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Abstract. A multi-message multi-recipient Public Key Encryption
(mmPKE) enables batch encryption of multiple messages for multiple
independent recipients in one go, significantly reducing costs, particularly
bandwidth, compared to the trivial solution of encrypting each message
individually. This capability is especially critical in the post-quantum
setting, where ciphertext length is typically significantly larger than the
corresponding plaintext.
In this work, we first observe that the generic construction of mmPKE
from reproducible PKE proposed by Bellare et al. (PKC ’03) does not
apply in the lattice-based setting because existing lattice-based PKE
schemes do not fit the notion of reproducible PKE. To this end, we first
extend their construction by proposing a new variant of PKE, named
extended reproducible PKE (XR-PKE), which enables the reproduction
of ciphertexts via additional hints. However, standard lattice-based PKE
schemes, such as Kyber (EuroS&P ’18), do not readily satisfy the XR-
PKE requirements. To construct XR-PKE from lattices, we introduce
a novel technique for precisely estimating the impact of such hints on
the ciphertext security while also establishing suitable parameters. This
enables us to instantiate the first CPA-secure mmPKE and Multi-Key
Encapsulation Mechanism (mmKEM) from the standard Module Learning
with Errors (MLWE) lattice assumption, named mmCipher-PKE and
mmCipher-KEM, respectively. We then extend our works to the identity-
based setting and construct the first mmIBE and mmIB-KEM schemes. As
a bonus contribution, we explore generic constructions of adaptively secure
mmPKE, achieving security against adaptive corruption and chosen-
ciphertext attacks.
We also provide an efficient implementation and thorough evaluation
of the practical performance of our mmCipher. Our results show that
mmCipher provides significant bandwidth and computational savings in
practice, compared to the state-of-the-art. For example, for 1024 recipients,
our mmCipher-KEM achieves a 23–45ˆ reduction in bandwidth overhead,
reaching within 4–9% of the plaintext length (near optimal bandwidth),
while also offering a 3–5ˆ reduction in computational cost.
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1 Introduction

Public Key Encryption (PKE) and Key Encapsulation Mechanism (KEM) are
foundational cryptographic primitives essential for secure digital communication.
The rapid progress in quantum computing [23] has led to a shift towards post-
quantum cryptography. In response, the National Institute of Standards and
Technology (NIST) has selected Kyber, a lattice-based KEM/PKE, as a primary
candidate for standardization [2]. However, these quantum-resistant constructions
generally require significantly more bandwidth resources than their traditional
counterparts [8]. Therefore, reducing communication costs for multiple recipients,
even for moderately large number of recipients, say N ě 16, is already of practical
significance.

Multi-message multi-recipient PKE. To address this need, multi-message
multi-recipient PKE (mmPKE) was introduced to efficiently batch multiple ci-
phertexts when sending distinct messages to multiple recipients by Kurosawa [43].
Unlike trivial solutions where each message is encrypted separately, mmPKE
allows for significant bandwidth savings, especially valuable in post-quantum
settings where ciphertext sizes are large. We call an mmPKE (asymptotically)
bandwidth-optimal if the length of its ciphertexts approaches the total length
of its plaintexts (for a large number of recipients). When each message is an
encapsulated key, we obtain the multi-key multi-recipient KEM (mmKEM). A
special case of mmPKE and mmKEM is multi-recipient PKE (mPKE) and
multi-recipient KEM (mKEM), which only support sending the same message or
encapsulated key to all recipients. In this case, since each recipient receives the
same message, the security model excludes the insider adversaries (recipients).

Due to its practically appealing and theoretically interesting nature, the
studies of mmPKE/mmKEM [5,9,10,43,60], mPKE/mKEM [7,19,35,39,48,62,65],
and their identity-based variants [18,36,55] have attracted significant attention.
Building on this, (m)mPKE plays a central role in Secure Group Messaging
(SGM) [4, 35, 39] and confidential transactions [16, 24, 34] 4. Among them, the
foundational work on mmPKE was proposed by Bellare et al. in [9, 10] that
significantly expanded Kurosawa’s work by: (1) introducing the insider adversary
to formalize the mmPKE security model, (2) identifying possible attacks (e.g.,
rogue public key attacks) and introducing the knowledge-of-secret-key (KOSK)
assumption (i.e., the challenger knowing the private key of each public key)
for protection, and (3) defining the reproducible PKE to generically construct
mmPKE. Then, they show that many popular discrete-log-based encryption
schemes, such as ElGamal [26] and Cramer-Shoup [21], are reproducible and can
be extended to mmPKE under the KOSK assumption. Informally, reproducibility
requires that there exists an efficient algorithm to transform a ciphertext into
another ciphertext for a different public key and message while using the same
randomness. Unfortunately, such properties are not known to exist for post-

4 These confidential transactions implicitly employ mmPKE, i.e., they directly utilize
ElGamal-based mmPKE as a fundamental building block.
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quantum assumptions, particularly for lattice-based assumptions, since some
fresh error/noise in each ciphertext is necessary and cannot be fully eliminated.

Currently, the only known post-quantum mmPKE [5] is generically constructed
from mKEM, but it only supports batching consecutive identical messages in the
message vector. Here, we identify two key limitations of this approach: (1) its
efficiency is close to trivial solution when messages are independent, and (2) it
cannot achieve full CPA security, as it leaks the structure of the input message
vector, i.e., given the multi-recipient ciphertext, others can identify whether any
two consecutive messages in the message vector are identical. This significantly
limits the application of [5] in many practical scenarios, such as confidential
transactions [16, 24, 34]. For example, the anonymity of spender and recipient
in anonymous payment systems like anonymous Zether [24] crucially relies on
the full CPA security of ElGamal-based mmPKE (where identical encrypted
zero messages correspond to ‘decoy’ accounts used to protect anonymity of the
spender and recipient accounts).

Thus, despite recent progress, significant challenges remain in fully realiz-
ing the potential of mmPKE in post-quantum settings, especially for generic
constructions, leading to our question:

Question: Are there any simple and efficient generic constructions of fully batched
mmPKE based on the post-quantum assumptions, while enjoying full CPA-security,
regardless of the message vector?

The above question also applies to post-quantum mmIBE schemes.
We refer to the first rows of Table 1 and Table 2 for a summary of the

large ciphertext expansion rate and computation costs of the existing trivial
post-quantum mmPKE solutions. We note that this comparison excludes [5], as
their benchmarks only focus on mKEM, which we consider incomparable to the
case of mmKEM/mmPKE. Furthermore, in our setting, since the messages/keys
are independent of each other, the probability of consecutive identical messages
appearing in the message vector is negligible. Therefore, as [5] only supports
batching consecutive identical messages, its performance under independent
messages would be equivalent to the trivial solution with Kyber.

1.1 Contribution

In this work, we revisit the mmPKE paradigm built from reproducible PKE [10]
and show how to extend it to the post-quantum setting via a new variant of
PKE, called extended reproducible PKE (XR-PKE). We then construct a family
of XR-PKE schemes from lattices and give efficient instantiations of mmPKE
based on standard MLWE assumption, along with the identity-based variants.
Lastly, we provide an efficient implementation and its performance evaluation for
our mmPKE. We summarize the main contributions of our work in the following.
For further technical details of our contributions, we refer to Section 1.2.

Generic construction of post-quantum mmPKE. Our first contribution is
a generic construction of post-quantum mmPKE from XR-PKE. To this end, we
formally define the notion of XR-PKE that significantly enhances the functionality
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Table 1: Comparison of current lattice-based CPA-secure mmPKE/mmKEM
schemes, for N “ 1024 recipients.

Scheme PQ-Sec.
Level

Enc. Size
(KB)

Enc. Exp.
Factor

Improve
(ˆ)

Enc. Time
(ms)

Full CPA

Plaintext˚: ´ 32 1.0 ´ ´ %

Baseline: 128 768 24.0 ´ 36

!Kyber [14] 192 1088 34.0 ´ 58
(ML-KEM [54]) 256 1568 49.0 ´ 87

Our work: 128 33 1.0 23.1ˆ̂̂ 12

!mmCipher-KEM 192 34 1.1 31.6ˆ̂̂ 16
(Cons. B.2+4.8) 256 35 1.1 44.7ˆ̂̂ 17

Our work: 128 65 2.0 11.8ˆ 13

!mmCipher-PKE 192 66 2.1 16.4ˆ 16
(Cons. 3.4+4.4) 256 67 2.1 23.3ˆ 18

˚ Here, Enc. Size represents the size of all encapsulated keys/messages in plaintext.

Notes: For each scheme, we report the size of the multi-recipient ciphertext (Enc. Size)
in kilobytes (KB) as well as the improvement in the ciphertext expansion factor (Enc.
Exp. Factor), relative to the trivial solution with CPA-secure Kyber (parameterized
by ML-KEM standard [54]), and the encryption/encapsulation time (Enc. Time) in
milliseconds (ms), under 128-bit, 192-bit, and 256-bit post-quantum security levels
(PQ-Sec. Level), respectively. Each message/key is 256 bits and independently chosen
across 1024 recipients. Full CPA indicates that the scheme protects both semantics and
structure of the message vector.

of the original reproducible PKE [10], both in syntax (by incorporating hints
into the reproduction algorithm and providing a hint generation algorithm)
and in security model (by modeling the semantic security of ciphertexts given
the associated hints). Furthermore, we extend our results to mmKEM and
mmIBE/mmIB-KEM settings. We believe that such a new variant of PKE may
be of independent interest for other cryptographic constructions.

mmCipher: efficient mmPKE instantiations from lattices. Our second
contribution is the construction of lattice-based XR-PKE and XR-KEM schemes,
from which we instantiate mmPKE based on lattices. At a high level, to achieve
extended reproducibility, we use the decryption error as the hint to assist in
reproducing the ciphertext. To establish the semantic security of ciphertexts
given the associated hints, we rely on the Matrix Hint-MLWE assumption [29],
for which there exists a reduction from the standard MLWE assumption (under
appropriate parameter choices). This allows us to argue that the influence of
the hints on the semantic security of ciphertext is negligible. Along the way,
as a small bonus technical contribution, we also identify a missing efficient
sampleability condition in the parameter instantiation for the reduction of [29].
The sampleability condition on the refined Matrix Hint-MLWE security reduction
may be of independent interest in other applications of Hint-MLWE, e.g., [1,42,45].
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Table 2: Comparison of current lattice-based CPA-secure mmIBE/mmIB-KEM
schemes, for N “ 1024 recipients.

Scheme PQ-Sec.
Level

Message
Space

Enc. Size
(KB)

Enc. Exp.
Factor

Improve
(ˆ)

Full CPA

Baseline: 80 t0, 1u512 1664 26.0 ´
!

DLP IBE [25] 192 t0, 1u1024 3840 30.0 ´

Our work: 80 t0, 1u1024 137 1.1 24.1ˆ
!

mmCipher-KEM with [20] 192 t0, 1u2048 274 1.1 27.3ˆ

Our work: 80 t0, 1u1024 265 2.1 12.5ˆ
!

mmCipher-PKE with [20] 192 t0, 1u2048 530 2.1 14.3ˆ

Notes: For each scheme, we report the size of the multi-recipient ciphertext (Enc. Size)
in kilobytes (KB), as well as the message space. To provide a fair comparison across
different message spaces, we report the improvement in the ciphertext expansion factor
(Enc. Exp. Factor), relative to the trivial solution with CPA-secure DLP IBE [25], under
80-bit and 192-bit post-quantum security levels (PQ-Sec. Level), respectively. Each
message/key is independently chosen across 1024 recipients. Full CPA indicates that
the scheme protects both semantics and structure of the message vector.

Then, following our generic construction, we instantiate two lattice-based
CPA-secure mmPKE under the KOSK assumption: (1) an mmPKE for short
messages (mmCipher-PKE) and (2) a hybrid mmKEM-DEM scheme for arbitrary-
length messages (mmCipher-KEM), enjoying the following features:

– Enhanced Security: Both our mmCipher-KEM and mmCipher-PKE achieve full
CPA-security which can protect both semantics and structure of the input
message vector, preventing the identification of identical messages. This is a
key improvement over [5], broadening potential applications.

– IBE Compatibility: Both mmCipher-KEM and mmCipher-PKE are compatible
with the identity-based setting. As noted in Remark 4.9, by leveraging the
standard pre-image sampling algorithm [20], we develop lattice-based mmIBE
and mmIB-KEM. These constructions achieve bandwidth overhead reductions
of 13–14ˆ and 24–27ˆ, respectively, for N “ 1024 recipients at different
security levels (80- and 192-bit), compared to the trivial solution with DLP
IBE [25].

Additionally, when our mmCipher-PKE functions as an mmKEM, it enables
flexible key encapsulation for recipients, such as sending the same key to some
recipients without revealing their identities.

Furthermore, to fit the real-world applications, we introduce a compiler that
removes the KOSK assumption from mmPKE/mmKEM with polynomial-size
number of recipients by leveraging a multi-proof extractable Non-Interactive
Zero-Knowledge (NIZK) proof system. Note that while [10] observed that the
KOSK assumption could be removed using NIZK, no concrete construction or
formal security proof was given prior to this work.

5



Practical mmPKE implementation and evaluation. We also provide a C
implementation5 of our lattice-based mmPKE schemes (i.e., mmCipher), together
with computational performance and bandwidth benchmarks. Compared to the
state-of-the-art, the performance of our mmCipher is independent of the structure
of the message vector, i.e., whether the message vector has identical or distinct
messages. For N “ 1024 recipients and different security levels (128-, 192-,
256-bit), our mmCipher-KEM and mmCipher-PKE achieve a 23–45ˆ and 12–23ˆ

reduction in bandwidth overhead, respectively, and offer a 3–5ˆ reduction in
computational cost, compared to [5] with independent messages and the trivial
solution with Kyber. Notably, using a reconciliation mechanism [57], each public-
key-dependent ciphertext in our mmCipher-KEM is minimized to the size of
the encapsulated key (e.g., 256 bits), making our construction asymptotically-
bandwidth-optimal, with ciphertext size within 4% (resp. 9%) of the plaintext size
for 128-bit (resp. 256-bit) security levels and N “ 1024 recipients.

Generic construction of adaptively secure mmPKE. As a bonus contribu-
tion, we propose generic constructions that transform the CPA-secure mmPKE
into an adaptively secure mmPKE, achieving security against adaptive corrup-
tion and CCA. Specifically, due to the absence of fully batched post-quantum
mmPKE constructions, there remains a gap in achieving adaptive security in
such settings. For example, since the public parameters and randomness are
shared among recipients, standard techniques such as the Fujisaki-Okamoto (FO)
transform [32, 64], lossy trapdoor functions [58, 63], and the BCHK transform
via IBE [12,17,49] cannot be applied in the post-quantum mmPKE setting. To
this end, we generalize the Naor-Yung paradigm [51,61] to the mmPKE setting.
Furthermore, by leveraging the structure of mmPKE, we can safely merge the
two ciphertexts into a single multi-recipient ciphertext by doubling recipient
number from N to 2N . As a result, only one public-key-independent ciphertext
needs to be generated, significantly reducing overhead. The detailed construction
is provided in Appendix D.

1.2 Technical Overview

We begin by recalling the syntax of mmPKE [10]. Informally, the setup, key gener-
ation and decryption algorithms of mmPKE are the same as the ones in the stan-
dard PKE. For the multi-encryption, i.e., ct Ð mmEncppp, ppkiqiPrNs, pmiqiPrNsq,
it takes as input the public parameter pp, a set of public keys ppkiqiPrNs along
with a set of corresponding messages pmiqiPrNs and outputs a multi-recipient
ciphertext ct. The multi-recipient ciphertext ct can later be extracted to the
individual ciphertext cti for the public key pki by some extraction algorithm.

The correctness of mmPKE is that each individual ciphertext cti can be
successfully decrypted to the message mi by the corresponding private key ski.

The IND-CPA (under KOSK assumption) security model of of mmPKE is
more complicated than standard PKE, since it considers the insider attack where
the adversary is allowed to generated some public keys for the challenger to

5 Our implementation: https://github.com/ml-kem/mmcipher-artifact
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encrypt the challenge ciphertext. Informally, the adversary selects ℓ honestly
generated (challenger’s) public keys ppkiqiPrℓs and ℓ message pairs pm0

i ,m
1
i qiPrℓs

and N ´ ℓ adversarially generated (adversary’s) public keys ppkiqiPrℓ:Ns (along
with the corresponding private keys pskiqiPrℓ:Ns) and messages pmiqiPrℓ:Ns, and it
should be infeasible for the adversary to distinguish the challenge ciphertext ct “

mmEncppp, ppkiqiPrNs, pmb
i qiPrℓs, pmiqiPrℓ:Nsq for a randomly chosen bit b P t0, 1u.

Traditional mmPKE from reproducible PKE. We recall the traditional
constructions of mmPKE from reproducible PKE [10]. The syntax, correctness
and security definition of reproducible PKE is the same as standard PKE, except
introducing a reproducibility property.

The reproducibility requires that given a ciphertext ct Ð Encppp, pk,m; rq
which encrypts the message m with the public key pk and some randomness r,
there exists a PPT algorithm, called reproduction algorithm, satisfying

Encppp, pk1,m1; rq “ Repppp, ct,m1, sk1, pk1
q.

It means that the Rep algorithm can use the private key sk1 to reproduce a
ciphertext ct to another ciphertext ct1 for the corresponding public key pk1 and
different message m1 but with the same randomness r. For example, for the
ElGamal scheme, given a ciphertext pgr,m ¨ pgxqrq for public key gx and message
m, the other ciphertext for public key gx

1

and message m1 can be reproduced as
pgr,m1 ¨ pgrqx

1

q by the private key x1.
Now, let us discuss how [10] constructs an mmPKE from reproducible PKE.

The setup, key generation, and decryption algorithms of mmPKE are the same
as the ones in reproducible PKE. In multi-encryption, it uses the same random-
ness r to encrypt each message mi for the corresponding public key pki to the
ciphertext cti Ð Encppp, pki,mi; rq and concatenate the ciphertexts together as
multi-recipient ciphertext ct :“ pct1, . . . , ctN q.

Note that if all cti have a same part due to the randomness reuse, this
part only needs to be computed and communicated once in the multi-recipient
ciphertext and that is the reason for the bandwidth and computation savings
of the mmPKE. For example, the part gr of the ciphertext only needs to be
generated once in ElGamal-based mmPKE which can save about half bandwidth
and computation compared to the trivial solution.

To reduce the security of mmPKE to that of the underlying reproducible PKE,
the reduction follows the same structure as mmPKE, except that it generates
the multi-recipient ciphertext by reproducing its own challenge ciphertext for the
other recipients. For details, we refer the reader to [10, Theorem 6.2].

Post-quantum mmPKE from XR-PKE. The major limitation of the above
mmPKE [10] is that it does not seem to extend to the post-quantum setting,
especially lattice-based setting. The reason is that the randomness of the ci-
phertext in lattice-based PKE schemes cannot be fully reused as in the classical
Diffie-Hellman type assumptions. In particular, in encryption scheme based on
the LWE lattice problem, the ciphertext for message m typically takes the form
pAr ` eu, xb, ry ` y ` tq{2s ¨ mq. For security, the message error term y cannot
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be reused across multiple messages/recipient public keys. Moreover, there are
additional reproducibility security issues caused by such error terms.

To get around this issue, we first consider the (extended) reproducible
PKE in a decomposable variant. Informally, a decomposable encryption algo-
rithm Enc takes as input the randomness r :“ pr0, r̂q and creates a public-key-
independent ciphertext ct0 Ð Encippp; r0q and public-key-dependent ciphertext
pct Ð Encdppp, pk,m; r0, r̂q. Note that the randomness r̂ in key-dependent cipher-
text can be set empty, i.e., r̂ :“ K, if it is unnecessary. We view this as a
natural formalization of (extended) reproducible PKE as it is satisfied by all the
constructions that we are aware of.

Therefore, we intend to reuse only the randomness r0 in key-independent
ciphertext instead of the entire randomness r “ pr0, r̂q, so that we can achieve
the same savings in bandwidth and computation as fully reusing the randomness
when constructing mmPKE. We formalize this new primitive, called XR-PKE,
which significantly improves upon reproducible PKE in both syntax and security
model.

From the perspective of syntax, to formalize the property of reproducibility,
we introduce an additional input h1, called hint, into the reproduction algorithm.
Looking ahead to our lattice-based instantiation, the hint there will be used
to provide randomized information on the ciphertext error terms needed to
reproduce the ciphertext for new recipient. We require that, given a ciphertext
ct Ð Encppp, pk,m; r0, r̂q, the following property always holds

Encppp, pk1,m1; r0, r̂
1q “ Repppp, ct,m1, pk1, sk1, h1q.

Additionally, we provide an auxiliary algorithm, named hint generation algorithm,
for generating the hint h1. It takes as input the public parameter pp, the reused
randomness r0, a fresh randomness r̂1, and a public-private key pair ppk1, sk1

q, i.e.,

h1 Ð HintGenppp, r0, r̂
1, pk1, sk1

q.

Regarding the security model, we require that the adversary’s advantage
against semantic security remains negligible, even given the hints associated
with the challenge ciphertext. More precisely, we introduce a hint query phase
before the adversary output phase in the security game. In the hint query
phase, after receiving the challenge ciphertext ct˚ Ð Encppp, pk˚,m˚

b ; r0, r̂
˚q,

the adversary is allowed to query N hints on the challenge ciphertext by N
public-private key pairs ppki, skiqiPrNs. The challenger then computes the hints
as phiqiPrNs Ð HintGenppp, r0, p̂riqiPrNs, ppki, skiqiPrNsq and returns them to the
adversary. The formal definitions of XR-PKE are provided in Section 3.

We now describe the generic construction of post-quantum mmPKE from
XR-PKE. The setup, key generation, and decryption algorithms are identical to
those in XR-PKE, except that the setup algorithm additionally takes the recipient
number N as input. In the multi-encryption algorithm mmEnc, the randomness is
structured as r “ pr0, r̂1, . . . , r̂N q. The algorithm first generates an key-independent
ciphertext ct0 Ð Encippp; r0q, then computes N key-dependent ciphertexts pcti Ð

Encdppp, pki,mi; r0, r̂iq, and concatenates them as multi-recipient ciphertext ct :“
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pct0, pct1, . . . , pctN q. For each recipient, the individual ciphertext cti :“ pct0, pctiq
can be extracted from ct and decrypted by the private key ski.

Finally, we briefly discuss the security reduction from mmPKE to the under-
lying XR-PKE. The reduction follows the same structure as that in traditional
mmPKE built from reproducible PKE [10], except that, prior to reproducing
the ciphertext, it must send the public-private key pairs ppki, skiqiPrNs to its
challenger during the hint query phase, and receive the corresponding hints
phiqiPrNs in order to complete the reproduction. We provide the detailed proof in
Theorem 3.5. We note that our mmPKE construction as described here relies on
the KOSK assumption, and we show how to explicitly remove this requirement
via the NIZK in Section 4.4.

Constructing lattice-based XR-PKE. To the best of our knowledge, no
existing lattice-based PKE schemes currently satisfy the extended reproducibility
property. The primary reason is that they fail to achieve semantic security of
the ciphertext given the associated hints. In the following, we present how to
construct a lattice-based XR-PKE under the standard MLWE assumption at a
high level. We believe that our approach may be of independent interest, as it
applies to both plain and ring-based lattice settings.

