

ctG0

m∗
b
= (ctG0,1

m∗
b

= [b]E0, ctG0,2
m∗

b
= R[b]EA

(x([2m∗
b + 1]P[b]EA

))),

ctG0
ρ∗ = (ctG0,1

ρ∗ = [b′]E0, ctG0,2
ρ∗ = R[b′]EA

(x([2ρ∗ + 1]P[b′]EA
)))

with r∗ = KDF(ρ∗),b,b′ $←− [−µ, µ]n and ρ∗ $←− Z2q−2

Game1

ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE), pkG1 = [r∗]E0 , z = sk− r∗,

ctG1

m∗
b
= (ctG1,1

m∗
b

= [b]E0, ctG1,2
m∗

b
= R[b][r∗]E0

(x([2m∗
b + 1]P[b][r∗]E0

)) )

and ctG1
ρ∗ = (ctG1,1

ρ∗ = [b′]E0, ctG1,2
ρ∗ = R[b′][r∗]E0

(x([2ρ∗ + 1]P[b′][r∗]E0
)) )

with b,b′ $←− [−µ, µ]n and ρ∗ $←− Z2q−2

Game2

ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE), pk
G2 = [r∗]E0, u ,

ctG2

m∗
b
= (ctG2,1

m∗
b

= [b]E0, ctG2,2
m∗

b
= R[b][r∗]E0

(x([2m∗
b + 1]P[b][r∗]E0

)))

and ctG2
ρ∗ = (ctG2,1

ρ∗ = [b′]E0, ctG2,2
ρ∗ = R[b′][r∗]E0

(x([2ρ∗ + 1]P[b′][r∗]E0
)))

with u,b,b′ $←− [−µ, µ]n and ρ∗ $←− Z2q−2

Game3

ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE), pk
G3 = [r∗]E0, u,

ctG3

m∗
b
= (ctG3,1

m∗
b

= [b]E0, ctG3,2
m∗

b
= R[b̃]E0

(x([2m∗
b + 1]P[b̃]E0

)) )

and ctG3
ρ∗ = (ctG3,1

ρ∗ = [b′]E0, ctG3,2
ρ∗ = R[b′][r∗]E0

(x([2ρ∗ + 1]P[b′][r∗]E0
)))

with u,b,b′, b̃
$←− [−µ, µ]n and ρ∗ $←− Z2q−2

Game4

ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE), pk
G4 = [r∗]E0, u,

ctG4

m∗
b
= (ctG4,1

m∗
b

= [b]E0, ctG4,2
m∗

b
= h1 )

and ctG4
ρ∗ = (ctG4,1

ρ∗ = [b′]E0, ctG4,2
ρ∗ = R[b′][r∗]E0

(x([2ρ∗ + 1]P[b′][r∗]E0
)))

with u,b,b′ $←− [−µ, µ]n and h1
$←− Fp

Game5

ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE), pk
G5 = [r∗]E0, u,

ctG5

m∗
b
= (ctG5,1

m∗
b

= [b]E0, ctG5,2
m∗

b
= h1)

and ctG5
ρ∗ = (ctG5,1

ρ∗ = [b′]E0, ctG5,2
ρ∗ = R[b̃′]E0

(x([2ρ∗ + 1]P[b̃′]E0
)) )

with u,b,b′, b̃′ $←− [−µ, µ]n and h1
$←− Fp

Game6

ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE), pk
G6 = [r∗]E0, u,

ctG6

m∗
b
= (ctG6,1

m∗
b

= [b]E0, ctG6,2
m∗

b
= h1)

and ctG6
ρ∗ = (ctG6,1

ρ∗ = [b′]E0, ctG6,2
ρ∗ = h2 )

with u,b,b′ $←− [−µ, µ]n and h1, h2
$←− Fp

Table 5 Changes in the adversary’s view across the sequence of games.
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ctG0
ρ∗ = (ctG0,1

ρ∗ = [b′]E0, ctG0,2
ρ∗ = R[b′]EA

(x([2ρ∗ + 1]P[b′]EA
)))

in Game0 are replaced by

ctG1
m∗

b
= (ctG1,1

m∗
b

= [b]E0, ctG1,2
m∗

b
= R[b][r∗]E0

(x([2m∗
b + 1]P[b][r∗]E0

)))

ctG1
ρ∗ = (ctG1,1

ρ∗ = [b′]E0, ctG1,2
ρ∗ = R[b′][r∗]E0

(x([2ρ∗ + 1]P[b′][r∗]E0
)))

in Game1 in challenge phase. As pkG0 and pkG1 are identically distributed, the adversary’s
view in Game0 and Game1 is indistinguishable. Consequently, we have Claim 1 below.

Claim 1. |Pr[S0]− Pr[S1]| ≤ ϵ1(λ) where ϵ1(λ) is a negligible function in λ.

Game2: This game identical to Game1 except the leakage z = f(sk,ρ) = sk − r∗ where

r∗ = KDF(ρ∗) in Game1 is replaced by a random element u
$←− [−µ, µ]n in Game2.

Since the public key remains unchanged, i.e., pkG2 = pkG1 = [r∗]E0, the ciphertexts are also

identical with ctG2

m∗
b
= ctG1

m∗
b
= (ctG1,1

m∗
b

= [b]E0, ct
G1,2
m∗

b
= R[b][r∗]E0

(x([2m∗
b + 1]P[b][r∗]E0

)))

and ctG2
ρ∗ = ctG1

ρ∗ = (ctG1,1
ρ∗ = [b′]E0, ct

G1,2
ρ∗ = R[b′][r∗]E0

(x([2ρ∗ + 1]P[b′][r∗]E0
))).

Given that z = f(sk,ρ∗) = sk − r∗ and r∗ = KDF(ρ∗), the security of the key derivation
function KDF guarantees that KDF(ρ∗) is randomly distributed over [−µ, µ]n. Consequently,
the term sk − r∗ = sk − KDF(ρ∗) is uniformly random within [−µ, µ]n. Both sk − r∗ and u
are uniformly distributed over the same domain, making their distributions indistinguishable.
Consequently, the adversary’s advantage in distinguishing Game1 from Game2 is negligible,
implying that Game1 and Game2 are statistically close and we have the following claim.

Claim 2. |Pr[S1]− Pr[S2]| ≤ ϵ2(λ) where ϵ2(λ) is a negligible function in λ.

Game3: In Game2, the adversary A’s view is ppSimS, pk
G2 = [r∗]E0, u, ctG2

m∗
b
= (ctG2,1

m∗
b

=

[b]E0, ctG2,2
m∗

b
= R[b][r∗]E0

(x([2m∗
b + 1]P[b][r∗]E0

))) and ctG2
ρ∗ = (ctG2,1

ρ∗ = [b′]E0, ctG2,2
ρ∗ =

R[b′][r∗]E0
(x([2ρ∗ + 1]P[b′][r∗]E0

))) where u,b,b′ $←− [−µ, µ]n,ρ∗ $←− Z2q−2 .

Now we transform Game2 into Game3 by changing the ciphertext

ctG2
m∗

b
= (ctG2,1

m∗
b

= [b]E0, ctG2,2
m∗

b
= R[b][r∗]E0

(x([2m∗
b + 1]P[b][r∗]E0

)))

in Game2 to

ctG3
m∗

b
= (ctG3,1

m∗
b

= [b]E0, ctG3,2
m∗

b
= R[b̃]E0

(x([2m∗
b + 1]P[b̃]E0

)) )

in Game3 where b̃
$←− [−µ, µ]n.

Claim 3. |Pr[S2]−Pr[S3]| ≤ ϵ3(λ) where ϵ3(λ) = AdvCSSIDDH
D (λ) is a negligible function in

λ.

Proof We will show that if the adversary A can distinguish between Game3 and Game2 then
we can construct a distinguisher D for the CSSIDDH problem. Let the challenger C provides
an instance IN = (E0, [α]E0, [β]E0, [γ]E0) of CSSIDDH problem to the distinguisher D.
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Setup: The distinguisher D generates the public parameter ppSimS =
(p, q, ℓ1, . . . , ℓn, µ, E0, RE) ← SimS.Setup(λ) and sends ppSimS along with pk = [α]E0 to the
adversary A.
Simulation of the Challenge Phase: After receiving the challenge plaintext pair (m∗

0,m
∗
1)

from A, the distinguisher D uniformly samples b
$←− {0, 1}, computes ct(1) = [β]E0, ct(2) =

R[γ]E0
(x([2m∗

b + 1]P[γ]E0
)) and sends the ciphertext ct = (ct(1), ct(2)) to A.

Guess Phase: Upon receiving b′ from A, the distinguisher D submits 1 to C if b = b′,
otherwise, submits 0 to C.
We have the following two cases:

• Case I: If the input IN to D is of the form (E0, [α]E0, [β]E0, [β][α]E0) then computation

proceeds just as in Game2 and therefore Pr
[
D(E0, [α]E0, [β]E0, [β][α]E0) = 1 | [α], [β], [γ]

$←− Cl(O)
]
= Pr[S2].

• Case II: If the input IN to D is of the form ([α]E0, [β]E0, [γ]E0) then computation pro-

ceeds just as in Game3 and therefore Pr[S3] = Pr
[
D(E0, [α]E0, [β]E0, [β][α]E0) = 1 |

[α], [β], [γ]
$←− Cl(O)

]
.

Thus
|Pr[S2]− Pr[S3]| ≤ ϵ3

where ϵ3 is the advantage AdvCSSIDDH
D (λ) of D in solving the CSSIDDH problem (see Definition

13) which is negligible under the CSSIDDH assumption.

□

Game4: The game Game3 and Game4 are exactly same except that the term R[b̃]([b̃]E0) is

replaced by h1
$←− Fp i.e, the ciphertext

ctG3
m∗

b
= (ctG3,1

m∗
b

= [b]E0, ctG3,2
m∗

b
= R[b̃]E0

(x([2m∗
b + 1]P[b̃]E0

)))

in Game3 is replaced by

ctG4
m∗

b
= (ctG4,1

m∗
b

= [b]E0, ctG4,2
m∗

b
= h1 )

in Game4 in the challenge phase.

The second property of the randomizing function (see Definition 3) states that for any x ∈ Fp,
an adversary without access to x and E, cannot distinguish RE(x) from a random element
in Fp. Given that [b̃]E0 is unknown to the adversary, the value R[b̃]E0

(x([2m∗
b + 1]P[b̃]E0

))

is uniformly distributed over Fp. Since both R[b̃]E0
(x([2m∗

b + 1]P[b̃]E0
)) and h1 are uniform

in Fp, the adversary cannot distinguish Game4 from Game3. Consequently, the statistical
distance between these games is bounded and Claim 4 follows.

Claim 4. |Pr[S3]− Pr[S4]| ≤ ϵ4(λ) where ϵ4(λ) is a negligible function in λ.

Game5: Next we transform Game4 into Game5 by changing the challenge ciphertext

ctG4
ρ∗ = (ctG4,1

ρ∗ = [b′]E0, ctG4,2
ρ∗ = R[b′][r∗]E0

(x([2ρ∗ + 1]P[b′][r∗]E0
)))

in Game4 to

ctG5
ρ∗ = (ctG5,1

ρ∗ = [b′]E0, ctG3,2
m∗

b
= R[b̃′]E0

(x([2ρ∗ + 1]P[b̃′]E0
)) )
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in Game5 where b̃′ $←− [−µ, µ]n.
We can show that if the adversary A can distinguish between Game4 and Game5 then we can
construct a distinguisher D for the CSSIDDH problem. Hence, the claim follows. The proof
is similar to distinguishing between Game3 and Game4.

Claim 5. |Pr[S4]−Pr[S5]| ≤ ϵ3(λ) where ϵ3(λ) = AdvCSSIDDH
D (λ) is a negligible function in

λ.

Game6: The game Game5 and Game6 exactly same except that the term R[b̃′]([b̃
′]E0) s

replaced by h2
$←− Fp i.e, replacing the ciphertext

ctG5
ρ∗ = (ctG5,1

ρ∗ = [b′]E0, ctG5,2
ρ∗ = R[b̃′]E0

(x([2ρ∗ + 1]P[b̃′]E0
)))

in Game3 s replaced by

ctG6
ρ∗ = (ctG6,1

ρ∗ = [b]E0, ctG6,2
ρ∗ = h2 )

in Game4 in the challenge phase.

Since RE is a randomizing function, Game5 is indistinguishable from Game6. Hence, Claim
6 follows.

