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Abstract. Threshold signatures are one of the most important cryptographic primitives in distributed
systems. Of particular interest is the threshold Schnorr signature, a pairing-free signature with efficient
verification, compatible with standardized EdDSA (non-threshold) signature. However, most threshold
Schnorr signatures have only been proven secure against a static adversary, which has to declare its
corruptions before the protocol execution. Many existing adaptively secure constructions require either
secure erasures or non-standard assumptions, such as the algebraic group model or hardness of the
algebraic one-more discrete logarithm problem. The latest adaptively secure threshold Schnorr signature
schemes under standard assumptions require five rounds of communication to create a single signature,
limiting its practicality.

In this work, we present Gargos, a three-round, adaptively secure threshold Schnorr signature scheme
based on the hardness of the decisional Diffie-Hellman (DDH) problem in the random oracle model
(ROM). Our protocol supports full corruption threshold t < n, where t is the signing threshold and n is
the total number of signers. We achieve our result with an enhanced proof technique that enables us to
eliminate two rounds of communication from the recent Glacius scheme (Eurocrypt 2025). We believe
our techniques are of independent interest to further research in improving the round complexity of
multi-party signing protocols.

1 Introduction

Threshold signatures [Des88, DF89] are a type of interactive digital signature in which the signing key is
distributed among a set of n signers. Importantly, any subset of at least t+1 signers can jointly generate a valid
signature, while any t or less signers cannot. Threshold signatures have gained considerable interest in recent
years, mainly for their applications in blockchain systems. A popular choice for a threshold signature are
threshold variants of the Schnorr signature, a pairing-free signature with efficient verification. The Schnorr
signature scheme has been standardized by NIST as the EdDSA signature and is also a focus of NIST’s
recent call for threshold cryptography [BP23]. Further, mainstream cryptocurrencies like Bitcoin [Nak08]
adopt Schnorr signatures. In this work, we focus on threshold Schnorr signatures.

Static vs. adaptive security. The security model of threshold signatures generally considers two types of
adversaries: static and adaptive. A static adversary has to decide which signers to corrupt (thereby learning
their secret key shares and states) before the protocol execution. In contrast, an adaptive adversary can decide
which signers to corrupt dynamically, based on previous signatures and corruptions. Adaptive security is a
safer and more realistic model for the decentralized setting and is highly demanded.

Unfortunately, despite its popularity, all existing adaptively secure threshold Schnorr signature schemes
have significant drawbacks. These include having signers to erase their internal states [CGJ+99, Mak22], re-
quiring many rounds of communication [BDLR24, KRT24], relying on strong and non-standard assumptions
such as algebraic one-more discrete logarithm (AOMDL) and the algebraic group model (AGM) [CKM23,
BLSW24], or having suboptimal corruption thresholds [CKM23].

Our contribution.Motivated by this state of affairs, we present Gargos, the first threshold Schnorr signature
scheme that combines all of the following desirable characteristics:
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Table 1: Comparison of adaptively secure threshold Schnorr signature schemes. We do not consider schemes that
assume a broadcast channel or the algebraic group model. We compare the number of signing rounds, the corruption
threshold, the size of signing keys (as number of field elements), reliance on secure erasures, communication cost per
signer (as number of field and group elements), and computational assumption.
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ZeroS [Mak22]‡ 3 t 1 ✗ 3|Zp|+|G| DL
Sparkle [CKM23] 3 t/2 1 ✓ 2|Zp|+|G| AOMDL
KRT [KRT24] 5 t n + 2 ✓ 4|Zp|+2|G| DL
Glacius [BDLR24] 5 t 3 ✓ 4|Zp|+|G| DDH

Gargos (ours) 3 t 3 ✓ 7|Zp|+2|G| DDH

‡ The scheme additionally assumes private channels.

– Adaptive security. Gargos is provably secure under t < n adaptive corruptions.
– Standard assumptions. Security is proven under the well-studied decisional Diffie-Hellman (DDH) as-

sumption.
– No erasures. Gargos does not rely on secure erasures for its adaptive security proof.
– Three-round signing. Gargos has a signing protocol consisting of three communication rounds. In contrast,

the recent adaptively secure schemes by Katsumata et al. [KRT24] and Bacho et al. [BDLR24] require
five rounds of communication to generate a single signature.

We present detailed comparison of our scheme with existing adaptively secure threshold Schnorr signa-
tures in Table 1.

In terms of techniques, we modify the five-round Glacius [BDLR24] to have three rounds of communication
in signing. Our modification crucially relies on an enhanced proof technique and simple Σ-protocol based
non-interactive zero-knowledge (NIZK) proofs. More precisely, we achieve our result as follows:

1. We combine the first and second rounds of Glacius, and add a simple NIZK proof to preserve security.
2. We remove the round of communication in Glacius where signers check the consistency of messages sent

by others, and use a proof technique that defines equivalence classes on the views of signers.

We elaborate on this in the technical overview, see Section 2.

1.1 Related Work

We discuss more related work, also other adaptively secure threshold signatures.

Threshold Schnorr signatures. Early works [GJKR07, AF04, SS01, CGJ+99] primarily focused on robust
threshold Schnorr schemes, ensuring that a signing session always produces a valid signature even in the
presence of malicious signers. To this end, each signing session involves running an interactive protocol similar
to a distributed key generation (DKG), which requires a broadcast channel and introduces high inefficiencies
in round and communication cost. Notably, the schemes in [GJKR07, CGJ+99] achieve adaptive security
but heavily rely on secure erasures. In contrast, the scheme by Abe and Fehr [AF04] eliminates the need for
secure erasures but it requires suboptimal signing threshold t < n/2 and still a broadcast channel.

In recent years, the interest in more efficient threshold Schnorr signatures has been revived, mainly due
to their applications in cryptocurrencies. This has sparked an extensive amount of works on efficient thresh-
old Schnorr signatures with fewer rounds recently [KG21, BCK+22, CKM21, CGRS23, RRJ+22, BTZ22,
Lin22, Mak22, CKM23, KRT24, BDLR24]. Some of these schemes [Mak22, CKM23, KRT24, BDLR24]
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achieve adaptive security; however, each has its own drawbacks, such as requiring many rounds of com-
munication, relying on secure erasures, or relying on strong and non-standard assumptions (see Table 1
for a comparison). Recently, several works have focused on achieving robustness in asynchronous net-
works [RRJ+22, GS24, BHK+24, BLSW24], where only [BLSW24] achieves adaptive security but has sub-
optimal corruption threshold t/2 and relies on the AGM, OMDL, secure erasures, and broadcast channels.

Adaptively secure threshold signatures. Canetti et al. [CGJ+99] and Frankel et al. [FMY99a, FMY99b]
independently proposed the first adaptively secure threshold signatures using the single-inconsistent player
(SIP) technique and secure erasures. Subsequently, Jarecki and Lysyanskaya [JL00] enhanced the SIP tech-
nique to avoid the use of secure erasures. Similar techniques were used in [LP01, AF04] to obtain adaptively
secure threshold signatures without secure erasures. Remarkably, the scheme by Abe and Fehr [AF04] is a
threshold Schnorr signature. Further works [ADN06, WQL09] also use the SIP technique to obtain threshold
RSA signatures [Rab98] and threshold Waters signatures [Wat05].

In the pairing-based setting, Libert et al. [LJY14] presented a non-interactive, adaptively secure threshold
signature scheme from DDH. Also, Bacho and Loss [BL22] proved adaptive security of Bolyreva’s threshold
BLS signature scheme [Bol03] from OMDL in the AGM. Notably, Das and Ren [DR24] proposed an adaptively
secure threshold BLS signature from DDH and CDH in asymmetric pairing groups. Recently, Mitrokotsa et
al. [MMS+24] also proposed a scheme with adaptive security from the bilinear DDH assumption in asymmetric
groups. In the pairing-free setting, two recent works [BLT+24, BW24] give adaptively secure threshold
signatures from DDH, where the latter achieves tight security.

2 Technical Overview

We start with a brief recap of the Schnorr signature scheme [Sch90]. For this, let (G, p, g)← GGen(1λ) be a
group generation algorithm, where G is a cyclic group of prime order p with generator g ∈ G, and λ is the
security parameter. Let Hsig : G2×M→ Zp be a hash function (modeled as a random oracle), whereM is a
message space. The signing key sk := s ∈ Zp is a random field element, and pk := gs ∈ G is the corresponding

public verification key. The signature σ on a message m has the form (Â, z) ∈ G× Zp. To verify a signature

σ = (Â, z) on a message m, one first computes c := Hsig(Â, pk,m) and checks that gz = Â · pkc.

2.1 Glacius: Five-Round Threshold Schnorr Signature [BDLR24]

Our starting point is Glacius [BDLR24], a recent five-round threshold Schnorr signature scheme with adaptive
security. In the following, we review the main ideas behind its design and security proof.

Glacius adopts the commit-and-reveal approach for designing secure interactive signing protocols. In this
approach, signers first commit to a random nonce using one round of communication. Next, signers reveal
their committed value using another round of communication. Finally, signers compute and send their partial
signatures using another round of communication. The commit-and-reveal approach naturally adopts three
rounds of communication. The two additional rounds needed in Glacius are an artifact of their security proof
against an adaptive adversary, which we describe next.

In Glacius, the secret signing key of signer i is ski := (s(i), r(i), u(i)) ∈ Z3
p, where s(x), r(x), u(x)←$ Zp[x]

are three uniformly random degree-t polynomials such that r(0) = u(0) = 0. The public key of the system is
then pk := gs(0)hr(0)vu(0) = gs(0), where g, h, v ∈ G are three uniformly random and independent generators
of G. Further, each signer i also has its own public verification key pki = gs(i)hr(i)vu(i) (where any t+ 1 out
of those n verification keys pk1, . . . , pkn interpolate to the joint public key pk).

We now describe the five-round signing protocol of Glacius, which is run among a set of signers SS ⊆ [n] of
size at least t+1 and message m to be signed. Concretely, the signers in SS engage in the following protocol
to jointly compute a signature on m.

1. Randomness sampling. Each signer i samples a uniformly random string ρi ←$ {0, 1}λ, and sends it to all
other signers.
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2. Commitment phase. Upon receiving all strings ρ⃗ := (ρj)j∈SS from signers, each signer i does the following.
It samples a random ai ←$ Zp and computes the nonce

Ai :=
(
gai · H0(ρ⃗)

r(i) · H1(ρ⃗)
u(i)
)Li,SS

,

where H0,H1 : {0, 1}∗ → G are two independent random oracles and Li,SS is the i-th Lagrange coefficient
for the set SS. Signer i then sends a commitment µi := Hcom(i, Ai) to all other signers.

3. View exchange. Upon receiving all commitments µ⃗ := (µj)j∈SS from signers, each signer i does the
following. It takes the protocol messages it received in the previous two rounds, ρ⃗ and µ⃗, and computes
their hash yi := Hview(ρ⃗, µ⃗). Then, it sends the hash value yi to all other signers.

4. Opening phase. Upon receiving all hash values (yj)j∈SS from signers, each signer i does the following. For
all j ∈ SS, it checks whether yj = yi holds

4. If any check fails, the signer aborts. Otherwise, it sends the
nonce Ai to all other signers.

5. Signing phase. Upon receiving all openings (Aj)j∈SS from signers, each signer i does the following. First,
for all j ∈ SS, it checks whether µj = Hcom(j, Aj) holds. If any check fails, the signer aborts. Otherwise,

it computes the combined nonce Â, challenge c, and its signature share zi as

Â :=
∏
j∈SS

Aj , c := Hsig(Â, pk,m), zi := Li,SS · (ai + c · s(i)).

Then, it sends its signature share zi to all other signers. The final signature is then computed as σ := (Â, z)
where Â :=

∏
j∈SS Aj and z :=

∑
j∈SS zj . This is a standard Schnorr signature which verifies as usual.

To prove adaptive security, [BDLR24] employs the following high-level strategy. First, the reduction
algorithm B uses the additional public parameter h ∈ G to embed the given DL instance. This crucial change
allows B to locally sample the secret key polynomials. Second, B uses rigged keys during its interaction with
adversary A. Specifically, B samples the polynomials r(x) and u(x) with non-zero r(0) and uniformly random
u(0). Using correlated programming of additional random oracles (which is undetectable under the DDH
assumption), the reduction can simulate signatures under rigged keys. These changes allows them to prove
adaptive security of their threshold Schnorr signature scheme from standard assumptions. In the following,
we will explain the reasoning behind their design choice and proof ideas.

Proof intuition. In their security proof, the reduction switches from honestly generated keys to rigged keys
where r := r(0) = 1 is no longer zero, and u := u(0) ←$ Zp is uniformly random. In particular, the rigged
public key becomes pk = gshvu ∈ G, and the central issue here is that honestly generated signatures no longer
verify against the rigged public key. Specifically, let α := αh + αvu ∈ Zp, where αh is the discrete logarithm
value of h and αv is the discrete logarithm value of v, so that the rigged public key is pk = gshvu = gs+α.
Then, the signature σ := (Â, z) = (ga, a+c ·s) does not satisfy the Schnorr verification equation with respect
to pk, because

gz = ga+s·c ̸= ga · (gs+α)c = Â · pkc, where c := Hsig(Â, pk,m).

To resolve this issue, Glacius modifies how signers compute the nonce Â. Specifically, signers jointly
compute it as Â := ga ·H0(x)

r(0) ·H1(x)
u(0), where H0,H1 : {0, 1}∗ → G are two independent random oracles,

and x is some common input. This modification ensures that when the keys are rigged (i.e., r(0) = 1 and
u(0) = u), then we have that Â = ga · H0(x) · H1(x)

u = ga · gγ · guβ where H0(x) = gγ and H1(x) = gβ for
some β, γ ∈ Zp. Now, during simulation, if the reduction B chooses c ∈ Zp such that

γ + β · u+ c · α = 0, (1)

and programs the hash function Hsig on input Â to output c, i.e., Hsig(Â, pk,m) := c, then we get

Â · pkc = ga · H0(x) · H1(x)
u · (gs+α)c = ga · gγ · gβu · g(s+α)c = ga · gsc = gz. (2)

4 We note that Glacius relies on authenticated channels for this step.
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Therefore, by appropriately sampling (β, γ, c) and correlating the programming of the random oracles H0,
H1, and Hsig, B can ensure that the final signature satisfies the Schnorr signature verification equation, even
after the public key becomes rigged.

For the security proof to go through, it is critical that A must not detect these changes. Glacius relies on
the hardness of DDH in G to ensure this. More precisely, in each signing session, the reduction algorithm
samples fresh c, β ←$ Zp, and then programs the random oracles as

H0(x) := g−(βu+cα), H1(x) := gβ .

In Glacius, the input x needs to be unique for every signing session. Note that, for each signing session
equation (1) must hold. Now, since Â and hence c := Hsig(Â, pk,m) change with each signing session, the
tuple (β, γ) must also change. This is because, for any fixed (β, γ), only one value of c can satisfy equation (1).
Now, since (β, γ) depends on x, x must change in every signing session as well. Using a different x in every
session allows B to sample a new (β, γ, c) tuple to satisfy equation (1) for that session.