We begin with one of the most efficient lattice-based PKE, the finalist in the
NIST post-quantum cryptography competition, Kyber [14] as follows, and show
how to transform it into XR-PKE.

At the beginning, a uniformly random matrix A Ð UpRmˆn
q q is sampled

as the public parameter where Rq “ ZqrXs{pXd ` 1q and R “ ZrXs{pXd ` 1q.
Then, the public key is generated by

b :“ AJs ` e (1.1)

where the private key ps, eq Ð UpSmν qˆUpSnν q has coefficients uniformly randomly
sampled from set r´ν, ..., νs for ν ! q. To encrypt a message m, the ciphertext can
be decomposed into two parts: a key-independent ciphertext c, a key-dependent
ciphertexts u as below,

c :“ Ar ` eu, u :“ xb, ry ` y ` tq{2s ¨ m, (1.2)

where randomness are sampled from some distribution χ over R as r Ð χn,
eu Ð χm, y Ð χ , and m P t0, 1ud (interpreted as a polynomial in R with binary
coefficients). To decrypt the ciphertext pc, uq to the message m, the recipient
uses the private key to compute the u ´ xc, sy. Using Equations (1.1) and (1.2),
we have

u ´ xc, sy “ x´s||e, eu||ry ` y ` tq{2s ¨ m.

where || denotes the usual concatenation. If the PKE is correct, i.e., }x´s||e, eu||ry`

y}8 ď tq{4s, after rounding the above term as tu ´ xc, sys2, each recipient can
obtain the message m and the decryption error h :“ x´s||e, eu||ry ` y.

Here we use the decryption error h as the hint to reproduce the ciphertext.
Given a ciphertext pc, uq, a new ciphertext pc, u1q for another public key b1 “
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AJs1 ` e1 and message m1 using randomness ppr, euq, y1q can be reproduced by
the corresponding private key s1 and the hint h1 as

u1 :“ xc, s1y ` h1 ` tq{2s ¨ m1 “ xb1, ry ` y1 ` tq{2s ¨ m1. (1.3)

The hint h1 is computed via

h1 “ x´s1||e1, eu||ry ` y1 (1.4)

using the reused independent randomness r0 “ pr, euq, the corresponding private
key ps1, e1q and a fresh dependent randomness r̂1 “ y1. This technique can naturally
extend to multiple hints phiqiPrNs given multiple pbi, siq and yi. As a result, we
obtain the reproduction algorithm and hint generation algorithm.

Since the hints phiqiPrNs reveal partial information about the randomness
pr, euq, establishing semantic security of the ciphertext is non-trivial. To address
this challenge, we rely on the Matrix Hint-MLWE assumption [29] as an interme-
diary, rather than reducing directly to the standard MLWE assumption. More
precisely, the intermediary allows us to precisely measure how much information
on the randomness (i.e., the MLWE secret) is leaked from the hints and to
make that impact on the hardness of MLWE ciphertext negligible under suitable
parameter setting.

To adapt this approach to the lattice-based XR-PKE, we first need to instan-
tiate the Matrix Hint-MLWE assumption. Informally, the Matrix Hint-MLWE
assumption states that given a hint vector h P Rℓ where h :“ Rr̂`y, the MLWE
instance rI|Asr̂ is still indistinguishable from the uniformly random values if r̂
and y are sampled from appropriate discrete Gaussian distributions. Here, the
hint h in the Matrix Hint-MLWE assumption is composed of the matrix product
of an MLWE secret vector r̂ and a bounded matrix R picked by the adversary,
masked by a fresh vector y.

From our intuition in XR-PKE, the hints are in the form of hi :“ xγi, r̂y ` yi
for i P rN s. Here, hi is composed of the inner product of an MLWE secret vector
r̂ :“ py||eu||rq and a vector γi :“ p0||´si||eiq, which is bounded by }γi}8 ď ν and
chosen by the adversary, and masked by a fresh element yi. Then, we concatenate
the hints phiqiPrNs as a hint vector h such that h :“ Rr̂`y where R :“ pγJ

i qiPrNs

and y :“ pyiqiPrNs. Here, we get the instantiation of Matrix Hint-MLWE for
XR-PKE.

Then, we refine the reduction of Matrix Hint-MLWE from standard MLWE
and derive new parameter conditions, as presented in Theorem 4.3. To satisfy such
conditions, we carefully choose the distributions for the randomness pr, euq Ð

Dn
σ0

ˆ Dm
σ0

and the randomness y Ð Dσ1 where Dσ0 and Dσ1 denote discrete
Gaussian distributions with different widths, as opposed to uniform distribution
on intervals as used in Kyber, which seems to preclude an efficient Matrix Hint-
MLWE to standard MLWE security reduction. More details are provided in
Section 4.1 and Section 4.5.

Finally, we employ the reconciliation mechanism from [57] and the bit-dropping
technique as in Kyber [14] to compress the ciphertext, particularly the key-
dependent ciphertexts, as much as possible. These optimizations bring the band-
width cost of our mmPKE construction close to optimal. In addition, following
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the framework of DLP IBE [25] and leveraging the pre-image sampling algorithm
in NTRU lattices [20], we extend our construction to obtain lattice-based mmIBE
and mmIB-KEM.

2 Preliminaries

In this section, we provide some of the preliminaries needed for our paper, and
refer the reader to Appendix A for more preliminaries.

2.1 Notation

Let λ P N denote the security parameter. For a positive integer n, we denote
the set t0, . . . , n ´ 1u by rns and the set tℓ, . . . , n ´ 1u by rℓ : ns. For a positive
integer q, we denote Zq as the integers modulo q and Rq “ ZqrXs{pXd `1q as the
polynomials modulo q and Xd ` 1. For positive integer ν, we write Sν to denote
the set of polynomials in Rq with infinity norm bounded by ν. The size of the
Sν coefficient support is denoted ν̄ ď 2ν ` 1; for example ν “ 1, ν̄ “ 2 indicates
binary polynomials. We denote bold lowercase letters as vectors of polynomial
elements, e.g., u P Rm

q , bold uppercase letters as matrices of polynomial elements,
e.g., U P Rmˆn

q , lowercase letters with an arrow as vectors of integers or reals, e.g.,
a⃗ P Zm

q , and uppercase letters as matrices of integers or reals, e.g., A P Rmˆn
q .

For a polynomial element, e.g., a P Rq, we define its negacyclic matrix as
Ā :“ Γ paq P Zdˆd

q . Similarly, for a polynomial vector and matrix, e.g., b P Rm

and D P Rmˆn
q , we define their negacyclic matrix as B̄ :“ Γ pbq P Zmdˆd and

D̄ :“ Γ pDq P Zmdˆnd
q , respectively, where each polynomial element in the vector

and matrix is replaced by its negacyclic matrix. For the vectors over integers
and polynomials, we denote their inner product as x¨, ¨y, e.g., x⃗a, b⃗y and xa,by.
We denote polypλq as polynomial functions such that polypλq “

Ť

cPN Opλcq and
negpλq as negligible functions such that negpλq “

Ş

cPN opλ´cq.
We denote rounding operation as t¨s, e.g., tas rounds the result to the nearest

integer of a. We denote assignment as :“, e.g., x :“ y assigns the value of y to x.
We denote sampling or output as Ð, e.g., x Ð D indicates that x is sampled from
the distribution D, and x Ð Apyq denotes that x is the output of probabilistic
polynomial time (PPT) algorithm A given input y. Particularly, we write x Ð S
when x P S is sampled uniformly randomly from the finite set S. We denote the
uniform distribution on a set S as UpSq. For a vector a (or a⃗), we write }a},
}a}1, and }a}8 to denote its ℓ2-norm, ℓ1-norm and ℓ8-norm, respectively. For
a matrix A (or A), we write }A}, }A}1 and }A}8 to denote its matrix 2-norm
(largest singular value), matrix 1-norm (maximum column ℓ1-norm), and matrix
8-norm (maximum row ℓ1-norm), respectively. We write σminpAq and σmaxpAq

to denote the smallest and largest singular values of A, respectively. For any
two subset X, Y of some additive group, we define ´X “ t´x : x P Xu and
X ` Y “ tx ` y : x P X, y P Y u.

11



2.2 Reconciliation Mechanism

We recall the reconciliation mechanism proposed by Peikert [57]. At a high level,
this mechanism shows that if an element v P Zq (or v P Rq) is uniformly random,
then its rounding value tvs2 is uniformly random even given its cross rounding
value xvy2. And others can recover tvs2 by xvy2 and another value w close to v.
We illustrate the mechanism by the following lemmas from [57].

Lemma 2.1. Define the modular rounding function t¨sp : Zq Ñ Zp as tvsp :“
t
p
q ¨ vs and similar for t¨up. Define the cross-rounding function x¨y2 : Zq Ñ Z2

as xvy2 :“ t 4q ¨ vu mod 2. Define the randomized function dblp¨q : Zq Ñ Z2q as

dblpvq :“ 2v ´ ē P Z2q where v P Zq is an input and e is a error independently
sampled from the distribution of a set t0,˘1u with probability 1{2, 1{4, and
1{4 respectively. For an (odd) modulus q, if v P Zq is uniformly random and
v̄ :“ dblpvq P Z2q, then tv̄s2 is uniformly random even given xv̄y2.

Lemma 2.2. Define two disjoint intervals as I0 :“ t0, 1, ..., t
p
4 s ´ 1u, I1 :“

t´t
p
4 u, ...,´1u mod p. Observe that: (1) these intervals from a partition of all

the elements v P Zp such that tvs2 “ 0. Similarly I0 `
p
2 and I1 `

p
2 partition all

the elements v P Zp such that tvs2 “ 1; (2) b “ xvy2 if and only if v P IbYp
p
2 `Ibq.

Define the reconciliation function recp¨, ¨q : Zp ˆ Z2 Ñ Z2 as

recpw, bq :“

#

0 if w P Ib ` E mod p

1 otherwise.

where the set E :“ r´
p
8 ,

p
8 q X Z. For even modulus p, if w “ v ` e mod p for

some v P Zp and e P E, then recpw, xvy2q “ tvs2.

Remark 2.3. We can directly extend Lemma 2.1 and 2.2 to polynomial rings
Rq by applying t¨s2, x¨y2, dblp¨q, recp¨, ¨q in coefficient-wise.

2.3 Lattice Preliminaries

We begin with the definition of the standard lattice-based problem. Additional
lattice preliminaries are given in Appendix A.1.

Definition 2.4 (MLWE Problem). Let m,n ą 0 be positive integers. Let χ
be an error distribution over Rm`n, A Ð UpRmˆn

q q. Let r Ð χ be a secret vector
and u Ð UpRm

q q be a uniformly random vector. The MLWE problem, denoted
by MLWER,m,n,q,χ, asks an adversary A to distinguish between pA, rIm|Asrq and
pA,uq. We say MLWER,m,n,q,χ is hard if for any PPT adversary A, the advantage
of A is negligible in λ, i.e.,

AdvMLWE
para,Apλq :“

ˇ

ˇ

ˇ

ˇ

Pr

„

b “ 1

ˇ

ˇ

ˇ

ˇ

A Ð UpRmˆn
q q, r Ð χ

b Ð ApA, rIm|Asrq

ȷ

´ Pr

„

b “ 1

ˇ

ˇ

ˇ

ˇ

A Ð UpRmˆn
q q,u Ð UpRm

q q

b Ð ApA,uq

ȷ
ˇ

ˇ

ˇ

ˇ

where para “ pR,m, n, q, χq.
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2.4 Multi-Message Multi-Recipient Public Key Encryption

Basically, an mmPKE scheme allows a sender to encrypt a set of messages to a
set of public keys. We generalize the definition of decomposable mPKE in [39] to
mmPKE as follows.

Like [39], our definition of mmPKE can capture all kinds of mmPKE as well,
including the non-decomposable mmPKE and the trivial mmPKE constructed
from any standard (single recipient) PKE. In the former case, ct0 is assigned to
the multi-recipient ciphertext and all pcti are assigned to K. Towards the latter
case, ct0 is assigned to K and pcti is assigned to each individual ciphertext.

Definition 2.5 (Decomposable Multi-Message Multi-Recipient PKE).
A decomposable mmPKE scheme with a public-private key pair space K, a mes-
sage space M, a multi-recipient ciphertext space C, and an individual ciphertext
space Cs consists of the following algorithms:

– pp Ð mmSetupp1λ, Nq: On input a security parameter 1λ and a number of
recipients N , it outputs a public parameter pp.

– ppk, skq Ð mmKGenpppq: On input a public parameter pp, it outputs a public-
private key pair ppk, skq P K.

– ct :“ pct0, ppctiqiPrNsq Ð mmEncppp, ppkiqiPrNs, pmiqiPrNs; r0, p̂riqiPrNsq : On in-
put a public parameter pp, N public keys ppkiqiPrNs, N messages pmiqiPrNs,
pN ` 1q randomness r0, p̂riqiPrNs, it can be split into two algorithms:

‚ ct0 Ð mmEncippp; r0q: On input a public parameter pp, and a randomness
r0, it outputs a public-key-independent ciphertext ct0.

‚ pcti Ð mmEncdppp, pki,mi; r0, r̂iq: On input a public parameter pp, a
public key pki, a message mi P M, and randomness r0, r̂i, it outputs a
public-key-dependent ciphertext pcti.

– cti :“ pct0, pctiq{K Ð mmExtppp, i, ctq: On input a public parameter pp, a
multi-recipient ciphertext ct P C, and an index i P N, it deterministically
outputs the individual ciphertext cti P Cs or a symbol K to indicate extraction
failure.

– m{K Ð mmDecppp, sk, ctq: On input a public parameter pp, a private key
sk, and an individual ciphertext ct P Cs, it outputs a message m P M or a
symbol K to indicate decryption failure.

Correctness. We adopt the correctness definition of mmPKE in [5]. Let ζ : N Ñ

r0, 1s. We say an mmPKE scheme is ζ-correct, if for all λ,N P N and i P rN s,
message mi P M, the following probability holds,

Pr

»

—

—

–

Di P rN s :
mmDecppp, ski, ctiq ‰ mi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ppÐ mmSetupp1λ, Nq;
@i P rN s : ppki, skiq Ð mmKGenpppq;
ctÐ mmEncppp, ppkiqiPrNs, pmiqiPrNsq;

cti Ð mmExtppp, i, ctq

fi

ffi

ffi

fl

ď ζpλq.

Security. Following [10], we formalize the security model for mmPKE. In contrast
to the model in [5], our definition captures full CPA (or CCA) security. Briefly,
we do not impose the restriction that the two challenge message vectors must
have identical structures.
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Let mmPKE be an mmPKE scheme, let N,λ be integers. We define the
mmIND-CPAKOSK security game in Figure 1 and defer the remaining security
models to Appendix A.3, where we also provide a simple extension of our model
to the security model in [60].

We say mmPKE is mmIND-CPAKOSK secure if for all PPT adversary A, the

following advantage AdvmmIND-CPAKOSK

mmPKE,N,A pλq is negligible with λ,

ˇ

ˇ

ˇ

ˇ

PrrGAMEmmIND-CPAKOSK

mmPKE,N,A pλq “ 1s ´
1

2

ˇ

ˇ

ˇ

ˇ

.

We say A wins if the game outputs 1.

Game GAMEmmIND-CPAKOSK

mmPKE,N,A pλq

pA0,A1,A2q Ð A
ppÐ mmSetupp1λ, Nq
pℓ, stq Ð A0pppq
@i P rℓs, ppki, skiq Ð mmKGenpppq
ppm0

i ,m
1
i qiPrℓs, pmiqiPrℓ:Ns, ppki, skiqiPrℓ:Ns, stq Ð A1pppkiqiPrℓs, stq

req: @i P rℓs, |m0
i | “ |m

1
i |

req: @i P rℓ : N s, ppki, skiq P K
bÐ t0, 1u
ctÐ mmEncppp, ppkiqiPrNs, pm

b
i qiPrℓs, pmiqiPrℓ:Nsq

b1
Ð A2pct, stq

return rb “ b1
s

Fig. 1: The mmIND-CPAKOSK security game for mmPKE.

3 Extended Reproducible Public Key Encryption

In this section, we provide the formal definition of XR-PKE, extending on
reproducible PKE in [10], and then show how it can be used to build an mmPKE.

Definition 3.1 (XR-PKE). A (decomposable) XR-PKE with a public-private
key space K, a message space M, two randomness distributions pDi,Ddq for
key-independent/key-dependent parts, respectively, and a ciphertext space Cs
consists of the following algorithms:

– pp Ð Setupp1λ, Nq: On input a security parameter 1λ and a reproducibility
count N , it outputs a public parameter pp.

– ppk, skq Ð KGenpppq: On input a public parameter pp, it outputs a public-
private key pair ppk, skq P K.

– ct :“ pct0, pctq Ð Encppp, pk,m; r0, r̂q : On input a public parameter pp, a
public key pk, a messages m, two randomnesses pr0, r̂q, it can be split into
two algorithms:
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‚ ct0 Ð Encippp; r0q: On input a public parameter pp, and a random-
ness r0 sampled from the distribution r0 Ð Di, it outputs a public-key-
independent ciphertext ct0.

‚ pct Ð Encdppp, pk,m; r0, r̂q: On input a public parameter pp, a public key
pk, a message m P M, and randomness r0, r̂ where the latter is sampled
from distribution r̂ Ð Dd independently, it outputs a public-key-dependent
ciphertext pct.

– m{K Ð Decppp, sk, ctq: On input a public parameter pp, a private key sk, and
a ciphertext ct P Cs, it outputs a message m P M or a symbol K to indicate
decryption failure.

– phiqiPrNs Ð HintGenpr0, ppki, skiqiPrNs, p̂riqiPrNsq: On input a randomness
r0 sampled from the distribution r0 Ð Di, N public-private key pairs
ppki, skiqiPrNs P K, and N randomnesses p̂riqiPrNs where each of them is
sampled from the distribution r̂i Ð Dd independently, it outputs N hints
phiqiPrNs.

– ct1{K Ð Reppct,m1, pk1, sk1, h1q: On input a ciphertext ct P Cs, a message
m1 P M, a public-private key pair ppk1, sk1

q P K, and an associated hint h1, it
outputs a reproduced ciphertext ct1 or a symbol K to indicate reproducibility
failure.

Correctness. Let ζ : N Ñ r0, 1s. We say a XR-PKE scheme is ζ-correct, if for
all λ,N P N`, the following probability at most ζpλq,

Pr

»

—

—

–

Decppp, sk, ctq ‰ m

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pp Ð Setupp1λ, Nq;
ppk, skq Ð KGenpppq,m Ð M;

pr0, r̂q Ð Di ˆ Dd;
ct Ð Encppp, pk,m; r0, r̂q

fi

ffi

ffi

fl

.

Extended Reproducibility. We first define extended reproducibility game in
Figure 2. We say that PKE is extended reproducible if for any λ,N P N`, there
exists PPT algorithms HintGen and Rep, called hint-generation algorithm and
reproduction algorithm, respectively, such that Gameext-reprPKE,Rep,N pλq always outputs

1. More precisely, the probability of PrrGameext-reprPKE,Rep,N pλq “ 1s “ 1 hold.

Security. To fit the property of extended reproducibility, we modify the IND-ATK
security of regular PKE to IND-ATKXR for ATK “ tCPA,CCAu. Roughly speaking,
we say an XR-PKE is secure if the hints generated by HintGen would not help
the adversary to break the security of the challenge ciphertext.

Specifically, let PKE be an XR-PKE and we provide the security game of PKE

in Figure 3. With the game GameIND-ATKXR

PKE,N,b,Apλq, we say PKE is IND-ATKXR secure

if for all PPT adversary A, the following advantage AdvIND-ATKXR

PKE,N,A pλq is negligible
with λ,

ˇ

ˇ

ˇ
Pr

”

GAMEIND-ATKXR

PKE,N,0,Apλq “ 0
ı

´ Pr
”

GAMEIND-ATKXR

PKE,N,1,Apλq “ 0
ı
ˇ

ˇ

ˇ
.

15



Game Gameext-reprPKE,Rep,N pλq

ppÐ Setupp1λ, Nq
ppk˚, sk˚

q Ð KGenpppq
m˚

ÐM
pr0, r̂

˚
q Ð Di ˆDd

ct˚
Ð Encppp, pk˚,m˚, r0, r̂

˚
q

for all i P rN s
ppki, skiq Ð KGenpppq
mi ÐM
r̂i Ð Dd

end for
phiqiPrNs Ð HintGenpr0, ppki, skiqiPrNs, p̂riqiPrNsq

if @ i P rN s, Encppp, pki,mi; r0, r̂iq “ Reppct˚,mi, pki, ski, hiq then
return 1

else
return 0

end if

Fig. 2: The extended reproducibility game for PKE.

Game GAMEIND-ATKXR

PKE,N,b,Apλq for ATK “ tCPA,CCAu

pA0,A1,A2q Ð A
ppÐ Setupp1λ, Nq
ppk˚, sk˚

q Ð KGenpppq
if ATK “ CPA do pm˚

0 ,m
˚
1 , stq Ð A0ppp, pk

˚
q

if ATK “ CCA do pm˚
0 ,m

˚
1 , stq Ð ADec0

0 ppp, pk˚
q

req: |m˚
0 | “ |m

˚
1 |

pr0, r̂
˚
q Ð Di ˆDd

ct˚
Ð Encppp, pk˚,m˚

b ; r0, r̂
˚
q

if ATK “ CPA do pppki, skiqiPrNs, stq Ð A1pct
˚, stq

if ATK “ CCA do pppki, skiqiPrNs, stq Ð ADec1
1 pct˚, stq

req: @i P rN s, ppki, skiq P K
@i P rN s : r̂i Ð Dd

phiqiPrNs Ð HintGenpr0, ppki, skiqiPrNs, p̂riqiPrNsq

if ATK “ CPA do b1
Ð A2pphiqiPrNs, stq

if ATK “ CCA do b1
Ð ADec1

2 pphiqiPrNs, stq
return b1

Oracle Dec0pctq

return mÐ Decppp, sk˚, ctq

Oracle Dec1pctq

req: ct ‰ ct˚

return mÐ Decppp, sk˚, ctq

Fig. 3: The IND-ATKXR security game for PKE with ATK “ tCPA,CCAu.

Remark 3.2. Our definition of XR-PKE actually captures the case of original
reproducible PKE in [10]. When describing the original reproducible PKE, we
can make the hint generation algorithm HintGen output nothing, i.e., set each of
the output hints hi as an empty symbol K.

Remark 3.3 (Extension to XR-KEM). We further extend the property of
extended reproducibility to the KEM setting, which enables a generic construction
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of mmKEM. Due to space constraints, we provide the full definition of XR-KEM,
generic construction of mmKEM, along with its security reduction, in Appendix B.

3.1 Generic Construction of mmPKE from XR-PKE

In this subsection, we show the generic construction of mmPKE from XR-PKE.