Claim 6. |Pr[S5]− Pr[S6]| ≤ ϵ4(λ) where ϵ4(λ) is a negligible function in λ.

Finally, in Game6, the adversary A’s view is

ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE), pkG6 = [r∗]E0, u, ctG6
m∗

b
= (ctG6,1

m∗
b

= [b]E0, ctG6,2
m∗

b
= h1), ct

G6
ρ∗ = (ctG6,1

ρ∗ = [b′]E0, ctG6,2
ρ∗ = h2)

where u,b,b′ $←− [−µ, µ]n and h1, h2
$←− Fp. Consequently, the probability of correctly

guessing b = b′ is Pr[S6] =
1
2 .

Therefore,

|Pr[S0]− Pr[S6]|
≤ |Pr[S0]− Pr[S1]|+ |Pr[S1]− Pr[S2]|+ |Pr[S2]− Pr[S3]|
+ |Pr[S3]− Pr[S4]|+ |Pr[S4]− Pr[S5]|+ |Pr[S5]− Pr[S6]|

< ϵ1 + ϵ2 + 2ϵ3 + 2ϵ4

Hence, Advf-CS+LR
SimS,A (λ) = |Pr[S0]− 1

2 | < ϵ where ϵ = ϵ1 + ϵ2 + 2ϵ3 + 2ϵ4.

□

5 Our Protocols for Updatable PKE

5.1 Construction 1 : UhPKE

Our first construction of updatable public key encryption UhPKE = (Setup,KeyGen,
Enc,Dec,UpdatePk, UpdateSk) is associated with a message spaceMS = {0, 1}mlen(λ)
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and a randomness space RS = {0, 1}mlen(λ). It is based on hPKE = (Setup,KeyGen,
Enc,Dec) recalled in Appendix A.1 with two additional PPT algorithms UpdatePk and
UpdateSk and works as follows.

UhPKE.Setup(λ) → ppUhPKE = (pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K),KDF):
A trusted party runs this algorithm on the input a security parameter λ and generates
the public parameter ppUhPKE = (pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K),KDF)
where pphPKE ← UhPKE.Setup(λ) and KDF : {0, 1}mlen(λ) → [−µ, µ]n is a key
derivation function. More specifically, the trusted parties execute the following steps:
i. Chooses a prime p = 4Πn

i=1ℓi − 1 where ℓi’s are distinct odd primes. Sets a base
curve E0 : y2 = x3 + x ∈ Ellp(O) over Fp with O = Z[

√
−p] and picks an integer

µ such that (2µ+ 1)n ≥ #Cl(O).
ii. Selects a key derivation function KDF : {0, 1}mlen(λ) → [−µ, µ]n.
iii. Samples a family of keyed hash function H = {Hk}k∈K where Hk : Fp →
{0, 1}mlen(λ) for each k ∈ K, K being key space.

iv. Outputs the public parameter ppUhPKE = (pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H =
{Hk}k∈K),KDF).

UhPKE.KeyGen(ppUhPKE)→ (sk
(u)
0 = a0, pk

(u)
0 = EA0): On input the public parameter

ppUhPKE = (pphPKE = (p, ℓ1, . . . , ℓn, µ, E0, H = {Hk}k∈K),KDF), a user generates its

secret-public key pair (sk
(u)
0 , pk

(u)
0 ) exactly the same way as in hPKE.KeyGen(pphPKE)

in Appendix A.1.

i. Samples a0 = (a01, . . . , a
0
n)

$←− [−µ, µ]n and defines [a0] = [l
a0
1

1 · · · l
a0
n

n ] ∈ Cl(O)
where li = ⟨ℓi, π − 1⟩ and π is the Frobenius endomorphism defined as π(x, y) =
(xp, yp) with π(O) = O.

ii. Computes EA0 = [a0]E0.

iii. Sets the public key pk
(u)
0 = EA0 and the secret key sk

(u)
0 = a0. Publish pk

(u)
0 and

keeps sk
(u)
0 secret to itself.

UhPKE.Enc(ppUhPKE, pk
(u)
i = EAi , m) → ctm: This algorithm is exactly same

as hPKE.Enc(pphPKE, pk
(u)
i ,m) described in Appendix A.1. Taking input the public

parameter ppUhPKE = (pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K),KDF), public key

pk
(u)
i = EAi and a message m ∈MS, an encrypter proceeds to compute ciphertext as

follows:
i. Randomly samples b = (b1, . . . , bn)

$←− [−µ, µ]n and defines [b] = [lb11 · · · lbnn ] ∈
Cl(O).

ii. Computes ct
(1)
m = [b]E0 and ct

(2)
m = m ⊕Hk(MC([b]EAi)) where MC([b]EAi) is

the Montgomery coefficient of [b]EAi .

iii. Sets the ciphertext ctm = (ct
(1)
m , ct

(2)
m ).

UhPKE.Dec(ppUhPKE, sk
(u)
i = ai, ctm = (ct

(1)
m , ct

(2)
m )) → m/ ⊥: Similar to

hPKE.Dec(pphPKE, sk
(u)
i , ctm) decrypter with its secret key sk

(u)
i runs this determinis-

tic algorithm on input the public parameter ppUhPKE = (pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,

MC ,H = {Hk}k∈K),KDF) , ciphertext ctm and its secret key sk
(u)
i = ai and recovers

the plaintext m by performing the following steps:
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i. Computes h = Hk(MC([ai]ct
(1)
m )) where MC([ai]ct

(1)
m ) is the Montgomery

coefficient of the elliptic curve [ai]ct
(1)
m .

ii. Decrypts the message ct
(2)
m ⊕ h.

UhPKE.UpdatePk(ppUhPKE, pk
(u)
i ,ρi) → (pk

(u)
i+1, upi+1): Given the public parameter

ppUhPKE = (pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K),KDF), a public key pk
(u)
i =

EAi and a random ρi ∈ {0, 1}mlen(λ), a user runs this algorithm and proceeds to

compute an updated ciphertext upi+1 and a updated public key pk
(u)
i+1 in the following

way:
i. Define ri = (r1, . . . , rn) = KDF(ρi) and [ri] = [lr11 · · · lrnn ] ∈ Cl(O) where li =
⟨ℓi, π − 1⟩.

ii. Computes EAi+1 = [−ri]pk(u)i and updated ciphertext upi+1 ←
UhPKE.Enc(ppUhPKE, pk

(u)
i ,ρi) with upi+1 = (ct

(1)
ρi

= [b′]E0, ct
(2)
ρi

=

ρi ⊕Hk(MC([b
′]pk

(u)
i ))) for some b′ $←− [−µ, µ]n.

iii. Returns updated public key pk
(u)
i+1 = EAi+1 and updated ciphertext upi+1 =

(ct
(1)
ρi

, ct
(2)
ρi

).

UhPKE.UpdateSk(ppUhPKE, sk
(u)
i , upi+1) → sk

(u)
i+1: On the input of the public param-

eter ppUhPKE = (pphPKE = (p, ℓ1, . . . , ℓn, µ, E0, H = {Hk}k∈K),KDF) and an updated

ciphertext upi+1, a user u with its secret key sk
(u)
i = ai runs this algorithm to generate

updated secret key sk
(u)
i+1 = ai+1 by executing the following steps:

i. Decrypts the updated ciphertext ρi = UhPKE.Dec(ppUhPKE, sk
(u)
i , upi+1 = (ct

(1)
ρi

=

[b′]E0, ct
(2)
ρi

= ρi⊕Hk(MC([b
′]pk

(u)
i ))) where ρi ∈ {0, 1}mlen(λ) and b′ $←− [−µ, µ]n.

ii. Computes updated secret key sk
(u)
i+1 = ai+1 = sk

(u)
i − KDF(ρi) = ai − KDF(ρi).

iii. Returns updated secret key sk
(u)
i+1 = ai+1.

Correctness. Note that, (sk
(u)
0 = a0, pk

(u)
0 = EA0) is generated by running

UhPKE.KeyGen(ppUhPKE) satisfying pk
(u)
0 = EA0 = [a0]E0 = [sk

(u)
0 ]E0. Also note that,

sk
(u)
i+1 = sk

(u)
i −KDF(ρi) and pk

(u)
i+1 = [−KDF(ρi)]pk

(u)
i . We will prove pk

(u)
i = [sk

(u)
i ]E0

for all i ≥ 0 by mathematical induction:

For i = 0 we have pk
(u)
0 = [sk

(u)
0 ]E0. Let pk

(u)
i = [sk

(u)
i ]E0 then

[sk
(u)
i+1]E0 = [sk

(u)
i − KDF(ρi)]E0 = [sk

(u)
i ][−KDF(ρi)]E0 = [sk

(u)
i ][−KDF(ρi)]E0 =

[−KDF(ρi)][sk
(u)
i ]E0 = [−KDF(ρi)]pk

(u)
i = pk

(u)
i+1. Hence, pk

(u)
i = [sk

(u)
i ]E0 for all

i ≥ 0. By the correctness of hPKE (as described in Appendix A.1), it follows that

Pr[UhPKE.Dec(ppUhPKE, sk
(u)
i ,UhPKE.Enc(ppUhPKE, pk

(u)
i ,m)) = m] = 1 ensuring the

correctness of UhPKE is established.
For the security proof of our updatable public key encryption scheme based on

hPKE, we need to establish that hPKE is f -CS+ LR secure. This is formally stated in
Theorem 38 with the corresponding proof presented in Appendix 3.

Theorem 31. The construction hPKE provides f -CS+ LR security for f : [−µ, µ]n×
{0, 1}mlen(λ) → [−µ, µ]n under the CSSIDDH assumption given in Definition 13,
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assuming H = {Hk}k∈K is entropy smoothing function and KDF is a secure key
derivation function as per Definition 16.

Theorem 32. If hPKE described in Appendix A.1 is circular secure and leakage-
resilient (f -CS+ LR) secure as per Definition 20 for f : [−µ, µ]n × {0, 1}mlen(λ) →
[−µ, µ]n then the isogeny based UhPKE construction is IND-CR-CPA secure as per
Definition 23.

Proof If an adversary A wins the experiment ExpIND-CR-CPA
UhPKE,A (λ) (see Fig. 3) then we will show

how to construct an adversary B that uses the adversary A as a subroutine and wins the

experiment Expf-CS+LR
hPKE,B (λ) (see Fig. 2) with AdvIND-CR-CPA

UhPKE,A (λ) = Advf-CS+LR
hPKE,B (λ).

In the experiment Expf-CS+LR
hPKE,B (λ), the hPKE challenger C generates the public parameter

pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K) by running hPKE.Setup(λ) and a secret-public
key pair (sk = a, pk = EA = [a]E0) by running hPKE.KeyGen(pphPKE). It provides pphPKE
and pk to the adversary B. The hPKE adversary B proceeds to simulate the experiment
ExpIND-CR-CPA

UhPKE,A (λ) for the UhPKE adversary A in the following manner.

Setup: The adversary B initializes a list rList = ϕ and epoch i = 0 and also takes a key
derivation function KDF : {0, 1}mlen(λ) → [−µ, µ]n. It sends ppUhPKE = (pphPKE,KDF) with

pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K) and pk
(u)
0 = pk to the adversary A.

Simulation of the pre-challenge oracle query: The adversary B issues polynomially
many adaptive queries to the oracle OUhPKE

up (·) which are simulated by B perfectly for A as
follows.

− OUhPKE
up (ρi): Upon receiving a query on ρi ∈ {0, 1}mlen(λ) at the i-th epoch, the

adversary B computes ri = KDF(ρi), updates the list rList = rList ∪ {(i, ri)}, runs

UhPKE.UpdatePk(ppUhPKE, pk
(u)
i ;ρi)→ (pk

(u)
i+1 = [−ri]pk

(u)
i , upi+1) with upi+1 = (ct

(1)
ρi

=

[b′]E0, ct
(2)
ρi

= ρi ⊕Hk(MC([b′]pk
(u)
i )))← UhPKE.Enc(ppUhPKE, pk

(u)
i ,ρi) choosing some

b′ ∈ [−µ, µ]n. It increments the counter i to i + 1. Note that, pk
(u)
i = EAi

implies

pk
(u)
i+1 = [−ri]pk

(u)
i = [−

∑i−1
j=0 rj ]pk

(u)
0 = [−

∑i−1
j=0 rj ][a]E0 = [a −

∑i−1
j=0 rj ]E0 = [ai]E0

= EAi+1
implicitly setting ai = a−

∑i−1
j=0 rj .