Glacius ensures a unique x in each signing session by requiring each signer i to send a fresh random value
ρi ←$ Zp to the other signers as the first message of the signing protocol. The value of x is then chosen as
vector ρ⃗ := (ρi)i∈SS, where SS ⊆ [n] is the set of (at least t+1) signers participating in that signing session.
Note that ρ⃗ is unique with high probability, as each session consists of at least one honest signer.

Glacius has another subtle issue due to which it needs one additional round. More precisely, in any given
signing session, let (β, c) denote the tuple such that H0(x) = g−(βu+cα) and H1(x) = gβ . According to
equation (2), for the simulation to succeed, we need to program Hsig(Â, pk,m) := c for the combined nonce Â

(and public key pk and message m). The problem is that the combined nonce Â depends on the second-round
messages that the adversary A sends to the honest signers. Concretely, by sending different second-round
messages to different honest signers, the adversary A can enforce multiple combined nonces for the same
one signing session. In such a case, B would need to program Hsig to return the same c for all these different
combined nonces. Glacius addresses this issue by requiring the signers to exchange the cryptographic hash
of their view during the third round of the protocol to ensure that that protocol aborts in case A sends
different messages to different honest signers. As such, this extra round ensures consistent views among the
honest signers.

Summary. We briefly summarize the need for five signing rounds in their approach:

– The commitment, opening, and signing phase are standard and follow the usual commit-and-reveal
approach for designing secure interactive signing protocols. This gives three rounds of communication.

– In order to have an adaptive security proof, the public key is rigged. To make the Schnorr verification
equation hold under rigged keys, the nonces are computed differently with additional random oracles
that require an unpredictable common input x. This x is sampled in an additional first round.

– Their security proof cannot directly handle the case in which an adversary sends different nonces to
different honest signers within one signing session. As such, their scheme introduces another round of
consistency checks among honest signers.

Thus, the natural question that arises is: Is it possible to improve upon Glacius and restore the three-round
signing procedure while preserving security against an adaptive adversary?

2.2 Our Approach

Our protocol starts from Glacius and uses only three rounds of communication for signing.

From five to four rounds. Our first idea is to combine the randomness sampling phase with the commit-
ment phase. Our insight here is that a hash commitment to a randomly sampled nonce already introduces
enough entropy (in the random oracle model) to be used as source of unpredictability. As such, consider the
following potential four-round scheme design.

In the first round, each signer i computes a hash commitment µi := Hcom(i, g
ai) to its nonce and sends it

to all. It then uses the vector of received commitments µ⃗ := (µi)i∈S as input to the random oracles H0,H1

5



as described in Glacius. In the opening phase later, each signer i then computes and publishes its (masked)
nonce Ai := gai ·H0(µ⃗)

r(i) ·H1(µ⃗)
u(i) as in Glacius. Clearly, to preserve security, signer i also has to provide

a proof that the same ai was used for computing both µi and Ai. Otherwise5, an adversary could simply
make its Aj ’s depending on honest Ai’s and mount Wagner’s attack [Wag02] or the ROS attack [BLL+22].
Theoretically speaking, this approach could potentially work. However, it is clear that the proof of correctness
that connects Ai to the preimage of µi = Hcom(i, g

ai) would be very expensive and require the use of heavy
SNARKs. On the other hand, we also never can reveal the gai itself, since the ai values of honest signers
need to be hidden to make the adaptive security proof of rigged keys go through (otherwise, the adversary
could directly detect rigged keys).

Our solution. Our idea is the following. Since we cannot reveal gai itself, we instead commit to a masked
version of gai which we can then output later along with the Ai as computed above. Concretely, each
signer i commits to ai as µi := Hcom(i, ρi, Bi) where ρi ←$ {0, 1}λ is a uniformly random string and
Bi := gai · F0(ρi)

r(i) · F1(ρi)
u(i) for two (additional) independent random oracles F0,F1 : {0, 1}∗ → G. The

reason why we use the random oracles F0,F1 to compute the base elements h0 := F0(ρi) and h1 := F1(ρi) is
to use correlated programming to make simulation for honest signers with rigged keys work, similar to the
technique used in Glacius. The signing protocol of our potential four-round design would look as follows:

1. Commitment phase. Each signer i samples a random string ρi ←$ {0, 1}λ and a random element ai ←$ Zp.
Then, it computes the ephemeral nonce

Bi := gai · F0(ρi)
r(i) · F1(ρi)

u(i),

where F0,F1 : {0, 1}∗ → G are two independent random oracles. Signer i then sends a hash commitment
µi := Hcom(i, ρi, Bi) to all other signers.

2. View exchange. Essentially, as in Glacius to have consistent views among honest signers for µ⃗ by sending
the hash yi := Hview(µ⃗) to all other signers.

3. Opening phase. As usual, signer i does the consistency checks yj = yi for all j ∈ SS. Then, in the case of
consistency, it computes the nonce

Ai :=
(
gai · G0(µ⃗)

r(i) · G1(µ⃗)
u(i)
)Li,SS

,

where G0,G1 : {0, 1}∗ → G are two independent random oracles6. Then, signer i retrieves its ephemeral
nonce Bi and computes a non-interactive zero-knowledge (NIZK) proof7 πi for correctness of Ai, given
Bi, ρi (that determine the base elements (g, h0, h1) := (g,F0(ρi),F1(ρi)) for Bi), and pki. The witness for
the NIZK proof is (ai, s(i), r(i), u(i)). Signer i then sends (Ai, ρi, Bi, πi) to all other signers.

4. Signing phase. As usual, signer i does all correctness checks for other signers j ∈ SS: the hash commitment
µj = Hcom(j, ρj , Bj) using ρj and Bj ; the NIZK proof πj using Bj , ρj , pkj , and its own µ⃗ vector. In case

of successful checks, it proceeds as in Glacius by computing the combined nonce Â, challenge c, and its
signature share zi. Finally, it sends zi to all other signers.

Proof intuition. Our security proof would work as follows. After the first round (commitment phase), the
reduction would extract (ρj , Bj) from the hash commitments µj = Hcom(j, ·) of corrupted signers j ∈ C using
observability of random oracle Hcom. Then, it would pre-compute the nonce Aj using the corrupted signer j
its secret key skj = (s(j), r(j), u(j)) as follows:

Aj :=
(
Bj · F0(ρj)

−r(j) · F1(ρj)
−u(j) · G0(µ⃗)

r(j) · G1(µ⃗)
u(j)
)Lj,SS

.

5 An obvious solution is to introduce another hash commitment round to the masked nonce Ai itself. But this would
again lead to five rounds of communication.

6 In Glacius, these are denoted as H0,H1. Further, in our actual scheme Gargos, we will use (m, µ⃗) as input to the
random oracles G0,G1, where m is the message. But this is just to make the security proof simpler.

7 This NIZK proof can be instantiated very efficiently using a Σ-protocol. We do this in Figure 4.
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Here, we emphasize that the reduction knows the secret key shares skj of adversarial parties at any point in
time during the simulation. This is because B itself reveals these to the adversary upon corruption (we also
assume an initial trusted key generation setup). Having done this, the reduction can proceed as in Glacius by
programming the hash function Hsig(Â, pk,m) := c on the combined nonce later. At the same time, it uses
correlated programming of random oracles as (where F0,F1 are only programmed for honest signers i ∈ H):

G0(µ⃗) := g−(α·β+αh·β)·α−1
v −α·c, G1(µ⃗) := gβ ,

F0(ρi) := g−(α·xi+αh·xi)·α−1
v −α·c, F1(ρi) := gxi ,

where the xi ←$ Zp are sampled per honest signer i ∈ H with randomness ρi, and (c, β)←$ Z2
p are sampled

as in Glacius per signing session. The correlations of G0 and G1 are again used to make the Schnorr verification
equation hold under rigged keys, while the correlations of F0 and F1 are used to preserve the relations needed
to hide the nonce elements ai ∈ Zp even after switching to rigged keys. Note that the relation between G0(µ⃗)
and G1(µ⃗) is essentially the same as the one between F0(ρi) and F1(ρi) (just with the β replaced by xi).
Later, in the opening phase, when the adversary outputs a nonce A′j (on behalf of corrupt signer j ∈ C)
with a verifying NIZK proof πj that is different from the nonce Aj pre-computed by the reduction, then this
implies a (non-trivial) relation for the public key share pkj as

gsjhrjvuj = pkj = gs(j)hr(j)vu(j),

where (sj , rj , uj) ∈ Z3
p is part of the witness for generating the proof πj . Crucially, we have the guarantee that

(sj , rj , uj) ̸= (s(j), r(j), u(j)) since A′j ̸= Aj , which implies a non-trivial discrete logarithm relation between
g, h, v which is infeasible assuming hardness of the discrete logarithm problem. In our security proof, we rule
out the event that A outputs a different A′j ̸= Aj in an initial hybrid, before programming the random oracle
Hsig. Importantly, we can do that, since the reduction can always efficiently check this bad event, even after
introducing rigged keys (which happens at the end).

From four to three rounds. Having eliminated a separate round of randomness sampling, we now revisit
the security proof of Glacius to understand why the authors [BDLR24] needed the view exchange round. For
this, recall that the c ∈ Zp is sampled per signing session for each unique ρ⃗ vector. However, an adversary
could later enforce different combined nonces among different honest signers, which would force the reduction
B to program Hsig to return the same c for all these different combined nonces - clearly failing the simulation.
As such, Glacius introduces the view exchange round. Looking at a deeper level, we see that the reason for
this issue is that the randomness vector ρ⃗ is decoupled from the nonces sampled by signers later. That is, the
same ρ⃗ can lead to different combined nonces. Importantly, we observe that for our modified scheme above
this is not the case anymore. Concretely, given a first-round message tuple µ⃗ = (µj)j∈SS, then this allows
the reduction to extract the adversarial nonces Aj by what we have explained before. As such, the nonces
Aj are directly bound to the vector µ⃗ = (µj)j∈SS. On the other hand, when the adversary sends different µj

to different honest signers, then we have the guarantee that they do not enter the third round. Concretely,
consider two honest signers i, j ∈ H, and let µ⃗(i) and µ⃗(j) be their received first-round messages, respectively.
Further, let (ρj , Bj , Aj , πj) be the opening phase message signer j sends to signer i later. Then, assuming
that µ⃗(i) ̸= µ⃗(j), we know that the proof πj will not verify at signer i (except with negligible probability),
as signer i uses its vector µ⃗(i) ̸= µ⃗(j) of first-round messages as part of the statement to verify the proof
πj , but j uses its own vector µ⃗(j) to generate the proof πj (the same is also true in the other direction:
the proof πi will likely not verify at signer j). More precisely, the statement signer j proves relates to a
representation of Aj in bases (g, g0, g1), while the statement signer i will expect relates to a representation of
Aj in bases (g, g′0, g

′
1). Crucially, the elements (g0, g1) and (g′0, g

′
1) are independent, since they are computed

via the random oracles G0,G1 on different inputs µ⃗(j) and µ⃗(i).
However, we need to be cautious. There is yet another subtle, more serious issue when it comes to

adversarial behavior. Namely, it could be that different vectors µ⃗1 ̸= µ⃗2 lead to the same combined nonce.
For instance, the adversary could send ai and aj on behalf of corrupt signers i, j ∈ C to one honest signer,
but ai+ ν and aj − ν on behalf of corrupt signers i, j ∈ C to another honest signer for any sampled ν ←$ Zp.
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This would lead to the same combined (partial) nonce ai + aj , but obviously different µ⃗ vectors. Therefore,
if the reduction would sample the c ∈ Zp per tuple µ⃗ of first-round messages, the simulation would not work.
Concretely, if it would sample c1 ←$ Zp for µ⃗1 and c2 ←$ Zp for µ⃗2, then the same combined nonce would

lead to different hash programming c1 = Hsig(Â, pk,m) = c2, which an adversary could detect. Our idea to
resolve this issue is to sample the c per equivalence class of µ⃗ vectors. Concretely, if different vectors µ⃗1 ̸= µ⃗2

lead to the same combined nonce, then they define one equivalence class. This idea is inspired by a recent
work [BLT+24], where the authors introduce the idea of random oracle programming on equivalence classes
to handle the issue that the adversary sends different commitments to different honest signers. However,
in our case, the situation seems more subtle, as we use NIZK proofs and a fundamentally different proof
strategy for adaptive security. Still, we are able to succeed using the technique of equivalence classes, which
allows us to eliminate the view exchange round from Glacius and obtain a three-round signing protocol with
adaptive security.

3 Preliminaries

Notation. Let λ denote the security parameter. We assume that all algorithms get λ in unary as input.
For a finite set S, we write s ←$ S to denote that s is sampled uniformly at random from S, and we write
|S| to denote the size of S. For an integer a ∈ N, we use [a] to denote the ordered set {1, . . . , a}. Further,
we write “←” for probabilistic assignment and “:=” for deterministic assignment. We use the terms party
(resp. parties) and signer (resp. signers) interchangeably. We use bold fonts with arrows such as ρ⃗ to denote
vectors. For any i ∈ [n] and SS ⊆ [n], we use Li,SS :=

∏
k∈SS\{i} k/(k − i) for the i-th Lagrange coefficient.

Throughout, when we write ρ⃗ = (ρi)i∈SS, then we really mean (i, ρi)i∈SS.

Threat model. We consider a system of n signers denoted by {1, 2, . . . , n}, and a probabilistic polynomial-
time (PPT) adversary A who can corrupt up to t < n signers adaptively. Corrupted signers can deviate
arbitrarily from the protocol specification. We assume an asynchronous network with authenticated channels.
Importantly, we do not assume broadcast channels or secure erasures.

3.1 Shamir Secret Sharing, and Computational Assumptions

Shamir secret sharing. The Shamir secret sharing [Sha79] embeds the secret s in the constant term of
a polynomial p(x) = s + a1x + a2x

2 + · · · + adx
d, where other coefficients a1, . . . , ad are chosen uniformly

randomly from a field Zp. The i-th share of the secret is p(i), i.e., the polynomial evaluated at i. Given d+1
distinct shares, one can efficiently reconstruct the polynomial and the secret s using Lagrange interpolation.
Further, s is information-theoretically hidden from an adversary that knows d or fewer shares.

Computational assumptions. Our protocols assume the hardness of the discrete logarithm and decisional
Diffie-Hellman problems. Let GGen be a group generation algorithm that on input 1λ outputs the description
of a prime order group G. The description contains the prime order p, a generator g ∈ G, and a description
of the group operation. In our protocol, we assume the standard discrete logarithm (DL) and the decisional
Diffie-Hellman (DDH) assumptions in the group G, which we formally state in Appendix A.

3.2 Threshold Signatures

In this section, we define R-round threshold signatures following [KRT24, BDLR24].