Construction 3.4 (XR-PKEÑmmPKE Compiler). For ATK P tCPA,CCAu,
let PKE “ pSetup,KGen,Enc “ pEnci,Encdq,Decq be a (decomposable) IND-ATKXR

secure XR-PKE with public-private key space K and two randomness distributions
pDi,Ddq for key-independent/key-dependent parts, respectively. Let Compress,
Decompress be the compression and decompression algorithms which can be ig-
nored if there does not exist suitable algorithms. Our compiler CompmmPKE

rPKEs

is defined in Figure 4, which outputs an mmIND-ATKKOSK secure mmPKE.

mmSetupp1λ, Nq

Input:

– security parameter 1λ

– recipient number N

ppÐ Setupp1λ, Nq
return pp

mmKGenpppq

Input: public parameter pp

ppk, skq Ð KGenpppq
return ppk, skq

mmEncppp, ppkiqiPrNs, pmiqiPrNsq

Input:

– public parameter pp
– a set of public keys ppkiqiPrNs

– a set of messages pmiqiPrNs

r0 Ð Di

ct0 Ð Encippp; r0q
sct0 Ð Compresspct0q
for i P rN s

r̂i Ð Dd

pcti Ð Encdppp, pki,mi; r0, r̂iq
end for
ct :“ psct0, ppctiqiPrNsq

return ct

mmExtpct, kq

Input: multi-recipient ciphertext ct, index k

req: k P rN s
psct0, ppctiqiPrNsq Ð ct
return ctk :“ psct0, pctkq

mmDecppp, sk, ctq

Input:

– public parameter pp
– private key sk
– individual ciphertext ct

psct0, pctq Ð ct
ct1

0 Ð Decompresspsct0q
mÐ Decppp, sk, pct1

0, pctqq
return m

Fig. 4: The mmIND-ATKKOSK mmPKE output by the compiler CompmmPKE
rPKEs

for ATK P tCPA,CCAu.

Correctness. It is not difficult to see that correctness of our Construction 3.4
follows if the input PKE is correct and the output by decompression algorithm
Decompress can still be successfully decrypted with overwhelming probability.

Security. Some intuitive discussion on the security reduction was provided in
Technical Overview (Section 1.2). At a high level, since the provided hints do

17



not help the adversary (or reduction) to break the security of the underlying
XR-PKE, we can establish the security of its corresponding mmPKE. Formally,
we have the following theorem, the proof of which is given in Appendix G.1.

Theorem 3.5 (Security). For ATK P tCPA,CCAu, if PKE is IND-ATKXR

secure and satisfies extended reproducibility, our mmPKE Ð CompmmPKE
rPKEs

output by Construction 3.4 is mmIND-ATKKOSK secure.

4 Lattice-Based XR-PKE

In this section, we construct a family of XR-PKEs from lattices which can be
used to build efficient mmPKEs via the compiler introduced in the last section.

Our constructions are based on the Matrix Hint-MLWE assumption [29], a
variant of the MLWE assumption generalized from the Hint-MLWE assump-
tion [42] and can be reduced from the standard MLWE via appropriate parameters.
We first refine this reduction and then give an instantiation for our XR-PKE.
Later, we detail the constructions along with their multiple extensions. Finally,
we provide the parameter setting and give the theoretical analysis of our mmPKE,
compared to the state-of-the-art.

4.1 Refined Matrix Hint-MLWE Assumption

In this subsection, we slightly refine the reduction from standard MLWE to
the Matrix Hint-MLWE assumption by introducing a sampleability condition
missing in prior works and derive a new parameter setting. We then provide
an instantiation of Matrix Hint-MLWE to establish the CPA security of our
XR-PKE introduced in the next subsection. We start by recalling the definition
of Matrix Hint-MLWE in [29].

Definition 4.1 (Matrix Hint-MLWE, adapted [29]). Let m, n, ℓ be positive
integers. Let S, χ0, χ1 be distributions over Rℓˆpm`nq,Rm`n,Rℓ, respectively.
The Matrix Hint-MLWE, denoted by MatrixHint-MLWEℓ,χ1,S

R,m,n,q,χ0
, asks a PPT

adversary A to distinguish the following two cases:

1. pA, rIm|Asr,R,hq for A Ð UpRmˆn
q q, r Ð χ0, y Ð χ1, R Ð S, and

h :“ Rr ` y.
2. pA,u,R,hq for A Ð UpRmˆn

q q, u Ð UpRm
q q, r Ð χ0, y Ð χ1, R Ð S, and

h :“ Rr ` y.

We say MatrixHint-MLWEℓ,χ1,S
R,m,n,q,χ0

is hard if for any PPT adversary A, the
advantage of A is negligible in λ, i.e.,

AdvMatrixHint-MLWE
para,A pλq :“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Pr

»

–b “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A Ð UpRmˆn
q q, r Ð χ0,y Ð χ1,

R Ð S,h :“ Rr ` y,
b Ð ApA, rIm|Asr,R,hq

fi

fl

´ Pr

»

—

—

–

b “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A Ð UpRmˆn
q q,

r Ð χ0,y Ð χ1,R Ð S,
h :“ Rr ` y,u Ð UpRm

q q,
b Ð ApA,u,R,hq

fi

ffi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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where para “ ppR,m, n, q, χ0q, pℓ, χ1,Sqq.

Here, we slightly adapt the notation towards our needs. Since vector h contains
partial information of the secret vector r, we call h as hint. Then, we restate the
lemma from [29,42] below which is the stepping-stone to prove the hardness of
the Matrix Hint-MLWE assumption. At a high level, the following lemma states
that the conditional distribution of r⃗ given Rr⃗ ` y⃗ turns out to be a non-zero
centered skewed Gaussian distribution with a covariance parameter Σ0 that is
dependent on the public matrix R and the covariance parameters of r⃗ and y⃗. The
restated proof is provided in Appendix G.2.

Lemma 4.2 ([29,42]). Let d, ℓ ą 0 be integers. Let Σ1, Σy be positive definite
symmetric matrices over Rdˆd and Rℓˆℓ, respectively. Let R P Zℓˆd be an integer

matrix. Denote Σ0 :“
`

Σ´1
1 ` RJΣ´1

y R
˘´1

. Then, the following two distributions

over Zd`ℓ are statistically identical:
#

´

r⃗, h⃗
¯
ˇ

ˇ

ˇ
r⃗ Ð DZd,

?
Σ1

, y⃗ Ð DZℓ,
?

Σy
, h⃗ “ Rr⃗ ` y⃗

+

«

$

&

%

´

⃗̂r, h⃗
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

r⃗ Ð DZd,
?
Σ1

, y⃗ Ð DZℓ,
?

Σy
, h⃗ “ Rr⃗ ` y⃗

c⃗ “ Σ0R
JΣy

´1h⃗, ⃗̂r Ð DZd ,⃗c,
?
Σ0

,

.

-

.

Based on the above lemma, we refine the reduction from the standard MLWE
to the Matrix Hint-MLWE along with the conditions on the parameters. The
proof is provided in Appendix G.2, which presents a refined version of [29].

Theorem 4.3 (Hardness of Matrix Hint-MLWE). Let m,n, q, ℓ be positive
integers. Let S be a distribution over Rℓˆpm`nq. Let B ą 0 be a real number
such that }R̄}2 ď B where R̄ :“ Γ pRq for all possible R Ð S. Let σ0, σ1, σ, δ ą 0
be real numbers. Let Σ1, Σy be a positive definite symmetric matrices over
Rpm`nqdˆpm`nqd and Rℓdˆℓd, respectively, such that }Σ´1

1 } ď 1
σ2
0
and }Σ´1

y } ď

1
σ2
1
. Let χ0 :“ DZpm`nqd,

?
Σ1

, χ1 :“ DZℓd,
?

Σy
, χ :“ DZpm`nqd,σ be distributions

over Rm`n,Rℓ,Rm`n, respectively. There exists an efficient reduction from
MLWER,m,n,q,χ to MatrixHint-MLWEℓ,χ1,S

R,m,n,q,χ0
that reduces the advantage by at

most 2ϵ, if the sampleability condition

1

p1 ` δqσ2 ` δ0
ě

1

σ2
0

`
B

σ2
1

(4.1)

where δ0 :“
b

lnp2pm`nqdq`4
π , and the convolution condition

σ ě
a

1 ` 1{δ ¨ ηεpZpm`nqdq (4.2)

are satisfied.
Specifically, for any PPT adversary A against the MatrixHint- MLWEℓ,χ1,S

R,m,n,q,χ0

assumption, there exists a PPT adversary B against the MLWER,m,n,q,χ assump-
tion, such that

AdvMatrixHint-MLWE
para0,A pλq ď AdvMLWE

para1,Bpλq ` 2ϵ
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where para0 “ ppR,m, n, q, χ0q, pℓ, χ1,Sqq and para1 “ pR,m, n, q, χq.

The above theorem demonstrates the hardness of elliptic Matrix Hint-MLWE,
a more general case where the secret vector r and the masking vector y are
sampled from the elliptic discrete Gaussian distributions.

Matrix Hint-MLWE Instantiation for XR-PKE. We first define the distri-
bution S such that matrix R can be sampled as follows,

R :“

¨

˚

˝

0
...
0

´sJ
0 eJ

0
...

...
´sJ

ℓ´1 eJ
ℓ´1

˛

‹

‚

P Rℓˆp1`m`nq (4.3)

where si Ð UpSnν q, ei Ð UpSmν q for each i P rℓs.
Then, we transfer the polynomial matrix R to its integer matrix R̄ :“ Γ pRq P

Zℓdˆp1`m`nqd by substitute the polynomial elements in each vector si, ei by its
negacyclic matrix Γ p¨q as follows,

R̄ :“

¨

˚

˝

0 Γ p´s0q Γ pe0q

...
...

...
0 Γ p´sℓ´1q Γ peℓ´1q

˛

‹

‚

.

To bound the norm of the matrix R̄, we use the inequality }R̄} ď
a

}R̄}1 ¨ }R̄}8,
where }R̄}1 ď νℓd and }R̄}8 ď νpm ` nqd. Thus, }R̄}2 ď B, where

B :“ ℓpm ` nqpdνq2 (4.4)

Last, we define the matrix Σ1 P Rp1`m`nqdˆp1`m`nqd and Σy P Rℓdˆℓd below,

Σ1 :“

ˆ

σ1Id 0
0 σ0Ipm`nqd

˙

, Σy :“ σ1Iℓd. (4.5)

We set σ1 ě σ0 so that we have }Σ´1
1 } “ maxp 1

σ2
0
, 1
σ2
1

q ď 1
σ2
0
and }Σ´1

y } ď 1
σ2
1
.

4.2 Construction of XR-PKE

In this subsection, we present the lattice-based construction of XR-PKE. At
a high level, we leverage the decryption error as a hint to enable ciphertext
reproducibility. In particular, we sample the ciphertext randomness from carefully
chosen Gaussian distributions, allowing us to reduce the security of our XR-PKE
scheme to the hardness of the Matrix Hint-MLWE problem.

Construction 4.4 (XR-PKE from Lattices). Let λ be a security parameter,
m “ mpλq, n “ npλq, d “ dpλq, q “ qpλq, N “ Npλq, ν “ νpλq be positive
integers. Let σ0 “ σ0pλq, σ1 “ σ1pλq be Gaussian width parameters. For the
message space M “ t0, 1ud, the detailed construction is shown in Figure 5. We
summarize the notations in Table 3.
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Table 3: Summary of main notations used in our lattice-based XR-PKE/KEM.
Notation Description

λ security parameter

ζ correctness parameter

N # of recipients

m,n # of rows of A, # of columns of A

q system modulus

d ring dimension of R “ ZrXs{pXd
` 1q

ℓ dimension of hint vector h in Matrix Hint-MLWE

ν ℓ8-norm bound on private key psi, eiq

ν̄ support size ν̄ ď 2ν ` 1 of private key psi, eiq

χ̄ private key distribution

σ0 Gaussian width of pr, euq in the ciphertext

χ1, σ1 distribution and Gaussian width of yi in the ciphertext

χ, σ
distribution and Gaussian width of secret in MLWE (hardness equal to
Matrix Hint-MLWE)

χ0, Σ1 distribution and covariance matrix of secret in Matrix Hint-MLWE

B square of matrix 2-norm bound on R̄ :“ Γ pRq

S distribution of R

du # of bits of each coefficient in key-independent ciphertext u

dv # of bits of each coefficient in key-dependent ciphertext u

Extended Reproducibility. We show the extended reproducibility of our
construction as follows. The proof is provided in Appendix G.3.

Theorem 4.5 (Extended Reproducibility). For any positive integer N , our
PKE in Construction 4.4 is extended reproducible. More precisely, for the extended
reproducible game in Figure 2, the probability of PrrGameext-reprPKE,Rep,N pλq “ 1s “ 1
holds.

Correctness. We set Compresspxq “ tx mod qs2du and Decompresspxq “ tx
mod 2dusq. Here, we mainly consider the case that the (key-independent) cipher-
text is compressed and then decompressed before the decryption, as done in
mmPKE compiler of Construction 3.4.

We show the correctness of our construction as follows. We will select param-
eters in Section 4.5 to make our construction ζ-correct with ζ ď 2´128. The proof
is provided in Appendix G.3.

Theorem 4.6 (Correctness). Let e, s, r, eu, y be random variables that have
the corresponding distribution as in Construction 4.4. Denote ζ as

Pr r }xe, ry ` y ´ xs, euy ´ cv ` xs, cuy}8 ě tq{4s s

where cu :“ c ´ ttc mod qs2du sq P Rm, and cv :“ c ´ ttc mod qs2dv sq P R. We
say our Construction 4.4 is ζ-correct.

Security. We show that our Construction 4.4 is IND-CPAXR secure if the MLWE
assumption and the Matrix Hint-MLWE assumption are hard. The proof is
provided in Appendix G.3.
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Setupp1λ, Nq

Input:

– security parameter 1λ

– recipient number N

AÐ UpRmˆn
q q

return pp :“ A

KGenpppq

Input: pp “ A
ps, eq Ð UpSm

ν q ˆ UpSn
ν q

b :“ AJs` e
return ppk :“ b, sk :“ sq

Encppp, pk,mq

Input:

– public parameter pp “ A
– public key pk “ b
– message m

r0 :“ pr, euq Ð Dn
σ0
ˆDm

σ0

ct0 Ð Encippp; r0q
r̂ :“ y Ð Dσ1

pctÐ Encdppp, pk,m; r0, r̂q
return ct :“ pct0, pctq

Encdppp, pk,m; r0, r̂q

Input:

– public parameter pp “ A
– public key pk “ b
– message m “ m P t0, 1ud

– randomness r0 “ pr, euq

– randomness r̂ “ y

c :“ xb, ry ` y ` t
q
2

s ¨m
u :“ tc mod qs2dv

return pct :“ u

Encippp; r0q

Input:

– public parameter pp “ A
– randomness r0 “ pr, euq

c :“ Ar` eu

return ct0 :“ c

Decppp, sk, ctq

Input:

– public parameter pp “ A
– private key sk “ s
– ciphertext ct “ pc, uq

u1 :“ tu mod 2dv sq

m :“ tu1
´ xc, sy mod 2du s2

return m :“ m

HintGenppp, r0, ppki, skiqiPrNsq

Input:

– public parameter pp “ A
– randomness r0 “ pr, euq

– a set of public-private key pairs
ppki, skiqiPrNs “ pbi, siqiPrNs

for all i P rN s
yi Ð Dσ1

ei :“ bi ´AJsi
hi :“ xr, eiy ´ xeu, siy ` yi

end for
return phiqiPrNs

Reppct,m1, pk1, sk1, h1
q

Input:

– ciphertext ct “ pc, uq
– message m1

“ m1

– public-private key ppk1, sk1
q “ pb1, s1

q

– hint h1
“ h1

c1 :“ xc, s1
y ` h1

`
X

q
2

T

¨m1

u1 :“ tc1 mod qs2dv

return ct1 :“ pc, u1
q

Fig. 5: An IND-CPAXR secure lattice-based XR-PKE.

Theorem 4.7 (Security). Let m,n, d, q,N, ν be positive integers parameters.
Let σ, σ0, σ1 be Gaussian width parameters. Let the positive real matrices Σ1

and Σy be as Equation (4.5). Let the distribution S and the bound B be as
Equation (4.3) and (4.4) respectively. Let the distribution χ0 :“ DZpm`n`1qd,

?
Σ1

,
χ1 :“ DZNd,

?
Σy

, χ̄ :“ UpSνq. Suppose Equation (4.1) and (4.2) hold.

Our PKE in Construction 4.4 is IND-CPAXR secure under the MLWER,n,m,q,χ̄

and MatrixHint-MLWEN,χ1,S
R,m`1,n,q,χ0

assumptions. More precisely, for any PPT
adversary A, there exist PPT adversaries B0, B1 against MLWE assumption and
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Matrix Hint-MLWE assumption, such that

AdvIND-CPAXR

PKE,N,A pλq “ AdvMLWE
para0,B0

pλq ` AdvMatrixHint-MLWE
para1,B1

pλq

where para0 :“ pR, n,m, q, χ̄q and para1 :“ ppR,m ` 1, n, q, χ0q, pN,χ1,Sqq.

4.3 Construction of XR-KEM

Employing the reconciliation mechanism, we can further compress the ciphertext
size, especially for the key-dependent ciphertext, and then obtain a lattice-based
XR-KEM, which can be used to build an mmKEM. Due to space limitation,
we defer its analysis of extended reproducibility, correctness and security in
Appendix G.4.

Construction 4.8 (XR-KEM from Lattices). Let λ be a security parameter,
m “ mpλq, n “ npλq, d “ dpλq, q “ qpλq, N “ Npλq, ν “ νpλq be positive
integers. Let σ0 “ σ0pλq, σ1 “ σ1pλq be Gaussian width parameters. Let dblp¨q,
recp¨, ¨q, t¨s2, and x¨y2 be the functions as define in Lemma 2.1 and Lemma 2.2
which are extended to Rq per Remark 2.3. For the encapsulated key space
M “ t0, 1ud, the detailed construction is shown in Figure 6. We summarize the
notations in Table 3.

Encapppp, pkq

Input:

– public parameter pp “ A
– public key pk “ b

r0 :“ pr, euq Ð Dn
σ0
ˆDm

σ0

ct0 Ð Encippp; r0q
r̂ :“ y Ð Dσ1

ppct,Kq Ð Encapdppp, pk; r0, r̂q
ct :“ pct0, pctq
return pct,Kq

Decapppp, sk, ctq

Input:

– public parameter pp “ A
– private key sk “ s
– ciphertext ct “ pc, uq

w :“ 2 ¨ xc, sy mod 2q
return K :“ µÐ recpw, uq

Encapdppp, pk; r0, r̂q

Input:

– public parameter pp “ A
– public key pk “ b
– randomness r0 “ pr, euq

– randomness r̂ “ y

c :“ xb, ry ` y
c̄Ð dblpcq
u :“ xc̄y2
µ :“ tc̄s2

return ppct :“ u,K :“ µq

Reppct,m1, pk1, sk1, h1
q

Input:

– ciphertext ct “ pc, uq
– message m1

“ m1

– public-private key ppk1, sk1
q “ pb1, s1

q

– hint h1
“ h1

c1 :“ xc, s1
y ` h1

c̄1
Ð dblpc1

q

u1 :“ xc̄1
y2

µ1 :“ tc̄1
s2

return pct1 :“ pc, u1
q,K1 :“ µ1

q

Fig. 6: An IND-CPAXR secure lattice-based XR-KEM where Setup, KGen, Enci,
and HintGen are the same as the ones in Construction 4.4.
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Remark 4.9 (Extension to Identity-Based Setting). To demonstrate the
compatibility of our scheme, we further extend our results to an identity-based
setting and obtain the lattice-based mmIBE and mmIB-KEM. At a high level,
following the framework of DLP IBE [25], we leverage the pre-image sampling
algorithm of NTRU lattices [20] to replace the original setup and key generation
algorithms in mmPKE/mmKEM with master key generation and user private
key extraction algorithms. Since each user private key is generated by a trusted
private key generator (PKG), the KOSK assumption becomes unnecessary in this
context. Due to space limitations, we present the formal definition of mmIBE,
along with its detailed construction in Appendix F.

4.4 Removing the KOSK Assumption

In this subsection, using a multi-proof extractable NIZK argument system, we
present a compiler that can remove the KOSK assumption of the mmPKE with
the polynomial-sized number of recipients and provide a detailed analysis of its
security. Due to space limitations, we provide an instantiation in Appendix E.1.

Construction 4.10 (KOSK Compiler). For ATK P tCPA,CCAu, let mmPKE1

be an mmIND-ATKKOSK secure mmPKE with public-private key space K and
randomness distributions Di, Dd. Let Π be a NIZK argument system. Denote the
relation RΠ in Π as

RΠ :“ tppk; skq | ppk, skq P Ku

We assume the hash value Hp0q “ crsΠ. The construction of compiler CompKOSK

rmmPKE1,Πs is defined in Figure 7 which outputs an mmIND-ATK secure mmPKE.
The correctness is easy to see. We show how to reduce the security of mmPKE

output by CompKOSK
rmmPKE1,Πs to the security of input mmPKE1 and Π. The

proof is provided in Appendix G.5.

Theorem 4.11 (Security). For ATK P tCPA,CCAu, if mmPKE1 is mmIND-
ATKKOSK secure and Π is a NIZK argument system satisfies correctness, multi-
proof extractability and zero knowledge, our mmPKE Ð CompKOSK

rmmPKE1,Πs

output by Construction 4.10 is mmIND-ATK secure.

Remark 4.12 (Recipient Registration and Delegate Verification). In
practice, each recipient can be required to “register” to some semi-honest third
party, e.g., server in advance. Both proving and the verification for each public
key are one-time and the latter can be delegated to the server as well. Thus, in
this setting, both bandwidth and computation for the encryption do not increase.

4.5 Parameter Setting

In this subsection, we discuss parameter selection for the above constructions.
Then, we theoretically demonstrate the performance of the mmPKE/mmKEM
built from our constructions, compared to the trivial solution with Kyber.

As discussed before, we need to guarantee that our lattice-based constructions
of XR-PKE/KEM satisfy the follow properties:
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mmSetupp1λ, Nq

Input:

– security parameter 1λ

– recipient number N

pp1
Ð mmPKE1.mmSetupp1λ, Nq

crsΠ Ð Π.Setupp1λq
return pp :“ ppp1, crsΠq

mmKGenpppq

Input: public parameter pp “ ppp1, crsΠq

ppk1, sk1
q Ð mmPKE1.mmKGenppp1

q

π Ð Π.ProveHpcrsΠ, ppp
1, pk1

q, sk1
q

return ppk :“ pπ, pk1
q, sk :“ sk1

q

mmEncppp, ppkiqiPrNs, pmiqiPrNsq

Input:

– public parameter pp “ ppp1, crsΠq
– a set of public keys ppki “ ppk

1
i, πiqqiPrNs

– a set of messages pmiqiPrNs

r0 Ð Di, ct0 Ð mmPKE1.mmEnc
i
ppp1; r0q

for all i P rN s
if Π.VerifyHpcrsΠ, ppp

1, pk1
iq, πiq “ 0 do pcti “ K

else do r̂i Ð Dd, pcti Ð mmPKE1.mmEnc
d
ppp1, pk1

i,mi; r0, r̂iq
end for
return ct :“ pct0, ppctiqiPrNsq

Fig. 7: An mmIND-ATK secure mmPKE output by the compiler
CompKOSK

rmmPKE1,Πs for ATK P tCPA,CCAu. mmExt and mmDec are
the same as the ones in mmPKE1.

– MLWER,n,m,q,χ̄ problem is hard (at 128-bit, 192-bit, and 256-bit security).

– MatrixHint-MLWEN,χ1,S
R,m`1,n,q,χ0

problem is hard (at 128-bit, 192-bit, and 256-
bit security).

– ζ-correctness holds with ζ ď 2´128.

The parameters of our constructions are summarized in Table 4 and more results
are shown in Appendix C.1.