Simulation of the challenge phase: After receiving a challenge message pair (m∗
0,m

∗
1)

from the UhPKE adversary A, the hPKE adversary B also forwards (m∗
0,m

∗
1) to its own

challenger C. In response, the challenger C performs the following steps

i. Uniformly samples ρ∗ ∈ {0, 1}mlen, computes r∗ = KDF(ρ∗) and sets z = sk−r∗ = a−r∗.
ii. Computes ctm∗

b
← hPKE.Enc(pphPKE, pk

(u)
0 = pk,m∗

b ) with ctm∗
b

= (ct
(1)
m∗

b
=

[b]E0, ct
(2)
m∗

b
= m∗

b ⊕Hk(MC([b]EA))) for some uniformly element b ∈ [−µ, µ]n.

iii. Computes ctρ∗ = hPKE.Enc(pphPKE, pk
(u)
0 = pk,ρ∗) with ctρ∗ = (ct

(1)
ρ∗ = [b′]E0, ct

(2)
ρ∗ =

ρ∗ ⊕Hk(MC([b′]EA))) for some uniformly element b′ ∈ [−µ, µ]n.
iv. Sends (z, ctm∗

b
, ctρ∗) to B.

To simulate a challenge ciphertext for UhPKE adversary A at epoch t in which A issued
its challenge messages, the adversary B computes r =

∑t−1
i=0 ri by extracting ri from its

maintained list rList for i = 0, 1, . . . , t−1 and sets the challenge ciphertext as c̃tm∗
b
= (c̃t

(1)
m∗

b
=

[r]ct
(1)
m∗

b
, c̃t

(2)
m∗

b
= ct

(2)
m∗

b
) by extracting ct

(1)
m∗

b
= [b]E0 and ct

(2)
m∗

b
= m∗

b ⊕Hk(MC([b]EA)) from

34



ctm∗
b
= (ct

(1)
m∗

b
, ct

(2)
m∗

b
) sent by the hPKE challenger C to B. The adversary B then forwards

c̃tm∗
b
as the challenge ciphertext to A.

Note that c̃tm∗
b
is a valid UhPKE encryption of m∗

b under the public key pk
(u)
t as pk

(u)
t =

EAt
= [at]E0 = [a−

∑t−1
i=0 ri]E0 = [−r]pk(u)0

and c̃tm∗
b
= ([r]ct

(1)
m∗

b
, ct

(2)
m∗

b
) = ([b + r]E0,m

∗
b ⊕ Hk(MC([b + a]E0))) = ([b + r]E0,m

∗
b ⊕

Hk(MC([b+r+a−r]E0))) = ([b+r]E0,m
∗
b⊕Hk(MC([b+r][a−r]E0))) = ([b+r]E0,m

∗
b⊕

Hk(MC([b + r]pk
(u)
t ))) = ([b̃]E0,m

∗
b ⊕ Hk(MC([b̃]EAt

))) where b̃ = b + r which remains

uniformly distributed in [−µ, µ]n since b
$←− [−µ, µ]n. Thus c̃tm∗

b
has the same distribu-

tion generated by UhPKE.Enc(ppUhPKE, pk
(u)
t ,m∗

b ) as the real protocol, demonstrating the
correctness of the simulated ciphertext under the UhPKE encryption scheme.

Simulation of the post-challenge oracle query: The hPKE adversary B simulates the
oracle exactly in the same as in the pre-challenge oracle query to OUhPKE

up (·).

Simulation of the reveal phase: Let OUhPKE
up (ρt′) is the final query issued by the UhPKE

adversary A. The hPKE adversary B is required to output the final public key, secret key

and updated ciphertext (pk∗, sk∗, up∗) where sk∗ ← UhPKE.UpdateSk(ppUhPKE, sk
(u)
t′ , up∗)

and (pk∗, up∗) ← UhPKE.UpdatePk(ppUhPKE, pk
(u)
t′ ) which represents the cumulative effect

of all t′ update queries made by A along with a final update whose randomness remains

unknown to A. Here, pk
(u)
t′ = EAt′

= [at′ ]E0 = [a−
∑t′−1

i=0 ri]E0 = [−r′][a]pk(u)0 = [−r′]EA

which implicitly sets sk
(u)
t′ = at′ = a−

∑t′−1
i=0 ri = a− r′ with r′ =

∑t′−1
i=0 ri.

To simulate (pk∗, sk∗, up∗), the adversary B employs z = a − r∗ and the ciphertext ctρ∗ ←
hPKE.Enc(pphPKE, pk

(u)
0 = pk,ρ∗) received from its own challenger C with ctρ∗ = (ct

(1)
ρ∗ , ct

(2)
ρ∗ ),

ct
(1)
ρ∗ = [b′]E0, ct

(2)
ρ∗ = ρ∗ ⊕Hk(MC([b′]EA)), b,b′ $←− [−µ, µ]n and r∗ = KDF(ρ∗) for some

ρ∗ ∈ {0, 1}mlen (unknown to B) as follows.
The adversary B computes r′ =

∑t′−1
i=0 ri by extracting ri for i = 0, 1, . . . , t′ − 1 from its

maintained list rList, sets secret key sk∗ at epoch t′ +1 as sk∗ = z− r′ and defines the public
key at epoch t′ + 1 as pk∗ = [sk∗]E0.

Note that sk∗ = z− r′ = a− r∗ − r′ = sk
(u)
t′ − r∗ = at′ − r∗ which has the same distribution

as that in the real protocol by executing UhPKE.UpdateSk(ppUhPKE, sk
(u)
t′ , up∗). Moreover,

pk∗ is set to be [sk∗]E0 which is identically distributed as in the real protocol by invoking

UhPKE.UpdatePk(ppUhPKE, pk
(u)
t′ ,ρ∗). Thus, z = a − r∗ sent by C to B is sufficient for B to

simulates sk∗ and pk∗ without knowing explicitly ρ∗ or r∗ = KDF(ρ∗). To compute updated

ciphertext up∗, the adversary B sets up∗ = (c̃t
(1)
ρ∗ = [r′]ct

(1)
ρ∗ , c̃t

(2)
ρ∗ = ct

(2)
ρ∗ ) by extracting

ct
(1)
ρ∗ = ([b′]E0 and ct

(2)
ρ∗ = ρ∗ ⊕Hk([b

′ + r′ + a− r′]E0).

Finally, (pk∗, sk∗, up∗) is forwarded to A. We now establish that up∗ is a valid encryption

of ρ∗ under pk
(u)
t′ . Note that, up∗ = (c̃t

(1)
ρ∗ c̃t

(2)
ρ∗ ) = ([r′]ct

(1)
ρ∗ , ct

(2)
ρ∗ ) = ([b′ + r′]E0,ρ

∗ ⊕
Hk(MC([b′+a]E0))) = ([b′+ r′]E0,ρ

∗⊕Hk(MC([b′+ r′+a− r′]E0))) = ([b′+ r′]E0,ρ
∗⊕

Hk(MC([b′ + r′]pk
(u)
t′ ))). Defining b̃′ = b′ + r′, we observe that b′ $←− [−µ, µ]n, it follows

that b̃′ remains uniformly distributed in [−µ, µ]n, ensuring up∗ has identical distribution

as that in the real protocol generated by algorithm UhPKE.Enc(ppUhPKE, pk
(u)
t′ ,ρ∗). Thus,
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ctm∗
b
= (ct

(1)
m∗

b
= [b]E0, ct

(2)
m∗

b
= m∗

b ⊕ Hk(MC([b]EA))) sent by C to B is sufficient for B
to simulates up∗ without any explicit knowledge of ρ∗ or r∗ = KDF(ρ∗). This validates the
correctness of the simulated updated ciphertext up∗.

Guess Phase: Upon receiving b′ ∈ {0, 1} from the adversary A, the adversary B submits
b′ to its own challenger C.
Observe that B perfectly simulates A’s challenger in the IND-CR-CPA security game of Fig.
3 and succeeds whenever A does. Thus

AdvIND-CR-CPA
UhPKE,A (λ) =

∣∣∣∣∣Pr[ExpIND-CR-CPA
UhPKE,A (λ) = 1]− 1

2

∣∣∣∣∣
=

∣∣∣∣∣Pr[Expf-CS+LR
hPKE,B (λ) = 1]− 1

2

∣∣∣∣∣ = Advf-CS+LR
hPKE,B (λ).

Hence, Theorem 32 follows. □

5.2 Construction 2: USimS

Our second construction of updatable public key encryption USimS = (Setup,KeyGen,
Enc, Dec, UpdatePk,UpdateSk) associated with a message spaceMS = Z2q−2 is based
on SimS = (Setup,KeyGen, Enc, Dec) satisfying the following requirements:

USimS.Setup(λ) → ppUSimS = (ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE),KDF): A trusted
party runs this algorithm on the input the security parameter λ and generates
the public parameter ppUSimS = (ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE),KDF) where
KDF : Z×

2q → [−µ, µ]n and ppSimS ← SimS.Setup(λ) is a key derivation function. More
specifically, the following steps are executed.
i. Chooses a prime p = 2qΠn

i=1ℓi− 1 such that λ+2 ≤ q ≤ 1
2 log p and ℓi’s are small

distinct odd primes.
ii. Sets a base curve E0 : y2 = x3 + x ∈ Ellp(O) over Fp with O = Z[

√
−p] and picks

an integer µ such that (2µ+ 1)n ≥ #Cl(O).
iii. Consider the function RE : Fp → Fp defined as RE(x) = int(bin(x) ⊕bin(MC(E)))

where bin(·) and int(·) represent the operations that convert an element of Fp

into its binary representation and back, respectively. Here, MC(E) denotes the
Montgomery coefficient associated with the elliptic curve E.

iv. Consider a key derivation function KDF : Z×
2q → [−µ, µ]n.

v. Outputs the public parameter ppUSimS = (ppSimS = (p, q, ℓ1, . . . , ℓn,
µ, E0, RE),KDF).

USimS.KeyGen(ppUSimS)→ (sk
(u)
0 = a0, pk

(u)
0 = EA0): Similar to SimS.KeyGen(ppSimS)

on input the public parameter ppUSimS = (ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE),KDF),

a user generates a secret-public key pair (sk
(u)
0 , pk

(u)
0 ) in the following manner:

i. Samples a0 = (a01, . . . , a
0
n)

$←− [−µ, µ]n and define [a0] = [l
a0
1

1 · · · l
a0
n

n ] ∈ Cl(O) where
li = ⟨ℓi, π − 1⟩. Computes EA0 = [a0]E0.

ii. Returns public key pk
(u)
0 = EA0 and keeps secret sk

(u)
0 = a0 to itself.

USimS.Enc(ppUSimS, pk
(u)
i ,m) → ctm: Taking input the public parameter ppUSimS =

(p, q, ℓ1, . . . , ℓn, µ, E0, RE ,KDF), public key pk
(u)
i = EAi and a message m ∈ MS, an

encrypter proceeds to compute ciphertext as in the SimS.Enc(ppSimS, pk
(u)
i ,m).
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i. Embeds m ∈ Z×
2q via m→ 2m+1. Randomly samples b = (b1, . . . , bn)

$←− [−µ, µ]n
and define [b] = [lb11 · · · lbnn ] ∈ Cl(O).

ii. Computes EB = [b]E0, EAB = [b]EAi and PAB = [2m + 1]PEAB
. Here, PEAB

is
a point on EAB of order 2q, which is determined using Algorithm 3.

iii. Returns a ciphertext ctm = (EB , REAB
(x(PAB))) with REAB

(x(PAB))) =
int(bin(x(PAB))⊕ bin(MC(EAB))).

USimS.Dec(ppUSimS, sk
(u)
i = ai, ctm = (ct

(1)
m , ct

(2)
m )) → m/ ⊥: Similar to

SimS.Dec(ppSimS, sk
(u)
i , ctm) decrypter runs this deterministic algorithm on input the

public parameter ppUSimS = (ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE),KDF), ciphertext

ctm = (EB , x
′) and it’s secret key sk

(u)
i = ai to recover the plaintext m in as follows:

i. Verifies that EB is a supersingular curve,
ii. Computes EBA = [ai]EB and a point PEBA

on EBA of order 2q by using Algorithm
3.

iii. Computes REBA
(x′) and if REBA

(x′) is not the x-coordinate of a 2q-torsion point
on the curve EBA then aborts.

iv. Solves the discrete logarithm instance between PBA = (REBA
(x′), ·) and PEBA

using the Pohlig-Hellman algorithm given in Algorithm 2. Let m′ ∈ Z×
2q be the

solution of this computation. If 2q−1 < m′ then it changes m′ to 2q − m′ and

returns the plaintext (m′−1)
2 .