Let t < n and R be natural numbers. An R-round threshold signature scheme is a tuple of PPT algorithms
TS = (Setup,KGen,Sig,Ver) defined as follows. The Setup algorithm outputs public parameters that all other
algorithms take as input. The KGen algorithm generates the signing and public keys of all signers. The Sig
algorithm describes what a signer does in each round of the R-round signing protocol to sign any given
message. And the Ver algorithm does the final signature verification.
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GamecorTS(1λ, n, t,SS,m):

1: for i ∈ SS : sti := ∅
2: par← Setup(1λ, n, t)
3: (pk, {pki, ski}i∈[n])← KGen(par)
4: for i ∈ SS : pm0,i := ⊥
5: for k ∈ [R] :
6: for i ∈ SS :
7: (pmk,i, sti)← Sigk(SS,m, i, (pmk−1,j)j∈SS, ski, sti)

8: σ := Comb(SS,m, (pmk,i)k∈[R],i∈SS)
9: return Ver(pk,m, σ)

Fig. 1: The game GamecorTS for an R-round threshold signature scheme TS.

Definition 1 (Threshold Signatures). Let n be the total number of signers and t < n be the threshold.
Also, let SS ⊆ [n] be a set of signers with |SS|≥ t+1. Each signer i maintains a state sti to retain short-lived
session-specific information. An R-round threshold signature scheme TS for message space M is a tuple of
PPT algorithms TS = (Setup,KGen,Sig,Ver) defined as follows:

- Setup(1λ, n, t)→ par : The setup algorithm takes as input the security parameter 1λ, the number n of total
signers, and a threshold t < n, and outputs public parameters par. We assume that all other algorithms
implicitly take par as input.

- KGen(par) → (pk, {pki, ski}i∈[n]) : The key generation algorithm takes as input the public parameters par
and outputs a public key pk, an ordered set of threshold public keys {pk1, . . . , pkn}, and an ordered set of
secret signing keys {sk1, . . . , skn}. Each signer j ∈ [n] receives the tuple (pk, {pki}i∈[n], skj).

- Sig = (Sig1, . . . ,SigR,Comb) : The signing protocol is split into R+ 1 algorithms:

- Sigk(SS,m, i, (pmk−1,j)j∈SS, ski, sti) → (pmk,i, sti) : The k-th round signing algorithm for k ∈ [R] takes
as input a signer set SS, a message m, an index i ∈ [n], a tuple of protocol messages of the (k − 1)-th
round (pmk−1,j)j∈SS, a secret signing key ski, and a state sti. It outputs a protocol message pmk,i for
the k-th round and the updated state sti. Here, we define pm0,j := ⊥ for all j ∈ SS.

- Comb(SS,m, (pmk,i)k∈[R],i∈SS) → σ : The deterministic combine algorithm takes as input a signer set
SS, a message m, and a tuple of protocol messages (pmk,i)k∈[R],i∈SS, and outputs a signature σ.

- Ver(pk,m, σ)→ b : The deterministic verification algorithm takes as input a public key pk, a message m,
and a signature σ, and outputs a bit b ∈ {0, 1}.

We require TS to satisfy the correctness and unforgeability properties. Informally, correctness ensures that
the protocol behaves as expected when everyone is honest. Unforgeability ensures that the adversary cannot
forge signatures, even after engaging in previous signing sessions and corrupting up to t signers adaptively.

Definition 2 (Correctness). Consider the game GamecorTS defined in Figure 1. Then, an R-round threshold
signature scheme TS is correct, if for all λ ∈ N, n, t ∈ poly(λ) with t < n, messages m ∈ M, and SS ⊆ [n]
with |SS|≥ t+ 1, the following holds:

Pr
[
GamecorTS(1

λ, n, t, SS,m)⇒ 1
]
≥ 1− negl(λ).

Unforgeability. Our unforgeability requirement is standard8, and we formalize it using the game UF-CMAATS
in Figure 2. We give an informal description next.

Let A be the adversary in this game. At the beginning of the game, A is given the public parameters
par, a joint public key pk, and threshold public keys {pki}i∈[n] of all signers. At any time, A can initiate a
new signing session by querying the oracle Next(sid,SS,m) with session identifier sid, signer set SS, and
message m. Further, A can corrupt up to t signers during the protocol using the oracle Corr. When signer

8 Essentially, our notion is an interactive version of the TS-UF-0 unforgeability notion (for non-interactive threshold
signatures) defined by Bellare et al. [BCK+22, BTZ22], which is similar to recent works [BDLR24, KRT24].
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i ∈ [n] gets corrupted, A learns its secret signing key ski and internal state sti across all signing sessions.
Further, A can interact with honest signers using the signing oracles Sigk for any k ∈ [R]. Specifically, A can
query these oracles for any honest signer i and session identifier sid. For such a query to Sigk, A can freely
choose the protocol messages pmk−1 of the previous (k−1)-th round. Crucially, we do not assume broadcast
channels in the signing protocol, and the adversary could send different messages to different honest signers.
However, we do assume authenticated channels, and our unforgeability game captures this using the Allowed
algorithm. Finally, when A outputs a forgery (m∗, σ∗), then A wins the game if the signature is valid and A
has not initiated a signing session for the message m∗ previously.

Game UF-CMAA
TS(1λ, n, t):

1: par← Setup(1λ, n, t)
2: (pk, {pki, ski}i∈[n])← KGen(par)
3: C := ∅, H := [n]
4: Queried := ∅, pmsg := ∅
5: Sig := (Next, (Sigk)k∈[R])
6: (m∗, σ∗)← ACorr,Sig(pk, {pki}i∈[n])
7: if m∗ ∈ Queried : return 0

8: return Ver(pk,m∗, σ∗)

// Oracle to corrupt signers
Oracle Corr(i):

9: if (|C|≥ t) ∨ (i ∈ C) : return ⊥
10: C := C ∪ {i}, H := H \ {i}
11: return (ski, sti)

// Oracle to start a new signing session
Oracle Next(sid, SS,m):

12: if (|SS|< t + 1) ∨ (SS ̸⊆ [n]) :
13: return ⊥
14: if sid ∈ Sessions : return ⊥
15: Sessions := Sessions ∪ {sid}
16: Queried := Queried ∪ {m}
17: message[sid] := m
18: signers[sid] := SS
19: for i ∈ SS : round[sid, i] := 1

// Check if the input to Sigk is valid
Allowed(sid, k,SS,m, i, (pmk−1,j)j∈SS)):

// assert returns 0 if the check fails
20: assert sid ∈ Sessions
21: assert SS = signers[sid]
22: assert i ∈ (SS ∩H)
23: assert k = round[sid, i]
24: assert m = message[sid]
25: if k = 0 : return 1
26: for j ∈ (SS ∩H) :
27: if pmk−1,j ̸= pmsg[sid, k − 1, j] :
28: return 0
29: return 1

// Oracle for the k-th signing round
Oracle Sigk(sid,SS,m, i, (pmk−1,j)j∈SS):

30: inp := (SS,m, i, (pmk−1,j)j∈SS)
31: if Allowed(sid, k, inp) = 0 :
32: return ⊥
33: (pmk,i, sti)← Sigk(inp, ski, sti)
34: pmsg[sid, k, i] := pmk,i

35: round[sid, i] := k + 1
36: return pmk,i

Fig. 2: The UF-CMAATS game for an R-round threshold signature scheme TS.

Definition 3 (Unforgeability Under Chosen-Message Attacks). Let TS be an R-round threshold
signature scheme, and consider the game UF-CMAATS defined in Figure 2. Then, we say that TS is UF-CMAATS
secure, if for all λ ∈ N, n, t ∈ poly(λ) with t < n, and PPT adversaries A, the following advantage is
negligible:

εσ := AdvUF-CMA
A,TS (1λ, n, t) := Pr

[
UF-CMAATS(1

λ, n, t)⇒ 1
]
.

Remark. In this work, we focus on unforgeability of our scheme. However, we are confident that our scheme
can be easily extended to achieve the identifiable abort property as formalized in [BDLR24]. Concretely, this
can be done via a public key infrastructure (PKI) and by requiring each signer to sign each protocol message
in the signing protocol before sending it to the other signers.

10



4 Our Design

In this section, we present our three-round threshold Schnorr signature scheme Gargos, assuming a trusted
key generation. For our construction, we useM to denote the message space. We formally define our scheme
as pseudocode in Figure 3 and give a verbal description next.

Setup(1λ, n, t): Let g, h, v ←$ G be three uniformly random and independent generators of G. Further, let

Hcom : {0, 1}λ×G→ R, F0,F1 : {0, 1}λ → G, G0,G1 :M×R∗ → G, and Hsig : G2×M→ Zp be distinct hash
functions modeled as random oracles, where R ⊆ {0, 1}∗ is a set such that |R|≥ 2λ. The public parameters
of the scheme are then par := (n, t,G, g, h, v, p,Hcom,F0,F1,G0,G1,Hsig), which are known to all signers. We
assume that all the algorithms below implicitly take par as input.

KGen(par): Sample three uniformly random polynomials s(x), r(x), u(x) ←$ Zp[x] of degree t each with the
constraint that r(0) = u(0) = 0. The secret signing key of signer i is then ski := (s(i), r(i), u(i)), and its
public key share is pki := gs(i)hr(i)vu(i). Further, the public key is pk := gs(0).

Throughout the paper, we assume that an external mechanism chooses the message m ∈ M and the
signer set SS ⊆ [n] with |SS|≥ t + 1 for each signing session. We also assume that all signers agree on the
input message m and the set SS. If the adversary A inputs different (m, SS) to different honest signers, then
we treat them as different signing sessions. We describe the signing protocol that signers in SS run to jointly
compute a signature on m.

Sig1(SS,m, i, ski): Each signer i samples uniformly random values ai ←$ Zp, ρi ←$ {0, 1}λ, and computes
the ephemeral nonce Bi ∈ G as

Bi := gai · F0(ρi)
r(i) · F1(ρi)

u(i).

Signer i then sends the commitment µi := Hcom(i, ρi, Bi) to all other signers. Its state after the first signing
round is sti := (i, ai, ρi, Bi).

Sig2(SS,m, i, (pm1,j = µj)j∈SS, ski, sti): Each signer i, upon receiving all commitments µ⃗ := (µj)j∈SS, com-

putes the nonce Ai ∈ G as

Ai := gai · G0(m, µ⃗)r(i) · G1(m, µ⃗)u(i).

Further, it computes a NIZK proof of correctness πi := SigProve((pki, Ai, Bi, g0, g1, ρi); (ai, ski)) for Ai with
respect to (ρi, Bi) and pki as specified in Figure 4, where (g0, g1) := (G0(m, µ⃗),G1(m, µ⃗)). Signer i then
sends (Ai, ρi, Bi, πi) to all other signers. Its state after the second signing round is sti := (i, ai, Ai, µ⃗, g0, g1).

Sig3(SS,m, i, (pm2,j = (Aj , ρj , Bj , πj))j∈SS, ski, sti): Each signer i, upon receiving all second round messages

((Aj , ρj , Bj , πj))j∈SS, performs for all j ∈ SS the following two checks: (i) the opening to commitment µj is
correct, i.e., µj = Hcom(j, ρj , Bj); and (ii) πj is a valid NIZK proof, i.e., SigVer((pkj , Aj , Bj , g0, g1, ρj);πj) = 1.

If any of these checks fails, signer i outputs ⊥ and aborts. Otherwise, it computes the combined nonce Â,
challenge c, and its signature share zi as follows:

Â :=
∏
j∈SS

A
Lj,SS

j , c := Hsig(Â, pk,m), zi := Li,SS · (ai + c · s(i)),

where Lj,SS denotes the j-th Lagrange coefficient for the set SS. Finally, signer i sends its signature share zi
to all other signers.

Comb(SS,m, ((Aj , zj))j∈SS): Upon receiving all tuples ((Aj , zj))j∈SS, the combine algorithm computes (Â, z)
as the final signature, where

Â :=
∏
j∈SS

A
Lj,SS

j , z :=
∑
j∈SS

zj .

Ver(pk,m, σ = (Â, z)): The verification algorithm receives a public key pk, a message m ∈M, and a signature

σ = (Â, z). Then, it computes c := Hsig(Â, pk,m) and accepts the signature if and only if gz = Â · pkc.
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Setup(1λ, n, t):

1: (G, g, p)← GGen(1λ), h, v ←$ G
2: R ⊆ {0, 1}∗ where |R|≥ 2λ

3: select the following hash functions:

– Hcom : {0, 1}λ ×G→ R
– F0,F1 : {0, 1}λ → G
– G0,G1 :M×R∗ → G
– Hsig : G2 ×M→ Zp

4: Hall := (Hcom,F0,F1,G0,G1,Hsig)
5: return par := (n, t,G, g, h, v, p,Hall)

// All algorithms implicitly take par as input

KGen(par):

6: sample s(x), r(x), u(x)←$ Zp[x] three random poly-
nomials of degree t each with r(0) = u(0) = 0.

7: for each i ∈ [n] :
8: let ski := (s(i), r(i), u(i))
9: let pki := gs(i)hr(i)vu(i)

10: let pk := gs(0)hr(0)vu(0) = gs(0)

11: return (pk, {pki}i∈[n], skj) to each signer j ∈ [n]

// Signing protocol for SS ⊆ [n] and m
Sig1(SS,m, i, ski):

11: sample ai ←$ Zp, ρi ←$ {0, 1}λ
12: let Bi := gai · F0(ρi)

r(i) · F1(ρi)
u(i)

13: let sti := (i, ai, ρi, Bi)
14: send µi := Hcom(i, ρi, Bi) to all in SS

Sig2(SS,m, i, µ⃗ = (µj)j∈SS, ski, sti):

16: let g0 := G0(m, µ⃗), g1 := G1(m, µ⃗)

17: let Ai := gai · gr(i)0 · gu(i)1

18: let Xi := (pki, Ai, Bi, g0, g1, ρi)
19: let πi := SigProve(Xi; (ai, ski))
20: update sti := (i, ai, Ai, µ⃗, g0, g1)
21: send (Ai, ρi, Bi, πi) to all in SS

Sig3(SS,m, i, (Aj , ρj , Bj , πj)j∈SS, ski, sti):

21: for all j ∈ SS :
22: let Xj := (pkj , Aj , Bj , g0, g1, ρj)
23: assert µj = Hcom(j, ρj , Bj)
24: assert SigVer(Xj ;πj) = 1

25: let Â :=
∏

j∈SS A
Lj,SS

j

26: let c := Hsig(Â, pk,m)
27: send zi := Li,SS · (ai + c · s(i)) to all in SS

// Combine algorithm
Comb(SS,m, (Aj , zj)j∈SS):

35: let Â :=
∏

j∈SS A
Lj,SS

j

36: let z :=
∑

j∈SS zj

37: return σ := (Â, z)

// Verification algorithm
Ver(pk,m, σ = (Â, z)):

40: let c := Hsig(Â, pk,m)
41: if gz = Â · pkc :
42: return 1
43: return 0

Fig. 3: Our three-round threshold Schnorr signature scheme Gargos.