Table 4: Parameter set for our lattice-based constructions of XR-PKE and -KEM,
aiming at ζ-correctness with ζ ď 2´128.

N rlog qs d m n pν, ν̄q pdu, dvq pσ0, σ1q pq-sec level

210 25 256 4 4 p1, 3q p10, 2q p15.9, 368459q 128
210 25 256 7 7 p1, 2q p11, 2q p15.9, 488797q 192
210 25 256 9 9 p1, 2q p11, 2q p15.9, 554941q 256

We show how to select the parameters as follows. First, we choose ν “ 1,
fixing the ℓ8-norm of S and the private key. We choose ternary (ν̄ “ 3) support
t0,˘1u for S in the 128-bit parameter set, and binary (ν̄ “ 2) support t0, 1u for
192- and 256-bit parameter sets.

Second, we fix δ “ 1 in Theorem 4.3. Then, we need to guarantee that
2ε ď 2´128 and the requirements in Equation (4.1) and (4.2) hold. By Lemma A.4,
we set σ :“

?
2 ¨

a

lnp2dpm ` nqp1 ` 1{εqq{π so that σ ě
?
2 ¨ ηεpZpm`nqdq
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holds. Then, we set σ0 :“ 2
a

σ2 ` δ0{2, and σ1 :“ 2
?
B
a

σ2 ` δ0{2 where

δ0 :“
a

plnp2pm ` nqdq ` 4q{π so that 1
2σ2`δ0

ě 1
σ2
0

` B
σ2
1
holds. Here, we set the

bound B as in Equation (4.4), i.e., B :“ Npm ` nqpdνq2.
Third, we set n “ m and d “ 256. Thus, the encapsulated key space and the

short message space M “ t0, 1u256 is the same as the one in Kyber.
Fourth, we pick multiple recipient numbers N P t24, 27, 210, 215u for usability.

By Lemma A.3, we can derive the tail bound of the Gaussian distribution to
guarantee that the ℓ8-norm bound βPKE of the following term in Theorem 4.6
for XR-PKE holds except with negligible probability, i.e., 2´128,

βPKE :“ }xe, ry ` y ´ xs, euy ` xs, cuy ´ cv}8 ă
q

4

where ps, eq Ð UpSnν qˆUpSmν q, pr, euq Ð Dn
σ0

ˆDm
σ0
, y Ð Dσ1 , cu :“ c´ttcs2du sq,

and cv :“ c ´ ttcs2dv sq. Thus, we can bound the ℓ8-norms by }cu}8 ď q{2du`1,
and }cv}8 ď q{2dv`1, respectively. Similarly, we can derive the tail bound of the
ℓ8-norm βKEM in Theorem G.8 as well.

Fifth, towards XR-PKE, we fix dv “ 2 in advance to compress the size
of key-dependent ciphertext as much as possible. Note that the sizes of key-
dependent ciphertext in the constructions of XR-KEM and XR-PKE are both
independent with the value of reproducibility count N , i.e., |pct| “ d{8 “ 32 Bytes
and |pct| “ d ¨ dv{8 “ 64 Bytes, respectively.

Sixth, we begin by setting the modulus q « 212 and du :“ tlog qu. We
compute n,m with χ̄ :“ UpSνq and χ :“ Dσ by the LWE estimator [3] to
guarantee practical hardness of MLWER,n,m,q,χ̄ and MLWER,m`N,n,q,χ at 128-
bit, 192-bit, and 256-bit security levels. The latter MLWE assumption stems from
MatrixHint-MLWEN,χ1,S

R,m`N,n,q,χ0
problem via the reduction in Theorem 4.3. As

earlier works [14, 27, 28, 46], we use root Hermite factor (RHF) around 1.0045,
1.0029, 1.0023 to measure the practical hardness of MLWE at 128-bit, 192-bit,
and 256-bit secure level, respectively. With the specific n,m,N, q, we compute
the ℓ8-norm bound β and compare β with rq{4s. We increase the modulus q by
factor 2 and repeat computing the parameters until β ă r

q
4 s.

In the end, after finding the smallest modulus q, we show how to find the
smallest du in the compression function of mmPKE constructions which can
compress the key-independent ciphertext as much as possible. We first change
du “ 1 and increase du until β ă rq{4s holds with overwhelming probability. We
provide a script to compute a tight upper bound on ζ as part of our implementation
code.

Like the metric in [39], for CON P tKEM,PKEu, we use the following formula,

kCON
com :“

N ¨
ˇ

ˇctKyber
ˇ

ˇ

ˇ

ˇctCON
0

ˇ

ˇ ` N ¨

ˇ

ˇ

ˇ

pct
CON

ˇ

ˇ

ˇ

NÑ8
ÝÝÝÝÑ

ˇ

ˇctKyber
ˇ

ˇ

ˇ

ˇ

ˇ

pct
CON

ˇ

ˇ

ˇ

to measure the compactness of our mmPKE/mmKEM compared to the trivial
solution via Kyber. One can observe that we achieve significant improvements as
kKEMcom “ 24, 34, 49 and kPKEcom “ 12, 17, 24.5 compared to Kyber512, Kyber768, and
Kyber1024 [14], respectively.
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5 Implementations and Benchmarks

To evaluate the performance of our constructions, we have implemented the
lattice-based mmPKE and mmKEM built from our XR-PKE and XR-KEM,
named mmCipher-PKE and mmCipher-KEM, respectively, in portable C 6. Further
details of our implementations and benchmarks are shown in Appendix C.

Benchmarking methodology and baseline. As a baseline comparison, we
compare our plain C implementations to the official C reference implementation
of (CPA-secure) Kyber7 with the standard parameter settings of ML-KEM-
512, ML-KEM-768, ML-KEM-1024 to achieve 128-bit, 192-bit, 256-bit security,
respectively [54, Table 2]. We compare this baseline to our C implementation
using the same compiler and target system, an AMD Ryzen 7 4850U Linux laptop
running at 3.3 GHz (with overclocking disabled).

To account for memory bandwidth and cache effects, we measure both schemes
performing a similar benchmark of encryptions to N recipients, with N growing
in powers of two from N “ 1 up to N “ 1024. The number of repetitions for
each operation is 102400{N . Average timing is reported.

Encryption/Encapsulation performance. In mmPKE/mmKEM, encryp-
tion/encapsulation is the most costly operation as its cost increases with the
number of recipients N . Our main contribution is to significantly reduce this cost.
We summarize the results on the encryption/encapsulation operation comparing
with CPA-secure Kyber (ML-KEM) in Figure 8 and Figure 9.

As predicted by the theoretical analysis in Section 4.5, for N “ 1024 recipients,
among different security levels, mmCipher-KEM and mmCipher-PKE achieve a 23–
45ˆ and 12–23ˆ reduction in bandwidth, respectively. In particular, for N ě 16
recipients, our constructions already demonstrate a significant improvement (by
a factor of over 5). Furthermore, for N “ 1024 recipients, the bandwidth of
our mmCipher-KEM reaches within 4–9% of the plaintext size (near optimal
bandwidth).

Regarding the computational cost of encapsulation/encryption, for N “ 1024
recipients, among different security levels, ourmmCipher- KEM andmmCipher-PKE
offer 3–5ˆ reduction. For N ě 4, our constructions are already faster than the
baseline. This is because the most expensive operation, i.e., generating the
key-independent ciphertext, is amortized across recipients.

Other operations’ performance. We list the computational costs of other
operations in Table 5. The results show that the key generation and decryp-
tion/decapsulation operations are equally fast or faster than those equivalent
Kyber operations at the same security level. Note that the input seed (e.g., 32
bytes) for mmSetuppq is a public “system parameter” shared by all users, and
the operation needs to be re-run only when it changes.

Regarding the bandwidth of key generation, for N “ 1024 recipients, the
public key sizes are 2.4, 4.3, 5.5 KB larger than the one in the baseline, among

6 Our implementation: https://github.com/ml-kem/mmcipher-artifact
7 Kyber C reference implementation (ref): https://github.com/pq-crystals/kyber
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128-, 192-, 256-bit security. However, these additional costs are one-time and can
be amortized over multiple uses, minimizing their impact on the overall efficiency.

Towards the bandwidth of decryption/decapsulation, for N “ 1024 recipients,
the individual ciphertext in our mmCipher is only 0.5, 1.4, 1.6 KB larger than
the one in the baseline, among 128-, 192-, 256-bit security. These additional costs
will likely not affect the usability of the scheme in the use cases for which it is
best suited.

20 21 22 23 24 25 26 27 28 29 210

Number of Recipients

25

26

27

28

29
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211
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 / 
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Plaintext (optimal ciphertext size) : 32

ML-KEM-512: 768
ML-KEM-768: 1088
ML-KEM-1024: 1568

mmCipher-PKE: 65. . 67

mmCipher-KEM: 33. . 35

mmCipher-KEM-256
mmCipher-PKE-256
mmCipher-KEM-192
mmCipher-PKE-192
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Table 5: Cycle counts of other operations in mmCipher and ML-KEM (Kyber).
Note that K-PKE is an internal CPA subcomponent of ML-KEM.

Operation
PQ Security

128-bit 192-bit 256-bit

mmSetup() 188,755 543,640 916,016
mmKGen() 58,815 78,383 106,504
mmDec() 43,511 68,072 85,872
mmDecap() 43,246 67,705 85,323

ML-KEM.KeyGen() 99,145 170,323 262,044
ML-KEM.Decaps() 168,358 259,511 372,644
K-PKE.Decrypt() 40,987 54,547 68,070
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Appendix A Additional Preliminaries

A.1 Additional Lattice Preliminaries

Discrete Gaussian Distribution. We first define the n-dimensional spherical
Gaussian function ρc⃗,σ : Rn Ñ p0, 1s centered at c⃗ P Rn with a Gaussian width8

8 Note that the Gaussian width σ is related to the standard deviation s by σ “
?
2π ¨ s.
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σ ą 0 as ρc⃗,σpx⃗q :“ expp´π ¨ px⃗ ´ c⃗qJpx⃗ ´ c⃗q{σ2q for x⃗ P Rn. More generally, we
define the elliptical Gaussian function ρc⃗,

?
Σ : Rn Ñ p0, 1s centered at c⃗ P Rn

with a positive definite symmetric covariance parameter matrix Σ P Rnˆn as
ρc⃗,

?
Σpx⃗q :“ expp´π ¨ px⃗´ c⃗qJΣ´1px⃗´ c⃗qq for x⃗ P Rn. Last, we define the discrete

Gaussian distribution DΛ,Σ,⃗c over an n-dimensional lattice Λ Ď Rn centered at

c⃗ with covariance parameter Σ and support Λ as DΛ,⃗c,
?
Σ :“

ρc⃗,
?

Σpx⃗q
ř

y⃗PΛ ρc⃗,
?

Σpy⃗q
for

x⃗ P Λ. When Σ “ σ2In, i.e., spherical discrete Gaussian distribution, we replace?
Σ by σ in the subscript and denote it as DΛ,⃗c,σ. If c⃗ “ 0⃗, we will omit c⃗ for

simplification.

Lemma A.1 ([15]). Let B “ p⃗b1, ..., b⃗nq be a basis of a full rank n-dimensional
lattice Λ, Σ be a positive definite symmetric matrix, c⃗ P Rn be a center, if

c

lnp2n ` 4q

π
¨ max

i

›

›

›
Σ´1{2⃗bi

›

›

›
ď 1

holds, there exists a PPT algorithm that can return a sample from DΛ,⃗c,
?
Σ.

Lemma A.2 ([42]). Let Σ0, Σ1 be positive definite matrices such that Σ´1
2 :“

Σ´1
0 ` Σ´1

1 satisfies
?
Σ2 ě ηεpZnq for 0 ă ε ă 1{2. Then for an arbitrary

c⃗ P Zn, the distribution

␣

x⃗0 ` x⃗1|x⃗0 Ð DZn,
?
Σ0

, x⃗1 Ð DZn ,⃗c,
?
Σ1

(

is within statistical distance 2ε of DZn ,⃗c,
?
Σ0`Σ1

.

Lemma A.3 ([44]). For a Gaussian distribution Dσ with Gaussian width σ ą 0,

we have Prr|z| ě τ ¨σ|z Ð Dσs ď 2 ¨e´πτ2

. E.g., for τ :“ 5.335, 2 ¨e´πτ2

« 2´128.

Smoothing Parameter. As in [50], for an n-dimensional lattice Λ and a positive real
ε ą 0, the smoothing parameter ηεpΛq is the smallest s such that ρ1{spΛ˚zt⃗0uq ď ε
where Λ˚ denotes the dual lattice of Λ. As in [56], for a positive definite symmetric

matrix Σ, we say
?
Σ ě ηεpΛq if ηεp

?
Σ

´1
¨ Λq ď 1.

Lemma A.4 ([50]). For any n-dimensional lattice Λ and ε ą 0, there exists

ηεpΛq ď

c

lnp2np1 ` 1{εqq

π
¨ λnpΛq

where λnpΛq is the smallest real number r ą 0 such that dimpspanpΛ X rBqq “ n
and B is the n-dimensional unit ball centered at the origin.

Lemma A.5 ([42]). For a positive definite matrix Σ, if }Σ´1}2 ď ηεpΛq´2,
then

?
Σ ě ηεpΛq.

A.2 Data Encapsulation Mechanisms

We recall the definition of data encapsulation mechanism (DEM) as follows.
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Definition A.6 (Data Encapsulation Mechanisms). A DEM DEM with a
key space DEM.K :“ t0, 1upolypλq where λ is the security parameter is defined as
follows:

– c Ð DEM.EncpK,mq: Input a key K P DEM.K and a message m P t0, 1u˚, it
outputs a ciphertext c.

– m{K Ð DEM.DecpK, cq: Input a key K P DEM.K and a ciphertext c, it outputs
a message m or a symbol K to indicate decryption failure.

Correctness. A DEM DEM is correct if for all K P DEM.K and all m P t0, 1u˚, we
have the following probability holds,

PrrDEM.DecpK, cq “ m | c Ð DEM.EncpK,mqs “ 1.

Security. Let DEM be a DEM scheme, let λ be an integer. We define one-time
security of DEM as OT-IND-ATK for ATK P tCPA,CCAu in Figure 10. We say
DEM is OT-IND-ATK secure if for all PPT adversary A, the following advantage
is negligible with λ,

AdvOT-IND-ATK
DEM,A pλq “

ˇ

ˇ

ˇ

ˇ

PrrGAMEOT-IND-ATK
DEM,A pλq “ 1s ´

1

2

ˇ

ˇ

ˇ

ˇ

.

We say A wins if the game outputs 1.

Game GAMEOT-IND-ATK
DEM,A pλq

pA0,A1q Ð A
KÐ DEM.K
pm˚

0 ,m
˚
1 , stq Ð A0pq

req:
ˇ

ˇm˚
0

ˇ

ˇ “
ˇ

ˇm˚
1

ˇ

ˇ

bÐ t0, 1u
c˚
Ð DEM.EncpK,m˚

b q

b1
Ð A1pc

˚, stq
return rb “ b1

s

Oracle Dec0pcq

return DEM.DecpK, cq

Oracle Dec1pcq

req: c ‰ c˚

return DEM.DecpK, cq

Fig. 10: The OT-IND-ATK security game for DEM. For ATK “ CCA, the adversary
A :“ pA0,A1q has the access to the decryption oracles Dec0, Dec1 respectively.

A.3 Security Model of Multi-Message Multi-Recipient Public
Encryption

Let mmPKE be an mmPKE scheme, let N,λ be integers. Let ATK P tCPA,CCAu.
We provide multiple security games of mmPKE in Figure 11 to capture different
securities of mmPKE.
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– mmIND-CCAKOSK: We say mmPKE is mmIND-CCAKOSK secure if for all PPT

adversary A, the following advantage AdvmmIND-CCAKOSK

mmPKE,N,A pλq is negligible with
λ,

ˇ

ˇ

ˇ

ˇ

PrrGAMEmmIND-CCAKOSK

mmPKE,N,A pλq “ 1s ´
1

2

ˇ

ˇ

ˇ

ˇ

.

We say A wins if the game outputs 1.
– mmIND-ATKCor: We define mmIND-ATK security with adaptive corruption of

mmPKE as mmIND-ATKCor. Like [5], we remove the KOSK assumption and
give the access of the corruption oracle to the above adversary A. Namely, the
adversary A can adaptively corrupt the recipient by obtaining their private
key. To avoid the trivial win, we require that the length of each challenge
messages must be the same.

With GAMEIND-ATKCor

mmPKE,N,b,Apλq, we say mmPKE is mmIND-ATKCor secure if for

all PPT adversary A, the following AdvmmIND-ATKCor

mmPKE,N,A pλq is negligible with λ,

ˇ

ˇ

ˇ
PrrGAMEmmIND-ATKCor

mmPKE,N,0,Apλq “ 1s ´ PrrGAMEmmIND-ATKCor

mmPKE,N,1,Apλq “ 1s

ˇ

ˇ

ˇ
.

We say A wins if the game outputs 1.
– mmIND-ATK: The game of mmIND-ATK security for mmPKE is the same

as mmIND-ATKCor except that the adversary cannot obtain the access of
corruption oracle. With GAMEIND-ATK

mmPKE,N,Apλq, we say mmPKE is mmIND-ATK

secure if for all PPT adversary A, the following advantage AdvmmIND-ATK
mmPKE,N,Apλq

is negligible with λ,

ˇ

ˇ

ˇ
PrrGAMEmmIND-ATK

mmPKE,N,0,Apλq “ 1s ´ PrrGAMEmmIND-ATK
mmPKE,N,1,Apλq “ 1s

ˇ

ˇ

ˇ
.

We say A wins if the game outputs 1.

Remark A.7 (Extension to the security model in [60]). The mmPKE
security model in [60] is slightly more adaptive than that in [10]. Specifically, in
their security model, the adversary A can see all N public keys of the challenger
and adaptively select any subset of them, rather than committing to a fixed
number ℓ in advance. Here, we present a simple approach to extending our
mmPKE scheme, including [10], to the security model in [60]. This can be
achieved by doubling the number of recipients from N to 2N , under which a
reduction from the model in [60] to ours can be established.

Briefly speaking, the reduction first selects ℓ :“ N and obtains N public keys
from its challenger, which it then forwards to its adversary. Upon receiving the
public keys and the challenge message from the adversary, the reduction identifies
the subset of public keys generated by the adversary—say, k of them—and
generates the remaining N ´ k public keys as well as the associated challenge
messages. It then sends all 2N public keys along with the corresponding challenge
messages to its challenger and receives the resulting multi-recipient ciphertext.
The reduction extracts and reorders the ciphertext components according to the
adversary’s specified ordering, and sends the reordered multi-recipient ciphertext
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back to the adversary. Finally, the adversary outputs a guess bit, which the
reduction forwards to its challenger as its own output.

Game GAMEmmIND-ATKKOSK

mmPKE,N,A pλq, ATK “ CCA

pA0,A1,A2q Ð A
ppÐ mmSetupp1λ, Nq
pℓ, stq Ð A0pppq
@i P rℓs, ppki, skiq Ð mmKGenpppq
ppm0

i ,m
1
i qiPrℓs, pmiqiPrℓ:Ns, ppki, skiqiPrℓ:Ns, stq Ð ADec0

1 pppkiqiPrℓs, stq
req: @i P rℓ : N s, ppki, skiq P K
bÐ t0, 1u
ctÐ mmEncppp, ppkiqiPrNs, pm

b
i qiPrℓs, pmiqiPrℓ:Nsq

b1
Ð ADec1

2 pct, stq
req: @i P rℓs, |m0

i | “ |m
1
i |

return rb “ b1
s

Game GAMEmmIND-ATKCor

mmPKE,N,b,Apλq, ATK “ CCA

pA0,A1,A2q Ð A
ppÐ mmSetupp1λ, Nq
pℓ, stq Ð A0pppq
for i P rℓs do ppki, skiq Ð mmKGenpppq
CorÐH

ppm0
i ,m

1
i qiPrℓs, pmiqiPrℓ:Ns, ppkiqiPrℓ:Ns, stq Ð ADec0,Cor

1 pppkiqiPrNs, stq
ctÐ mmEncppp, ppkiqiPrNs, pm

b
i qiPrℓs, pmiqiPrℓ:Nsq

b1
Ð ADec1,Cor

2 pct, stq
req: @i P rℓs, m0

i “ m1
i _ ppki R Cor ^ |m0

i | “ |m
1
i |q

return rb “ b1
s

Oracle Corpiq

req: i P rℓs
Cor` Ð i
return ski

Oracle Dec0pi, ctq

req: i P rℓs
return mÐ mmDecppp, ski, ctq

Oracle Dec1pi, ctq

req: i P rℓs
req: ct ‰ mmExtpct, iq
return mÐ mmDecppp, ski, ctq

Fig. 11: The mmIND-ATKKOSK and mmIND-ATKCor security games for mmPKE
with ATK “ CCA. For ATK “ CPA, the adversary A does not have the ac-
cess of the decryption oracle Dec0, Dec1. The mmIND-ATK is the same as
mmIND-ATKCor except that the adversary A does not have the access of corrup-
tion oracle Cor.

A.4 Multi-Key Multi-Recipient Key Encapsulation Mechanism

We generalize the definition of decomposable mmKEM from [60] as follows.
Roughly speaking, an mmKEM scheme allows a sender to encapsulate a set of
secret (symmetric) keys to a set of recipients. mmKEM can be seen as a special
case of mmPKE and it can be transformed into mmPKE for arbitrary length
messages with a DEM. We show the transformation at the end of this subsection.
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Definition A.8 (Decomposable Multi-Key Multi-Recipient KEM). A
decomposable mmKEM scheme over a public-private key pair space K, an
encapsulated key space M, a multi-recipient ciphertext space C and an individ-
ual ciphertext space Cs consists of the following algorithms. The algorithms of
mmSetup, mmKGen, mmExt are the same as the ones in Definition 2.5 so we omit
them to simplify.

– pct :“ pct0, ppctiqiPrNsq,K :“ pKiqiPrNsq Ð mmEncapppp, ppkiqiPrNs; r0, p̂riqiPrNsq:
On input a public parameter pp, N public keys ppkiqiPrNs, N ` 1 randomness
r0, p̂riqiPrNs, it can be split into two algorithms:

‚ ct0 Ð mmEncippp; r0q: On input a public parameter pp, and a randomness
r0, it outputs a public key independent ciphertext ct0.

‚ ppcti,Kiq Ð mmEncapdppp, pki; r0, r̂iq: On input a public parameter pp, a
public key pki, and randomness r, ri, it outputs a public key dependent
ciphertext pcti and an encapsulated key Ki P M.

– K{K Ð mmDecapppp, sk, ctq: On input a public parameter pp, a private key
sk, and an individual ciphertext ct P Cs, it outputs the encapsulated key
K P M or a symbol K to indicate decapsulation failure.

Correctness. Let ζ : N Ñ r0, 1s. We say an mmKEM scheme is ζ-correct, if for
all λ,N P N, the following probability is no more than ζpλq,

Pr

»

—

—

—

—

–

Di P rN s :
mmDecppp, ski, ctiq ‰ Ki

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pp Ð mmSetupp1λq;
@i P rN s :

ppki, skiq Ð mmKGenpppq;
pct, pKiqiPrNsq Ð mmEncppp, ppkiqiPrNsq;

cti Ð mmExtppp, i, ctq

fi

ffi

ffi

ffi

ffi

fl

.