USimS.UpdatePk(ppUSimS, pk
(u)
i ,ρi ∈ Z2q−2) → (pk

(u)
i+1, upi+1): Given the public

parameter ppUSimS = (ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE),KDF) and a public key

pk
(u)
i , any user can run this algorithm and proceeds to compute an updated ciphertext

upi+1 and a new public key pk
(u)
i in the following way:

i. Define KDF(ρi) = ri = (r1, . . . , rn) and [ri] = [lr11 · · · lrnn ] ∈ Cl(O) where li =
⟨ℓi, π − 1⟩.

ii. Computes pk
(u)
i+1 = [−ri]pk(u)i and updated ciphertext upi+1 ←

USimS.Enc(ppUSimS, pk
(u)
i ,ρi).

iii. Returns updated public key pk
(u)
i+1 and updated ciphertext upi+1.

USimS.UpdateSk(ppUSimS, sk
(u)
i , upi+1) → sk

(u)
i+1: Given the public parameter

ppUSimS = (ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE), KDF) and an updated cipher-

text upi+1 an user with sk
(u)
i computes ρi = USimS.Dec(ppUSimS, sk

(u)
i , upi+1) and

sk
(u)
i+1 = sk

(u)
i − KDF(ρi) and returns updated secret key sk

(u)
i+1.

Correctness. We can show that [sk
(u)
i+1]E0 = pk

(u)
i+1 as in the correct-

ness of UhPKE. By the correctness of SimS described in Section A.2 implies

Pr[USimS.Dec(ppUSimS, sk
(u)
i ,USimS.Enc(ppUSimS, pk

(u)
i , m)) = m] = 1.

To prove the security of our updatable public key encryption scheme based on
SimS, we first establish that SimS is f -CS+ LR secure, as stated in Theorem 41 and
proven in Appendix 4.

Theorem 33. If SimS described in Appendix A.2 is circular secure and leakage-
resilient (f -CS+ LR) secure as per Definition 20 for f : [−µ, µ]n × Z2q−2 → [−µ, µ]n
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then the isogeny based UPKE construction USimS described in Section 5.2 provides
IND-CR-CPA security.

Proof We will demonstrate that if the adversary A wins in ExpIND-CR-CPA
USimS,A (λ) then we

can construct an adversary B using the adversary A that can win in Expf-CS+LR
SimS,B (λ) and

AdvIND-CR-CPA
USimS,A (λ) ≤ Advf-CS+LR

SimS,B (λ).

In the experiment Expf-CS+LR
SimS,B (λ), the SimS challenger C generates the public parameter

ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0) by running SimS.Setup(λ) and a secret-public key pair

(sk = a, pk(u) = EA = [a]E0) by running SimS.KeyGen(ppSimS). It provides ppUSimS and pk(u)

to the adversary B. The adversary B proceeds to simulate the experiment ExpIND-CR-CPA
USimS,A (λ)

in the following manner.

Setup: The adversary B initializes a list rList = ϕ and epoch i = 0 and also takes a
key derivation function KDF : Z2q−2 → [−µ, µ]n. It sends ppUSimS = (ppSimS,KDF) =

(p, ℓ1, . . . , ℓn, µ, E0,KDF) and pk
(u)
0 = pk(u) to the adversary A.

Simulation of the pre-challenge oracle query: The adversary B issues polynomially
many adaptive queries to the oracle OUhPKE

up (·). In the following, we will demonstrate that B
simulates the following oracle perfectly for A.
− OUhPKE

up (ρi): Upon receiving a query on ρi ∈ {0, 1}mlen(λ) at the i-th epoch, the
adversary B computes ri = KDF(ρi), updates the list rList = rList ∪ {(i, ri)}, runs

USimS.UpdatePk(ppUSimS, pk
(u)
i ,ρi) → (pk

(u)
i+1 = [−ri]pk

(u)
i , upi+1 ← USimS.Enc(ppUSimS,

pk
(u)
i ,ρi)) with upi+1 = (ct

(1)
ρi

= [b′]E0, ct
(2)
ρi

= RE
[b′]pk(u)

i

(x([2ρi +1]P
[b′]pk

(u)
i

))) for some

b′ ∈ [−µ, µ]n and increments the counter i to i+ 1. Note that if pk
(u)
i = EAi

then

pk
(u)
i+1 = [−ri]pk

(u)
i = [−

i−1∑
j=0

rj ]pk
(u)
0 = [−

i−1∑
j=0

rj ][a]E0

= [a−
i−1∑
j=0

rj ]E0 = [ai]E0 = EAi+1

implicitly, ski = ai = a−
∑i−1

j=0 rj

Simulation of the challenge phase: After receiving (m∗
0,m

∗
1) from the adversary A,

the adversary B also forwards (m∗
0,m

∗
1) to its challenger C. In response, the challenger C

computes in the following way

i. Samples r∗ = KDF(ρ∗) and computes ρ∗ ∈ Z2q−2 and z = sk− r∗ = a− r∗

ii. Computes ctm∗
b

= SimS.Enc(ppSimS, pk
(u)
0 = pk,m∗

b ) with ctm∗
b

= (ct
(1)
m∗

b
=

[b]E0, ct
(2)
m∗

b
= R[b]EA

(x([2m∗
b + 1]P[b]EA

))) for some uniform element b ∈ [−µ, µ]n.

iii. Calculates ctρ∗ = SimS.Enc(ppSimS, pk
(u)
0 = pk,ρ∗) with ctρ∗ = (ct

(1)
ρ∗ = [b′]E0, ct

(2)
ρ∗ =

R[b′]EA
(x([2ρ∗ + 1]P[b′]EA

))) for some uniform element b′ ∈ [−µ, µ]n.
iv. Sends the tuple (z, ctm∗

b
, ctρ∗) to B.

To simulate a challenge ciphertext for the adversary A at the epoch t, in which A issued its
challenge messages, the adversary B computes r =

∑t−1
i=0 ri extracting ri for i = 0, 1, . . . , t−1

from its maintained list rList. Subsequently, the challenge ciphertext is constructed as

38



c̃tm∗
b
= (c̃t

(1)
m∗

b
= [r]ct

(1)
m∗

b
, c̃t

(2)
m∗

b
= ct

(2)
m∗

b
),

by using ct
(1)
m∗

b
= [b]E0, and ct

(2)
m∗

b
= R[b]EA

(x([2m∗
b + 1]P[b]EA

)) which is sent by the SimS

challenger C to B.
The adversary B then forwards c̃tm∗

b
as the challenge ciphertext to A.

Note that c̃tm∗
b
is a valid USimS encryption of m∗

b under the public key pk
(u)
t . Specifically,

the public key at epoch t is

pk
(u)
t = EAt

= [at]E0 = [a−
t−1∑
i=0

ri]E0 = [−r]pk(u)0

and the ciphertext is

c̃tm∗
b
= ([r]ct

(1)
m∗

b
, ct

(2)
m∗

b
)

= ([b+ r]E0, R[b+a]E0
(x([2m∗

b + 1]P[b+a]E0
)))

= ([b+ r]E0, R[b+r+a−r]E0
(x([2m∗

b + 1]P[b+r+a−r]E0
)))

= ([b+ r]E0, R[b+r][a−r]E0
(x([2m∗

b + 1]P[b+r][a−r]E0
)))

= ([b+ r]E0,m
∗
b ⊕R

[b+r]pk
(u)
t

(x([2m∗
b + 1]P

[b+r]pk
(u)
t

))

= ([b]E0,m
∗
b ⊕R

[b̃]pk
(u)
t

(x([2m∗
b + 1]P

[b̃]pk
(u)
t

)))

where b̃ = b+r remains uniformly distributed in [−µ, µ]n as b
$←− [−µ, µ]n. Thus c̃tm∗

b
has the

same distribution as the real protocol generated byc̃tm∗
b
← USimS.Enc(ppUSimS, pk

(u)
t ,m∗

b ),
demonstrating the correctness of the simulated ciphertext under the USimS encryption
scheme.

Simulation of the post-challenge oracle query: The USimS adversary B simulates the
oracle exactly the same as in the pre-challenge oracle query to OUSimS

up (·).

Simulation of the reveal phase: Let OUSimS
up (ρt′) is the final query issued by the

adversary A. The adversary B is required to output the final public key, secret key and

updated ciphertext (pk∗, sk∗, up∗) where (pk∗, up∗) ← USimS.UpdatePk(ppUSimS, pk
(u)
t′ , ·)

and sk∗ ← USimS.UpdateSk(ppUSimS, sk
(u)
t′ , up∗) which represents the cumulative effect of all

t′ update queries made by A, along with a final update whose randomness remains unknown

to A. Here, pk
(u)
t′ = EAt′

= [at′ ]E0 = [a −
∑t′−1

i=0 ri]E0 = [−r′][a]pk(u)0 = [−r′]EA which

implicitly sets sk
(u)
t′ = at′ = a−

∑t′−1
i=0 ri = a− r′ where r′ =

∑t′−1
i=0 ri.

To simulate (pk∗, sk∗, up∗), the adversary B employs z = a − r∗ and the ciphertext

ctρ∗ ← SimS.Enc(ppUSimS, pk
(u)
0 = pk,ρ∗) with ctρ∗ = (ct

(1)
ρ∗ , ct

(2)
ρ∗ ), ct

(1)
ρ∗ = [b′]E0, ct

(2)
ρ∗ =

R[b′]EA
(x([2ρ∗ + 1]P[b′]EA

)) and b,b′ $←− [−µ, µ]n with r∗ = KDF(ρ∗) for some ρ∗ ∈ Z2q−2

received from its own challenger C as follows.

The adversary B computes r′ =
∑t′−1

i=0 ri by extracting ri for i = 0, 1, . . . , t′ − 1 from its
maintained list rList and sets secret key sk∗ at epoch t′ + 1 as sk∗ = z − r′ and defines the
public key at epoch t′ + 1 as pk∗ = [sk∗]E0.
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Note that

sk∗ = z− r′ = a− r∗ − r′ = sk
(u)
t′ − r∗ = at′ − r∗

which has the same distribution as the real protocol by executing

USimS.UpdateSk(ppUSimS, sk
(u)
t′ , up∗). Moreover, pk∗ is set to be [sk∗]E0 which is identically

distributed as the real protocol by executing USimS.UpdatePk(ppUSimS, pk
(u)
t′ ,ρ∗). Thus,

z = a − r∗ sent by C to B is sufficient for B to simulates sk∗ and pk∗ without knowing
explicitly ρ∗ or r∗ = KDF(ρ∗).

To compute up∗, the adversary B sets

up∗ = (c̃t
(1)
ρ∗ = [r′]ct

(1)
ρ∗ , c̃t

(2)
ρ∗ = ct

(2)
ρ∗ )

by extracting

ct
(1)
ρ∗ = [b′]E0, and ct

(2)
ρ∗ = R[b′]EA

(x([2ρ∗ + 1]P[b′]EA
))

Finally, (pk∗, sk∗, up∗) is forwarded to A.
We now establish that c̃tρ∗ is a valid encryption of ρ∗ under pk

(u)
t′ . Rewriting the ciphertext,

c̃tρ∗ = (c̃t
(1)
ρ∗ , c̃t

(2)
ρ∗ )

= ([r′]ct
(1)
ρ∗ , ct

(2)
ρ∗ )

= ([b′ + r′]E0, R[b′+a]E0
(x([2ρ∗ + 1]P[b′+a]E0

)))

= ([b′ + r′]E0, R[b′+r′+a−r′]E0
(x([2ρ∗ + 1]P[b′+r′+a−r′]E0

)))

= ([b′ + r′]E0, R[b′+r′]pk
(u)

t′
(x([2ρ∗ + 1]P

[b′+r′]pk
(u)

t′
)))

Defining b̃′ = b′ + r′ and noting that b′ $←− [−µ, µ]n, it follows that b̃′ remains uniformly
distributed in [−µ, µ]n. This confirms that up∗ has an identical distribution as that in the

real protocol generated by calling USimS.Enc(ppUSimS, pk
(u)
t′ ,ρ∗) validating the correctness

of the simulated ciphertext under the USimS encryption scheme. Thus, ctm∗
b

= (ct
(1)
m∗

b
=

[b]E0, ct
(2)
m∗

b
= R[b]EA

(x([2m∗
b + 1]P[b]EA

))) sent by C to B is sufficient for B to simulates

up∗ without explicit knowledge of ρ∗ or r∗ = KDF(ρ∗). This validates the correctness of the
simulated updated ciphertext up∗ under the encryption scheme USimS.