5 Security Analysis

5.1 Properties of the Σ-protocol

We require the Σ-protocol to satisfy the standard completeness, knowledge-soundness, and zero-knowledge
properties [Dam02]. Briefly, completeness guarantees that an honest prover will always convince an honest
verifier about true statements. Knowledge-soundness guarantees that for every prover who convinces an
honest verifier about a statement with a non-negligible probability, there exists an efficient extractor who
interacts with the prover to compute the witness. Finally, zero-knowledge guarantees that the proof reveals
no information other than the truth of the statement. We remark that achieving zero-knowledge against
honest verifiers is sufficient for our purposes.

The completeness of our Σ-protocol is straightforward. The honest-verifier zero-knowledge (HVZK) prop-
erty also follow from standard Σ-protocol analyses, which we briefly discuss next.

Honest-verifier zero-knowledge (HVZK). Let S be the simulator. S samples e, zs, za, zr, zu ←$ Zp and
computes the elements XA, XB , Xpk ∈ G with (h0, h1) := (F0(ρ),F1(ρ)) as follows:

XA := gzagzr0 gzu1 ·A−e, XB := gzahzr
0 hzu

1 ·B−e, Xpk := gzshzrvzu · pk−e.

Then, S programs the random oracle HFS(XA, XB , Xpk, A,B, pk, g0, g1, ρ) := c and returns π := (e, za, zs,
zr, zu) as the proof. It is easy to see that the simulated transcript is identically distributed as an honestly
generated transcript.

We will analyze the knowledge-soundness of our above Σ-protocol in §5.4 while analyzing the unforge-
ability of Gargos.
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Statement: (g, h, v, pk, A,B, g0, g1, ρ) ∈ G8 × {0, 1}λ

Witness: (a, sk = (s, r, u)) ∈ Zp × Z3
p

Let (h0, h1) := (F0(ρ),F1(ρ)) ∈ G2. The prover P wants to convince the verifier V that there exist a, s, r, u ∈ Zp

such that the following holds:

A = ga · gr0 · gu1 , B = ga · hr
0 · hu

1 , pk = gs · hr · vu

// We assume both algorithms implicitly take (g, h, v,F0,F1) and HFS as input

SigProve((pk, A,B, g0, g1, ρ); (a, sk)):

1: let (h0, h1) := (F0(ρ),F1(ρ))
2: sample â, ŝ, r̂, û←$ Zp

3: let XA := gâ · gr̂0 · gû1 , XB := gâ · hr̂
0 · hû

1 , and Xpk := gŝ · hr̂ · vû
4: let e := HFS(XA, XB , Xpk, A,B, pk, g0, g1, ρ)
5: let za := â + a · e, zs := â + s · e, zr := r̂ + r · e, and zu := û + u · e
6: return π := (XA, XB , Xpk, za, zs, zr, zu) // π := (e, za, zs, zr, zu) is also sufficient for the proof

SigVer((pk, A,B, g0, g1, ρ);π):

6: parse (XA, XB , Xpk, za, zs, zr, zu) := π
7: let (h0, h1) := (F0(ρ),F1(ρ))
8: let e := HFS(XA, XB , Xpk, A,B, pk, g0, g1, ρ)
9: if (gzagzr0 gzu1 = XA ·Ae) ∧ (gzahzr

0 hzu
1 = XB ·Be) ∧ (gzshzrvzu = Xpk · pke) :

10: return 1
11: return 0

Fig. 4: Σ-protocol for proving and verifying correctness of commitments.

5.2 Correctness

The correctness of our scheme is straightforward. For this, consider a signing session among (at least) t+ 1
signers SS ⊆ [n] with the message m ∈ M to be signed. In the first round, each signer i receives a common
commitment vector µ⃗ = (µj)j∈SS. In the second round, each signer i computes its nonce

Ai := gai · G0(m, µ⃗)r(i) · G1(m, µ⃗)u(i),

and sends (Ai, ρi, Bi, πi) to the other signers where (i, ρi, Bi) is the opening for µi and πi is a NIZK proof
of correctness of Ai with respect to (ρi, Bi, pki). Since all signers behave honestly, they will all obtain the
same vector µ⃗. Therefore, all signers i will use the same µ⃗ to prove correctness of its nonce Ai. Thus, by
completeness of the Σ-protocol as defined in Figure 4, the proof πi will verify at all signers and they will all
compute the same combined nonce:

Â =
∏
i∈SS

A
Li,SS

i = g
∑

i∈SS ai·Li,SS · G0(m, µ⃗)r(0) · G1(m, µ⃗)u(0) = g
∑

i∈SS ai·Li,SS ,

where we use r(0) = u(0) = 0. Then, the challenge is derived c := Hsig(Â, pk,m), and each signer i computes
its signature share zi := Li,SS · (ai + c · s(i)). Therefore, the combined signature is z :=

∑
i∈SS zi = c · s(0) +∑

i∈SS Li,SS · ai. As a result, the standard Schnorr verification equation gz = Â · pkc holds, as pk = gs(0).

5.3 Helper Lemmas

Our unforgeability proof relies on the following two lemmas.

Lemma 1 ([NR04]). For any q ∈ poly(λ), assuming hardness of the DDH assumption in the group G, the
following two distributions are indistinguishable:

D0 :=
{
(g, gα, (gβi , gγi)i∈[q])

∣∣ α←$ Zp, (βi, γi)←$ Z2
p ∀i ∈ [q]

}
,

D1 :=
{
(g, gα, (gβi , gα·βi)i∈[q])

∣∣ α←$ Zp, βi ←$ Zp ∀i ∈ [q]
}
.
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More precisely, if an adversary A can distinguish between a sample from D0 and D1 with probability ε, then
we can break the DDH assumption in the group G with probability at least ε−1/p. This implies ε ≤ εddh+1/p
in time poly(q, λ) and running time of A.

Lemma 2 ([DR24], Lemma 4). Let (X0, Y0) and (X1, Y1) be two tuples of discrete random variables,
where X0 is independent of Y0 and X1 is independent of Y1. Then, for every function f(Xθ, Yθ) for either
θ ∈ {0, 1}, if X0 ≡ X1 and Y0 ≡ Y1, where ≡ indicates that the two random variables are identically
distributed, then (X0, Y0, f(X0, Y0)) ≡ (X1, Y1, f(X1, Y1)).

5.4 Unforgeability Proof

We will show unforgeability assuming hardness of discrete logarithm (DL) and decisional Diffie-Hellman (DDH)
in the group G. Although hardness of DL is implied by the hardness of DDH, we will keep this separation in
our discussion for the modularity of the proof.

We present our proof as a sequence of games G0-G14, where G0 is the real protocol execution and G14

is the interaction of a PPT adversary A with a reduction algorithm Adl. Hereafter, for any game Gi, we use
the notation “Gi ⇒ 1” for the event that the adversary A forges a signature in Gi.

Game G0: This is the security game UF-CMAATS for our threshold signature scheme, where the game follows
the honest protocol. Here, the game gives A access to any random oracle by standard lazy sampling. In the
following, let αh, αv ∈ Zp denote the exponents of h, v ∈ G to base g ∈ G, i.e., h = gαh and v = gαv . Recall
that h, v ∈ G are uniformly random generators (along with g ∈ G) output by the setup algorithm Setup.

Further, we make some conceptual changes to the game that are without loss of generality. Assuming
the game outputs 1, we let (m∗, σ∗ = (Â, ẑ)) denote A’s output forgery. Concretely, we assume that A
makes exactly t (distinct) corruption queries and that it always queries Hsig(Â, pk,m∗) before outputting the
forgery. These changes are without loss of generality and do not change A’s advantage, since we can always
construct a wrapper adversary that internally runs A, but corrupts exactly t (distinct) signers and makes a
query Hsig(Â, pk,m

∗) before terminating. Thus, we have:

AdvUF-CMA
A,TS (λ) = Pr[G0 ⇒ 1] = εσ.

Game G1: Here, we rule out collisions for random oracles F0,F1,G0,G1,HFS, and Hcom. Concretely, the game
aborts if one of the following events happens:

(i) There are inputs ρ ̸= ρ′ such that either F0(ρ) = F0(ρ
′) or F1(ρ) = F1(ρ

′). Recall that F0,F1 : {0, 1}∗ → G
are the random oracles signers use to compute Bj in the first round.

(ii) There are inputs (j, ρj , Bj) ̸= (j′, ρ′j , B
′
j) such that Hcom(j, ρj , Bj) = Hcom(j

′, ρ′j , B
′
j). Recall that Hcom :

[n]× {0, 1}λ ×G→ R is the random oracle signers j use to compute their first round commitment µj .
(iii) There are inputs (m, µ⃗) ̸= (m′, µ⃗′) such that either G0(m, µ⃗) = G0(m

′, µ⃗′) or G1(m, µ⃗) = G1(m
′, µ⃗′).

Recall that G0,G1 : {0, 1}∗ → G are the random oracles signers j use to compute their nonces Aj in the
second round.

(iv) There are inputs inp ̸= inp′ such that HFS(inp) = HFS(inp
′). Recall that HFS : {0, 1}∗ → Zp is the random

oracle signers use to compute the NIZK proof they attach to their second round messages (i.e., the Aj).

Via standard collision probability analysis, we have that (i) happens with probability at most q2F/p, (ii)
happens with probability at most q2com/|R|, (iii) happens with probability at most q2G/p, and (iv) happens
with probability at most q2FS/p. In this context, we use the following notations: qF is an upper bound on the
total number of queries A can make to F0 and F1 combined; qG is an upper bound on the total number of
queries A can make to G0 and G1 combined; qcom and qFS are upper bounds on the total number of queries
A can make to Hcom and HFS, respectively. Adding up everything, we thus get:

|Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]|≤ q2F
p

+
q2com
|R|

+
q2G
p

+
q2FS
p

.

14



Game G2: In this game, we introduce an abort condition. Concretely, the game aborts if the following event
Neq happens: During any signing session, for any corrupt party j ∈ C, and any honest party i ∈ H, A outputs
a second-round tuple (Aj , ρj , Bj , πj) to signer i ∈ H such that πj is a verifying NIZK proof and the following
inequality holds:

Bj · F0(ρj)
−r(j) · F1(ρj)

−u(j) ̸= Aj · g−r(j)0 · g−u(j)1 . (3)

Here, we define g0 := G0(m, µ⃗) and g1 := G1(m, µ⃗) where µ⃗ is the vector of Sig1 messages the honest party
i receives for that signing session. Looking ahead, in game G7, the game will extract Aj for each malicious
signer j ∈ C from its first-round message. Intuitively, this game aborts when the extracted Aj does not match
with the Aj signer j outputs in the Sig2 phase of the protocol.

We will argue the indistinguishability between these games G1 and G2 assuming hardness of DL in G.
More formally, we have the following lemma which we prove in Appendix B.1.

Lemma 3. Let εdl be the advantage of A in breaking the discrete logarithm assumption in G. Then, we have:

|Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]|≤ qFS
p

+
√
2 · qFS · εdl. (4)

Here, qFS is an upper bound on the number of random oracle queries A makes to HFS (i.e., the random oracle
used for the NIZK proofs).

We briefly explain the high-level idea of the proof for this lemma. From the verifying NIZK proof πj ,
we obtain a non-trivial discrete logarithm relation for the public key pkj = gs(j)hr(j)vu(j) of signer j of the

form gsjhrjvuj = gs(j)hr(j)vu(j), where (sj , rj , uj) ∈ Z3
p is part of the witness for generating the proof πj .

Crucially, we have the guarantee that (sj , rj , uj) ̸= (s(j), r(j), u(j)) from the inequality in Equation (3).
Then, after extracting the adversary’s witness by rewinding, we can solve for the discrete logarithm value of
either h or v via guessing with a success probability of 1/2.

Game G3: In this game, we rule out the event that an honest signer i will accept a second-round message
from another honest signer j, when the first-round messages received by these two signers are distinct. More
precisely, consider two honest signers i, j ∈ H, and let µ⃗(i) and µ⃗(j) be their output first-round messages
(i.e., those obtained from Sig1), respectively. Further, let (ρj , Bj , Aj , πj) be the second-round message signer
j sends to signer i. Then, the game aborts if µ⃗(i) ̸= µ⃗(j) but the proof πj verifies at signer i (that uses its
vector µ⃗(i) of first-round messages as part of the statement to verify the proof πj). The idea behind this
game is to guarantee that honest signers do not enter the third round of the signing protocol if there are
distinct first-round messages among honest signers.

Intuitively, if an honest signer j used µ⃗(j) to generate its proof πj , then the proof will not verify for
a different statement µ⃗(i) ̸= µ⃗(j), except with negligible probability. In particular, note that if the game
does not abort, then these two games G2 and G3 are identically distributed. As such, we will analyze the
probability of abort next. In the following, define

(g0, g1) :=
(
G0(m, µ⃗(i)),G1(m, µ⃗(i))

)
, (g′0, g

′
1) :=

(
G0(m, µ⃗(j)),G1(m, µ⃗(j))

)
.

By the changes in game G1 (ruling out collisions among random oracles), we know that g0 ̸= g′0 and g1 ̸= g′1.
Additionally, by ruling out collisions among HFS (the random oracle used to derive the challenge for π) in
game G1, we know that the challenge e signer i computes for verifying πj (step 7 in Figure 4) is different
from the challenge e′ signer j computes for generating πj (step 4 in Figure 4), i.e., e ̸= e′.

Then, for successful verification of the proof πj := (XA, XB , Xpk, za, zs, zr, zu), the following has to hold:

Xpkj · pk
e′

j = gzshzrvzu = Xpkj · pk
e
j =⇒ pke

′

j = pkej =⇒ pke
′−e

j = 1G. (5)

Since e′− e ̸= 0, it follows that pkj = 1G has to hold. Thus, the probability of abort in this game is bounded
by the probability that for any j ∈ [n], it is pkj = 1G. We now bound this event.

Note that for each j ∈ [n], we have pkj = gs(j)+αhr(j)+αvu(j) for values αh, αv ∈ Zp as specified in G1.
Thus, to have the equality pkj = 1G, it must hold that s(j) + αhr(j) + αvu(j) = 0. However, since the
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polynomial s(x) ∈ Zp[x] is sampled uniformly at random (along with r(x) and u(x)), the probability that
s(j) + αhr(j) + αvu(j) = 0 is at most 1/p. Therefore, by taking a union bound over all signer indices j ∈ [n],
we find that the game aborts with probability at most n/p. Thus, we have:

|Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1]|≤ n

p
.