Security. Let mmKEM be an mmKEM scheme, let N,λ be an integer. We
provide multiple security games of mmKEM in Figure 12 to capture different
securities of mmKEM. Let ATK P tCPA,CCAu.

– mmIND-ATKKOSK: With GAMEmmIND-ATKKOSK

mmKEM,N,A pλq, we say mmKEM is mmIND-

ATKKOSK secure if for all PPT adversaryA, the following advantage AdvmmIND-ATKKOSK

mmKEM,N,A pλq

is negligible with λ,
ˇ

ˇ

ˇ

ˇ

PrrGAMEmmIND-ATKKOSK

mmKEM,N,A pλq “ 1s ´
1

2

ˇ

ˇ

ˇ

ˇ

.

We say A wins if the game outputs 1.
– mmIND-ATK: With GAMEIND-ATK

mmKEM,N,Apλq, we say mmKEM is mmIND-ATK

secure if for all PPT adversary A, the following advantage AdvmmIND-ATK
mmKEM,N,Apλq

is negligible with λ,
ˇ

ˇ

ˇ
PrrGAMEmmIND-ATK

mmKEM,N,0,Apλq “ 1s ´ PrrGAMEmmIND-ATKCor

mmKEM,N,1,Apλq “ 1s

ˇ

ˇ

ˇ
.

We say A wins if the game outputs 1.
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Game GAMEmmIND-ATKKOSK

mmKEM,N,A pλq ATK P tCPA,CCAu

pA0,A1,A2q Ð A
ppÐ mmSetupp1λ, Nq
pℓ, stq Ð A0pppq
@i P rℓs, ppki, skiq Ð mmKGenpppq
pppki, skiqiPrℓ:Ns, stq Ð A1pppkiqiPrℓs, stq
req: @i P rℓ : N s, ppki, skiq P K
bÐ t0, 1u
pct,K0

q Ð mmEncapppp, ppkiqiPrNsq

for i P rℓs do K1
i Ð UpMq

for i P rℓ : N s do K1
i :“ K0

i

K1 :“ pK1
i qiPrNs

b1
Ð A2pct,K

b, stq
return rb “ b1

s

Game GAMEmmIND-ATK
mmKEM,N,b,Apλq ATK P tCPA,CCAu

pA0,A1q Ð A
ppÐ mmSetupp1λ, Nq
pℓ, stq Ð A0pppq
@i P rℓs, ppki, skiq Ð mmKGenpppq
pppkiqiPrℓ:Ns, stq Ð A1pppkiqiPrℓs, stq
pct,K0

q Ð mmEncapppp, ppkiqiPrNsq

for i P rℓs do K1
i Ð UpMq

for i P rℓ : N s do K1
i :“ K0

i

K1 :“ pK1
i qiPrNs

b1
Ð A1pct,K

b, stq
return rb “ b1

s

Oracle Dec0pi, ctq

req: i P rN s
return KÐ mmDecapppp, ski, ctq

Oracle Dec1pi, ctq

req: i P rN s
req: ct ‰ mmExtpct, iq
return KÐ mmDecapppp, ski, ctq

Fig. 12: The mmIND-ATKKOSK and mmIND-ATK security games for mmKEM with
ATK P tCPA,CCAu. If ATK “ CCA, the adversary A0, A1 can have the access to
the decryption oracle Dec0 and Dec1 respectively.

Similar with mmPKE, we set the challenge keys as the same for the insider
adversary to avoid the trivial win of the adversary A.

Hybrid Encryption. As in [22, 60], the composition of an (mm)KEM and a
DEM can yield an (mm)PKE. We recall the detail constructions as follows.

Construction A.9 (Hybrid Encryption Compiler, generalized [60]).
For ATK P tCPA,CCAu, let mmKEM be an mmIND-ATK secure (with KOSK
assumption) (decomposable) mmKEM, and DEM be an OT-IND-ATK secure
DEM such that the (symmetric) key space in mmKEM and DEM are coincide.
The construction of compiler CompHybErmmKEM,DEMs is defined in Figure 13
which outputs an mmIND-ATK secure (with KOSK assumption) mmPKE.

Remark A.10 (Security). We generalize the results in [60] to four security
cases, i.e., mmIND-ATKKOSK and mmIND-ATK for ATK “ tCPA,CCAu, where
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they only consider mmIND-CCA case. For the rest cases, the security analysis
can be easily derived from the one in [60] so we omit them for simplification.

mmSetupp1λ, Nq

Input:

– security parameter 1λ

– recipient number N

ppÐ mmKEM.mmSetupp1λ, Nq
return pp

mmKGenpppq

Input: Public parameter pp
ppk, skq Ð mmKEM.mmKGenpppq
return ppk, skq

mmEncppp, ppkiqiPrNs, pmiqiPrNsq

Input:

– public parameter pp
– a set of public keys ppkiqiPrNs

– a set of messages pmiqiPrNs

pct0, ppctiqiPrNs, pKiqiPrNsq Ð

mmKEM.mmEncapppp, ppkiqiPrNsq

for all i P rN s
ci Ð DEM.EncpKi,miq

end for
return ct :“ pct0, ppcti, ciqiPrNsq

mmDecppp, sk, pct, cqq

Input:

– public parameter pp
– a private key sk
– a ciphertext pair pct, cq

KÐ mmKEM.mmDecapppp, sk, ctq
return m{K Ð DEM.DecpK, cq

Fig. 13: The mmIND-ATK secure (with KOSK assumption) mmPKE by the com-
piler CompHybErmmKEM,DEMs for ATK P tCPA,CCAu. mmExt with input index
i is defined by picking the relevant components pcti :“ pct0, pctiq, ciq from ct.

A.5 Non-Interactive Zero Knowledge Argument System

We recall the definitions of non-interactive zero knowledge (NIZK) argument
system in the random oracle from [13,59] as follows.

Definition A.11 (Non-Interactive Zero Knowledge Argument System).
Let R be a polynomial-time verifiable relation of statement-witness px,wq.
Denote a language L as a set of statements where there exists a witness w with
px,wq P R. A NIZK protocol Π is defined as follows.

– crsΠ Ð Π.Setupp1λq: On input a security parameter 1λ, it outputs the common
reference string crsΠ P t0, 1uℓpλq.

– π{K Ð Π.ProveHpcrsΠ, x, wq: On input the public parameters crsΠ P t0, 1uℓ,
a statement x and a witness w such that px,wq P R, it outputs a proof π or
an abort symbol K.

– 0{1 Ð Π.VerifyHpcrsΠ, x, πq: On input the public parameters crsΠ P t0, 1uℓ, a
statement x and a proof π, it output 1 if accepts, otherwise, it outputs 0.

We first define the properties of correctness, zero knowledge, and multi-proof
extractability (i.e. straight-line extractability) for NIZK argument system.
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Correctness. A NIZK argument system Π is correct if for all crsΠ P t0, 1uℓ and
px,wq P R, the probability that Π.ProveHpcrsΠ, x, wq outputs K is neglpλq, and
the following probability holds,

Pr

«

π Ð Π.ProveHpcrsΠ, x, wq :

Π.VerifyHpcrsΠ, x, πq “ 1
ˇ

ˇπ ‰ K

ff

“ 1 ´ neglpλq.

Zero-Knowledge. A NIZK argument system Π is zero-knowledge if for any
PPT adversary A, there exists a simulator Π.Sim “ pSim0,Sim1q which consists
of two PPT algorithms with a shared state such that the following AdvZKΠ,Apλq is
negligible in λ,

ˇ

ˇPrr1 Ð AH,Π.ProvepcrsΠqs ´ Prr1 Ð ASim0,Sim1pcrsΠqs
ˇ

ˇ “ neglpλq

where Π.Prove and Π.Sim are prover and simulator oracles which, given px,wq, out-
put K if px,wq R R and otherwise return Π.ProveH pcrsΠ, x, wq and Sim1pcrsΠ, xq

respectively. The probability is also taken over the randomness of generating the
common reference string crsΠ Ð Setupp1λq.

Multi-Proof Extractability. A NIZK argument system Π has multi-proof
extractability if the following hold:

– CRS Simulatability: For any PPT adversaryA, we have the following AdvcrsΠ,Apλq

is negligible in λ,

|PrrcrsΠ Ð Π.Setupp1λq : 1 Ð AHpcrsΠqs´

PrrpĂcrsΠ, τq Ð Simcrsp1
λq : 1 Ð AHpĂcrsΠqs| “ neglpλq

– Straight-Line Extractability: There exist constants e1, e2, c such that for any
QH, Qs P polypλq and any PPT adversary A that makes at most QH random
oracle queries with

Pr

„

pĂcrsΠ, τq Ð Simcrsp1
λq,

tpxi, πiquiPrQss Ð AHpĂcrsq
:

@i P rQss,

Π.VerifyHpĂcrsΠ, xi, πiq “ 1

ȷ

ě εpλq

where εpλq is non-negligible, we have

Pr

»

—

–

pĂcrsΠ, τq Ð Simcrsp1
λ
q, tpxi, πiquiPrQss Ð AH

pĂcrsΠq,

twi Ð Multi-ExtractpQH, Qs, 1{ε, ĂcrsΠ, τ, xi, πiquiPrQss :

@i P rQss, pxi, wiq P R^ VerifyHpĂcrsΠ, xi, πiq “ 1

fi

ffi

fl

ě
1

2
¨ εpλq ´ neglpλq

where the runtime of the extractor is upper-bound by Qe1
H ¨Qe2

s ¨ 1
εpλqc

¨polypλq.

There are some other scenarios that requires NIZK argument system satisfying
other properties. Following [61], we define simulation soundness as follows. Remark
that the notion of simulation soundness is a form of non-malleability of NIZK, as
noted in [37, 41, 61]. For simplification, here we do not involve the random oracle
model.
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Simulation Soundness. A NIZK protocol Π is simulation sound if for any PPT
adversary A “ pA0,A1q, any PPT relations R along with its language L, the
following AdvSSΠ,Apλq is negligible in λ,

Pr

»

—

—

–

π ‰ π1;
x1 R L;

Π.VerifypcrsΠ, x
1, π1q “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pcrsΠ, τq Ð Sim0p1λq;
px, stq Ð A0pcrsΠq;
π Ð Sim1pcrsΠ, x, τq;

px1, π1q Ð A1pcrsΠ, x, π, stq

fi

ffi

ffi

fl

.

Appendix B Extended Reproducible Key Encapsulation
Mechanism

In this section, we slightly adapt the definition of XR-PKE to obtain the definition
of XR-KEM. Then, we show the generic construction of mmKEM from XR-KEM.

Definition B.1 (Extended Reproducible KEM). A (decomposable) ex-
tended reproducible KEM with a public-private key space K, an encapsulated
key space M, two randomness distributions pDi,Ddq for key-independent/key-
dependent parts, respectively, and a ciphertext space Cs consists of the following
algorithms. Setup, KGen, HintGen algorithms are the same as the ones in the
definition of XR-PKE and we introduce the rest as follows.

– pct,Kq :“ pct0, pctq Ð Encapppp, pk; r0, r̂q : On input a public parameter pp, a
public keys pk, two randomness pr0, r̂q, it can be split into two algorithms:

‚ ct0 Ð Encippp; r0q: On input a public parameter pp, and a randomness r0
sampled from the distribution r0 Ð Di, it outputs a public key independent
ciphertext ct0.

‚ ppct,Kq Ð Encapdppp, pk; r0, r̂q: On input a public parameter pp, a public
key pk, and randomness r0, r̂ where the later is sampled from distribution
r̂ Ð Dd independently, it outputs a public key dependent ciphertext pct
and an encapsulated key K P M.

– K{K Ð Decapppp, sk, ctq: On input a public parameter pp, a private key sk,
and a ciphertext ct P Cs, it outputs an encapsulated key K P M or a symbol
K to indicate decapsulation failure.

– pct1,K1q{K Ð Reppct, pk1, sk1, h1q: On input a ciphertext ct P Cs, a public-
private key pair ppk1, sk1

q P K, and an associated hint h1, it outputs a repro-
duced ciphertext ct1 along with an encapsulated key K1 P M or a symbol K

to indicate reproducibility failure.

Correctness. Let ζ : N Ñ r0, 1s. We say a KEM scheme is ζ-correct, if for all
λ,N P N`, the following probability at most ζpλq,

Pr

»

—

—

–

Decapppp, sk, ctq ‰ K

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pp Ð Setupp1λ, Nq;
ppk, skq Ð KGenpppq;

pr0, r̂q Ð Di ˆ Dd;
pct,Kq Ð Encapppp, pk; r0, r̂q

fi

ffi

ffi

fl

.
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Extended Reproducibility. We first define extended reproducibility game
for KEM in Figure 14. We say that KEM is extended reproducible if for any
λ,N P N`, there exists PPT algorithms HintGen and Rep, called hint-generation
algorithm and reproduction algorithm, respectively, such that Gameext-reprKEM,Rep,N pλq

always outputs 1. More precisely, the following probabilities hold,

Pr
”

Gameext-reprKEM,Rep,N pλq “ 1
ı

“ 1.

Game Gameext-reprKEM,Rep,N pλq

ppÐ Setupp1λ, Nq
ppk˚, sk˚

q Ð KGenpppq
pr0, r̂

˚
q Ð Di ˆDd

pct˚,K˚
q Ð Encapppp, pk˚, r0, r̂

˚
q

for all i P rN s
ppki, skiq Ð KGenpppq
r̂i Ð Dd

end for
phiqiPrNs Ð HintGenpr0, ppki, skiqiPrNs, p̂riqiPrNsq

if @ i P rN s, Encapppp, pki, r0, r̂iq “ Reppct˚, pki, ski, hiq then
return 1

else
return 0

end if

Fig. 14: The extended reproducibility game for KEM.

Security. To fit the property of extended reproducibility, we modify the IND-ATK
security of regular KEM to IND-ATKXR for ATK “ tCPA,CCAu. Roughly speaking,
we say an XR-KEM is secure if the hints generated by HintGen would not help
the adversary to break the security of the challenge ciphertext.

Specifically, let KEM be an XR-KEM and we provide the security game of

KEM in Figure 15. With the game GameIND-ATKXR

KEM,N,b,Apλq, we say KEM is IND-ATKXR

secure if for all PPT adversary A, the following advantage AdvIND-ATKXR

KEM,N,A pλq is
negligible with λ,

ˇ

ˇ

ˇ
Pr

”

GAMEIND-ATKXR

KEM,N,0,Apλq “ 0
ı

´ Pr
”

GAMEIND-ATKXR

KEM,N,1,Apλq “ 0
ı
ˇ

ˇ

ˇ
.

B.1 Generic Construction of mmKEM from XR-KEM

Construction B.2 (XR-KEMÑmmKEM Compiler). For ATK P tCPA,CCAu,
let KEM “ pSetup,KGen,Encap “ pEnci,Encapdq,Decapq be a (decomposable) ex-
tended reproducible IND-ATKXR secure KEM with public-private key space K
and independent-dependent randomness distributions pDi, Ddq. Let Compress,
Decompress be the compression and decompression algorithms which can be
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Game GAMEIND-ATKXR

KEM,N,b,Apλq for ATK “ tCPA,CCAu

pA0,A1q Ð A
ppÐ Setupp1λ, Nq
ppk˚, sk˚

q Ð KGenpppq
pr0, r̂

˚
q Ð Di ˆDd

pct˚,K˚
0 q Ð Encapppp, pk˚; r0, r̂

˚
q

K˚
1 ÐM

if ATK “ CPA do pppki, skiqiPrNs, stq Ð A0pct
˚,K˚

b , stq
if ATK “ CCA do pppki, skiqiPrNs, stq Ð ADec

0 pct˚,K˚
b , stq

req: @i P rN s, ppki, skiq P K
@i P rN s : r̂i Ð Dd

phiqiPrNs Ð HintGenpr0, ppki, skiqiPrNs, p̂riqiPrNsq

if ATK “ CPA do b1
Ð A1pphiqiPrNs, stq

if ATK “ CCA do b1
Ð ADec

1 pphiqiPrNs, stq
return b1

Oracle Decpctq

req: ct ‰ ct˚

return KÐ Decapppp, sk˚, ctq

Fig. 15: The IND-ATKXR security game for KEM with ATK “ tCPA,CCAu.

ignored if there does not exist suitable algorithms. The constructions of compiler
CompmmKEM

rKEMs is defined in Figure 16, which outputs an mmIND-ATKKOSK

secure mmKEM.

The correctness and security of mmKEM compiler are analogous to the
mmPKE compiler in Construction 3.4. Briefly speaking, our Construction B.2
correct if the input KEM is correct as well as the output of decompression
algorithm Decompress can still be successfully decapsulated overwhelmingly. The
reduction of our Construction B.2 is the same as the one in Construction 3.4
except that we replace the message by the encapsulation key.

Appendix C Implementation and Benchmarking Details

In this section, we detail the implementation aspects of our CPA-secure primitives
mmCipher-KEM (Cons. B.2+4.8) and mmCipher-PKE (Cons. 3.4+4.4) and provide
further benchmarks.

We list some key technical similarities and differences between Kyber (ML-
KEM) and mmCipher that impact performance characteristics. In the following,
references are made to Kyber components as described in the ML-KEM standard
FIPS 203 [54] rather than in the original Kyber paper [14]. Our comparison uses
the reference code and parameter sets of the final standard.

– The programming interfaces of mmCipher are designed for batch encryption
of unique messages/shared secrets to a large number of recipients. This is
the main use case and optimization target of the implementation.

– The parameter selection of the implementation supports 210 recipients, which
requires a larger modulus q “ 225 ´ 212 ` 1. Hence, the Number Theoretic
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mmEncapppp, ppkiqiPrNsq

Input:

– public parameter pp
– a set of public keys ppkiqiPrNs

r0 Ð Di

ct0 Ð Encippp; r0q
sct0 Ð Compresspct0q
for i P rN s

r̂i Ð Dd

ppcti,Kiq Ð Encapdppp, pki; r0, r̂iq
end for
pct,Kq :“ psct0, ppctiqiPrNsq, pKiqiPrNsq

return ct

mmDecapppp, sk, ctq

Input:

– public parameter pp
– private key sk
– individual ciphertext ct

psct0, pctq Ð ct
ct1

0 Ð Decompresspsct0q
KÐ Decapppp, sk, pct1

0, pctqq
return K

Fig. 16: The mmIND-ATKKOSK mmKEM output by the compiler
CompmmKEM

rKEMs for ATK P tCPA,CCAu, where mmSetup, mmKGen, mmExt
are the same as the ones in Construction 3.4.

Transforms (NTTs) operate on 32-bit elements rather than 16-bit elements,
as with Kyber’s q “ 3329. Our 25-bit ring is quite similar to the 23-bit,
degree-256 ring of Dilithium (ML-DSA [53]). The binary and ternary secret
distributions of mmCipher also allow efficient non-NTT ring multiplication
operations based on conditional additions, although these may be difficult to
implement in constant time in software.

– We use the SHAKE eXtendable-Output Function (XOF) [52] for all random
sampling, as is done in ML-KEM. SHAKE-128 is used for all operations at
the 128-bit security level and for A matrix expansion at all security levels
(as in ML-KEM). SHAKE-256 is used for other samplers and hashes at levels
192 and 256.

– Secret keys are sampled from a narrow uniform distribution UpSνq instead
of a Centered Binomial Distribution (CBD) as in ML-KEM. The ternary
(ν̄ “ 3) sampler uses rejection sampling of bytes against 35 “ 243; only
1 ´ 243{256 « 5% of bytes are rejected, while accepted bytes yield 5 ternary
digits t´1, 0,`1u5. The “base-243” system also allows a convenient and
compact storage format for ternary secret keys. Binary (ν̄ “ 2) secret key
sampling and storage is trivial and optimally efficient.

– We sample ephemeral randomness from discrete Gaussian distributions Dσ0

and Dσ1 rather than from CBD. 9 Note that Gaussian widths σ are related to
standard deviation s by s “ σ{

?
2π. More precisely, following Section 4.5, we

fix the Gaussian width σ0 “ 15.90 and σ1 “ 368459.34, 488797.36, 554941.07

9 Current artifact code uses rounded Gaussians for Dσ0 and Dσ1 , using the polar
Marsaglia method implemented with 64-bit IEEE 754 arithmetic to sample from a
rounding-compensated s1

“
a

σ2{2π ´ 1{12 continuous Gaussian distribution. This
sampler is approximate and not constant-time; it is a placeholder implementation.
A more appropriate Discrete Gaussian sampler is required for production-level
implementation.

45



to support up to 210 recipients at 128-bit, 192-bit, and 256-bit security,
respectively.

– The encryption/decryption mechanism of mmCipher-PKE is similar to Kyber,
but mmCipher-KEM uses a reconciliation mechanism over Rq, requiring the
cross-rounding function x¨y2 and the reconciliation function recp¨, ¨q. The
Python implementation also has the randomized doubling function dblp¨q

available, but since entropy leakage (“bias”) fixed by dblp¨q can be shown to
be practically negligible with our q value, the C code does not implement
randomization here. These implementations are interoperable (and produce
fully matching ciphertext with high probability.)

– Since SHAKE/SHA3 [52] computation is typically the biggest individual
ML-KEM performance bottleneck (on some platforms consuming more than
half of total key establishment cycles), for a fair comparison, the underlying
Keccak-pr1600, 24s permutation implementation in mmCipher is the same
plain C code as in the Kyber reference implementation.

Note that these algorithms would greatly benefit from hand-crafted SIMD and
vectorization optimizations (e.g., AVX-512 or ARM SVE2). However, we currently
only have a portable C implementation for mmCipher, so we are comparing such
implementations of both schemes.

Table 6 includes more comprehensive benchmark results, including cycle
counts for mmCipher-KEM encapsulation, mmCipher-PKE encryption, and K-
PKE.Encrypt() of ML-KEM (Kyber) with various N levels up to N “ 1024. The
bandwidth of all the operations is presented in Tables 7 to 9.

Table 6: Per-message/key encryption or encapsulation latency in cycles (batch
timing divided by the number of recipients N .) Note that ML-KEM becomes
slower with larger N due to cache effects, whereas mmCipher significantly benefits
from batching.

Scheme N “ 20 N “ 22 N “ 24 N “ 26 N “ 28 N “ 29 N “ 210

mmCipher-PKE-128 270,208 97,295 54,410 43,800 42,819 42,447 42,342
mmCipher-KEM-128 268,764 94,633 52,899 42,309 41,380 41,259 41,120
ML-KEM-512 111,006 110,929 111,025 111,301 117,662 117,679 117,665

mmCipher-PKE-192 509,848 167,253 81,055 58,540 54,873 54,126 53,849
mmCipher-KEM-192 512,542 164,080 79,468 57,706 53,774 53,265 53,138
ML-KEM-768 177,324 177,528 177,353 191,047 192,014 191,776 191,794

mmCipher-PKE-256 660,108 205,586 93,958 65,735 60,495 59,470 58,798
mmCipher-KEM-256 647,983 199,270 89,458 61,087 56,040 54,920 54,458
ML-KEM-1024 260,478 260,322 260,817 286,016 285,937 285,846 285,729
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Table 7: Bandwidth of multi-recipient ciphertext |ct|, individual ciphertext |cti|,
and total public keys |pk| for N recipients, aiming at 128-bit security.