Guess Phase: Upon receiving b′ ∈ {0, 1} from the adversary A, the adversary B submits
b′ to the challenger C.

Observe that B perfectly simulates the IND-CR-CPA security game to A and succeeds
whenever A does. Thus

AdvIND-CR-CPA
USimS,A (λ) =

∣∣∣∣∣Pr[ExpIND-CR-CPA
USimS,A (λ) = 1]− 1

2

∣∣∣∣∣
=

∣∣∣∣∣Pr[Expf-CS+LR
SimS,A (λ) = 1]− 1

2

∣∣∣∣∣
= Advf-CS+LR

SimS,A (λ)

Theorem 33 follows. □
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Theorem 34. If the isogeny based UPKE construction USimS described in Section 5.2
is IND-CR-CPA secure and CSSIKoE assumption holds then it provides IND-CR-CCA
security defined in Definition 24.

Proof Let A can win in ExpIND-CR-CCA
USimS,B (λ) and CSSIKoE assumption holds then we

can construct an adversary B who can win in ExpIND-CR-CPA
USimS,B (λ) AdvIND-CR-CCA

USimS,A (λ) ≤
AdvIND-CR-CPA

USimS,B (λ).

In the experiment ExpIND-CR-CPA
USimS,B (λ), the challenger C generates the public parameter

ppUSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE , KDF) and a secret-public key pair (sk
(u)
0 = a0, pk

(u)
0 =

EA0
= [a0]E0) by running USimS.KeyGen(ppUSimS). It provides ppUSimS, pk

(u)
0 and access to

OUSimS
up (·) oracle to the adversary B. The adversary B proceeds to simulate the experiment

ExpIND-CR-CPA
USimS,B (λ) in the following manner.

Setup: The adversary B initializes a list rList = ϕ and epoch i = 0 and sends ppUSimS and

pk
(u)
0 to the adversary A.
Simulation of the oracle query: In the following, we will demonstrate that B simulates

the following oracle perfectly for A.
− OUSimS

up (ρi): Upon receiving a query on the ρi ∈ Z2q−2 , the adversary B call its it own

OUSimS
up (ρi) oracle.

− OUSimS
dec (ctm): Given a ciphertext ctm = ([b′]E0, R[a0][b′](x(P ))) where P ∈ [a0][b

′]E0 is a

point of order 2q. By CSSIKoE assumption, there exists a polynomial time algorithmA′ that
on input ctm = ([b′]E0, R[a0][b′](x(P ))) outputs the tuple ([b′], [b′]E0, R[a0][b′](x(P ))).

From the knowledge of the ideal classes [b′] and [a0]E0, the adversary B successfully
decrypts ctm.

Simulation of the challenge phase: After receiving (m∗
0,m

∗
1) ∈ Z2q−2 × Z2q−2 from

the adversary A, the adversary B also forwards (m∗
0,m

∗
1) ∈ Z2q−2 × Z2q−2 to its challenger

C. In response, the challenger C sends ctm∗
b
= USimS.Enc(pp, pk

(u)
t ,m∗

b ) to B where t is the
current epoch at which A sent its challenge messages. The adversary B also forwards ctm∗

b

the adversary A.
Simulation of the post-challenge oracle query: In the following, we will demonstrate

that B simulates the following oracle perfectly for A.
− OUSimS

up (ρi): Upon receiving a query on the ρi ∈ Z2q−2 , the adversary B call its it own

OUSimS
up (ρi) oracle.

− OUSimS
dec (ctm): Given a ciphertext ctm = ([b′]E0, R[a0][b′](x(P ))) where P ∈ [a0][b

′]E0

is a point of order 2q. If (ctm = ctm∗
b
∧ pk

(u)
i = pk

(u)
t ) aborts. By CSSIKoE assumption,

there exists a polynomial time algorithm A′ that on input ctm = ([b′]E0, R[a0][b′](x(P )))

outputs ([b′], [b′]E0, R[a0][b′](x(P ))). From the knowledge of the ideal classes [b′] and
[a0]E0, the adversary B successfully decrypts ctm.

Reveal Phase: Let OUSimS
up (ρt′) is the last query asked by A. After receiving (pk∗, sk∗, up∗)

from C the adversary B forwards (pk∗, sk∗, up∗) to A where pk∗, sk∗ and up∗ are public key,
secret key and updated ciphertext respectively at epoch t′.

Guess Phase: Upon receiving b′ ∈ {0, 1} from the adversary A, the adversary B submits
b′ to the challenger C.
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Thus B perfectly simulates A’s challenger in the IND-CR-CCA security game and succeeds
whenever A does. Hence, we get AdvIND-CR-CCA

USimS,A (λ) ≤ AdvIND-CR-CPA
USimS,B (λ).

□

6 Our Protocols for Updatable KEM

6.1 Construction 1: UKEM1

We present below an updatable key encapsulation mechanism UKEM1 =
(Setup,KeyGen, Encaps, Decaps, UpdatePk,UpdateSk) based on our scheme UhPKE =
(Setup,KeyGen, Enc, Dec,UpdatePk, UpdateSk) described in Section 5.1 associated
with a message spaceMS = {0, 1}mlen(λ) and a key space Key = {0, 1}klen(λ).

UKEM1.Setup(λ)→ ppUKEM1
: On the input the security parameter λ, a trusted party

proceeds as follows similar to our UhPKE.Setup(λ) with one additional key derivation
function.
i. Selects a prime p = 4Πn

i=1ℓi − 1 where ℓi’s are small distinct odd primes. Sets a
base curve E0 : y2 = x3 + x ∈ Ellp(O) over Fp with O = Z[

√
−p] and picks an

integer µ such that (2µ+ 1)n ≥ #Cl(O).
ii. Picks two key derivation function KDF1 : {0, 1}mlen(λ) → [−µ, µ]n and KDF2 :
{0, 1}mlen(λ) → {0, 1}klen(λ).

iii. Samples a family of keyed hash function H = {Hk}k∈K where Hk : Fp →
{0, 1}mlen(λ) for each k ∈ K where K is key space. .

iv. Outputs the public parameter ppUKEM1
= (ppUhPKE = (p, ℓ1, . . . , ℓn, µ, E0,H =

{Hk}k∈K,KDF1),KDF2).

UKEM1.KeyGen(ppUKEM1
)→ (sk

(u)
0 = a0, pk

(u)
0 = EA0): On input the public parame-

ter ppUKEM1
= (ppUhPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K,KDF1),KDF2), a user u

generates a secret-public key pair (sk
(u)
0 , pk

(u)
0 ) by executing the following steps exactly

same way as in the UhPKE.KeyGen(ppUhPKE).

i. Samples a0 = (a01, . . . , a
0
n)

$←− [−µ, µ]n and define [a0] = [l
a0
1

1 · · · l
a0
n

n ] ∈ Cl(O) where
li = ⟨ℓi, π − 1⟩. Computes EA0 = [a0]E0.

ii. Sets the public key pk
(u)
0 = EA0 and the secret key sk

(u)
0 = a0.

iii. Publishes pk
(u)
0 = EA0 and keeps sk

(u)
0 = a0 secret to itself.

UKEM1.Encaps(ppUKEM1
, pk

(u)
i = EAi) → (hct, ek): Taking input the public param-

eter ppUKEM1
= (ppUhPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K,KDF1),KDF2), public

key pk
(u)
i = EAi a user proceeds to compute a header ciphertext hct encrypting a ran-

dom message m ∈ MS using UhPKE.Enc(ppUhPKE, pk
(u)
i = EAi ,m) and generates an

encapsulation key ek. More precisely, the user performs the following steps :

i. Randomly samples a messagem
$←−MS, computes KDF1(m) = b = (b1, . . . , bn) ∈

[−µ, µ]n and [b] = [lb11 · · · lbnn ] ∈ Cl(O).
ii. Computes hct(1) = [b]E0, hct

(2) = m ⊕ Hk(MC([b]EAi)) and ek = KDF2(m)
where MC([b]EAi) is the Montgomery coefficient of the elliptic curve [b]EAi .

iii. Publishes the header ciphertext hct = (hct(1), hct(2)) and keeps encapsulation key
ek secret to itself.

42



UKEM1.Decaps(ppUKEM1
, sk

(u)
i = ai, hct = (hct(1), hct(2))) → ek: A decrypter runs

this deterministic algorithm on input the public parameter ppUKEM1
= (ppUhPKE =

(p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K,KDF1),KDF2) and header ciphertext hct using its

own secret key sk
(u)
i = ai to recover ek by executing the following:

i. Computes α = Hk(MC([ai]hct
(1))) where MC([ai]hct

(1)) is the Montgomery

coefficient of the elliptic curve [ai]hct
(1).

ii. Returns the encapsulation key ek = KDF2(hct
(2) ⊕ α).

UhKEM.UpdatePk(ppUKEM1
, pk

(u)
i ;ρi) → (pk

(u)
i+1, upi+1): Silimar to

UhPKE.UpdatePk(ppUhPKE, pk
(u)
i ;ρi) on input of the public parameter

ppUKEM1
= (ppUhPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K, KDF1),KDF2), a public

key pk
(u)
i = EAi and a randomness ρi, a user u can run this algorithm and proceeds to

compute an updated ciphertext upi+1 and a new public key pk
(u)
i+1 in the following way:

i. Define ri = (r1, . . . , rn) = KDF1(ρi) and [ri] = [lr11 · · · lrnn ] ∈ Cl(O) where li =
⟨ℓi, π − 1⟩.

ii. Computes pk
(u)
i+1 = EAi+1 = [−ri]EAi and generates updated cipher-

text upi+1 = (ct
(1)
ρi

= [b]E0, ct
(2)
ρi

= ρi ⊕ Hk([b]pk
(u)
i )) by running

UhPKE.Enc(ppUhPKE, pk
(u)
i ,ρi) where b

$←− [−µ, µ]n.
iii. Returns updated public key pk

(u)
i+1 = EAi+1 and updated ciphertext upi+1 =

(ct
(1)
ρi

, ct
(2)
ρi

).

UKEM1.UpdateSk(ppUKEM1
, sk

(u)
i , upi+1) → sk

(u)
i+1: On input the public parameter

ppUKEM1
= (pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K,KDF1),KDF2) and an

updated ciphertext upi+1 = (ct
(1)
ρi

, ct
(2)
ρi

) an user with sk
(u)
i = ai runs this algorithm

and generates updated secret key sk
(u)
i+1 as in UhPKE.UpdateSk(ppUhPKE, sk

(u)
i , upi+1).

i. Decrypts the updated ciphertext ρi = ct
(2)
ρi
⊕ Hk(MC([sk

(u)
i ]ct

(1)
ρi

)) by calling

UhPKE.Dec(ppUhPKE, sk
(u)
i , upi+1).

ii. Updates secret key sk
(u)
i+1 = sk

(u)
i − KDF1(ρi) and returns sk

(u)
i+1.

Correctness. The correctness of UKEM1 follows from the correctness of UhPKE
described in Section 5.1.

Theorem 35. If UhPKE described in Section 5.1 is IND-CR-CPA secure (see Defi-
nition 23 ) and KDF2 is a secure key derivation function as per Definition 16 then
UKEM1 provides IND-CR-CPA security as per Definition 27.

Proof We will demonstrate that if the adversary A wins in ExpIND-CR-CPA
UKEM1,A (λ) then we can

construct an adversary B (say) using the adversary A that can win in ExpIND-CR-CPA
UhPKE,B (λ) and

thereby AdvIND-CR-CPA
UKEM1,A (λ) = AdvIND-CR-CPA

UhPKE,B (λ).

In the experiment ExpIND-CR-CPA
UhPKE,B (λ), the UhPKE challenger C generates the public param-

eter ppUhPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K,KDF1) by running UhPKE.Setup(λ)

and a secret-public key pair (sk
(u)
0 = a0, pk

(u)
0 = EA0

= [a0]E0) is generated by running
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UhPKE.KeyGen(ppUhPKE). It provides ppUhPKE, pk
(u)
0 and gives OUhPKE

up (·) oracle access to the

UhPKE adversary B. The adversary B proceeds to simulate the experiment ExpIND-CR-CPA
UKEM1,A (λ)

to the UKEM1 adversary A in the following manner.