Game G4: In this game, we change the signing oracle. Concretely, the commitment and opening phases of
the signing protocol (i.e., Sig1 and Sig2). Recall that until now, during the commitment phase (i.e., Sig1),
an honest signer i ∈ SS computes Bi := gai · F0(ρi)

r(i)F1(ρi)
u(i) for ai ←$ Zp, ρi ←$ {0, 1}λ, and then sends

µi := Hcom(i, ρi, Bi) to the other signers.
In the following, let µ⃗ := ((j, µj))j∈SS be the vector of commitments signer i receives in the first round,

and let m be the message for the signing session. Further, let g0 := G0(m, µ⃗) and g1 := G1(m, µ⃗) as before.
Then, in the opening phase (i.e., Sig2), signer i reveals its nonce along with other data (ρi, Bi, Ai, πi), where

the nonce is Ai := gai · gr(i)0 g
u(i)
1 and πi is a NIZK proof of correctness for Ai with respect to Bi, ρi, and pki.

In this game, we change this as follows. During the Sig1 phase with session identifier sid, the game samples
a random commitment µi ←$ R and sends it on behalf of honest signer i. The game also inserts an entry
(sid, i, µi) into a list Pending-Hcom. If there is already an entry (·, ·, µi) ∈ Pending-Hcom, the game aborts.

There are two situations where we need to reveal the pre-image of the commitment µi to A. Namely, (i)
in the opening phase Sig2, we need to reveal (ρi, Bi, Ai, πi), and (ii) when A corrupts signer i, we further
need to reveal (ρi, ai) (which also gives (Bi, Ai)). To handle this, we consider two cases:

1. Signer i gets corrupted before or during the opening phase. In that case, the game proceeds as follows:
– It samples random elements ρi ←$ {0, 1}λ and ai ←$ Zp.
– If either F0(ρi) ̸= ⊥ or F1(ρi) ̸= ⊥, then the game aborts. Otherwise, it programs these random

oracle values via lazy sampling F0(ρi)←$ G and F1(ρi)←$ G.
– It computes Bi := gai ·F0(ρi)

r(i)F1(ρi). If Hcom(i, ρi, Bi) ̸= ⊥, the game aborts. Otherwise, it programs
Hcom(i, ρi, Bi) := µi, and then removes the entry (sid, i, µi) from Pendingcom.

– Next, it honestly computes Ai := gai · gr(i)0 g
u(i)
1 where g0 := G0(m, µ⃗) and g1 := G1(m, µ⃗) for the

first-round message µ⃗ signer i has received. Then, it honestly computes the NIZK proof πi (proof
of correctness for Ai with respect to Bi, ρi, and pki). Note that if signer i gets corrupted before it
receives the first-round vector µ⃗, then the elements Ai, πi are not defined.

– After all of the steps above, the game can reveal (ρi, Bi, Ai, πi) in the opening phase, and in case the
corruption happens before that, it can also reveal ai along with (ρi, Bi, Ai, πi) for that session.

2. Signer i reaches the opening phase or gets corrupted after the opening phase. In that case, the game pro-
ceeds as above to compute (ai, ρi, Bi, Ai, πi), output (ρi, Bi, Ai, πi) as the second-round (Sig2) message,
and additionally reveal ai to A upon corruption.

With this change, we emphasize the following: For honest signers i that reach the opening phase without
being corrupted (the second case above), we sample the elements ρi, ai, and program the random oracles
F0,F1 on ρi only after signer i receives all the first-round (Sig1) messages.

Clearly, the view of A is only affected by this change if any of the following three events occurs. (i) First,
the game samples the same commitment µi ∈ R twice. (ii) Second, ρi matches a previous Fb query for either
b ∈ {0, 1}. (iii) Third, the tuple (i, ρi, Bi) matches a previous Hcom query.

We first analyze the probability of the game aborting in one signing session. For (i), note that the game
samples each µi uniformly at random from R; hence, in a single signing session, (i) happens with probability
at most qs/|R|. Similarly, for (ii), ρi is uniformly random in {0, 1}λ. This implies that each ρi will match
a previous Fb query for either b ∈ {0, 1} with probability at most qF/2

λ. Finally, for (iii), ai is uniformly
random in Zp, so Bi is uniformly random in G. Therefore, each (i, ρi, Bi) will match a previous Hcom query
with probability at most qcom/p. Therefore, taking a union bound over all signing sessions, we get:

|Pr[G3 ⇒ 1]− Pr[G4 ⇒ 1]|≤ q2s
|R|

+
qs · qF
2λ

+
qs · qcom

p
.
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Game G5: In this game, we rule out the event that upon receiving a first-round signing request from the
adversary for honest signer i, we sample the same µi twice. To do so, we maintain a list PastMu to keep track
of previously sampled first-round messages by honest signers. We populate PastMu upon each Sig1 oracle
query. Recall from game G4, upon each Sig1 on input of the form (·, i, ·), the game samples µi ←$ {0, 1}λ.
In this game, if (i, µi) ∈ PastMu, the game aborts. Otherwise, the updates PastMu := PastMu∪{(i, µi)}. We
note that PastMu differs from Pendingcom (we introduce in game G4) in the following sense. PastMu stores
all previously sample first-round messages (including the ones from the closed signing session). Contrary to
this, Pendingcom only stores Hcom outputs for which the game is yet to sample a pre-image.

Looking ahead, this game, combined with our use of authenticated channels ensure that the first-round
messages an honest signer receives in each signing session are unique. This is because the µ⃗ vector includes
contributions from at least one honest signer. Since honest signers do not sample the same first-round message
twice, the µ⃗ vector will be unique for every signing session.

We now bound the probability of aborting in this game. For each signing query, since µi is uniformly
random, the game aborts with probability at most qs/2

λ (where qs is an upper bound on the number of
signing queries A can make). As a result, by a union bound over all signing queries, we get:

|Pr[G4 ⇒ 1]− Pr[G5 ⇒ 1]|≤ q2s
2λ

.

Game G6: In this game, we abort if A breaks the observability of the random oracle Hcom. More precisely,
the game aborts if for any signing session and j ∈ C, A outputs the tuple (ρj , Bj , ·) in the second round for
its first-round message µj such that µj = Hcom(j, ρj , Bj), without having queried Hcom on (j, ρj , Bj).

Note that for each j ∈ C, unless Hcom(j, ·) ̸= ⊥, the game outputs Hcom(j, ·) with uniformly random values
in R. Moreover, after A corrupts the signer j, the game populates Hcom for inputs of the form (j, ·) only
when A explicitly queries Hcom on the input (j, ·). Therefore, the probability of Hcom(j, Bj) = µj for each
(j, Bj) is 1/|R|. Hence, by a union bound over all signing sessions, we get:

|Pr[G5 ⇒ 1]− Pr[G6 ⇒ 1]|≤ qs
|R|

.

From here on, our security analysis critically deviates from the one of Glacius. While the security proof in
Glacius assigns the challenge c to the randomness vector ρ⃗, which is decoupled from the combined nonce, we
observe that our modified scheme resolves this issue. Concretely, our randomness vector µ⃗ already encodes
adversarial nonces (inside the hash commitment), and crucially, different µ⃗ vectors could lead to the same
combined nonce. To handle this, we define the notion of equivalent µ⃗ vectors.

Game G7: In this game, we introduce a list Pending and associated algorithms UpdatePending and AddToPending
to manage this list. The list Pending keeps track of inputs to random oracles Gb for either b ∈ {0, 1} for
which the game can not yet extract pre-images of all commitments included in the Gb input. More precisely,
the list Pending contains a tuple (m,SS, µ⃗) if and only if the following two invariants hold:

1. For each (j, µj) ∈ µ⃗ with (·, j, µj) ̸∈ Pending-Hcom, we have H−1com(µj) ̸= ⊥.
2. There is a commitment (j, µj) ∈ µ⃗ such that H−1com(µj) = ⊥.

We add a tuple (m,SS, µ⃗) to Pending using the algorithm AddToPending immediately after the call to Gb

for either b ∈ {0, 1} with the input (m, µ⃗ = ((j, µj))j∈SS. Furthermore, we invoke algorithm UpdatePending
whenever we update Hcom, either during queries to Hcom or during corruption and signing queries. On each
invocation, the UpdatePending algorithm does the following:

1. Initialize an empty list Visited.
2. Iterate through all entries (m,SS, µ⃗) in Pending and do the following:

(a) Check if the entry has to be removed because it is violating the invariant. That is, check if for all
j ∈ SS, we have H−1com(µj) ̸= ⊥. If this is not the case, skip this entry and keep it in Pending.
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(b) Otherwise, we know that for all j ∈ SS, the value (j, ρj , Bj) := H−1com(µj). Remove this entry from
Pending, and determine the commitment Rj as

Rj := Bj · F0(ρj)
−r(j) · F1(ρj)

−u(j). (6)

Next, compute the combined nonce R̂ :=
∏

j∈SS R
Lj,SS

j .

(c) Let g0 := G0(m, µ⃗) and g1 := G1(m, µ⃗). Compute Â := R̂ · gr(0)0 · gu(0)1 .

(d) If Chal[R̂] = ⊥: (i) Set Nonce[R̂] := Â, (ii) sample Chal[R̂] := c←$ Zp.

(e) If Â ̸= Nonce[R̂], abort the execution of the entire game.
(f) If (R̂,m) ̸∈ Visited: 1. If Hsig(Â, pk,m) ̸= ⊥, abort the execution of the entire game. 2. Otherwise,

program Hsig(Â, pk,m) := Chal[R̂], and insert the tuple (R̂,m) into Visited.

In summary, the UpdatePending algorithm removes all entries violating the invariant from the list Pending.
For each such entry it removes, the algorithm computes R̂ and the combined nonce Â. The game then tries
to program Hsig on input (Â, pk,m) with a uniformly random challenge c := Chal[R̂] for some map Chal.
During this process, the aborts in two situations: First, (shown in step (e) above), the game aborts, if there
exists two triples (m,SS, µ⃗) and (m′,SS′, µ⃗′) with the same R̂ but distinct Â. Second (shown in step (f).i.
above), if the random oracle Hsig on input (Â, pk,m) is already defined. List Visited ensures that the abort
is not triggered if the algorithm itself programmed Hsig in a previous iteration within the same invocation.

Note that if the game does not abort, then for each R̂, there is an unique Â, and the game programs Hsig

on input (Â, pk,m) at most once with an uniformly random c := Chal[R̂]. Therefore, if the game does not
abort, its view in game G6 and G7 are identically distributed.

We now analyze the probability that the game aborts. Note that since r(0) = u(0) = 0, we have R̂ = Â,
and hence the abort condition (e) in never occurs. Now, for the condition (f.1), note that when we remove
an entry from the list Pending, and let R̂ =

∏
j∈SS(Rj)

Lj,SS is as defined above, then there exists an j ∈ SS
such that the game just sampled aj ∈ Zp such that Rj := gaj before invoking the UpdatePending algorithm.

Now, since Rj is uniformly random, so is R̂ and hence Â. Moreover, Â is hidden from A at the time of

programming Hsig. This implies each input (Â, pk,m) will collide with a prior random oracle query with at
most qsig/p probability. Therefore, taking union bound over all signing queries, we get that the game will
abort with probability at most (qs · qsig)/p. Therefore, we get:

|Pr[G6 ⇒ 1]− Pr[G7 ⇒ 1]|≤ qs · qsig
p

.

Game G8: In this game, we introduce two more algorithms, Equivalent, and GetChallenge. Intuitively, these
allow us to group triples of the form (m,SS, µ⃗ = ((j, µj))j∈SS) that has been inserted into the list Pending
into equivalence classes. We define this relation on all triples in Pending and all triples that already have
been removed from Pending, but not on any other entries. The intuition is that all such triples lead to the
same combined nonce if and only if they are in the same equivalence class. The effect of this will be that
we know the challenge just from the triple (m,SS, µ⃗). Next, we describe the algorithm Equivalent that takes
as input (m,SS, µ⃗) and (m′,SS′, µ⃗′), and decides whether they are equivalent. Let µ⃗ = [(j, µj)]j∈SS and
µ⃗′ = [(j, µ′j)]j∈SS′ . Then, the algorithm Equivalent works as follows:

1. If m ̸= m′ or SS ̸= SS′, then the triples are not equivalent.
2. Let T ⊆ SS (resp. T ′ ⊆ SS′) be the set of indices j ∈ SS (resp. j ∈ SS′) such that H−1com(µj) = ⊥ (resp.

H−1com(µ
′
j) = ⊥. Then, if either T ̸= T ′ or [µj ]j∈T ̸= [µ′j ]j∈T ′ then the triples are not equivalent.

3. Let T = SS \ T and T
′
= SS′ \ T . For each j ∈ T , we know that (j, ρj , Bj) = H−1com(µj) and let

(j, ρ′j , B
′
j) = H−1com(µ

′
j). Given these tuples, Rj and R′j can be defined as:

Rj := Bj · F0(ρj)
−r(j) · F1(ρj)

−u(j), R′j := B′j · F0(ρ
′
j)
−r(j) · F1(ρ

′
j)
−u(j). (7)
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Then, we can define partially combined nonce as:

R =
∏
j∈T

(Rj)
Lj,SS and R

′
=
∏
j∈T ′

(R′j)
Lj,SS .

If R ̸= R
′
, then the triples are not equivalent. Otherwise, they are equivalent.

In summary, two triples are equivalent if their signer sets, messages, partially combined nonces, and the
remaining commitments match. Clearly, at any fixed point in time during the experiment, this is indeed an
equivalence relation. Next, we will argue that the relation is preserved over time.

The equivalence relation can only change when we update Hcom oracle either during queries to Sig2 phase
or during corruption queries, i.e., whenever we remove an element from Pending-Hcom.

Claim (Equivalent triples remain equivalent). If two triples (m, SS, µ⃗) and (m′,SS′, µ⃗′) are equivalent at
some point in time, then they stay equivalent for the rest of the game.

Proof. The signer set and the message do not change over time. For the rest of the conditions, let T and T ′

as defined above. Note that by definition of an equivalence class, we have T = T ′ and (µj)j∈T = (µ′j)j∈T .

Now, for every update of Hcom, we have two cases: First, the update does not affect µk ∈ µ⃗ for any k ∈ T .
In this case, the triples stay equivalent. Second, the update samples pre-image of µk ∈ µ⃗ for some k ∈ T . In
this case, both T and T ′ get updated in the identical manner. Similarly, the combined partial nonce R and

R
′
gets updated in an identical manner by multiplication by Rk where:

Rk =
(
Bk · F0(ρk)

−r(k) · F1(ρk)
−u(k)

)Lk,SS

. (8)

Therefore, the triples remain equivalent. ⊓⊔

Claim (Non-equivalent remains non-equivalent, except with a negligible probability). If two triples (m,SS, µ⃗)
and (m′,SS′, µ⃗′) are not equivalent at some point in time, then the probability that they become equivalent
later is negligible. Concretely, if Converge is the event that any two non-equivalent triples become equivalence
at some point tin time, then Pr[Converge] ≤ q2s/p.

Proof. Clearly, if m ̸= m′ and SS ̸= SS′, then the triples remain non-equivalent. Now consider an update of
Hcom that resulted in removing an entry µ from Pending-Hcom. Then, we consider the following cases.