Recipt. Multi. Cipher. |ct| (KB) Indiv. Cipher. |cti| (KB) Total Public Keys |pk| (KB)

N ML mmCiphermmCipher ML mmCiphermmCipher ML mmCiphermmCipher
KEM KEM PKE KEM KEM PKE KEM KEM PKE

1 0.75 1.28 1.31 0.75 1.28 1.31 0.78 3.16 3.16
16 12.00 1.75 2.25 0.75 1.28 1.31 12.50 50.50 50.50
64 48.00 3.25 5.25 0.75 1.28 1.31 50.00 202.00 202.00

256 192.00 9.25 17.25 0.75 1.28 1.31 200.00 808.00 808.00
512 384.00 17.20 33.25 0.75 1.28 1.31 400.00 1616.00 1616.00

1024 768.00 33.25 65.25 0.75 1.28 1.31 800.00 3232.00 3232.00

Table 8: Bandwidth of multi-recipient ciphertext |ct|, individual ciphertext |cti|,
and total public keys |pk| for N recipients, aiming at 192-bit security.

Recipt. Multi. Cipher. |ct| (KB) Indiv. Cipher. |cti| (KB) Total Public Keys |pk| (KB)

N ML mmCiphermmCipher ML mmCiphermmCipher ML mmCiphermmCipher
KEM KEM PKE KEM KEM PKE KEM KEM PKE

1 1.06 2.44 2.47 1.06 2.44 2.47 1.16 5.50 5.50
16 17.00 2.91 3.41 1.06 2.44 2.47 18.56 88.00 88.00
64 68.00 4.41 6.41 1.06 2.44 2.47 74.24 352.00 352.00

256 272.00 10.41 18.41 1.06 2.44 2.47 296.96 1408.00 1408.00
512 544.00 18.41 34.41 1.06 2.44 2.47 593.92 2816.00 2816.00

1024 1088.00 34.41 66.41 1.06 2.44 2.47 1187.84 5632.00 5632.00

Table 9: Bandwidth of multi-recipient ciphertext |ct|, individual ciphertext |cti|,
and total public keys |pk| for N recipients, aiming at 256-bit security.

Recipt. Multi. Cipher. |ct| (KB) Indiv. Cipher. |cti| (KB) Total Public Keys |pk| (KB)

N ML mmCiphermmCipher ML mmCiphermmCipher ML mmCiphermmCipher
KEM KEM PKE KEM KEM PKE KEM KEM PKE

1 1.53 3.13 3.16 1.53 3.13 3.16 1.53 7.06 7.06
16 24.50 3.59 4.09 1.53 3.13 3.16 24.48 112.96 112.96
64 98.00 5.09 7.09 1.53 3.13 3.16 97.92 451.84 451.84

256 392.00 11.09 19.09 1.53 3.13 3.16 391.68 1807.36 1807.36
512 784.00 19.09 35.09 1.53 3.13 3.16 783.36 3614.72 3614.72

1024 1568.00 35.09 67.09 1.53 3.13 3.16 1566.72 7229.44 7229.44

C.1 Additional Parameter Settings

We present the additional parameter settings with their resulting bandwidth
costs in Tables 10 to 12.
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Table 10: Parameter setting and its deriving bandwidth costs of our
mmCipher-KEM and mmCipher-PKE, aiming at 128-bit security level, where
d “ 256, ν “ 1, ν̄ “ 3, ζ ď 2´128. Sizes are in kilo-bytes.

N log q mn pdu, dvq pσ0, σ1q |pp| |pki|
mmCipher-KEM-128 mmCipher-PKE-128

|pct| |pcti| |cti| |ct| kKEM
com |pct| |pcti| |cti| |ct| kPKE

com

24 22 4 4 p10, 2q p15.9, 46057q 11.00 2.75 1.25 0.03 1.28 1.75 6.86 1.25 0.06 1.31 2.25 5.33
27 23 4 4 p10, 2q p15.9, 130270q 11.50 2.88 1.25 0.03 1.28 5.25 18.29 1.25 0.06 1.31 9.25 10.38
210 25 4 4 p10, 2q p15.9, 368459q 12.50 3.13 1.25 0.03 1.28 33.25 23.10 1.25 0.06 1.31 65.25 11.77
215 27 5 5 p11, 2q p15.9, 2332958q21.00 4.22 1.71 0.03 1.75 1026 23.96 1.71 0.06 1.78 2050 11.99

Table 11: Parameter setting and its deriving bandwidth costs of our
mmCipher-KEM and mmCipher-PKE, aiming at 192-bit security level, where
d “ 256, ν “ 1, ν̄ “ 2, ζ “ 2´128. Sizes are in kilo-bytes.

N log q mn pdu, dvq pσ0, σ1q |pp| |pki|
mmCipher-KEM-192 mmCipher-PKE-192

|pct| |pcti| |cti| |ct| kKEM
com |pct| |pcti| |cti| |ct| kPKE

com

24 23 7 7 p10, 2q p15.9, 61099q 35.22 5.03 2.19 0.03 2.22 2.69 6.33 2.19 0.06 2.25 3.19 5.33
27 24 7 7 p10, 2q p15.9, 172815q 36.75 5.25 2.19 0.03 2.22 6.19 21.98 2.19 0.06 2.25 10.19 13.35
210 25 7 7 p11, 2q p15.9, 488797q 38.28 5.47 2.41 0.03 2.44 34.41 31.62 2.41 0.06 2.47 66.41 16.38
215 28 8 8 p11, 2q p15.9, 2957944q56.00 7.00 2.75 0.03 2.78 1027 33.91 2.75 0.06 2.81 2051 16.98

Table 12: Parameter setting and its deriving bandwidth costs of our
mmCipher-KEM and mmCipher-PKE, aiming at 256-bit security level, where
d “ 256, ν “ 1, ν̄ “ 2, ζ “ 2´128. Sizes are in kilo-bytes.

N log q mn pdu, dvq pσ0, σ1q |pp| |pki|
mmCipher-KEM-256 mmCipher-PKE-256

|pct| |pcti| |cti| |ct| kKEM
com |pct| |pcti| |cti| |ct| kPKE

com

24 23 8 8 p11, 2q p15.9, 65361q 46.00 5.75 2.75 0.03 2.78 3.25 7.54 2.75 0.06 2.81 3.75 6.53
27 24 9 9 p11, 2q p15.9, 196201q 60.75 6.75 3.09 0.03 3.13 7.09 27.64 3.09 0.06 3.16 11.09 17.67
210 25 9 9 p11, 2q p15.9, 554941q 63.28 7.03 3.09 0.03 3.13 35.09 44.69 3.09 0.06 3.16 67.09 23.37
215 28 1010p11, 2q p15.9, 3310769q87.50 8.75 3.44 0.03 3.47 1027 48.84 3.44 0.06 3.50 2051 24.46
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Appendix D Our Adaptively Secure mmPKE

In this section, we propose a generic construction that transforms a CPA-secure
mmPKE into an adaptively secure mmPKE. Our approach generalizes the Naor-
Yung paradigm [51,61] to mmPKE, introducing an optimization: we merge the
double encryption into a single multi-recipient ciphertext, only need to generate
a single independent ciphertext. This optimization significantly reduces the size
of both multi-recipient and individual ciphertexts. With our construction, not
only can our lattice-based mmPKEs be transformed to achieve adaptive security,
but also can the traditional mmPKEs proposed in [9, 10,43,60].

Compared to other adaptively secure (m)PKE constructions [5,35,39], our
approach requires only the addition of NIZK proofs. These proofs can be aggre-
gated, making the size constant or polylogarithmic in the number of recipients,
and verification can be delegated to a server, making our construction remain
both flexible and efficient, especially for large numbers of recipients. Last, we
provide an instantiation in Appendix E.2.

In addition, our constructions also imply an adaptive corruption compiler
which enables both CPA- and CCA-secure mmPKEs, such as the ones in [9, 10,
43, 60], to resist adaptive corruption, with some requiring KOSK assumption
removal through our KOSK compiler in advance.

Construction D.1 (Adaptive Security Compiler). Let mmPKE1 be an
mmIND-CPA secure mmPKE with the randomness distributions Di, Dd. Let Π

1

be a NIZK argument system. Denote the relation RΠ1 in Π1 as

$

&

%

pppp1, pk0, pk1,
ct0, pct0, pct1, βq;
pm, r0, r̂0, r̂1qq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ct0 “ mmPKE1.mmEncippp1; r0q^

pct0 “ mmPKE1.mmEncdppp1, pkβ ,m; r0, r̂βq^

pct1 “ mmPKE1.mmEncdppp1, pk1´β ,m; r0, r̂1´βq

,

.

-

.

The construction of compiler CompCCArmmPKE1,Π1s is defined in Figure 17 which
outputs an mmIND-CCACor secure mmPKE.

The correctness is direct. We show how to reduce the security of mmPKE
output by CompCCArmmPKE1,Π1s to the input mmPKE1 and Π1. The proof is
provided in Appendix G.6.

Theorem D.2 (Security). If mmPKE1 is mmIND-CPA secure and Π1 is a
NIZK argument system satisfies correctness, zero knowledge, and simulation
soundness, our mmPKE Ð CompCCArmmPKE1,Π1s output by Construction D.1 is
mmIND-CCACor secure.

Remark D.3 (Batch Proof and Delegate Verification). In practice, the
verification of πi can be delegated to some semi-honest third party, e.g., de-
livery service server. In this case, the encryptor can batch (aggregate) the
proof together, i.e., generating a single proof π for the statement-witness pair

pppp1, ppk
piq
0 , pk

piq
1 qiPrNs, ct0, ppct

piq
0 , pct

piq
1 qiPrNs, β⃗q, ppmiqiPrNs, r0, p̂r

piq
0 , r̂

piq
1 qiPrNsqq un-
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mmKGenpppq

Input: Public parameter pp “ ppp1, crsΠ1q

for all i P t0, 1u
ppki, skiq Ð mmPKE1.mmKGenppp1

q

end for
αÐ t0, 1u
return ppk :“ ppk0, pk1q, sk :“ pα, skαqq

mmEncppp, ppkiqiPrNs, pmiqiPrNsq

Input:

– public parameter pp “ ppp1, crsΠ1q

– a set of public keys ppki “ ppk
piq

0 , pkpiq

1 qqiPrNs

– a set of messages pmiqiPrNs

r0 Ð Di, ct0 Ð mmPKE1.mmEnc
i
ppp1; r0q

β⃗ :“ pβiqiPrNs Ð t0, 1uN

for all i P rN s

r̂piq

0 , r̂piq

1 Ð Dd

pct
piq

0 Ð mmPKE1.mmEnc
d
ppp1, pkpiq

βi
,mi; r0, r̂

piq

βi
q

pct
piq

1 Ð mmPKE1.mmEnc
d
ppp1, pkpiq

1´βi
,mi; r0, r̂

piq

1´βi
q

πi Ð Π1.ProvepcrsΠ1 , ppp1, pkpiq

0 , pkpiq

1 , ct0, pct
piq

0 , pct
piq

1 , βiq, pmi, r0, r̂
piq

0 , r̂piq

1 qq

end for
return ct :“ pct0, ppct

piq

0 , pct
piq

1 qiPrNs, β⃗, pπiqiPrNsq

mmDecppp, sk, ct, auxq

Input:

– public parameter pp “ ppp1, crsΠ1q

– private key sk “ pα, skαq
– ciphertext ct “ pct0, pct0, pct1, β, πq
– auxiliary information aux :“ pk “ ppk0, pk1q

req: Π1.VerifypcrsΠ1 , ppp1, pk0, pk1, ct0, pct0, pct1, βq, πq “ 1
return mÐ mmPKE1.mmDecppp1, pct0, pctα‘βq, skαq

Fig. 17: The adaptively secure mmPKE output by the compiler
CompCCArmmPKE1,Π1s. mmExt with input index i is defined by picking

the relevant components pct0, pct
piq
0 , pct

piq
1 , βi, πiq from ct. mmSetup is the same as

the one in Construction 4.10 except for replacing Π by Π1.

der the following relation,

R̄Π1 :“

$

’

’

’

&

’

’

’

%

ct0 “ mmPKE1.mmEncippp1; r0q ^

@i P rN s :

pct
piq
0 “ mmPKE1.mmEncdppp1, pk

piq
βi
,mi; r0, r̂

piq
βi

q^

pct
piq
1 “ mmPKE1.mmEncdppp1, pk

piq
1´βi

,mi; r0, r̂
piq
1´βi

q

,

/

/

/

.

/

/

/

-

.

Therefore, each recipient does not need to download and verify the proof during
the decryption.
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Remark D.4 (Adaptive Corruption Compiler). By removing the NIZK
component from our CCA compiler, we obtain an adaptive corruption compiler
that generalizes the double encryption technique [33,40] to the mmPKE setting.

Appendix E NIZK Instantiations in mmPKE

In this section, we discuss the instantiations of NIZK in the generic constructions
of mmPKE described in Section 4.4 and Appendix D. Since we aim for quantum
security in this paper, we mainly consider the post-quantum instantiations
in the (quantum) random oracle model. Briefly, there are two kinds of NIZK
involved: the first is a multi-proof extractable NIZK used in the KOSK compiler
(Construction 4.10), and the second is a simulation-sound NIZK used in the
adaptively secure compiler (Construction D.1). Finally, we present proof-of-
concept implementations of the NIZK instantiations, which help estimate their
practical cost.

E.1 NIZK in KOSK Compiler

For the NIZK in KOSK compiler, we recommend Schnorr-like lattice-based
protocols that satisfy knowledge soundness and can efficiently prove the well-
formedness of ciphertexts and keys. To achieve the multi-proof extractability, we
can apply Katsumata Transform [38] as demonstrated in [13,59], which leverages
an extractable linear homomorphic commitment (LHC) that can be seen as a
linear homomorphic encryption scheme with pseudo-random public keys.

Among them, LNP22 [46] is one of the most efficient lattice-based NIZKs
and has recently been implemented in the LaZer library [47]. Recent work [13]
extends LNP22 to achieve multi-proof extractability, but they do not provide the
implementation of this variant. Therefore, we report on the results of the regular
LNP22 implementation from the LaZer library as a proof-of-concept.

Specifically, we need to generate the “exact” range proof for the private key
psi, eiq, i.e., ||psi, eiq||8 ď 1, along with a linear relation AJsi`ei “ bi. For ν̄ “ 2
(i.e., each coefficient is in t0, 1u), we simply use the concatenation p sJ || eJ q as a
binary witness, proving that

`

AJ || I
˘

p sJ || eJ qJ ´b “ 0. For ternary secrets
(ν̄ “ 3), the secret key is split into binary components representing positive and
negative coefficients and the proof is of the form

`

AJ || I || ´AJ
|| ´I

˘

p sJ
` || eJ

` || sJ
´ || eJ

´ qJ ´ b “ 0.

During the proof, we need to first prove the witness with binary coefficients and
then prove the linear relation. Here although the modulus q may be smaller than
the modulus in the proof system, LNP22 and its implementation in LaZer can still
prove such relations efficiently. More details can be referred their papers [46, 47].

Table 13 offers representative numbers (timings on an AMD Ryzen 7 7840U
laptop, 3.3 GHz). Note that the proofs have not been optimized for size or tuned
for the target security level. We observe that these NIZK proofs, which need to
be verified only once after generation, are less than 30 KB in size. Furthermore,
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proof generation and verification are very efficient. In practice, this process
can be delegated to a semi-honest third party, e.g., a server, and completed in
“registration” phase. Hence, this NIZK has minimal impact on the performance
of both encapsulation and decapsulation.

Table 13: mmCipher public-key NIZK proof sizes, proof generation and verifica-
tion timings using LNP22.

Scheme Dist. Proof Size Proof time Verify time

mmCipher-128 ν̄ “ 3 26,473 B 0.078 s 0.040 s
mmCipher-192 ν̄ “ 2 25,261 B 0.075 s 0.042 s
mmCipher-256 ν̄ “ 2 28,022 B 0.105 s 0.056 s

E.2 NIZK in Adaptively Secure Compiler

For the NIZK in adaptive secure mmPKE compiler, we recommend post-quantum
(zk)SNARKs that satisfy simulation soundness and provide succinct proofs with
efficient verification.

LaBRADOR [11], as one of the most compact lattice-based SNARKs, has
recently been implemented in the LaZer library [47] that supports proving
multiple linear relations along with ℓ2-norm bounds of each witness. Since it uses
the Fiat-Shamir transformation [31], simulation soundness can be achieved in
the random oracle model (see [30] for a detailed discussion). As stated in [11],
the zero-knowledge property can also be easily extended, although the LaZer
library does not implement this property. Therefore, we present the results of
the standard LaBRADOR implementation available in the LaZer library as a
proof-of-concept.

Specifically, as in Construction D.1 and Remark D.3, we need to prove the
message consistency of the double encryption in mmCipher-PKE, i.e.,
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where }pr, euq}8 ď β0, }py
p0q

0 ||y
p1q

0 || . . . ||y
p0q

N´1||y
p1q

N´1q}8 ď β1, }e}8 ď tq{2du`1s

and }pe
p0q

0 ||e
p1q

0 || . . . ||e
p0q

N´1||e
p1q

N´1q}8 ď tq{2dv`1s. Here e, e
p0q

i , e
p1q

i for i P rN s

are the rounding errors.
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Then, we transform the relation by subtracting c
p0q

i and c
p1q

i to remove the

message term and combining the randomness y
p0q

i , y
p1q

i , eu with the rounding
error together, as follows,
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(E.1)

where }r}8 ď β0, }ē}8 ď β0 ` tq{2du`1s and }pē0|| . . . ||ēN´1q}8 ď 2 ¨ tq{2dv`1s`

2 ¨ β1 ă tq{4s. The above relation guarantees that the decryption result of the
double encryption is identical.

However, it is nontrivial to directly prove Equation (E.1) via LaBRADOR in
LaZer library. We identity the following challenges:

– The LaBRADOR implementation in the LaZer library supports only four
different moduli, none of which can ensure that wrap-around does not occur
in Equation (E.1) when switching the modulus of mmPKE to the one in
LaBRADOR.

– LaBRADOR does not support proving exact ℓ8-norm bound of the witness.

– The norms of the error terms ēi are significantly large and exceed the range
supported by LaBRADOR.

We take the following steps to solve these issues:

– We tailor a new parameter set for mmCipher-PKE shown in Table 14 with the
modulus q “ 232´99 that is supported in the implementation of LaBRADOR.
This setting can avoid the proof for switching different modulus.

– Since LaBRADOR (implementation) only supports proving the exact ℓ2-norm
of the witness, we have to use it to prove the ℓ8-norm, e.g., }ri P Rq}8 ď }ri}

which introduces a relaxation factor
?
d. Thus, this results in an additional 4

bits per coefficient in the compressed ciphertext, which is why we set dv :“ 6.

– We decompose each ēi and ē in base 8 and prove that the ℓ8-norm of each
decomposition element is bounded by 7

?
d.

Table 15 offers representative numbers (timings on an Intel Core i7-11850H
laptop, 2.5 GHz). Note that the proofs have not been optimized for size or tuned
for the target security level as well. Compared to the naive Kyber-based double
encryption approach, our adaptively secure mmPKE achieves approximately a
3–6ˆ reduction in bandwidth across different security levels. While it is about
one order of magnitude slower in computation due to the NIZK overhead, the
encryption time remains below 2 ms per recipient, making the scheme acceptable
and practical for real-world use. As stated in Remark D.3, the verification can
be delegated to a semi-honest third party, e.g., a delivery service server. Thus,
this NIZK has no impact on the recipient’s decryption performance.
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Table 14: Parameter set for our lattice-based adaptively secure mmPKE for
256-bit message, aiming at ζ-correctness with ζ ď 2´128, N “ 512 recipients (i.e.,
1024 ciphertexts). Note that here |ct| excludes the proof size.

q d m n pν, ν̄q pdu, dvq pσ0, σ1q pq-sec |ct|

232 ´ 99 256 5 5 p1, 3q p17, 6q p15.9, 412412q 128 194.6
232 ´ 99 256 8 7 p1, 3q p17, 6q p15.9, 506291q 192 196.2
232 ´ 99 256 11 9 p1, 3q p18, 6q p15.9, 585545q 256 198.2

Table 15: mmCipher double encryption NIZK proof sizes, proof generation
and verification timings using LaBRADOR for N “ 512 recipients (i.e., 1024
ciphertexts).

Scheme Proof Size Proof time Verify time

mmCipher-PKE-128 60.75 KB 0.827 s 0.457 s
mmCipher-PKE-192 62.06 KB 0.952 s 0.547 s
mmCipher-PKE-256 60.13 KB 1.091 s 0.609 s

Appendix F Lattice-Based mmIBE

F.1 Definition

We generalize the definition of decomposable mPKE in [39] to mmIBE as follows.
Basically, an mmIBE scheme allows a sender to encrypt a set of messages to a
set of identities. Compared to mmPKE, here the master key generation and user
private key extraction algorithms are run by some trusted party, e.g., private key
generator (PKG).

Definition F.1 (Decomposable Multi-Message Multi-Recipient IBE).
A decomposable mmIBE scheme with a user private key space K, a message space
M, a multi-recipient ciphertext space C, and an individual ciphertext space Cs
consists of the following algorithms. The algorithms of mmEnc, mmExt, mmDec
are the same as the ones in Definition 2.5 except that we replace the public key
pk by identity id. Thus, we omit them to simplify.

– ppp,mskq Ð MasterKeyGenp1λq: On input a security parameter 1λ, it outputs
a public parameter pp and a master secret key msk.

– skid Ð Extractppp,msk, idq: On input a public parameter pp, a master secret
key msk, and an identity id, it outputs a private key skid P K for identity id.

Correctness. Let ζ : N Ñ r0, 1s. We say an mmIBE scheme is ζ-correct, if for
all λ,N P N and i P rN s, message mi P M, identity idi Ð t0, 1u˚, the following
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probability holds,

Pr

»

—

—

—

—

–

Di P rN s :
mmDecppp, skidi , ctiq ‰ mi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ppp,mskq Ð MasterKeyGenp1λq;
@i P rN s :

skidi Ð Extractppp,msk, idiq;
ctÐ mmEncppp, pidiqiPrNs, pmiqiPrNsq;

cti Ð mmExtppp, i, ctq

fi

ffi

ffi

ffi

ffi

fl

ď ζpλq.

Security. Adapting the definitions from [6,18], we present the security definition
of mmIBE in an adaptive (multi-)ID setting, where the adversary can adaptively
choose the challenge identities after the setup phase. Compared to mmPKE, the
adversary here is additionally granted access to a key-extraction oracle, which
allows it to request the private keys for arbitrary identities. To prevent a trivial
win, we require that the challenge messages for any challenge identities whose
private keys have been queried (extracted) must be identical.

LetmmIBE be an mmIBE scheme, letN,λ be an integer, let ATK P tCPA,CCAu.
We define IND-mmID-ATK security ofmmIBE in Figure 18. With GAMEIND-mmID-ATK

mmIBE,N,b,A pλq,
we say mmIBE is IND-mmID-ATK secure if for all PPT adversary A, the following
AdvIND-mmID-ATK

mmIBE,N,A pλq is negligible with λ,

ˇ

ˇ

ˇ
PrrGAMEIND-mmID-ATK

mmIBE,N,0,A pλq “ 1s ´ PrrGAMEIND-mmID-ATK
mmIBE,N,1,A pλq “ 1s

ˇ

ˇ

ˇ
.

We say A wins if the game outputs 1.