Setup: The adversary B sets epoch i = 0 and a key derivation function KDF2 :

{0, 1}mlen(λ) → {0, 1}klen(λ) and sends ppUKEM1
= (ppUhPKE,KDF2) and pk

(u)
0 to the UKEM1

adversary A.
Simulation of the pre-challenge oracle query: In the following, we will demonstrate

that B simulates the following oracle perfectly for A.
− OUKEM1

up (ρi): Upon receiving a query on the ρi ∈ {0, 1}mlen(λ), the adversary B calls its

own oracle OUhPKE
up (ρi) and increments the counter i to i+ 1.

Simulation of the challenge phase: The UKEM1 challenger B does the following to
simulate challenge phase to UKEM1 adversary A.

i. B samples (m∗
0,m

∗
1)

$←− {0, 1}mlen(λ) × {0, 1}mlen(λ) to the UhPKE challenger C.
ii. In response, the challenger C uniformly samples b

$←− {0, 1} and computes ctm∗
b

=

(ct
(1)
m∗

b
= [b]E0, ct

(2)
m∗

b
= m∗

b ⊕ Hk(MC([b]pk
(u)
t ))) ← UhPKE.Enc(ppUhPKE, pk

(u)
t ,m∗

b )

for some b
$←− [−µ, µ]n where t is the current epoch. The UhPKE challenger C sends

ctm∗
b
= (ct

(1)
m∗

b
, ct

(2)
m∗

b
) to B.

iii. Then the adversary B sends (hct∗ = ctm∗
b
, ek∗ = KDF2(m

∗
1)) to A

Simulation of the post-challenge oracle query: The UhPKE adversary B simulates the
oracle exactly the same as in the pre-challenge oracle query to OUKEM1

up (·).

Reveal Phase: Let OUSimS
up (ρt′) is the last query asked by A. After receiving (pk∗, sk∗, up∗)

from C the adversary B forwards (pk∗, sk∗, up∗) to A where pk∗, sk∗ and up∗ are public key,
secret key and updated ciphertext respectively at epoch t′.

Guess Phase: Upon receiving b′ ∈ {0, 1} from the adversary A, the adversary B submits
b′ to the challenger C.
Note that,

• If b = 0, the UhPKE challenger C transmits ctm∗
0
to the adversary B. Subsequently, the

UKEM1 challenger B forwards the pair (hct∗ = ctm∗
0
, ek∗ = KDF2(m

∗
1)) to the adversary A.

Here, the ciphertext hct∗ consists of two components:

ct
(1)
m∗

0
= [b]E0, ct

(2)
m∗

0
= m∗

0 ⊕Hk(MC([b]pk
(u)
t ))

where m∗
0 and m∗

1 are sampled uniformly from {0, 1}mlen(λ) and b is sampled uniformly
from [−µ, µ]n.
Since b is indistinguishable from KDF1(m

∗
0) due to the security properties of KDF1, we

conclude that

hct∗ =
(
ct

(1)
m∗

0
= [b]E0, ct

(2)
m∗

0
= m∗

0 ⊕Hk(MC([b]pk
(u)
t ))

)
is identically distributed to(

c̃t
(1)
m∗

0
= [KDF1(m

∗
0)]E0, c̃t

(2)
m∗

0
= m∗

0 ⊕Hk(MC([KDF1(m
∗
0)]pk

(u)
t ))

)
Thus, (hct∗, ·) follows the same distribution as the output of

UhKEM.Encaps(ppUKEM1
, pk

(u)
t ).
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Furthermore, sincem∗
1 is uniformly sampled from {0, 1}mlen(λ), the security of KDF2 ensures

that ek∗ = KDF2(m
∗
1) is uniformly distributed over the key space KS = {0, 1}klen(λ).

Consequently, the tuple (hct∗, ek∗) follows the same distribution in the case where b = 0
during the challenge phase of the experiment ExpIND-CR-CPA

UKEM1,A (λ) as described in Fig. 6.

• If b = 1, the UhPKE challenger C transmits ctm∗
1
to the adversary B. Subsequently, the

UKEM1 challenger B forwards the pair (hct∗ = ctm∗
1
, ek∗ = KDF2(m

∗
1)) to the adversary A.

Here, the ciphertext hct∗ consists of two components

ct
(1)
m∗

1
= [b]E0, ct

(2)
m∗

1
= m∗

1 ⊕Hk(MC([b]pk
(u)
t ))

where m∗
1 is sampled uniformly at random from {0, 1}mlen(λ) and b is sampled uniformly

from [−µ, µ]n.
Since b is indistinguishable from KDF1(m

∗
1) due to the security properties of KDF1, we

conclude that

hct∗ =
(
ct

(1)
m∗

1
= [b]E0, ct

(2)
m∗

1
= m∗

1 ⊕Hk(MC([b]pk
(u)
t ))

)
is identically distributed to(

c̃t
(1)
m∗

1
= [KDF1(m

∗
1)]E0, c̃t

(2)
m∗

1
= m∗

1 ⊕Hk(MC([KDF1(m
∗
1)]pk

(u)
t ))

)
.

Thus, (hct∗ = ctm∗
1
, ek∗ = KDF2(m

∗
1) follows the same distribution as the output of

UhKEM.Encaps(ppUKEM1
, pk

(u)
t ).

Consequently, the tuple (hct∗ = ctm∗
1
, ek∗ = KDF2(m

∗
1)) follows the same distribution in

the case where b = 1 during the challenge phase of the experiment ExpIND-CR-CPA
UKEM1,A (λ) as

described in Fig. 6.

Therefore, B succeeds in ExpIND-CR-CPA
UhPKE,B (λ) if A succeeds in ExpIND-CR-CPA

UKEM1,A (λ). This implies

Pr[ExpIND-CR-CPA
UKEM1,A (λ) = 1] = Pr[ExpIND-CR-CPA

UhPKE,B (λ) = 1]

Therefore,

AdvIND-CR-CPA
UKEM1,A (λ) =

∣∣∣∣Pr[ExpIND-CR-CPA
UKEM1,A (λ) = 1]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[ExpIND-CR-CPA
UhPKE,B (λ) = 1]− 1

2

∣∣∣∣
= AdvIND-CR-CPA

UhPKE,B (λ)

□

6.2 Construction 2: UKEM2

Our second proposed updatable key encapsulation mechanism scheme is UKEM2 =
(Setup,KeyGen, Encaps, Decaps,UpdatePk, UpdateSk) associated with a message space
MS = Z2q−2 and a key space Key = {0, 1}klen(λ) is based on USimS = (Setup,KeyGen,
Enc, Dec, UpdatePk,UpdateSk) satisfying the following requirements:

UKEM2.Setup(λ) → ppUKEM2
: A trusted party runs this algorithm on the input a

security parameter λ and proceeds as follows:
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i. Chooses a prime p = 2qΠn
i=1ℓi− 1 such that λ+2 ≤ q ≤ 1

2 log p and ℓi’s are small
distinct odd primes.

ii. Sets a base curve E0 : y2 = x3 + x ∈ Ellp(O) over Fp with O = Z[
√
−p] and picks

an integer µ such that (2µ+ 1)n ≥ #Cl(O).
iii. Consider two key derivation function KDF1 : Z2q−2 → [−µ, µ]n and KDF2 :

Z2q−2 → {0, 1}klen(λ).
iv. Consider the function RE : Fp → Fp defined as RE(x) = int(bin(x) ⊕bin(MC(E)))

where bin(·) and int(·) represent the operations that convert an element of Fp into
its binary representation and back, respectively.

v. Outputs the public parameter ppUKEM2
= (ppUSimS = (p, q, ℓ1, . . . , ℓn, µ, E0,

RE ,KDF1),KDF2).

UKEM2.KeyGen(ppUKEM2
)→ (sk

(u)
0 = a0, pk

(u)
0 = EA0): On input the public parame-

ter ppUKEM2
= (ppUSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE ,KDF1),KDF2), a user generates

a secret-public key pair (sk
(u)
0 , pk

(u)
0 ) in the following manner:

i. Samples a0 = (a01, . . . , a
0
n)

$←− [−µ, µ]n and define [a0] = [l
a0
1

1 · · · l
a0
n

n ] ∈ Cl(O)
where li = ⟨ℓi, π − 1⟩.

ii. Computes EA0 = [a0]E0.

iii. Returns public key pk
(u)
0 = EA0 and secret key sk

(u)
0 = a0.

UKEM2.Encaps(ppUKEM2
, pk

(u)
i )→ hct: Taking input the public parameter ppUKEM2

=

(ppUSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE ,KDF1), KDF2) and public key pk
(u)
i = EAi , an

encrypter proceeds to compute ciphertext as follows:

i. Uniformly samples m
$←− Z2q−2 and embeds m ∈ Z×

2q via m→ 2m+ 1. Randomly

samples b = (b1, . . . , bn)
$←− [−µ, µ]n and define [b] = [lb11 · · · lbnn ] ∈ Cl(O).

ii. Computes EB = [b]E0, EAB = [b]EAi , PAB = [2m+1]PEAB
and ek = KDF2(m).

Here, PEAB
is a point on EAB of order 2q, which is determined using Algorithm 3.

iii. Returns (hct = (EB , REAB
(x(PAB))), ek).

UKEM2.Decaps(ppUKEM2
, sk

(u)
i = ai, hct = (hct(1), hct(2)))→ m/ ⊥: A decrypter runs

this deterministic algorithm on input the public parameter ppUKEM2
= (ppUSimS =

(p, q, ℓ1, . . . , ℓn, µ, E0, RE ,KDF1),KDF2), ciphertext hct = (EB , x
′) and its secret key

sk
(u)
i = ai to recover the plaintext m in the following manner:
i. Verifies that EB is a supersingular curve,
ii. Computes EBA = [ai]EB and PEBA

a point on EBA of order 2q by using Algorithm
3.

iii. Computes REBA
(x′) and if REBA

(x′) is not the x-coordinate of a 2q-torsion point
on the curve EBA then aborts.

iv. Solves the discrete logarithm instance between PBA = (REBA
(x′), ·) and PEBA

using the Pohlig-Hellman algorithm given in Algorithm 2. Let m′ ∈ Z×
2q be the

solution of this computation. If 2q−1 < m′ then it changes m′ to 2q−m′. It returns

ek = KDF2(
(m′−1)

2 ).

UKEM2.UpdatePk(ppUKEM2
, pk

(u)
i ,ρi) → (pk

(u)
i+1, upi+1): Given the public parameter

ppUKEM2
= (ppUSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE , KDF1),KDF2), a public key pk

(u)
i =
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EAi and a random ρi ∈ Z2q−2 , any user can run this algorithm to compute an updated

ciphertext upi+1 and a new public key pk
(u)
i+1 in the following way:

i. Define ri = (r1, . . . , rn) = KDF1(ρi) and [ri] = [lr11 · · · lrnn ] ∈ Cl(O) where li =
⟨ℓi, π − 1⟩.

ii. Computes EAi+1 = [−ri]EAi and updated ciphertext upi+1 ←
USimS.Enc(ppUKEM2

, pk
(u)
i ,ρi).

iii. Returns updated public key pk
(u)
i+1 = EAi+1 and ciphertext upi+1.

UKEM2.UpdateSk(ppUKEM2
, sk

(u)
i , upi+1) → sk

(u)
i+1: Given the public parameter

ppUKEM2
= (ppUSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE , KDF1), KDF2) and an updated

ciphertext upi+1 an user with sk
(u)
i computes ρi = UKEM2.Dec(ppUKEM2

, sk
(u)
i , upi+1)

and sk
(u)
i+1 = sk

(u)
i − KDF1(ρi) and returns updated secret key sk

(u)
i+1.

Correctness. The correctness of UKEM2 follows from the correctness of USimS
described in Section 5.2.

Theorem 36. If USimS described in Section 5.2 is IND-CR-CCA (see Definition 24 )
and KDF2 is a secure key derivation function as per Definition 16 then UKEM2 also
provides IND-CR-CCA security as per Definition 28.

Proof We will demonstrate that if the adversary A wins in ExpIND-CR-CCA
UKEM2,A (λ) then we can

construct an adversary B using the adversary A that can win in ExpIND-CR-CCA
USimS,B (λ) and thereby

AdvIND-CR-CCA
UKEM2,A (λ) = AdvIND-CR-CCA

USimS,B (λ).