1. First, µ = µk = µ′k for some k ∈ T ∩ T ′. Then:

(a) If T ̸= T ′, then the updated T \ {k} ≠ T ′ \ {k}, hence they remain non-equivalent.

(b) If T = T ′ but [µj ]j∈T ̸= [µ′j ]j∈T before sampling, then, after sampling pre-image of µ, we have that
[µj ]j∈T\{k} ̸= [µ′j ]j∈T\{k}. Hence, they remain non-equivalent.

(c) If T = T ′ and [µj ]j∈T = [µ′j ]j∈T , then by definition, R ̸= R
′
. Now, for µk, let Rk be the value as per

equation (7) of µk. Then, we have that: R/Rk ̸= R
′
/Rk. Therefore, the triples remain non-equivalent.

2. Second, we sample a pre-image of µk ∈ µ⃗ but µk ̸∈ µ⃗′. Let R and R
′
be the combined nonces of the two

triples, respectively, before we define the pre-image of µk. Then, after we sample pre-image of µk, the
tuple can become equivalent if and only if (a) T \ {k} = T ′ and [µj ]j∈T\{k} = [µ′j ]j∈T ′ , or (b) the nonce

Rk = R
′
/R.

Since Rk is uniformly random, the probability of the event Rk = R
′
/R is at most 1/p. Note that in the

entire game, we will do at most qs pre-image sampling of inputs of Hcom, and Pending has at most qcom
tuples. Therefore, taking union bound across all pre-image sampling, we get that Converge happens with
probability at most (qs · qcom)/p. ⊓⊔
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With our equivalence relation at hand, we introduce an algorithm GetChallenge that behaves as a random
oracle on equivalence classes. That is, it assigns each class a random oracle on equivalence classes. That is,
it assigns each class a random challenge c ←$ Zp in a lazy manner. More precisely, it gets as input a triple
(m, SS, µ⃗) and checks if a triple in the same equivalence class is already assigned a challenge c. This is done
using the algorithm Equivalent. If so, it returns this challenge c. If not, it assigns a random challenge c←$ Zp

to the triple (m,SS, µ⃗).
These two new algorithms are used in the following way. Recall, in the previous game, whenever the

algorithm UpdatePending removes an triple (m,SS, µ⃗) from Pending and no abort occurs, the algorithm
programs Hsig(Â, pk,m) := c for an uniformly random c := Chal[R̂] where where R̂ is as defined in equation (7)

and Â := R̂ · G0(m, µ⃗)r(0) · G1(m, µ⃗)u(0). Now, instead of sampling c uniformly at random, the game sets
Chal[R̂] := GetChallenge(m,SS, µ⃗).

It follows from the definition of a non-equivalence class that R̂ values of two non-equivalent classes are
different. Moreover, the value of GetChallenge for each equivalence class is uniformly at random. Therefore,
if the game does not abort in this game, then we program Hsig identically as in game G7. Hence, we get:

|Pr[G7 ⇒ 1]− Pr[G8 ⇒ 1]|≤ Pr[Converge] ≤ q2s
p
. (9)

Game G9: In this game, we change how we program the oracles F0,F1,G0, and G1. We note that we still
program these random oracles with uniformly random values, we simply change how we choose these values.

First sample a uniformly random α←$ Zp, once for the entire game. Next, for every random oracle query
to Gb on input (m, µ⃗ℓ) for either b ∈ {0, 1}, if Gb(m, µ⃗ℓ) = ⊥, we sample βℓ, γℓ ←$ Zp, program the random
oracles as:

G0(m, µ⃗ℓ) := g(−γℓ−αh·βℓ)·α−1
v −α·cℓ , G1(m, µ⃗ℓ) := gβℓ . (10)

Here, cℓ := GetChallenge(m,SS, µ⃗ℓ) and SS ⊆ [n] is the set for µ⃗ = ((j, µj))j∈SS.
We will now describe how we change programming the random oracles F0 and F1. Recall from game G2,

for each signing session and for each signer i, we sample ρi and program F0(ρi) and F1(ρi) with uniformly
random values in G, only after party i receives all its first round message µ⃗(i). In this game, for every
signing session and every signer i, we sample xi, yi ←$ Zp. Also, let ci := GetChallenge(m,SS, µ⃗(i)). Then,
we program F0 and F1 as:

F0(ρi) := g(−yi−αh·xi)·α−1
v −α·ci , F1(ρi) := gxi . (11)

Note that since each γℓ is uniformly random and independent of (βℓ, α, cℓ), and αv ̸= 0, (−γℓ − αh ·
βℓ) · α−1v − cℓ · α is also uniformly random and independent. Similarly, each yi is also uniformly random and
independent of (α, xi, ci). Hence, (−yi−αh ·xi) ·α−1v − ci ·α is also uniformly random and independent. This
implies that, in this game we program the random oracles F0,F1,G0 and G1 with uniformly random values,
and hence: Pr[G8 ⇒ 1] = Pr[G9 ⇒ 1].

Game G10: So far, we programmed the random oracles F0,F1,G0 and F1 with uniformly random values
from the appropriate range. In this game, we change that and instead program these random oracles with
correlated values.

In this game, for each query to Gb for either b ∈ {0, 1} on input (m, µ⃗ℓ), we program the G0 and G1 as
in game G9 except we compute γℓ := −α · βℓ, instead of sampling it uniformly at random. More precisely,
we sample βℓ ←$ Zp and program:

G0(m, µ⃗ℓ) := g(−α·βℓ−αh·βℓ)·α−1
v · (g−α)cℓ , G1(m, µ⃗ℓ) := gβℓ , (12)

where cℓ := GetChallenge(m, SS, µ⃗ℓ). We introduce a similar change for F0 and F1. For each signing session
and for each signer i, we compute yi := −α · xi, instead of sampling yi uniformly at random. More precisely,
we sample xi ←$ Zp and program:

F0(ρi) := g(−α·xi−αh·xi)·α−1
v · (g−α)cℓ , F1(ρi) := gxi , (13)
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where ci := GetChallenge(m,SS, µ⃗(i)) with µ⃗(i) being the first-round messages received by the signer i.
The indistinguishability between game G9 and G10 is another crucial step of our proof. We will prove

this assuming hardness of DDH in G. To this end, we rely on the following corollary of Lemma 1.

Corollary 1. For any security parameter λ, let (G, p, g)← GGen(1λ) be a prime order group of order p with
generator g ∈ G. For all n, q ≤ poly(λ), any αh, αv ∈ Z∗p and any vector c = [c1, . . . , cq], assuming hardness
of the DDH assumption in G, the following two distributions are indistinguishable:

D′0 := g, αh, αv, {(gβi , g−γi , ci)}i∈[q] for

{
α, βi, γ̃i ←$ Zp,

γi := (γ̃i + αh · βi) · α−1v + ci · α

D′1 := g, αh, αv, {(gβi , g−γi , ci)}i∈[q] for

{
α, βi ←$ Zp,

γi := (α · βi + αh · βi) · α−1v + ci · α.

Proof. Fix αh, αv ∈ Z∗p and c := [c1, . . . , cq]. Given a sample (g, gα, {(gβi , gγi)}i∈[q]) from Db for either
b ∈ {0, 1} as defined in Lemma 1, we can get a sample from D′b as follows:

1. For all i ∈ [q], define gβ
′
i := gβi , and compute

gγ
′
i := (gγi)α

−1
v · (gβi)αh·α−1

v · (gα)ci . (14)

2. Output the tuple (g, αh, αv, {(gβ
′
i , g−γ

′
i , ci)}i∈[q]).

We now analyze the distribution from which the tuple in step (2) above is sampled. When b = 0, then
for all i ∈ [q], g−γ

′
i is uniformly random. Thus, the tuple in step (2) above is a sample from D′0. Similarly,

when b = 1, then gγi = gα·βi for all i ∈ [q]. Thus, g−γ
′
i in equation (14) is correctly distributed as in D′1.

Consequently, if a PPT adversary A can distinguish between a sample from D′0 and D′1 with probability ε,
then A can distinguish between D1 and D2 with probability ε. From Lemma 1, we then get ε ≤ εddh+1/p. ⊓⊔

It is easy to see that in game G9 we use a sample from the distribution D′0 to program the random oracles
G0,G1,F0 and F1, whereas in game G10 we use a sample from the distribution D′0. Therefore, the advantage
of A in distinguishing between these two games is at most εddh + 1/p, and we get:

|Pr[G9 ⇒ 1]− Pr[G10 ⇒ 1]|≤ εddh +
1

p
.

Game G11: This game is identical to G11, except that for each honest signer we use simulated proofs for Sig2
messages instead of actual NIZK proofs. Looking ahead, we switch to simulated NIZK proofs in this game to
later argue in game G12 that the NIZK proofs do not reveal any information about the secret signing keys of
honest signers. This is crucial to argue the indistinguishability between games G13 and G14. During NIZK
simulation, we program the random oracle HFS on (XA, XB , Xpk, A,B, pk, µ⃗, ρ) at a choice of our challenge
(see §5.1). Note that the NIZK protocol we use is perfect honest-verifier zero-knowledge (HVZK). Hence,
conditioned on the successful programming of the random oracle HFS, the view of the A in games G10 and
G11 are identically distributed. Next, we will analyze the probability that we fail to program HFS on desired
inputs. We fail to program HFS on desired inputs, if the adversary has already queried HFS on this particular
input. Next, we formally analyze this failure probability.

Let Coll be the event that at least one of our HFS query collides with A’s HFS query. Since, A’s view in
games G10 and G11 only differ if Coll occurs (i.e, Pr[G10 ⇒ 1|¬Coll] = Pr[G11 = 1|¬Coll]), we trivially get:

|Pr[G10 ⇒ 1]− Pr[G11 ⇒ 1]| ≤ Pr[Coll].

We now analyze the probability of event Coll. For each NIZK simulation, the game programs HFS at a
input stm := (XA, XB , Xpk, A,B, pk, µ⃗, ρ) to output a challenge of its choice and aborts if HFS(stm) is already
defined. Since XA, XB , Xpk ←$ G are sampled uniformly at random and hidden from A (before we output
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the NIZK proof), the probability that the game aborts is at most qFS/p
3. By a union bound over all signing

queries, we get Pr[Coll] ≤ qs · qFS/p3 = εcoll. Hence, we get: |Pr[G10 ⇒ 1]− Pr[G11 ⇒ 1]|≤ εcoll.

Game G12: This game is identical to G11, except we change how we sample α. More precisely, in this game,
we sample α by first sampling an uniform random u ←$ Zp and compute α := αh + αvu. Since αv ̸= 0
and u is uniformly random and independent of the rest of the values, it follows that α in game G12 is also
uniformly random and independent. Thus: Pr[G11 ⇒ 1] = Pr[G12 ⇒ 1].

Game G13: In this game, we change how we sample the signing keys. To illustrate our modification, we will
distinguish between the signing key polynomials of gameG12 andG13. More precisely, let s12(x), r12(x), u12(x)
and s13(x), r13(x), u13(x) be the signing key polynomials in game G12 and game G13, respectively. Then,
in game G12 we sample the signing key polynomial s13(x) := s12(x) + α for α we describe in the previous
game. The other two signing key polynomials remain unchanged, i.e., r13(x) := r12(x) and u13(x) := u12(x).

Observe that for any fixed α, since s12(x) is a random degree t polynomial, s13(x) := s12(x) + α is also
a random degree t polynomial. Hence, A’s view in game G12 is identically distributed to its view in game
G13, and we get:

Pr[G12 ⇒ 1] = Pr[G13 ⇒ 1].

Game G14: In this game, we change how we sample the signing keys again. More precisely, we sample signing
key polynomials such that s14(x) := s12(x), r14(x) := r12(x) + 1 and u14(x) := u12(x) + u, for uniformly
random u ∈ Zp we used to define α = αh + αvu.

The indistinguishability between A’s view in game G13 and G14 is another crucial step of our proof. To
prove this, we will use Lemma 2 and the H-coefficient technique [Pat08, CS14]. We defer the proof of the
lemma to Appendix B.2.

Lemma 4. Pr[G13 ⇒ 1] = Pr[G14 ⇒ 1].

Combining everything, we get our main theorem.

Theorem 1 (Adaptively Secure Threshold Schnorr Signature). For any n, t ∈ poly(λ) with t < n,
assuming hardness of DDH and DL in the group G, and assuming the random oracle model (ROM), any
PPT adversary making at most qF, qG, qcom, qsig, qFS random oracle queries to F0,F1,G0,G1,Hcom,Hsig,HFS,

respectively, and at most qs signing queries, wins the UF-CMAATS game for our threshold Schnorr signature
Gargos with probability at most εσ where:

εσ ≤
q2com + q2s + qs

|R|
+

q2F + q2G + q2FS + q2s
p

+
qsqF + q2s

2λ
+
√

2qFS · εdl

+
qs(qsig + qcom) + qFS

p
+

qsqFS
p3

+
qsig
p

+
n+ 1

p
+ εddh +

√
qsig · εdl.

Here, εdl and εddh are the advantages of an adversary running in T · poly(λ, n) time in breaking the DL and
DDH assumption in G, respectively.

The proof of Theorem 1 follows the same approach as in the proof of [BDLR24, Theorem 1], and therefore
we omit it here.
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A Additional Preliminaries

We define the computational assumptions used in our security proof and the generalized forking lemma.

A.1 Computational Assumptions

Assumption 2 (DL) We say that the discrete logarithm (DL) assumption holds, if for all PPT adversaries
A, the following advantage is negligible:

AdvDL
A,GGen(λ) := Pr

[
A(g, gα) = α

∣∣ (G, p, g)← GGen(1λ), α←$ Zp

]
= εdl.

Assumption 3 (DDH) We say that the decisional Diffie-Hellman (DDH) assumption holds, if for all PPT
adversaries A, the following advantage is negligible:

AdvDDH
A,GGen(λ) :=

∣∣∣∣∣Pr
[
A(g, gα, gβ , gαβ) = 1

∣∣∣∣∣ (G, p, g)← GGen(1λ),

α, β ←$ Zp

]

− Pr

[
A(g, gα, gβ , gγ) = 1

∣∣∣∣∣ (G, p, g)← GGen(1λ),

α, β, γ ←$ Zp

]∣∣∣∣∣ = εddh.

A.2 Generalized Forking Lemma

We recall the generalized forking lemma [PS96, BN06].

Lemma 5. Let q ≥ 1 be an integer, and H be a set. Let A be a randomized algorithm that on input
x, h1, h2, . . . , hq outputs a pair (k, aux), where k ∈ [0, q] and aux is a side output. Let IG be a randomized
algorithm that generates x. The accepting probability of A is defined as:

acc = Pr
x←IG,h1,h2,...,hq←$H

[(k, aux)← A(x, h1, . . . , hq) : k ̸= 0].

Consider algorithm ForkA described in Figure 5. The accepting probability of ForkA is defined as:

frk := Pr
x←IG

[ν ← ForkA(x) : ν ̸= ⊥].