Game GAMEIND-mmID-ATK
mmIBE,N,b,A pλq, ATK “ CCA

pA0,A1,A2q Ð A
ppp,mskq Ð MasterKeyGenp1λq
ExtÐH

ppidi,m
0
i ,m

1
i qiPrℓs, pidi,miqiPrℓ:Ns, stq Ð AExt,Dec0

0 pppq
ctÐ mmEncppp, pidiqiPrNs, pm

b
i qiPrℓs, pmiqiPrℓ:Nsq

b1
Ð AExt,Dec1

1 pct, stq
req: @i P rℓs, m0

i “ m1
i _ pidi R Ext^ |m0

i | “ |m
1
i |q

return rb “ b1
s

Oracle Extpidq

Ext` Ð id
skid Ð Extractppp,msk, idq
return skid

Oracle Dec0pct, idq

skid Ð Extractppp,msk, idq
return mÐ mmDecppp, skid, ctq

Oracle Dec1pct, idq

req: ␣pid “ idi P pidjqjPrℓs ^ ct “ mmExtpct, iqq
skid Ð Extractppp,msk, idq
return mÐ mmDecppp, skid, ctq

Fig. 18: The IND-mmID-ATK security games for mmIBE with ATK “ CCA. For
ATK “ CPA, the adversary A does not have the access of the decryption oracle
Dec0, Dec1.
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F.2 Construction

At a high level, following the framework of DLP IBE [25], we replace the setup and
key generation algorithms in Construction 4.4 and Construction 3.4 by master key
generation and user private key extraction algorithms. Here, to achieve smaller
and more flexible parameters, we use the modular version of pre-image sampling
algorithm in NTRU lattices [20] instead of ring version in original DLP IBE [25].

We recall the master key generation and user private key extraction algorithms
in [20] that are used in our mmIBE/mmIB-KEM, shown in Figure 19. To fit our
notation, we swap n and m in [20]. For more details, we refer the reader to [20].

MasterKeyGenp1λq

Input: security parameter 1λ

repeat
Sample FÐ Df and gÐ Dg

until F invertible mod q and }Γ pBF,gq}GS ď GS SLACK ¨ q1{pm`1q

Complete rgJ
| ´ Fs into a basis BF,g of LNTRU

Compute hJ :“ F´1g mod q
Pick a hash function hash : t0, 1u˚

Ñ Rq

return ppp :“ p

„

1
hJ

ȷ

, hashq,msk :“ BF,gq

Extractppp,msk, idq

Input:

– public parameter pp “ p

„

1
hJ

ȷ

, hashq

– master secret key msk “ BF,g

– user identity id

µÐ hashpidq P Rq and let c :“ pµ,0mq

Compute t :“ c ¨B´1
F,g

repeat
Compute z P Rm`1 such that s :“ pt´ zq ¨BF,g Ð Dσ,LNTRU,c

until }s}8 ď ν
Phase ps̄, ēq Ð s such that xs̄,hy ` ē “ µ
return skid :“ ps̄, ēq

Fig. 19: Master key generation and user private key extraction algorithms in our
mmIBE/mmIB-KEM.

The correctness of our mmIBE/mmIB-KEM is reduced to the one in Construc-
tion 4.4 and Construction 4.8, respectively. The security of our mmIBE/mmIB-
KEM constructions reduces to the Matrix Hint-R(M)LWE assumption, as in
Construction 4.4 and Construction 4.8, and additionally relies on NTRU lattices
for generating users’ private keys. Notably, to answer key-extraction queries, the
reduction first designates the identities with different challenge messages as its
own challenge identities (public keys), and then queries its challenger to extract
the private key of the other identity.

We select our parameters following the method used for mmPKE in Section 4.5,
and evaluate their security against known attacks on NTRU lattices using the
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scripts provided in [20]. The resulting parameter sets are listed in Table 16. To
ensure a fair comparison, we adopt the same root Hermite factors (RHF) of
approximately 1.0075 and 1.0044 from [25], corresponding to 80-bit and 192-bit
security levels, respectively.

Table 16: Parameter set for our lattice-based CPA secure mmIBE/mmIB-KEM,
aiming at ζ-correctness with ζ ď 2´128.

pq-sec N rlog qs d m n pdu, dvq pσ0, σ1q |ctKEM| |ctPKE|

80 1024 44 1024 2 1 p35, 2q p15.9, 238.6q 136.75 264.75
192 1024 46 2048 2 1 p35, 2q p15.9, 240.3q 273.50 529.50

Appendix G Deferred Proofs

G.1 Proof for Generic Construction of mmPKE

We restate the Theorem 3.5 below and provide its formal proof.

Theorem G.1 (Security). For ATK P tCPA,CCAu, if PKE is IND-ATKXR

secure and satisfies extended reproducibility, our mmPKE Ð CompmmPKE
rPKEs

output by Construction 3.4 is mmIND-ATKKOSK secure.

Proof. The proof is based on [10, Theorem 6.2]. We first consider that the case
of ATK “ CPA only and then briefly indicate how to extend the argument to the
case of ATK “ CCA. Let A be a PPT adversary against the mmIND-CPAKOSK

security of mmPKE. Let B be the reduction that utilizes the adversary A to break
the IND-CPAXR security of PKE. The reduction B is described in Figure 21 where
its challenger C is from the IND-CPAXR security game of PKE.

Like [10], we begin by defining some hybrid games associated to A and mmPKE
in Figure 20. We parameterize these games via an index j P t0, 1, . . . , Nu.

Denote Pj :“ PrrHybj “ 0s as the probability that experiment Hybj returns
0, for j P t0, 1, . . . , Nu. We show that

AdvmmIND-CPAKOSK

mmPKE,N,A pλq “ PN ´ P0 (G.1)

as follows. One can observe that

PrrGAMEmmIND-CPAKOSK

mmPKE,N,0,A “ 0s “ PN (G.2)

PrrGAMEmmIND-CPAKOSK

mmPKE,N,1,A “ 0s “ P0 (G.3)

since when j “ N , the message vector inside the challenge ciphertext is pm0
i qiPrNs

and when j “ 0, the one is pm1
i qiPrNs. Therefore, in the adversary A’s view,
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Game Hybj for j P t0, 1, . . . , Nu

pA0,A1,A2q Ð A
ppÐ mmSetupp1λq
ℓÐ A0ppp, Nq
req: ℓ P rN s
@ i P rℓs, ppki, skiq Ð mmKGenpppq
ppm0

i qiPrℓs, pm
1
i qiPrℓs, pmiqiPrℓ:Ns, ppki, skiqiPrℓ:Ns, stq Ð A1ppp, ppkiqiPrℓsq

req: @i P rℓ : N s : ppki, skiq P K
if j ď ℓ then

pmiqiPrℓs :“ pm
0
1, . . . ,m

0
j ,m

1
j`1, . . . ,m

1
ℓq

else
pmiqiPrℓs :“ pm

0
1, . . . ,m

0
ℓq

end if
ctÐ mmEncppp, ppkiqiPrNs, pmiqiPrNsq

bÐ A2pct, stq
req: @i P rℓs : |m0

i | “ |m
1
i |

return b

Fig. 20: The hybrid games in Theorem G.1.

the experiment HybN is the same as GAMEmmIND-CPAKOSK

mmPKE,N,0,A and Hyb0 is the same

as GAMEmmIND-CPAKOSK

mmPKE,N,1,A . After subtraction between Equation (G.2) and Equa-
tion (G.3), we can get Equation (G.1).

From the description of reduction B in Figure 21, we claim that

Pr
”

GAMEIND-CPAXR

PKE,N,0,Bpλq “ 0
ı

“
1

N
¨

N
ÿ

j“1

Pj , (G.4)

Pr
”

GAMEIND-CPAXR

PKE,N,1,Bpλq “ 0
ı

“
1

N
¨

N
ÿ

j“1

Pj´1 . (G.5)

We explain the reason of the above equations holding as follows. Firstly, each index
j P rN s is equally likely for the reduction B and then the j-th extracted individual
ciphertext ctj from the adversary A’s multi-recipient challenge ciphertext ct is
the reduction B’s challenge ciphertext ct˚. Furthermore, due to the extended
reproducibility of PKE, all extracted individual ciphertexts pctiqiPrNs from the
multi-recipient challenge ciphertext ct are generated using the same randomness
r0 and different randomness p̂riqiPrNs. Therefore, one can observe that the game

GAMEIND-CPAXR

PKE,N,0,Bpλq is the same as Hybj and the game GAMEIND-CPAXR

PKE,N,1,Bpλq is the
same as Hybj´1.
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Then after the subtraction between Equation (G.4) and Equation (G.5), we
can obtain

AdvIND-CPAXR

PKE,N,B pλq “ Pr
”

GAMEIND-CPAXR

PKE,N,0,Bpλq “ 0
ı

´ Pr
”

GAMEIND-CPAXR

PKE,N,1,Bpλq “ 0
ı

“
1

N
¨

˜

n
ÿ

j“1

Pj ´

n
ÿ

j“1

Pj´1

¸

“
1

N
¨ pPN ´ P0q

“
1

N
¨ AdvmmIND-CPAKOSK

mmPKE,N,A pλq.

And the running time of the reduction B is the sum of the adversary A and the
reproduce algorithm Rep. Overall, we get the security of mmPKE.

Here, we briefly discuss how to extend the above proof to the case of
ATK “ CCA. The definition of the hybrid games is the same as in Figure 20. We
show how the reduction B answers the decryption queries from the adversary
A. First of all, the reduction B is also given the access of the decryption oracle
of IND-CCAXR secure PKE. Therefore, when requiring to decrypt the individual
ciphertext for the public key pkj , B will provide the answer by invoking its own
given decryption oracle. For the individual ciphertext for the other public key, i.e.,
pki for i P rℓs{tju, B can decrypt the ciphertext by itself since it is in possession
of the corresponding private key ski. [\

G.2 Proofs for Matrix Hint-MLWE

We restate Lemma 4.2 and Theorem4.3 below and provide their formal proofs.

Lemma G.2. Let d, ℓ ą 0 be integers. Let Σ1, Σy be positive definite symmetric
matrices over Rdˆd and Rℓˆℓ, respectively. Let R P Zℓˆd be an integer matrix.

Denote Σ0 :“
`

Σ´1
1 ` RJΣ´1

y R
˘´1

. Then, the following two distributions over

Zd`ℓ are statistically identical:
#

´

r⃗, h⃗
¯
ˇ

ˇ

ˇ
r⃗ Ð DZd,

?
Σ1

, y⃗ Ð DZℓ,
?

Σy
, h⃗ “ Rr⃗ ` y⃗

+

«

$

&

%

´

⃗̂r, h⃗
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

r⃗ Ð DZd,
?
Σ1

, y⃗ Ð DZℓ,
?

Σy
, h⃗ “ Rr⃗ ` y⃗

c⃗ “ Σ0R
JΣy

´1h⃗, ⃗̂r Ð DZd,c⃗,
?
Σ0

,

.

-

.

Proof. The proof is similar to [42, Lemma 7]. We show that two random variables
have the same probability mass function. The probability that the first random
variable outputs pv⃗, w⃗q P Zd ˆ Zℓ can be written as follows:

Pr
”

r⃗ “ v⃗, Rr⃗ ` y⃗ “ w⃗ | r⃗ Ð DZd,
?
Σ1

, y⃗ Ð DZℓ,
?

Σy

ı

“DZd,
?
Σ1

pv⃗q ¨ DZℓ,
?

Σy
pw⃗ ´ Rv⃗q

9 exp
“

´π
`

v⃗JΣ´1
1 v⃗ ` pw⃗ ´ Rv⃗qJΣ´1

y pw⃗ ´ Rv⃗q
˘‰

“ exp
“

´π
`

pv⃗ ´ c⃗qJΣ´1
0 pv⃗ ´ c⃗q ´ c⃗JΣ´1

0 c⃗ ` w⃗JΣ´1
y w⃗

˘‰
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Reduction B
pA0,A1,A2q Ð A
ppp, pk˚

q Ð Cp1λq
ℓÐ A0pppq
req: ℓ P rN s
j Ð rN s
if j ď ℓ then
@i P t1, . . . , j ´ 1, j ` 1, . . . , ℓu, ppki, skiq Ð mmKGenpppq

pkj :“ pk˚

else
for all i P rℓs do ppki, skiq Ð mmKGenpppq

end if
ppm0

i qiPrℓs, pm
1
i qiPrℓs, pmiqiPrℓ:Ns, ppki, skiqiPrℓ:Ns, stq Ð A1ppp, ppkiqiPrℓsq

req: @i P rℓs : |m0
i | “ |m

1
i |

req: @i P rℓ : N s : ppki, skiq P K
if j ď ℓ then

pm˚
0 ,m

˚
1 q :“ pm

0
j ,m

1
j q

else
pm˚

0 ,m
˚
1 q :“ pmj ,mjq

end if

ct˚
Ð Cpm˚

0 ,m
˚
1 q

if j ď ℓ do phiqiPrNs{tju Ð Cpppki, skiqiPrNs{tjuq

else do phiqiPrNs Ð Cpppki, skiqiPrNsq

if j ď ℓ then

pmiqiPrℓs{tju :“ pm0
1, . . . ,m

0
j ,m

1
j`1, . . . ,m

1
ℓq

@i P t1, . . . , j ´ 1, j ` 1, . . . , Nu, cti Ð Repppk, ct˚,mi, pki, ski, hiq

ctj :“ ct˚

else
pmiqiPrℓs :“ pm

0
1, . . . ,m

0
ℓq

@i P rN s, cti Ð Repppk, ct˚,mi, pki, ski, hiq

end if
@i P rN s, pct0, pctiq Ð cti
sct0 Ð Compresspct0q
ct :“ psct0, ppctiqiPrNsq

bÐ A2pct, stq
return b

Fig. 21: The reduction B using the adversary A of mmPKE to break the security
of PKE in Theorem G.1. The parts where B’s operations are different from

mmIND-CPAKOSK security game are marked by boxes . The parts which are

different from the reduction in [10] are highlighted by boxes .

where c⃗ “ Σ0R
JΣ´1

y w⃗.

Since the term ´c⃗JΣ´1
0 c⃗ ` w⃗JΣ´1

y w⃗ is a constant that does not depend
on v⃗ and the conditional probability Pr rr⃗ “ v⃗ | Rr⃗ ` y⃗ “ w⃗s is proportional to
exp

“

´πpv⃗ ´ c⃗qJΣ´1
0 pv⃗ ´ c⃗q

‰

, it implies

Pr rr⃗ “ v⃗ | Rr⃗ ` y⃗ “ w⃗s ” ρ?
Σ0

pv⃗ ´ c⃗q ” Pr
”

⃗̂r “ v⃗ | Rr⃗ ` y⃗ “ w⃗
ı

.
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Therefore, the given two distributions are statistically identical. [\

Theorem G.3 (Hardness of Matrix Hint-MLWE). Let m,n, q, ℓ be positive
integers. Let S be a distribution over Rℓˆpm`nq. Let B ą 0 be a real number
such that }R̄}2 ď B for any possible R Ð S and R̄ :“ Γ pRq. Let σ0, σ1, σ, δ ą 0
be real numbers. Let Σ1, Σy be a positive definite symmetric matrices over
Rpm`nqdˆpm`nqd and Rℓdˆℓd, respectively, such that }Σ´1

1 } ď 1
σ2
0
and }Σ´1

y } ď 1
σ2
1
.

Let χ0 :“ DZpm`nqd,
?
Σ1

be a distribution over Rm`n, χ1 :“ DZℓd,
?

Σy
be a

distribution over Rℓ, and χ :“ DZpm`nqd,σ be a distribution over Rm`n. There

exists an efficient reduction from MLWER,m,n,q,χ to MatrixHint-MLWEℓ,χ1,S
R,m,n,q,χ0

that reduces the advantage by at most 2ϵ, if the sampleability condition

1

p1 ` δqσ2 ` δ0
ě

1

σ2
0

`
B

σ2
1

(G.6)

where δ0 :“
b

lnp2pm`nqdq`4
π , and the convolution condition

σ ě
a

1 ` 1{δ ¨ ηεpZpm`nqdq (G.7)

are satisfied.
Specifically, for any PPT adversary A against the MatrixHint- MLWEℓ,χ1,S

R,m,n,q,χ0

assumption, there exists a PPT adversary B against the MLWER,m,n,q,χ assump-
tion, such that

AdvMatrixHint-MLWE
para0,A pλq ď AdvMLWE

para1,Bpλq ` 2ϵ

where para0 “ ppR,m, n, q, χ0q, pℓ, χ1,Sqq and para1 “ pR,m, n, q, χq.

Proof. The proof is based on [42, Theorem 1] and [29, Theorem 2]. With an

adversary A against MatrixHint-MLWEℓ,χ1,S
R,m,n,q,χ0

, we show how the adversary B
breaks MLWER,m,n,q,χ.

Given an MLWER,m,n,q,χ instance pA,bq P Rmˆn
q ˆ Rm

q , B first samples

R Ð S, sets R̄ :“ Γ pRq and

Σ0 :“
`

Σ´1
1 ` R̄JΣ´1

y R̄
˘´1

.

Then, B samples the following elements over R,

– r Ð χ0

– y Ð χ1

– t Ð DZpm`nqd ,⃗c,
?

Σ0´σ2Ipm`nqd
where c⃗ “ Σ0R̄

JΣ´1
y pR̄ ¨ Γ prq ` Γ pyqq

By Lemma A.1, t can be PPT sampled from DZpm`nqd ,⃗c,
?

Σ0´σ2Ipm`nqd
if the

following conditions hold: (1) Σ is positive definite where Σ :“ Σ0 ´ σ2Ipm`nqd,

i.e., σminpΣq ą 0; (2) δ0 ¨ BΣ ď 1 where δ0 :“
b

lnp2pm`nqdq`4
π and BΣ denotes

the max value among the norm of each column of
?
Σ´1. One can observe that

BΣ ď
a

σmaxpΣ´1q ď
1

a

σminpΣq
“

1
a

σminpΣ0q ´ σ2
.
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And since σminpΣ0q “ 1
}Σ´1

0 }
, we have

}Σ´1
0 } “ }Σ´1

1 ` R̄JΣ´1
y R̄} ď }Σ´1

1 } ` }Σ´1
y } ¨ }R̄JR̄} ď

1

σ2
0

`
B

σ2
1

where the first inequality is obtained by the triangle inequality, and the second
inequality uses the fact }R̄JR̄} “ }R̄}2 and the requirement bound }Σ´1

1 } ď 1
σ2
0
,

}Σ´1
y } ď 1

σ2
1
, }R̄}2 ď B. Thus, the above two conditions for Lemma A.1 can be

combined as sampleability condition, i.e.,

σminpΣ0q “
1

}Σ´1
0 }

ě
1

1
σ2
0

` B2

σ2
1

ě p1 ` δq ¨ σ2 ` δ0 ě σ2 (G.8)

for some δ ě 0.
Later, B uses the sampled elements to transform the given MLWE instance

pA,bq into an MatrixHint-MLWE instance and sends it to the adversary A. Finally,
B utilizes the reply from A to break MLWE. B starts by constructing

pA,b ` rIm|Ast,R,hq (G.9)

where h :“ Rr ` y.
Suppose b “ rIm|Asr1 where r1 Ð χ, we have

b ` rIm|Ast “ rIm|Aspr1 ` tq

where r1 ` t is under the distribution

DZpm`nqd,σIpm`nqd
` DZpm`nqd ,⃗c,

?
Σ0´σ2Ipm`nqd

.

Denote Σ´1
2 :“ σ´2Ipm`nqd ` pΣ0 ´ σ2Ipm`nqdq´1. By Lemma A.2, the

distribution DZpm`nqd,σIpm`nqd
`DZpm`nqd ,⃗c,

?
Σ0´σ2Ipm`nqd

is within the statistical

distance 2ϵ of DZpm`nqd ,⃗c,
?
Σ0

if
?
Σ2 ě ηεpZpm`nqdq holds. We have }pΣ0 ´

σ2Ipm`nqdq´1} “ 1
σminpΣ0´σ2Ipm`nqdq

and if Equation (G.8) holds, we can obtain

σminpΣ0 ´ σ2Ipm`nqdq “ σminpΣ0q ´ σ2 ě δ ¨ σ2 ` δ0 ě δ ¨ σ2.

Combining the triangle inequality with Lemma A.5, we show the convolution
condition as

}Σ´1
2 } ď

1

σ2
`

1

σminpΣ0 ´ σ2Ipm`nqdq
ď

1 ` 1{δ

σ2
ď ηεpZpm`nqdq´2. (G.10)

If the convolution condition holds, the distribution of Equation (G.9) is within
statistical distance 2ϵ of

pA, rIm|Asr̂,R,hq (G.11)

where r̂ Ð DZpm`nqd ,⃗c,
?
Σ0

.
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Then, by Lemma G.2, the distribution of pr̂,hq is identical to that of pr,hq.
Thus, the distribution of Equation (G.11) is identical to

pA, rIm|Asr,R,hq (G.12)

which are the instance of MatrixHint-MLWEℓ,χ1,S
R,m,n,q,χ0

assumption.
In summary, if sampleability condition and convolution condition in Equa-

tion (G.6) and (G.7) hold and the MLWER,m,n,q,χ assumption is hard, i.e., the
adversary B cannot distinguish between rIm|Asr1 with r1 Ð χ and the uniformly
random value b Ð Rm

q , then the adversary A cannot distinguish between the
Equation (G.9) and

pA,u,R,hq (G.13)

where u Ð Rm
q is uniformly random, with additional advantage at most 2ϵ. [\

G.3 Proofs for XR-PKE

We restate Theorem 4.5, Theorem 4.6, and Theorem 4.7 below and provide their
formal proofs.

Theorem G.4 (Extended Reproducibility). For any positive integer N ,
our PKE in Construction 4.4 is extended reproducible. More precisely, for the
extended reproducible game in Figure 2, the following probability holds,

Pr
”

Gameext-reprPKE,Rep,N pλq “ 1
ı

“ 1.

Proof. Suppose ct˚ :“ pc, u˚q Ð EncpA,b˚,m˚q with randomness r0 :“ pr, euq,
r̂˚ :“ y˚, where we have

c “ Ar ` eu. (G.14)

and u˚ “ txb˚, ry ` y˚ ` t
q
2 s ¨ m˚s2dv . For each i P rN s, the public key bi Ð

KGenpAq. Thus, we have
bi “ AJsi ` ei. (G.15)

For the hints phiqiPrNs Ð HintGenppr, euq, pbi, eiqiPrNs, pyiqiPrNsq, we have

hi “ xr, eiy ´ xeu, siy ` yi. (G.16)

On input hi, Repppc, u˚q,mi,bi, si, hiq outputs the reproduced ciphertext pc, uiq

for bi, where

ui “ txc, siy ` hi ` t
q

2
s ¨ mis2dv . (G.17)

When plugging Equation (G.14), Equation (G.15), Equation (G.16) into Equa-
tion (G.17), we have

ui “ txbi, ry ` yi ` t
q

2
s ¨ mis2dv

which is the same as the output from EncpA,bi,mi; pr, euq, yiq.
Overall, we get the extended reproducibility of our construction. [\
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Theorem G.5 (Correctness). Let e, s, r, eu, y be random variables that have
the corresponding distribution as in Construction 4.4. Denote ζ as

Pr r }xe, ry ` y ´ xs, euy ´ cv ` xs, cuy}8 ě tq{4s s

where cu :“ c ´ ttc mod qs2du sq P Rm, and cv :“ c ´ ttc mod qs2dv sq P R. We
say our Construction 4.4 is ζ-correct.

Proof. The value u1 in Dec algorithm is

u1 :“ tu mod 2dv sq “ t t c mod q s2dv sq .