In the experiment ExpIND-CR-CPA
USimS,B (λ), the USimS challenger C generates the public param-

eter ppUSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE , KDF1) by running USimS.Setup(λ) and a

secret-public key pair (sk
(u)
0 = a0, pk

(u)
0 = EA0

= [a0]E0) ← USimS.KeyGen(ppUSimS). It

provides ppUKEM2
and pk

(u)
0 and gives OUSimS

up (·) and OUSimS
dec (·) oracle access to the USimS

adversary B. The adversary B proceeds to simulate the experiment ExpIND-CR-CPA
UKEM2,A (λ) in the

following manner.

Setup: The adversary B initializes epoch i = 0. It sets a key derivation function KDF2 :

Z2q−2 → {0, 1}klen(λ) and sends ppUKEM2
= (ppUSimS,KDF2) and pk

(u)
0 to the adversary A.

Simulation of the pre challenge oracle query: In the following, we will demonstrate
that B simulates the following oracle perfectly for A.
− OUKEM2

up (ρi): Upon receiving a query on the ρi ∈ Z2q−2 , the adversary B calls its own

oracle OUSimS
up (ρi) and increments the counter i to i+ 1.

− OUKEM2

dec (hct): The adversary B obtains m by calling its oracle OUSimS
dec (hct) and returns

KDF2(m).

Simulation of the challenge phase: B does the following to simulate challenge phase to
UKEM2 adversary A.

i. B samples (m∗
0,m

∗
1)

$←− Z2q−2 × Z2q−2 to the USimS challenger C.
ii. In response, the challenger C uniformly samples b

$←− {0, 1} and computes ctm∗
b

=

(ct
(1)
m∗

b
= [b]E0, ct

(2)
m∗

b
= R

[b]pk
(u)
t

(x([2m∗
0+1]P

[b]pk
(u)
t

)))← USimS.Enc(ppUSimS, pk
(u)
t ,m∗

b )
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for some b
$←− [−µ, µ]n where t is the current epoch. The USimS challenger C sends

ctm∗
b
= (ct

(1)
m∗

b
, ct

(2)
m∗

b
) to B.

iii. Then the adversary B sends (hct∗ = ctm∗
b
, ek∗ = KDF2(m

∗
1)) to A

Simulation of the post challenge oracle query: The USimS adversary B simulates the
oracle exactly the same as in the pre-challenge oracle query.

Reveal Phase: Let Oup(ρt′) is the last query asked by A. After receiving (pk∗, sk∗, up∗)
from C the adversary B forwards (pk∗, sk∗, up∗) to A where pk∗, sk∗ and up∗ are public key,
secret key and updated ciphertext respectively at epoch t′.

Guess Phase: Upon receiving b′ ∈ {0, 1} from the adversary A, the adversary B submits
b′ to the challenger C.
Note that,

• If b = 0, the USimS challenger C transmits ctm∗
0
to the adversary B. Subsequently, the

UKEM2 challenger B forwards the pair (hct∗ = ctm∗
0
, ek∗ = KDF2(m

∗
1)) to the adversary A.

Here, the ciphertext hct∗ consists of two components:

ct
(1)
m∗

0
= [b]E0, ct

(2)
m∗

0
= R

[b]pk
(u)
t

(x([2m∗
0 + 1]P

[b]pk
(u)
t

))

where m∗
0 and m∗

1 are sampled uniformly from {0, 1}mlen(λ) and b is sampled uniformly
from [−µ, µ]n. Since b is indistinguishable from KDF2(m

∗
0) due to the security properties

of KDF2, we conclude that

hct∗ =
(
ct

(1)
m∗

0
= [b]E0, ct

(2)
m∗

0
= R

[b]pk
(u)
t

(x([2m∗
0 + 1]P

[b]pk
(u)
t

))
)

is identically distributed to
(
c̃t

(1)
m∗

0
= [KDF1(m

∗
0)]E0, c̃t

(2)
m∗

0
= R

[KDF1(m∗
0)]pk

(u)
t

(x([2m∗
0 +

1]P
[KDF1(m∗

0)]pk
(u)
t

))
)
.

Thus, (hct∗, ·) follows the same distribution as the output of

UKEM2.Encaps(ppUKEM2
, pk

(u)
t ).

Furthermore, sincem∗
1 is uniformly sampled from {0, 1}mlen(λ), the security of KDF2 ensures

that ek∗ = KDF2(m
∗
1) is uniformly distributed over the key space KS = {0, 1}klen(λ).

Consequently, the tuple (hct∗, ek∗) follows the same distribution in the case where b = 0
during the challenge phase of the experiment ExpIND-CR-CPA

UKEM2,A (λ) as described in Fig. 6.

• If b = 1, the USimS challenger C transmits ctm∗
1
to the adversary B. Subsequently, the

UKEM2 challenger B forwards the pair (hct∗ = ctm∗
1
, ek∗ = KDF2(m

∗
1)) to the adversary A.

Here, the ciphertext hct∗ consists of two components

ct
(1)
m∗

1
= [b]E0, ct

(2)
m∗

1
= R

[b]pk
(u)
t

(x([2m∗
1 + 1]P

[b]pk
(u)
t

))

where m∗
1 is sampled uniformly at random from {0, 1}mlen(λ) and b is sampled uniformly

from [−µ, µ]n. Since b is indistinguishable from KDF1(m
∗
1) due to the security properties

of KDF1, we conclude that

hct∗ =
(
ct

(1)
m∗

1
= [b]E0, ct

(2)
m∗

1
= R

[b]pk
(u)
t

(x([2m∗
1 + 1]P

[b]pk
(u)
t

))
)
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is identically distributed to
(
c̃t

(1)
m∗

1
= [KDF1(m

∗
1)]E0, c̃t

(2)
m∗

1
= R

[KDF1(m∗
0)]pk

(u)
t

(x([2m∗
1 +

1]P
[KDF1(m∗

0)]pk
(u)
t

))
)
.

Thus, (hct∗ = ctm∗
1
, ek∗ = KDF2(m

∗
1)) is identically distributed to the output of

UKEM2.Encaps(ppUKEM2
, pk

(u)
t ).

Thus, when b = 1, the tuple (hct∗ = ctm∗
1
, ek∗ = KDF2(m

∗
1)) follows the same distribution

during the challenge phase of ExpIND-CR-CPA
UKEM2,A (λ) as described in Fig. 6.

Therefore, if A succeeds in ExpIND-CR-CPA
UKEM2,A (λ) then B succeeds in ExpIND-CR-CPA

USimS,B (λ). This
implies

Pr[ExpIND-CR-CCA
UKEM2,A (λ) = 1] = Pr[ExpIND-CR-CCA

USimS,B (λ) = 1]

Therefore,

AdvIND-CR-CCA
UKEM2,A (λ) =

∣∣∣∣Pr[ExpIND-CR-CCA
UKEM2,A (λ) = 1]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[ExpIND-CR-CCA
USimS,B (λ) = 1]− 1

2

∣∣∣∣
= AdvIND-CR-CCA

USimS,B (λ)

□
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A Additional Preliminaries

Algorithm 1 Vélu’s formula to compute isogeny

Require: An elliptic curve E1 given by the generalized Weierstrass equation y2 +
a1xy + a3y = x3 + a2x

2 + a4x + a6, with all ai ∈ K and a G finite subgroup of
E1(K).

Ensure: An elliptic curve E2 and a separable isogeny φ : E1 → E2 with G = ker(φ)
i.e. E2 = E1/G.

1: For a point Q = (x(Q), y(Q)) ∈ G with Q ̸= O, define

gQ = 3(x(Q))2 + 2a2x(Q) + a4 − a1y(Q), hQ = −2y(Q)− a1x(Q)− a3,

uQ = h2
Q and vQ =

{
gQ, if 2Q = O

2gQ − a1hQ, if 2Q ̸= O

2: Let G2 be the points of order 2 in G. Choose R ⊂ G such that we have a disjoint
union

G = {O} ∪G2 ∪R ∪ (−R).

3: Let S = R ∪ G2 and set v =
∑

Q∈S vQ, w =
∑

Q∈S(uQ + x(Q)vQ) Then E2 has

the equation Y 2 +A1XY +A3Y = X3 +A2X
2 +A4X +A6, where

A1 = a1, A2 = a2, A3 = a3, A4 = a4 − 5v, A6 = a6 − (a21 + 4a2)v − 7w

4: The isogeny φ : E1 → E2 is given below where (x, y) ∈ E1 and (X,Y ) ∈ E2

satisfying (X,Y ) = φ(x, y)

X = x+
∑
Q∈S

(
vQ

x− x(Q)
+

uQ

(x− x(Q))2

)

Y = y −
∑
Q∈S

(
uQ

2y + a1x+ a3
(x− x(Q))3

+ vQ
a1(x− x(Q)) + y − y(Q)

(x− x(Q))2

+
a1uQ − gQhQ

(x− x(Q))2

)
5: return E2 and φ

Remark A.0.1 ([26]). The complexity of the algorithm is computing isogeny by Vélu’s
formulae for a finite field K is O(l log(#K)2) and in practice, this computation is
only feasible when the degree of isogeny l is relatively small (say l < 1000).
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A.1 hPKE: An IND-CPA Secure Encryption from CSIDH

We recall below a variant of IND-CPA secure encryption scheme hPKE proposed by
Moriya et al. [21]. A hPKE is a tuple of PPT algorithms hPKE = (Setup,KeyGen,
Enc,Dec) associated with a message spaceMS = {0, 1}mlen(λ) satisfying the following
requirements:

hPKE.Setup(λ) → pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K): A trusted party
runs this PPT algorithm on input the security parameter λ and proceeds as follows:
i. Chooses a prime p = 4Πn

i=1ℓi − 1 where ℓi’s are small distinct odd primes.
ii. Sets a base curve E0 : y2 = x3 + x ∈ Ellp(O) over Fp with O = Z[

√
−p] and picks

an integer µ such that (2µ+ 1)n ≥ #Cl(O).
iii. Samples a family of keyed hash function H = {Hk}k∈K where Hk : Fp →
{0, 1}mlen(λ) for each k ∈ K where K is key space.

iv. Outputs the public parameter pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K).
hPKE.KeyGen(pphPKE)→ (sk = a, pk = EA): On input the public parameter pphPKE =
(p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K), a user runs this PPT algorithm to generates a
secret-public key pair (sk, pk) in the following manner:

i. Samples a = (a1, . . . , an)
$←− [−µ, µ]n and define [a] = [la1

1 · · · lan
n ] ∈ Cl(O) where

li = ⟨ℓi, π − 1⟩ and computes EA = [a]E0.
ii. Sets public key pk = EA and secret key sk = a.
hPKE.Enc(pphPKE, pk = EA, m) → ctm: Taking input the public parameter pphPKE =
(p, ℓ1, . . . , ℓn, µ, E0,H = {Hk}k∈K), public key pk = EA and a message m ∈
MS = {0, 1}mlen, an encrypter executes this PPT algorithm and proceeds to compute
ciphertext as follows:

i. Randomly samples b = (b1, . . . , bn)
$←− [−µ, µ]n and define [b] = [lb11 · · · lbnn ] ∈

Cl(O).
ii. Computes ct

(1)
m = EB = [b]E0 and ct

(2)
m = m⊕Hk(MC([b]EA)) where MC([b]EA)

is the Montgomery coefficient of the elliptic curve [b]EA.

iii. Returns a ciphertext ctm = (ct
(1)
m , ct

(2)
m ).

hPKE.Dec(pphPKE, sk = a, ctm = (ct
(1)
m , ct

(2)
m )) → m/ ⊥: A decrypter runs this

deterministic algorithm on input the public parameter pphPKE = (p, ℓ1, . . . , ℓn, µ, E0,
MC ,H = {Hk}k∈K), ciphertext ctm and its secret key sk = a to recover the plaintext
m in the following manner:

i. Computes h = Hk(MC([a]ct
(1)
m )) where MC([a]ct

(1)
m ) is the Montgomery coeffi-

cient of the elliptic curve [a]ct
(1)
m .

ii. Returns ct
(2)
m ⊕ h.

Correctness: Note that the ciphertext in the protocol hPKE is given by

ctm = (ct(1)m = EB , ct
(2)
m = m⊕Hk(MC([b]EA)))

and consequently, we have

ct(2)m ⊕Hk(MC([a]ct
(1)
m ))

53



= m⊕Hk(MC([b]EA))⊕Hk(MC([a]ct
(1)
m ))

= m⊕Hk(MC([b][a]E0))⊕Hk(MC([a][b]E0))

= m

Theorem 37 ([21]). The scheme hPKE is indistinguishable under the chosen plain-
text attack (IND-CPA) as per Definition 19 under the CSSIDDH assumption given in
Definition 13 and assuming H = {Hk}k∈K is entropy smoothing function.