Then, we have:

frk ≥ acc

(
acc

q
− 1

|H|

)
=⇒ acc ≥ q

|H|
+
√

q · frk.

Algorithm ForkA(x):

1: Pick the random coins ρ of A at random
2: {h1, . . . , hq} ←$ Hq

3: (k, aux)← A(x, h1, . . . , hq)
4: if k = 0 : return ⊥
5: {h′

k, . . . , h
′
q} ←$ Hq

6: (k′, aux′)← A(x, h1, . . . , hk−1, h
′
k, . . . , h

′
q)

7: if k ̸= k′ : return ⊥
8: return (k, aux, aux′)

Fig. 5: The generalized forking algorithm.
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Input: Public parameters (g, h, v) ∈ G3, signing key polynomials s(·), r(·), u(·), randomness for random oracle
programming {h1, h2, . . . , hq} ←$ Zp.

KGen simulation
1. Use (g, h, v) as the public parameters and s(·), r(·), u(·) as the signing key polynomials.

Corruption simulation:
2. When A corrupts a signer i ∈ H if |C|< t:

(a) Update H := H \ {i} and C := C ∪ {i}.
(b) Faithfully reveals the internal state of signer i to A.

Simulating random oracle queries: For each random oracle query on some input x, use the next unused
random value from the input {h1, h2, . . . , hq} to program the random oracle.

Simulating signing protocol for any signing session:
3. Follow the honest protocol for all honest signers. Additionally, maintain the following state locally.
4. For any honest signer i ∈ H, let µ⃗(i) be the Sig1 message received by signer i. For readability, we will drop

the subscript (i) and write µ⃗(i) simply as µ⃗.
5. Let µ⃗ = [µj ]j∈SS. For each µj with j ∈ C ∩ SS, extract (ρj , Bj) using the observability of the random oracle

Hcom and compute A′
j as:

A′
j :=

(
Bj · F0(ρj)

−r(j) · F1(ρj)
−u(j) · G0(µ⃗)r(j) · G1(µ⃗)u(j)

)Lj,SS

. (15)

6. For signer j, let (Aj , ρj , Bj , πj) be the second-round message signer j sends to signer i in that session. Then,
if Aj ̸= A′

j and πj is a verifying NIZK proof, do the following:
(a) Let πj := (XA, XB , Xpk, za, zs, zr, zu) be the NIZK proof.
(b) Identify the random oracle query to HFS with input (XA, XB , Xpk, A,B, pkj , µ⃗, ρj). Let idx be such that:

HFS(XA, XB , Xpk, A,B, pkj , µ⃗, ρj) := hidx (16)

(c) return (idx, w := (j, zs, zr, zu)).
7. If event Neq does not occur during the interaction with A, then return (0, ε).

Fig. 6: Description of Algorithm B that simulates game G3 to the adversary A.

B Deferred Proofs

B.1 Proof of Lemma 3

Proof. To prove this lemma, we will rely on generalized forking lemma [PS96, BN06]. More specifically,
given an adversary A that can cause the event Neq to happen, we will build a “wrapping” algorithm B (see
Figure 6) which runs A and returns information regarding the bad event Neq. Algorithm B simulates all the
random oracles with uniformly random outputs. We then use B to construct an algorithm Bdl (see Figure 8)
that first runs the forking algorithm ForkB (see Figure 7) which forks B with respect to HFS query. Algorithm
Bdl then uses the output of the ForkB algorithm to solve for discrete logarithm in G.

Description of Algorithm B (Figure 6). B takes as input the public parameters (g, h, v), the signing
keys (s(·), r(·), u(·)), and a vector {h1, . . . , hqFS} of uniformly random field elements. B then interacts with
A with these inputs, where B uses {h1, . . . , hqFS} to program the random oracle HFS. Simultaneously, B also
locally checks for the event Neq (step 5 in Figure 6). Let i ∈ H be the honest party at which the event Neq
happens. Here on, in the rest of the analysis of event Neq we will drop the subscript (i).

When the event Neq occurs, B identifies the HFS query associated with the event Neq. Let j be the
malicious signer causing the event Neq. Also, let πj = (XA, XB , Xpk, za, zs, zr, zu) and (pkj , Aj , Bj , µ⃗, ρj)
be the NIZK proof and the statement associated with the event Neq. Then, B finds the index idx such
that B programmed the HFS query on input (XA, XB , Xpk, pk, A,B, µ⃗, ρj) with hidx, and returns the tuple
(idx, (j, zs, zr, zu)) as its output.
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Algorithm ForkB(x := (g, h, v, s(·), r(·), u(·))):

1: sample randomness tape ζ for B
2: sample h1, h2, . . . , hq ←$ Zp

3: let (idx, w) := B(x, {h1, h2, . . . , hq}; ζ)
4: if idx = 0 : return (0,⊥,⊥)

5: sample h′
idx, . . . , h

′
q ←$ Zp

6: let (idx′, w′) := B(x, {h1, h2, hidx−1, h
′
idx, . . . , h

′
q}; ζ)

7: if idx = idx′ ∨ hidx ̸= h′
idx : return ⊥

8: let out := (hidx, w), out′ := (h′
idx, w

′)
9: return (1, out, out′)

Fig. 7: Description of Algorithm ForkB.

Algorithm Bdl(G, p, g, y):

1: sample values α←$ Z∗
p and θ ←$ {0, 1}

2: if θ = 0 : (h, v) := (y, gα); otherwise, (h, v) := (gα, y)

3: sample signing keys polynomials s(·), r(·), u(·) as per protocol specification

4: let (val, out, out′)← ForkB(g, h, v, s(·), r(·), u(·))
5: if val = 0 : return ⊥
6: parse (e, (j, zs, zr, zu)) := out and (e′, (j′, z′s, z

′
r, z

′
u)) := out′

7: Compute sj , rj , uj as

sj :=
zs − z′s
e− e′

, rj :=
zr − z′r
e− e′

, uj :=
zu − z′u
e− e′

. (17)

8: Let δs := s(j)− sj , δr := r(j)− rj , and δu := u(j)− uj

// Let αh, αv ∈ Zp be such that h = gαh and v = gαv

9: if θ = 0 ∧ δr ̸= 0 :
10: return (−δs − αvδu) · δ−1

r as the DL solution
11: else if θ = 1 ∧ δu ̸= 0 :
12: return (−δs − αhδr) · δ−1

u as the DL solution

13: return ⊥

Fig. 8: Description of Algorithm Bdl solves discrete logarithm in G.

Description of Algorithm ForkB (Figure 7). ForkB takes as input the public parameters (g, h, v) and
the secret signing keys (s(·), r(·), u(·)). ForkB samples the randomness tape ζ for B and the random oracle
outputs {h1, . . . , hqFS}. Next, ForkB runs B on these input. Let (idx, w) be the output of B. If idx = 0, then

ForkB returns (0,⊥,⊥). Otherwise, ForkB samples h′idx, . . . , hqFS uniformly at random. ForkB then runs the
second execution of B by changing the random oracle programming since the index idx with {h′idx, . . . , h′qFS}.

Let (idx′, w′) be the output of B from the second execution. ForkB then checks whether idx = idx′

and hidx ̸= h′idx. If both of these conditions hold ForkB returns (1, out, out′) where out := (hidx, w) and

out′ := (h′idx, w
′). Otherwise, ForkB returns (0,⊥,⊥).

Description of Algorithm Bdl (Figure 8). Bdl takes as input (G, p, g, y): the description of the group
G of order p, a generator g and a uniformly random element y ∈ G. Bdl then samples uniformly random
α ←$ Zp and a bit θ ← {0, 1}. Next, depending upon the value of θ, Bdl sets the public parameters
(g, h, v) in two different manner. More precisely, if θ = 0, Bdl sets (g, h, v) := (g, y, gα), otherwise Bdl sets
(g, h, v) := (g, gα, y).

Next, Bdl samples the signing key polynomials s(·), r(·), u(·) as per the honest protocol. Bdl then runs
ForkB with (g, h, v, s(·), r(·), u(·)) as input. Let (val, out, out′) be the output of ForkB. If val = 0, Bdl returns
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⊥. Otherwise, let out = (e, (j, zs, zr, zu)) and out′ = (e′, (j′, z′s, z
′
r, z
′
u)). Bdl computes (sj , rj , uj) as:

sj :=
zs − z′s
e− e′

, rj :=
zr − z′r
e− e′

, uj :=
zu − z′u
e− e′

. (18)

Let δs := s(j) − sj , δr := r(j) − rj , and δu := u(j) − uj . Also, for notational convenience, let h = gαh

and v = gαv . Then, if (θ = 0) and δr ̸= 0, Bdl outputs (−δs − αvδu) · δ−1u as the DL solution. Alternatively,
if θ = 1 and δu ̸= 0, Bdl outputs (−δs − αhδr) · δ−1u as the DL solution.

Analysis of Bdl. Let ε be the probability that ForkB outputs (1, out, out′). Also, let εdl be the probability
that Bdl outputs the discrete logarithm of y. Then, we will next argue that εdl ≥ ε/2. Also, let εneq be the
probability of the event Neq in game G2. Then, from the local forking lemma, we get that:

ε ≥
ε2neq
qFS
− εneq

p
.

Therefore, by combining the above, we will get:

εdl ≥
1

2
·

(
ε2neq
qFS
− εneq

p

)
=⇒ εneq ≤

qFS
p

+
√
2 · qFS · εdl. (19)

Note that ForkB outputting (1, out, out′) implies that the event Neq happens for the first time during
B’s interaction with A for the idx-th HFS query for both execution of B. Since, A’s view in both execution
is identical until the idx-th query, it implies that the input to the idx-th HFS is identical in both execution.
Moreover, A outputs valid NIZK proof πj and π′j for the same statement in both the execution.

Let (XA, XB , Xpk, A,B, pkj , µ⃗, ρj) be the idx-th HFS input. This implies, the ForkB outputs out :=
(e, (j, zs, zr, zu)) and out′ = (e′, (j′, z′s, z

′
r, z
′
u)) satisfy that:

gzshzrvzu = Xpk · pkcj , gz
′
shz′

rvz
′
u = Xpk · pkc

′

j .

Therefore, we get that:
gsjhrjvuj = pkj = gs(j)hr(j)vu(j),

where (sj , rj , uj) are the values Bdl computes in equation (18), and (s(j), r(j), u(j)) are the signing keys of
party j as per the protocol specification. This implies that:

gsj−s(j)hrj−r(j)vuj−u(j) = 1G = gδshδrvδu . (20)

We will next argue that (δr, δu) ̸= (0, 0). For the sake of contradiction, assume that (δr, δu) = (0, 0). Also,
let πj = (XA, XB , Xpk, , za, zs, zr, zu) and π′j = (XA, XB , Xpk, z

′
a, z
′
s, z
′
r, z
′
u) be the NIZK proofs, A outputs

in its two execution, respectively. Then, for (za, zr, zu) and (z′a, z
′
r, z
′
u) it holds that:

gza · H0(µ⃗)
zr · F0(µ⃗)

zr = XB ·Ac, gza · F0(ρj)
zr · F0(ρj)

zr = XB ·Bc,

gz
′
a · H0(µ⃗)

z′
r · H1(µ⃗)

z′
u = XB ·Bc′ , gz

′
a · F0(ρj)

z′
r · F0(ρj)

z′
u = XB ·Bc′ .

Let a′ := (za − z′a)/(e− e′), for the corresponding HFS output e and e′, respectively.

ga
′
· F0(ρj)

rj · F1(ρj)
uj = B, ga

′
· H0(µ⃗)

rj · H1(µ⃗)
uj = A. (21)

However, since by our assumption (δr, δu) = 0, we have (rj , uj) = (r(j), u(j)), and hence

ga
′
· F0(ρj)

r(j) · F1(ρj)
u(j) = B, ga

′
· H0(µ⃗)

r(j) · H1(µ⃗)
u(j) = A. (22)

Thus, from equation (22), we get that:

B · F0(ρj)
−r(j) · F1(ρj)

−u(j) · H0(µ⃗)
r(j) · H1(µ⃗)

u(j) = A.
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Equation (23) implies that the event Neq will not occur for the idx-th HFS query. This is a contradiction to
the fact that B outputs the idx-th index.

Say h = gαh and v = gαv for some αh, αv ∈ Zp. Then, equation (20), implies that δs + δrαh + δuαv = 0.
If either δr or δu is non-zero, then Bdl computes αh or αv, respectively, as:

δr ̸= 0⇒ αh = (−δs − αvδu) · δ−1r , δu ̸= 0⇒ αv = (−δs − αhδr) · δ−1u .

Now, note that Bdl will be able to compute the discrete logarithm of y if either of the following happens:
(i) θ = 0 and δr ̸= 0; and (ii) θ = 0 and δu ̸= 0. This implies that:

εdl ≥ Pr[θ = 0 ∧ δr ̸= 0] + Pr[θ = 1 ∧ δu ̸= 0]. (23)

Note that the view of ForkB is identically distributed for both θ = 0 and θ = 1, and hence the value of
(δr, δu) is independent of θ. Therefore we get:

εdl ≥ Pr[θ = 0] · Pr[δr ̸= 0] + Pr[θ = 1] · Pr[δu ̸= 0]

=
1

2
· (Pr[δr ̸= 0] + Pr[δu ̸= 0]) ≥ 1

2
· Pr[δr ̸= 0 ∨ δu ̸= 0] =

1

2
· ε. (24)

Now, combining this with equation (19), we get that:

εneq ≤
qFS
p

+
√
2 · qFS · εdl.

Since, the game G1 and G2 only differ if the event Neq occurs, we get that:

|Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]|≤ εneq ≤
qFS
p

+
√
2 · qFS · εdl. ⊓⊔

B.2 Proof of Lemma 4

Proof. Let T0 and T1 be the random variables denoting the transcripts of A’s interaction in games G13

and G14, respectively. Then, for any potential value τ of Tθ for θ ∈ {0, 1}, let p0(τ) and p1(τ) be the
interpolation probabilities, i.e., the probabilities of choosing randomness in the respective game that would
lead to transcript τ , if the corruption set, the signing queries, and the random oracle queries are fixed in
advance. These probabilities depend solely on τ and the game’s randomness, and are independent of A. The
H-coefficient technique [Pat08] now tells us that, to argue indistinguishability between games G13 and G14,
it it sufficient to show that for all possible transcripts τ , p0(τ) = p1(τ). We reiterate that we fix A’s queries
when computing the interpolation probabilities.

Since the interpolation probabilities are independent of A, instead of working with the random variables
T0 and T1, we can work with the marginal transcript random variables we get after fixing A’s queries. Let
W0 = (X0, Y0, f(X0, Y0)) and W1 = (X1, Y1, f(X1, Y1)) be the marginal transcript random variables of game
G13 and G14, respectively, where:

X0 :=(αh, αv, s12(0), u, {s13(i), r13(i), u13(i)}i∈C , {ci,j , βi,j , yi,j , Bi,j , Ai,j , zi,j}i∈SSj∩H,j∈[qs]),

X1 :=(αh, αv, s12(0), u, {s14(i), r14(i), u14(i)}i∈C , {ci,j , βi,j , yi,j , Bi,j , Ai,j , zi,j}i∈SSj∩H,j∈[qs]).

Y0 (resp. Y1) denotes the random variable for:

– The randomness {ρi,j}j∈[qs],i∈H∩SSj
and the outputs of Fb for both b ∈ {0, 1}, on all inputs except inputs

from {ρi,j}j∈[qs],i∈H∩SSj
.

– The commitments {µi,j}j∈[qs],i∈H∩SSj
and the outputs of the Gb for both b ∈ {0, 1} on all inputs except

on all inputs that are the Sig1 messages received by honest signers.
– The simulated NIZK proofs of all honest signers and outputs of HFS.

30



– The outputs of Hsig on all inputs except for the inputs the game programs Hsig on by extracting Â as we
show discuss in game G7.

– All {ai,j}j∈[qs],i∈SSj∩C values for that the game samples for the j-th signing session before A corrupts
the signer i.

It is easy to see that Y0 (resp. Y1) is independent of X0 (resp. X1). Also, by design of games G13 and G14,
Y0 is identically distributed as Y1.

We now argue that for any fixed queries of A, given (Xθ, Yθ) for either θ ∈ {0, 1}, the rest of the transcript
is a deterministic function of (Xθ, Yθ). We also argue that in both games G13 and G14, this (deterministic)
function is the same, and we use f(·, ·) to denote it, as we describe below:

– Let α := αh + u · αv. Then, for each j ∈ [qs] and i ∈ H ∩ SSj , the Fb and Gb outputs for both b ∈ {0, 1}
on ρi,j and µ⃗i,j , respectively, are deterministic function of (αh, αv, α, βi,j , yi,j , ci,j , Yθ).

– The discrete logarithm of the public key in both gamesG13 andG14 is the same and is equal to s12(0)+α.
More precisely, pkG13

= gs12(0)+α by definition. Also, recall that we have r14(0) = 1 and u14(0) = u.
Therefore,

pkG14
= gs14(0)hr14(0)vu14(0) = gs12(0)hvu = gs12(0)+αh+αvu = gs12(0)+α.

Since |C|= t, given s12(0)+α and the signing keys of signers in C, the threshold public keys of all signers
are fixed and a deterministic function of these values.

– For each signing session j ∈ [qs], the combined nonces and final signatures are deterministic function of
{(ci,j , Ai,j , zi,j)}i∈SSj∩H}, the signing keys of the corrupt signers, A’s internal state, and Yθ.

Given Lemma 2, to prove that games G13 and G14 are identically distributed, it remains to show that X0

and X1 are identically distributed, i.e., X0 ≡ X1. Concretely, for any potential value τ of Xθ for θ ∈ {0, 1},
that we denote as

τ =
(
¯
αh,

¯
αv,

¯
s,
¯
u, {

¯
si,

¯
ri,

¯
ui}i∈C , {ci,j , βi,j , yi,j ,

¯
Ai,j ,

¯
zi,j}i∈SSj∩H,j∈[qs]

)
,

let pθ(τ) = Pr[Xθ = τ ] for either θ ∈ {0, 1}.
Analysis of p0(τ). For p0(τ), note that the randomness consists of αh, αv ←$ Z∗p and s12(0), u ←$ Zp. To
generate a particular transcript τ , we therefore need the identities:

αh =
¯
αh, αv =

¯
αv, u =

¯
u, s12(0) =

¯
s.

Since (αh, αv, s12(0), u) are chosen independently, this is true with probability

1

p− 1
· 1

p− 1
· 1
p
· 1
p
=

1

p2(p− 1)2
. (25)

Further, we need to ensure that {(s12(i), r12(i), u12(i))}i∈C = {(
¯
si,

¯
ri,

¯
ui)}i∈C . Since |C|= t, conditioned on

(αh, αv, s12(0), u) = (
¯
αh,

¯
αv,

¯
s,
¯
u), there exists a unique set of three polynomials of degree at most t each,

with constant terms being equal to (
¯
s+

¯
α, 0, 0) for

¯
α :=

¯
αh+

¯
u ·

¯
αv, such that the above equality holds. Since

in game G13, we sample the t additional coefficients of each of these polynomials uniformly at random the
equality holds with probability 1/p3t.

Next, let NumRhos be the number of times honest singers sample ρi,j values for some j ∈ [qs] and
i ∈ SSj ∩H. For each such ρi,j for j ∈ [qs] and i ∈ SSj ∩H, we sample yi,j , uniformly at random. Therefore,
the probability of obtaining a particular sequence of

¯
yi,j for j ∈ [qs] and i ∈ SSj ∩H is exactly 1/pNumRhos.

Similarly, let NumMsg1 be the total number of unique first-round messages received by honest signers.
Then, for each such distinct first round message µ⃗(i) that A sends to honest an honest signer i ∈ SSj ∩ H,
we sample a uniformly random βi,j . Therefore, the probability of obtaining a particular sequence of

¯
βi,j for

j ∈ [qs] and i ∈ SSj ∩H is exactly 1/pNumMsg1 .
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Finally, let NumEquiv be the distinct number of equivalence classes formed by the first round messages
received by honest signers. Then, for each such equivalence class, we sample a uniformly random challenge
ci,j . Therefore, the probability of obtaining a particular sequence of

¯
ci,j for j ∈ [qs] and i ∈ SSj ∩H is exactly

1/pNumEquiv.
Combining all the above, we get that the following event

{ρi,j , βi,j , ci,j}j∈[qs],i∈SSj∩H = {
¯
ρi,j ,

¯
βi,j ,

¯
ci,j}j∈[qs],i∈SSj∩H (26)

happens with probability
1

pNumRhos
· 1

pNumMsg1
· 1

pNumEquiv
. (27)

Next, consider the triples {(Bi,j , Ai,j , zi,j)}i∈H∩SSj ,j∈[qs]. For each (i, j), we have:

Bi,j = gai,j · F0(ρi,j)
r13(i) · F1(ρi,j)

u13(i) = gai,j · F0(ρi,j)
r12(i) · F1(ρi,j)

u12(i),

Ai,j = gai,jH0(m, µ⃗j)
r13(i)H1(m, µ⃗j)

u13(i) = gai,jH0(m, µ⃗i,j)
r12(i)H1(m, µ⃗i,j)

u12(i),

zi,j = ai,j + ci,j · s13(i) = ai,j + ci,j · (s12(i) + α),

where ai,j ←$ Zp and ρi,j are the randomness of honest signer i in the j-th signing session, and µ⃗i,j is the
first round message signer i receives during the j-th session.

Observe that, given that everything else is fixed, each triple (Ai,j , Bi,j , zi,j) is determined by the choice
of ai,j . Thus, the probability that (Bi,j , Ai,j , zi,j) = (

¯
Bi,j ,

¯
Ai,j ,

¯
zi,j) holds is equal to the probability that

ai,j =
¯
ai,j for

¯
ai,j ∈ Zp. (28)

Since ai,j is chosen uniformly at random, we get any plausible triple with probability 1/p. This implies that
the following event

{(Bi,j , Ai,j , zi,j)}i∈H∩SSj ,j∈[qs] = {(¯Bi,j ,
¯
Ai,j ,

¯
zi,j)}i∈H∩SSj ,j∈[qs] (29)

happens with probability ≤ 1/pNumRhos, where NumRhos :=
∑

j∈[qs],i∈SSj
SSj ∩H as defined before.

Combining all of the above, for all transcripts τ ∈W0 with p0(τ) > 0, we get the following interpolation
probability:

p0(τ) =
1

p2(p− 1)2
· 1

p3t
· 1

p2qs
· 1

pNumRhos
· 1

pNumMsg1
· 1

pNumEquiv
· 1

pNumRhos
.

Analysis of p1(τ). We now turn to the analysis of p1(τ). First, by a similar argument as for the calculation
of p0(τ), we need the identities.

αh =
¯
αh, αv =

¯
αv, u =

¯
u, s12(0) =

¯
s,

which again are true with probability

1

p− 1
· 1

p− 1
· 1
p
· 1
p
=

1

p2(p− 1)2
. (30)

Again, for the required identity {(s14(i), r14(i), u14(i))}i∈C = {(
¯
si,

¯
ri,

¯
ui)}i∈C , conditioned on (αh, αv, s12(0), u) =

(
¯
αh,

¯
αv,

¯
s,
¯
u), there is a unique set of three degree-t polynomials with constant terms (

¯
s, 1,

¯
u) for

¯
α :=

¯
αh+

¯
u·
¯
αv

such that this identity holds. Since in game G14, we sample the t additional coefficients of each of these
polynomials uniformly at random, the equality holds with probability 1/p3t.

Furthermore, using an analysis similar to p0(τ), we get that even in p1(τ), we have that:

{ρi,j , βi,j , ci,j}j∈[qs],i∈SSj∩H = {
¯
ρi,j ,

¯
βi,j ,

¯
ci,j}j∈[qs],i∈SSj∩H (31)
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happens with probability:
1

pNumRhos
· 1

pNumMsg1
· 1

pNumEquiv
. (32)

Lastly, consider the tuples {(Bi,j , Ai,j , zi,j)}i∈H∩SSj ,j∈[qs]. For each (i, j), for uniformly random ai,j , we
have zi,j = ai,j + ci,j · s14(i) = ai,j + cj · s12(i). Next, using the facts that

F0(ρi,j) := g−u·yi,j−ci,j ·α, F1(ρi,j) := gyi,j , (33)

we get the following:

Bi,j = gai,j · F0(ρi,j)
r14(i) · F1(ρi,j)

u14(i)

= gai,j · F0(ρi,j)
1+r12(i) · F1(ρi,j)

u+u12(i)

= gai,jg−u·yi,j−ci,jαgu·yi,j · F0(ρi,j)
r12(i) · F1(ρi,j)

u12(i)

= gai,j−ci,j ·α · F0(ρi,j)
r12(i) · F1(ρi,j)

u12(i),

where ai,j ←$ Zp and ρi,j are the randomness of honest signer i in the j-th signing session (with signer set
SSj), and ci,j := GetChallenge(m,SS, µ⃗i,j) where µ⃗i,j is the first round message signer i receives during the
j-th signing session.

Using a similar calculation, we also get:

Ai,j = gai,j · G0(µ⃗i,j)
r14(i) · G1(µ⃗j)

u14(i)

= gai,j−ci,j ·α · G0(µ⃗i,j)
r12(i) · G1(µ⃗i,j)

u12(i).

Let ãi,j := ai,j − ci,j · α, then

Bi,j = gãi,j · F0(ρj)
r12(i) · F1(ρj)

u12(i), (34)

Ai,j = gãi,j · G0(µ⃗i,j)
r12(i) · G1(µ⃗i,j)

u12(i) (35)

zi,j = ãi,j + ci,j · (s12(i) + α). (36)

Recall from game G3, an honest signer i responds with its signature share zi,j in the j-th session, only if
all honest signers in SSj received the same first round message. Therefore, if for any signing session j, there
exists an i ∈ SSj ∩H such that zi,j ̸= ⊥, then for all (i, i′) ∈ SSj ∩H, we have that µ⃗i,j = µ⃗i′,j = µ⃗j . In that
case, we have that for all i ∈ SSj ∩H, we have that ãi,j = ai,j−cj ·α, where cj = GetChallenge(m,SS, µ⃗j). As

a result, the signature share signer i outputs is either zi,j = ãi,j + cj(s12(i)+α) or zi,j = ⊥. Moreover, let Âj

be the combined nonce. Then, from game G7, we have that cj = Hsig(Âj , pk,m) = GetChallenge(m,SS, µ⃗j).
From all of the above, we get that, for all signing sessions, where A sends the same first round message

µ⃗j to all, given that everything else is fixed, the triple (Bi,j , Ai,j , zi,j) are a function of ãi,j := ai,j − cj ·
¯
α.

Therefore, we get (Bi,j , Ai,j , zi,j) = (
¯
Bi,j ,

¯
Ai,j ,

¯
zi,j) only if ai,j −

¯
cj · α =

¯
ai,j for the same

¯
ai,j ∈ Zp we used

in equation (28). Since ai,j is chosen uniformly at random, the probability of ai,j−
¯
cj ·

¯
α =

¯
ai,j is also 1/p. As

each signer i selects its ai,j independently, the probability of {(Bi,j , Ai,j , zi,j) = (
¯
Bi,j ,

¯
Ai,j ,

¯
zi,j)}j∈[qs],i∈SSj∩H

is 1/pk, where k is the total number of honest signers across all such signing sessions, where A sends the
same first round message.

Now consider all other signing sessions where A did not send identical first-round messages. For each
such session j, we have:

Bi,j = gai,j−ci,j ·α · F0(ρi,j)
r12(i) · F1(ρi,j)

u12(i),

Ai,j = gai,j−ci,j ·α · G0(µ⃗i,j)
r12(i) · G1(µ⃗i,j)

u12(i).

Here, ai,j ←$ Zp and ρi,j are the randomness of honest signer i in the j-th signing session (with signer set
SSj), and ci,j := GetChallenge(m,SS, µ⃗i,j) where µ⃗i,j is the first round message signer i receives during the
j-th signing session.
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From all of the above, we get that given that everything else is fixed, the tuple (Bi,j , Ai,j) is a function of
ãi,j := ai,j− cj ·

¯
α. Therefore, we get (Bi,j , Ai,j) = (

¯
Bi,j ,

¯
Ai,j) only if ai,j−

¯
cj ·α =

¯
ai,j for the same

¯
ai,j ∈ Zp

we used in equation (28). Since ai,j is chosen uniformly at random, the probability of ai,j−
¯
cj ·

¯
α =

¯
ai,j is also

1/p. As each signer i selects its ai,j independently, the probability of {(Bi,j , Ai,j) = (
¯
Bi,j ,

¯
Ai,j)}j∈[qs],i∈SSj∩H

is 1/pk
′
, where k′ is the total number of honest signers across all such signing sessions, where A sends different

first-round messages to different honest signers.
Next, note that k + k′ = NumRhos, therefore, the event

{(Bi,j , Ai,j , zi,j)}i∈H∩SSj ,j∈[qs] = {(¯Bi,j ,
¯
Ai,j ,

¯
zi,j)}i∈H∩SSj ,j∈[qs] (37)

happens in game G14 with probability 1/pNumRhos.
Combining all of the above, for all transcripts τ ∈W1 with p1(τ) > 0, we get the following interpolation

probability:

p0(τ) =
1

p2(p− 1)2
· 1

p3t
· 1

p2qs
· 1

pNumRhos
· 1

pNumMsg1
· 1

pNumEquiv
· 1

pNumRhos
.

Since the above holds for any (possible) transcripts, we get p0(τ) = p1(τ) for all transcripts. This implies
that X0 ≡ X1. Finally, by Lemma 2, we get that the view of A in the games G13 and G14 is identically
distributed. ⊓⊔
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