For the security proof of our updatable public key encryption scheme based on
hPKE, we need to establish that hPKE is f -CS+ LR secure. This is formally stated in
Theorem 38 with the corresponding proof presented in Appendix 3.

Theorem 38. The construction hPKE provides f -CS+ LR security for f : [−µ, µ]n×
{0, 1}mlen(λ) → [−µ, µ]n as per Definition 20 under the CSSIDDH assumption given in
Definition 13, assuming H = {Hk}k∈K is entropy smoothing function and KDF is a
secure key derivation function as per Definition 16.

A.2 SimS: An IND-CCA Secure Encryption

Pohlig and Hellman [27] proposed an algorithm in 1978 to solve the discrete logarithm
problem for a group of order 2q for some prime q. Let µ be an element of Z2q and P
be a generator of Z2q . Let µ0, . . . , µq−1 ∈ {0, 1} that satisfy µ =

∑q−1
j=0 µj2

j . For a
given P and µP , we want to compute µ efficiently.

• For i = 0: We compute 2q−1 · µP . If 2q−1 · µP ≡ O then µ0 = 0 otherwise µ0 = 1.
Therefore, we can obtain the value of µ0 by computing 2q−1 · µP .

• For i = 1, . . . , q − 1: Define µ(i) =
∑q−1

j=i µj2
j . So,

µ(i) =

q−1∑
j=i

µj2
j =

q−1∑
j=0

µj2
j −

i−1∑
j=0

µj2
j = µ−

i−1∑
j=0

µj2
j

If 2q−i−1·µ(i)P = O then µi = 0 else µi = 1. Note that, µ(i)P = µP−
∑i−1

j=0 µj2
jP .

The condition 2q−i−1 · µ(i)P = O equivalent to 2q−i−1 · µP = 2q−i−1 ·
∑i−1

j=0 µj2
jP .

Let Q = µP , Pi = 2iP and Qi = 2iQ. Therefore, we can obtain the value of µi by
checking Qq−(i+1) =

∑i−1
j=0 µj2

jPq−(i+1).

Algorithm 2 recalls the Pohlig-Hellman algorithm for points on Montgomery
curves, which is essential for the SimS scheme. Based on the preceding discussion, in
line 7, the case for i = 0 is verified according to the given condition where µ is initial-
ized as µ = µ0. Similarly, in line 14, for i = 1, . . . , q− 1, the case is checked under the
condition that µ is updated as µ = µ+ µi2

i.
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Algorithm 2 The Pohlig-Hellman algorithm for Montgomery curves

Require: The Montgomery coefficient A ∈ Fp of a supersingular elliptic curve EA :
y2 = x3+Ax2+x and x-coordinates of points P,Q ∈ E of order 2q each satisfying
Q ∈ ⟨P ⟩.

Ensure: µ or 2q − µ such that Q = µP
1: x(P0)← x(P );
2: x(Q0)← x(Q);
3: for (i = 1, i < q − 2, i++) do
4: x(Pi)← x(2Pi−1);
5: x(Qi)← x(2Qi−1);
6: end for
7: if (2q−1x(Q) = 0) then
8: µ← 0;
9: else

10: µ← 1;
11: end if
12: for (i = 2, i ≤ q − 1, i++) do
13: x(R)← x(µQq−i);
14: if (x(Pq−i) ̸= x(R)) then
15: µ← µ+ 2i−1;
16: end if
17: end for
18: return µ

Algorithm 3 computes the distinguished point PE of order 2q on a curve E which
is a crucial component of the SimS scheme. The correctness of the Algorithm 3 follows
from the following discussion.

Theorem 39 ([22]). Let p = 2qΠn
i=1ℓi−1 be a prime such that p ≡ 3 (mod 4) and let

E be a supersingular Montgomery curve defined over Fp satisfying EndFp(E) ≡ Z[π].
Let P ∈ E(Fp) such that x(P ) ̸= 0. If x(P ) /∈ (F∗

p)
2 then [ℓ1 × · · · × ℓn]P is a point of

order 2q.

To determine the x-coordinates of points of order 2q in E, we must consider ele-
ments of Fp that are not squares. Given that p = 2qΠn

i=1ℓi−1 with q > 1, the following
properties hold:(

−1
p

)
= −1,

(
2

p

)
= 1, and

(
ℓi
p

)
= 1 for i ∈ {1, . . . , n}

where
(
a
b

)
denotes Legendre symbols for some integers a and b . Furthermore, let

ℓ1, . . . , ℓn−1 be the first n−1 smallest odd primes. For every subset I ⊂ {0, 1, . . . , n−1},
we obtain (−∏

i∈I ℓi

p

)
= −1,
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Using this property, we can sample x from the sequence −2,−3,−4, . . . and verify
whether x corresponds to the x-coordinate of a point in E(Fp). If so, it suffices to
check whether this point has an order divisible by 2q. However, Theorem 39 guarantees
that if such an x is the x-coordinate of a point in E(Fp) then the corresponding point
necessarily has order divisible by 2q. Hence, an explicit verification step for divisibility
by 2q is not required.

Algorithm 3 [22] Computing the distinguished point PE of order 2q on a curve E

Require: The prime p = 2qΠn
i=1ℓi − 1 and Montgomery coefficient A ∈ Fp of a

supersingular curve EA : y2 = x3 + Ax2 + x where ℓ1, . . . , ℓn are small distinct
odd primes.

Ensure: PE ∈ E(Fp) of order 2
q.

1: Set x← −2;
2: while (x3 +Ax2 + x is not a square in Fp and −x ≤ ℓn−1 + 1) do
3: Set x← x− 1;
4: end while
5: if (−x ≤ ℓn−1 + 1) then
6: Set P ← (x, y) ∈ E(Fp) : y

2 = x3 +Ax2 + x;
7: Set PE ← [ℓ1 · · · ℓn]P ;
8: return PE

9: else
10: return ⊥
11: end if

Remark A.2.1. Algorithm 3 is deterministic, hence always outputs the same point
PE when the input is unchanged.

We recall below the IND-CCA secure encryption scheme SimS = (Setup,KeyGen,
Enc,Dec) of Fouotsa et al. [22]. SimS which is associated with a message spaceMS =
Z2q−2 satisfying the following requirements:

SimS.Setup(λ)→ ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE): A trusted party runs this PPT
algorithm on the input the security parameter λ and proceeds as follows:
i. Chooses a prime p = 2qΠn

i=1ℓi − 1 such that λ + 2 ≤ q ≤ 1
2 log p where ℓi’s are

small distinct odd primes.
ii. Sets a base curve E0 : y2 = x3 + x ∈ Ellp(O) over Fp with O = Z[

√
−p] and picks

an integer µ such that (2µ+ 1)n ≥ #Cl(O).
iii. Consider the function RE : Fp → Fp defined as RE(x) = int(bin(x) ⊕bin(MC(E)))

where bin(·) and int(·) represent the operations that convert an element of Fp

into its binary representation and back, respectively. Here, MC(E) denotes the
Montgomery coefficient associated with the elliptic curve E.

iv. Outputs the public parameter ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE).
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SimS.KeyGen(ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE))→ (sk = a, pk = EA): On input
the public parameter ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE), a user generates a secret-
public key pair (sk, pk) in the following manner:

i. Samples a = (a1, . . . , an)
$←− [−µ, µ]n and define [a] = [la1

1 · · · lan
n ] ∈ Cl(O) where

li = ⟨ℓi, π − 1⟩.
ii. Computes EA = [a]E0.
iii. Returns public key pk = EA and secret key sk = a.
SimS.Enc(ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE), pk = EA, m) → ctm: Taking as input
the public parameter ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE), public key pk = EA and a
message m ∈ MS, an encrypter runs this PPT algorithm and proceeds to compute
ciphertext as follows:
i. Embeds m in Z×

2q via m→ 2m+ 1.

ii. Randomly samples b = (b1, . . . , bn)
$←− [−µ, µ]n and define [b] = [lb11 · · · lbnn ] ∈

Cl(O).
iii. Computes ct

(1)
m = EB = [b]E0, EAB = [b]EA and PAB = [2m + 1]PEAB

. Here,
PEAB

is a point on EAB of order 2q, which is determined using Algorithm 3.

iv. Returns a ciphertext ctm = (ct
(1)
m = EB , ct

(2)
m = REAB

(x(PAB))) where
REAB

(x(PAB))) = int(bin(x(PAB))⊕ bin(MC(EAB))).

SimS.Dec(ppSimS, sk = a, ctm = (ct
(1)
m , ct

(2)
m )) → m/ ⊥: A decrypter runs this deter-

ministic algorithm on input the public parameter ppSimS = (p, q, ℓ1, . . . , ℓn, µ, E0, RE),

ciphertext ctm = (ct
(1)
m = EB , ct

(2)
m = x′) and its secret key sk = a to recover the

plaintext m by executing the following steps:
i. Verifies that EB is a supersingular curve.
ii. Computes EBA = [a]EB and a point PEBA

on EBA of order 2q by using Algorithm
3.

iii. Calculates REBA
(x′) and if REBA

(x′) is not the x-coordinate of a 2q-torsion point
on the curve EBA then aborts.

iv. Solves the discrete logarithm instance between PBA = (REBA
(x′), ·) and PEBA

using the Pohlig-Hellman algorithm given in Algorithm 2. Let m′ ∈ Z×
2q be the

solution of this computation. If 2q−1 < m′ then it changes m′ to 2q −m′. Finally,

it returns the plaintext (m′−1)
2 .

Correctness: In the protocol SimS, the ciphertext is given by

ctm = (ct(1)m , ct(2)m ) = (EB , REAB
(x(PAB)))

where ct
(1)
m = EB = [b]E0 and ct

(2)
m = REAB

(x(PAB)). The value PAB is computed
as

PAB = [2m+ 1]PEAB
,

where PEAB
is a point on EAB of order 2q, determined using Algorithm 3.

We have

EAB = [b]EA = [b][a]E0 = [a][b]E0 = [a]EB = EBA
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Since PEAB
and PEBA

are points on EAB and EBA, respectively, both of order
2q and given that EAB = EBA, it follows that PEAB

= PEBA
. As Algorithm 3 is

deterministic, it yields the same distinguished point for both cases.
We now demonstrate that x(PBA) = x(PAB). We proceed as follows:

x(PBA)

= REBA
(ct(2)m )

= REBA
(REBA

(x(PAB)))

= REBA
(int(bin(x(PAB))⊕ bin(MC(EBA))))

= int(bin(int(bin(x(PAB))⊕ bin(MC(EBA))))⊕ bin(MC(EBA)))

= int(bin(x(PAB))⊕ bin(MC(EBA))⊕ bin(MC(EAB)))

= int(bin(x(PAB))), since EAB = EBA

= x(PAB)

As PAB = PBA and PEAB
= PEBA

, it follows that PBA = [2m+1]PEBA
. Using the

Pohlig-Hellman algorithm (Algorithm 2), we recover the discrete logarithm instance
between PAB and PEBA

obtaining either m′ = (2m+ 1) orm′ = 2q − (2m+ 1). Since
m ∈ Z2p−2 , we have 0 ≤ m ≤ 2q−2 − 1, which implies

0 ≤ 2m+ 1 ≤ 2p−1 − 1 < 2p−1.

Furthermore, since 2p−1 < 2q − (2m+1), if m′ > 2p−1, i.e., if m′ = 2q − (2m+1),
we adjust m′ to

m′ = 2p −m′ = (2m+ 1).

Thus, we conclude that m = m′−1
2 . This guarantees the correctness of the protocol.

Theorem 40 ([22]). The scheme SimS is IND-CPA secure as per Definition 19 under
the assumption that REAB

satisfies the second property of a randomizing function (see
Definition 3) and the CSSIDDH assumption (see Definition 13) holds.

For the security proof of our updatable public key encryption scheme based on
SimS, we need to establish that SimS is f -CS+ LR secure. This is formally stated in
Theorem 41 with the corresponding proof presented in Appendix 4.

Theorem 41. The scheme SimS is f -CS+ LR secure for f : [−µ, µ]n ×Z2q−2 →
[−µ, µ]n as per Definition 20 under the assumption that REAB

satisfies the second
property of a randomizing function (see Definition 3), KDF is a secure key derivation
function (see Definition 16) and the CSSIDDH assumption given in Definition 13 holds.
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