Considering the compression and decompression of key-independent ciphertext c,
the value c (renamed as c1) in Dec algorithm is

c1 :“ t t c mod q s2du sq .

Plugging ttc mod q s2du sq “ c ´ cu, and ttc mod qs2dv sq “ c ´ cv, we have

u1 ´ xc1, sy “ c ´ cv ´ xc ´ cu, sy .

Since c “ xb, ry ` y ` tq{2s ¨ m and c :“ Ar ` eu, where b :“ AJs ` e, we
can obtain the decryption is made by computing

u1 ´ xc1, sy “ xe, ry ` y ´ xs, euy ´ cv ` xs, cuy ` tq{2s ¨ m .

It means that when ℓ8-norm of the decryption error is no less than tq{4s, i.e.,
}xe, ry ` y ´ xs, euy ´ cv ` xs, cuy}8 ě tq{4s, the decryption will fail. Thus, the
probability ζ is no more than the probability of decryption failure. [\

Theorem G.6 (Security). Let m,n, d, q,N, ν be positive integers parameters.
Let σ, σ0, σ1 be Gaussian width parameters. Let the positive real matrices Σ1

and Σy be as Equation (4.5). Let the distribution S and the bound B be as
Equation (4.3) and (4.4) respectively. Let the distribution χ0 :“ DZpm`n`1qd,

?
Σ1

,
χ1 :“ DZNd,

?
Σy

, χ̄ :“ UpSνq. Suppose Equation (4.1) and (4.2) hold.

Our PKE in Construction 4.4 is IND-CPAXR secure under the MLWER,n,m,q,χ̄

and MatrixHint-MLWEN,χ1,S
R,m`1,n,q,χ0

assumptions. More precisely, for any PPT
adversary A, there exist PPT adversaries B0, B1 against MLWE assumption and
Matrix Hint-MLWE assumption, such that

AdvIND-CPAXR

PKE,N,A pλq “ AdvMLWE
para0,B0

pλq ` AdvMatrixHint-MLWE
para1,B1

pλq

where para0 :“ pR, n,m, q, χ̄q and para1 :“ ppR,m ` 1, n, q, χ0q, pN,χ1,Sqq.

Proof. Let A be a PPT adversary against the IND-CPAXR security of our PKE as
defined in Figure 3. We upper bound the advantage of A by the following games.
Denote Ei as the event A wins Gamei. The games are described in Figure 22.

– Game0: The game is the real IND-CPAXR security game shown in Figure 3 so
that we have

PrrE0s “ Pr
”

GAMEIND-CPAXR

PKE,N,A pλq “ 1
ı

.
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Game GAMEIND-CPAXR

PKE,N,A pλq

pA0,A1,A2q Ð A
AÐ UpRmˆn

q q

ps˚, e˚
q Ð UpSm

ν q ˆ UpSn
ν q, b

˚ :“ AJs˚
` e˚

Ź Game0

uÐ UpRn
q q Ź Game1 – Game2

pm˚
0 ,m

˚
1 , stq Ð A0pA, u q

bÐ t0, 1u
pr, euq Ð Dn

σ0
ˆDm

σ0
, y˚

Ð Dσ1

c˚ :“ Ar` eu Ź Game0 – Game1
c˚ :“ xb˚, ry ` y˚

` t
q
2

s ¨m˚
b

pv, vq Ð UpRm`1
q q Ź Game2

ppbi, siqiPrNs, stq Ð A1p pv, tvs2dv q , stq

req: @i P rN s, pbi, siq P K
for all i P rN s

yi Ð Dσ1

ei :“ bi ´AJsi
hi :“ xr, eiy ´ xeu, siy ` yi

end for
b1
Ð A2pphiqiPrNs, stq

return rb “ b1
s

Fig. 22: The games for the proof of Theorem G.4.

– Game1: The game is the same as Game0 except that the challenger replaces
the public key b˚ by the uniformly random values u.
The public key b˚ is honestly generated, satisfying

b˚ “ AJs˚ ` e˚

where s˚ Ð χ̄m and e˚ Ð χ̄n.
Therefore, the adversary A cannot distinguish between the challenger’s public
key b˚ and the uniformly random values u under the MLWE assumption.
There exists an adversary B0 with about the same running time as that of A
such that

|PrrE1s ´ PrrE0s| “ AdvMLWE
para0,B0

pλq

where para0 :“ pR, n,m, q, χ̄q.
– Game2: The game is the same as Game1 except that the challenger modifies

how the challenge ciphertext pc˚, c˚q is generated.
At a high level, the challenger replaces the challenge ciphertext pc˚, c˚q by the
uniformly random values pv, vq Ð UpRm`1

q q and the hints phiqiPrNs can be
interpreted as the hints for the secret of Matrix Hint-MLWE assumption. We
show how to reduce this modification to the Matrix Hint-MLWE assumption
as follows.
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Denote the column vector ŷ “ pyiqiPrNs which is the concatenations of yi in
row-wise. Denote the column vector r̃ and row vector γi for each i P rN s as

r̃ :“

¨

˝

y˚

eu
r

˛

‚, γi :“
`

0 || ´ psiq
J|| peiq

J
˘

and the hints can be rewritten as hi “ γir̃ ` yi for i P rN s. Denote the
concatenation of γi and hi for i P rN s in row-wise as R :“ pγiqiPrNs and
h :“ phiqiPrNs respectively, we have

h “ Rr̃ ` ŷ

where R, r̃, and ŷ are over the distributions of S, χ0, and χ1 respectively.
Note that the challenger will check the public-private key pairs provided by
the adversary and if there exists ps˚

i , e
˚
i q R Smν ˆ Snν , the challenger aborts

the game and outputs K. Thus, h can be seen as the hint of secret vector r̃
for the matrix R with ℓ :“ N . And the challenge ciphertext pc˚, c˚q can be
represented as

ˆ

Im`1

ˇ

ˇ

ˇ

ˇ

uJ

A

˙

¨ r̃ `

ˆX

q
2

T

¨ m˚
b

0

˙

“

ˆ

c˚

c˚

˙

.

It leads that even the adversary A can get the hint vector h, the MLWE
instance of r̃, i.e., pc˚, c˚q, is still indistinguished to the uniformly random

values pv, vq Ð UpRm`1
q q under MatrixHint-MLWEk,χ1,S

R,m`1,n,q,χ0
assumption.

Therefore, there exists an adversary B1 with about the same running time as
that of A such that

|PrrE2s ´ PrrE1s| “ AdvMatrixHint-MLWE
para1,B1

pλq

where para1 :“ ppR,m ` 1, n, q, χ0q, pN,χ1,Sqq.
Furthermore, in Game2, the ciphertext output by the challenger is independent
of the challenge bit b and therefore we have

PrrE2s “
1

2
.

Collecting all the games from Game0 to Game3, we get the required bound. [\

G.4 Proofs for XR-KEM

Extended Reproducibility. We show the extended reproducibility of our
construction as follows.

Theorem G.7 (Extended Reproducibility). For any positive integer N ,
our KEM in Construction 4.8 is extended reproducible. More precisely, for the
extended reproducible game in Figure 2, the following probability holds,

Pr
”

Gameext-reprKEM,Rep,N pλq “ 1
ı

“ 1.
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Proof. The proof is analogous to Theorem 4.5. Suppose pct˚ :“ pc, u˚q,K˚ :“
µ˚q Ð EncappA,b˚q with randomness r0 :“ pr, euq, r̂˚ :“ y˚, where we have

c “ Ar ` eu, (G.18)

u˚ “
@

dbl
`

xb˚, ry ` y˚
˘D

2
, and µ˚ “

X

dbl
`

xb˚, ry ` y˚
˘T

2
. For each i P rN s, the

public key bi Ð KGenpAq. Thus, we have

bi “ AJsi ` ei. (G.19)

For the hints phiqiPrNs Ð HintGenppr, euq, pbi, eiqiPrNs, pyiqiPrNsq, we have

hi “ xr, eiy ´ xeu, siy ` yi. (G.20)

On input hi, Repppc, u˚q,bi, si, hiq outputs the reproduced ciphertext pc, uiq for
bi, where

ui “
@

dbl
`

xc, siy ` hi

˘D

2
. (G.21)

When plugging Equation (G.18), Equation (G.19), Equation (G.20) into Equa-
tion (G.21), we have

ui “
@

dbl
`

xbi, ry ` yi
˘D

2
, µi “

X

dbl
`

xbi, ry ` yi
˘T

2

which are the same as the outputs from EncappA,bi; pr, euq, yiq.
Overall, we get the extended reproducibility of our construction. [\

Correctness. We set Compresspxq “ tx mod qs2du and Decompresspxq “ tx
mod 2dusq. Like our XR-PKE, here, we mainly consider the case that the key-
independent ciphertext is compressed and then decompressed before the decryp-
tion, as done in mmKEM compiler of Construction B.2.

Theorem G.8 (Correctness). Let e, s, r, eu, y be random variables that have
the corresponding distribution as in Construction 4.8. Denote ζ as

Pr
”
›

›

›
2
´

xe, ry ` y ´ xs, euy ` xs, cuy

¯

´ ē
›

›

›

8
ě

q

4

ı

where cu :“ c´ ttc mod qs2du sq P Rm, and ē denotes the error in dblpcq function.
We say our Construction 4.8 is ζ-correct.

Proof. Considering the compression and decompression of independent ciphertext
c, the value c (renamed as c1) in Decap algorithm is

c1 :“ t t c mod q s2du sq .

One can observe that the decapsulation is made via reconciliation mechanism.
It means that the decapsulation succeeds if and only if the following equation
holds,

t c̄ s2 “ rec
`

2 ¨ xc1, sy, x c̄ y2
˘

.
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By Lemma 2.2, recp¨, ¨q works if the following holds,

} c̄ ´ 2 ¨ xc1, sy mod 2q }8 ă
2q

8
“

q

4
.

Plugging c̄ “ dblpcq “ 2c ´ ē and c1 “ c ´ cu, the above inequality is equivalent
to

} 2c ´ ē ´ 2 ¨ xc ´ cu, sy }8 ă
q

4
.

Since the value of c :“ xb, ry ` y in Encapd algorithm where the value of b :“
AJs ` e, we can obtain

2c ´ ē ´ 2 ¨ xc ´ cu, sy “ 2
´

xe, ry ` y ´ xs, euy ` xs, cuy

¯

´ ē.

It means that when ℓ8-norm of the decapsulation error is no less than q{4,
i.e., }2pxe, ry `y´ xs, euy ` xcu, syq ´ ē}8 ě q{4, the decapsulation will fail. Thus,
the value ζ is no more than the probability of decapsulation failure. [\

Security. We show that our Construction 4.8 is IND-CPAXR secure if the MLWE
assumption and the Matrix Hint-MLWE assumption are hard.

Theorem G.9 (Security). Let m,n, d, q,N, ν be positive integers parameters.
Let σ, σ0, σ1 be Gaussian width parameters. Let the positive real matrices Σ1

and Σy be as Equation (4.5). Let the distribution S and the bound B be as
Equation (4.3) and (4.4) respectively. Let the distribution χ0 :“ DZpm`n`Nqd,

?
Σ1

,
χ1 :“ DZNd,

?
Σy

, χ̄ :“ UpSνq. Suppose Equation (4.1) and (4.2) hold.

Our KEM in Construction 4.8 is IND-CPAXR secure under the MLWER,n,m,q,χ̄

and MatrixHint-MLWEN,χ1,S
R,m`1,n,q,χ0

assumptions. More precisely, for any PPT
adversary A, there exist PPT adversaries B0, B1 against MLWE assumption and
Matrix Hint-MLWE assumption, such that

AdvIND-CPAXR

KEM,N,A pλq “ 2
´

AdvMLWE
para0,B0

pλq ` AdvMatrixHint-MLWE
para1,B1

pλq

¯

where para0 :“ pR, n,m, q, χ̄q and para1 :“ ppR,m ` 1, n, q, χ0q, pN, χ1,Sqq.

Proof. The proof is analogous to Theorem 4.7. Let A be a PPT adversary against
the IND-CPAXR security of our KEM as defined in Figure 15. We upper bound
the advantage of A by the following games where the first and last game are

GAMEIND-CPAXR

KEM,N,0,Apλq and GAMEIND-CPAXR

KEM,N,1,Apλq, respectively. Denote Ei as the event
that A wins the game Gamei. Game0 – Game3 are described in Figure 23.

– Game0: The game is the real IND-CPAXR security game shown in Figure 15
with the challenger bit b “ 0 so that we have

PrrE0s “ Pr
”

GAMEIND-CPAXR

KEM,N,0,Apλq “ 1
ı

.

– Game1: The game is the same as Game0 except that the challenger replaces
the public key b˚ by the uniformly random values u Ð UpRn

q q.

68



Game GAMEIND-CPAXR

KEM,N,0,Apλq

pA0,A1q Ð A
AÐ UpRmˆn

q q

ps˚, e˚
q Ð UpSm

ν q ˆ UpSn
ν q, b

˚ :“ AJs˚
` e˚

Ź Game0

uÐ UpRn
q q Ź Game1 – Game3

pr, euq Ð Dσ0 ˆDσ0

y˚
Ð Dσ1

c˚ :“ Ar` eu Ź Game0 – Game1
c˚ :“ xb˚, ry ` y˚

c̄˚ :“ dblpc˚
q, u˚ :“ xc̄˚

y2, µ
˚
0 :“ tc̄˚

s2

pv, vq Ð UpRm`1
q q Ź Game2 – Game3

µ˚
0 Ð UpMq

ppbi, siqiPrNs, stq Ð A0p pv, xdblpvqy2q, µ
˚
0 , stq

req: @i P rN s, pbi, siq P K
for all i P rN s

yi Ð Dσ1

ei :“ bi ´AJsi
hi :“ xr, eiy ´ xeu, siy ` yi

end for
b1
Ð A1pphiqiPrNs, stq

return rb1
“ 0s

Fig. 23: Game0 – Game3 for the proof of Theorem G.9.

The public key b˚ is honestly generated by the challenger, satisfying

b˚ “ AJs˚ ` e˚ (G.22)

where s˚ Ð χ̄m and e˚ Ð χ̄n.

Therefore, the adversary A cannot distinguish between the challenger’s public
key b˚ and the uniformly random values u under the MLWE assumption.
There exists an adversary B0 with about the same running time as that of A
such that

|PrrE1s ´ PrrE0s| “ AdvMLWE
para0,B0

pλq

where para0 :“ pR, n,m, q, χ̄q

– Game2: The game is the same as Game1 except that the challenger modifies
how the challenge ciphertext pc˚, c˚q is generated.

At a high level, the challenger replaces the challenge ciphertext pc˚, c˚q by the
uniformly random values pv, vq Ð UpRm`1

q q and the hints phiqiPrNs can be
interpreted as the hints for the secret of Matrix Hint-MLWE assumption. We
show how to reduce this modification to the Matrix Hint-MLWE assumption
as follows.
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Denote the column vector ŷ “ pyiqiPrNs which is the concatenations of yi in
row-wise. Denote the column vector r̃ and row vector γi for each i P rN s as

r̃ :“

¨

˝

y˚

eu
r

˛

‚, γi :“
`

0 || ´ psiq
J|| peiq

J
˘

and the hints can be rewritten as hi “ γir̃ ` yi for i P rN s. Denote the
concatenation of γi and hi for i P rN s in row-wise as R :“ pγiqiPrNs and
h :“ phiqiPrNs respectively, we have

h “ Rr̃ ` ŷ

where R, r̃, and ŷ are over the distributions of S, χ0, and χ1 respectively.

Note that the challenger will check the public-private key pairs provided by
the adversary and if there exists ps˚

i , e
˚
i q R Smν ˆ Snν , the challenger aborts

the game and outputs K. Thus, h can be seen as the hint of secret vector r̃
for the matrix R with ℓ :“ N . And the challenge ciphertext pc˚, c˚q can be
represented as

ˆ

Im`1

ˇ

ˇ

ˇ

ˇ

uJ

A

˙

¨ r̃ “

ˆ

c˚

c˚

˙

.

It leads that even the adversary A can get the hint vector h, the MLWE
instance of r̃, i.e., pc˚, c˚q, is still indistinguished to the uniformly random

values pv, vq Ð UpRm`1
q q under MatrixHint-MLWEk,χ1,S

R,m`1,n,q,χ0
assumption.

Therefore, there exists an adversary B1 with about the same running time as
that of A such that

|PrrE2s ´ PrrE1s| “ AdvMatrixHint-MLWE
para1,B1

pλq

where para1 :“ ppR,m ` 1, n, q, χ0q, pN,χ1,Sqq.

– Game3: The game is the same as Game2 except that the challenger replaces
the encapsulated key µ˚

0 by the key uniformly randomly sampled from the
encapsulated key space M.

One can observe that in Game2, the key-dependent ciphertext c˚ is replaced
by the uniformly random value v Ð UpRqq, then the encapsulated key is
generated by µ˚

0 :“ tdblpvqs2.

Therefore, by Lemma 2.1, µ˚
0 :“ tdblpvqs2 is uniformly random conditioned

on u˚ “ xdblpvqy2. Therefore, when we replace the encapsulated key by
µ˚
0 Ð UpMq where M :“ R2, one can observe that

PrrE3s “ PrrE2s.

Note that right now, the way of generating the encapsulated key µ˚
0 is exactly

the same as µ˚
1 . In the rest of games, we are going to switch to the real

IND-CPAXR security game with challenge bit b “ 1 following the same ways
in the games from Game1 to Game2.
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– Game4: The game is the same as Game3 except that the challenger modifies
how the challenge ciphertext pc˚, c˚q is generated.
Specifically, the challenger generates the challenge ciphertext pc˚, c˚q as
c˚ :“ Ar ` eu and c˚ :“ xb˚, ry ` y˚. As the proof in Game2, we have

|PrrE4s ´ PrrE3s| “ AdvMatrixHint-MLWE
para1,B1

pλq

where para1 :“ ppR,m ` 1, n, q, χ0q, pN,χ1,Sqq.
– Game5: The game is the same as Game4 except that the challenger changes

how the public key b˚ is generated.
Specifically, the challenger generates the public key b˚ as Equation (G.22).
As the proof in Game1, we have

|PrrE5s ´ PrrE4s| “ AdvMLWE
para0,B0

pλq

where para0 :“ pR, n,m, q, χ̄q.
For now, one can observe that Game5 is exactly the same as the real
IND-CPAXR security game with challenge bit b “ 1. Thus, we have

PrrE5s “ Pr
”

GAMEIND-CPAXR

KEM,N,1,Apλq “ 1
ı

.

Collecting all the games from Game0 to Game5, we get the required bound. [\

G.5 Security Proof for KOSK Compiler

We restate Theorem4.11 below and provide its formal proof.

Theorem G.10 (Security). For ATK P tCPA,CCAu, if mmPKE1 is mmIND-
ATKKOSK secure and Π is a NIZK argument system satisfies correctness, multi-
proof extractability and zero knowledge, our mmPKE Ð CompKOSK

rmmPKE1,Πs

output by Construction 4.10 is mmIND-ATK secure.

Proof. The proof is similar to [13, Theorem 8.3], especially on the use of multi-
proof extractability. Suppose there is a PPT adversary A :“ pA0,A1,A2q which
wins the mmIND-ATK security game of mmPKE with non-negligible probability
ϵ. Suppose A makes at most QH queries to the random oracles H. Without loss
of generality, assume that A never repeats a random oracle query.

We prove the statement by introducing a sequence of games. Denote Ei as
the event A wins Gamei. The games are described in Figure 24.

– Game0: The game is the real mmIND-ATK security game of mmPKE Ð

CompKOSK
rmmPKE1,Πs shown in Figure 11. Here, by definition we have

PrrE0s “ ϵ.

– Game1: The game is the same as Game0 except that we generate the proof
pπiqiPrℓs by the simulator Sim1. It is easy to see that Game1 and Game0 are
indistinguishable by the zero-knowledge property of Π, i.e., one can construct
a PPT adversary B0 such that

PrrE1s ě PrrE0s ´ ℓ ¨ AdvZKΠ,B0
pλq “ PrrE0s ´ neglpλq.
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– Game2: The game is the same as Game1 except that we program the output
of Hp0q from crsΠ to ĂcrsΠ where pĂcrsΠ, τq Ð Simcrsp1

λq. It can be checked
that Game2 and Game1 are indistinguishable by the CRS indistinguishability
in multi-proof extractability. Specifically, there exists a PPT adversary B1

such that

PrrE2s ě PrrE1s ´ AdvcrsΠ,B1
pλq “ PrrE1s ´ neglpλq.

– Game3: The game is the same as Game2 except that we use the multi-proof
extractability of Π to extract the witnesses for all proofs pπiqiPrℓ:Ns that are
generated by the adversary A. More precisely, the reduction will run

ski Ð Multi-Extractp1λ, QH, Qs, 1{PrrE2s, τ, pki, πiq

where QH “ polypλq is the number of the random oracle queries by the
adversary A and Qs ď N is the number of statement-proof pairs ppki, πiq

generated by the adversary A.
Let Abortextract be the event that ppki, skiq R RΠ for some i P rQss. If
Abortextract occurs then the reduction aborts and overwrites the adversary’s
output to be K. We note that the reduction does not use the extracted witness
in this game.
Arguing identically as in [59, Lemma 3.6] and assuming that PrrE2s is non-
negligible, the runtime of the reduction is still polypλq and also

PrrE3s ě
1

2
PrrE2s ´ neglpλq.

– Game4: The game is the same as Game3 except that we generate pp1, ppkiqiPrℓs,

and ct by the challenger C in mmIND-ATKKOSK security game of mmPKE1.
Specifically, we first forward the value ℓ from the adversary A to the challenger
C and get ppkiqiPrℓs from the challenger C. Then, we run the simulator to
obtain pπiqiPrℓs. After sending them to A, we can obtain ppki, πiqiPrℓ:Ns and
pm0

i ,m
1
i qiPrℓs, pmiqiPrℓ:Ns from A. With the multi-proof extractor, the private

key ski of the public key pki generated by A can be extracted. We send
the extracted private key along with the public key, and the two challenge
message vectors pm0

i ,m
1
i qiPrℓs and pmiqiPrℓ:Ns provided by A to C and receive

the challenge ciphertext ct from C. After forward ct to A, we can obtain the
guess bit b1 from A and set the guess bit for C.
One can observe Game4 is the same as Game3, i.e.,

PrrE4s “ PrrE3s

and also Game4 is the mmIND-ATKKOSK security game of mmPKE1. Thus,
there exists an adversary B2 with about the same running time as that of A
such that

PrrE4s “ AdvmmIND-ATKKOSK

mmPKE1,N,B2
pλq

Collecting all the games from Game0 to Game4, we get the mmIND-ATK security
of mmPKE. [\
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Game GAMEmmIND-CCA
mmPKE,N,Apλq

pA0,A1,A2q Ð A

pp1
Ð mmPKE1.mmSetupp1λ, Nq Ź Game0 – Game3

pp1
Ð Cp1λ, Nq Ź Game4

crsΠ Ð Π.Setupp1λq Ź Game0 – Game1
pĂcrsΠ, τq Ð Simcrsp1

λ
q Ź Game2 – Game4

pℓ, stq Ð A0ppp
1, crsΠq

ppkiqiPrℓs Ð Cpℓq Ź Game4
for all i P rℓs
ppki, skiq Ð mmPKE1.mmKGenppp1

q Ź Game0 – Game3
πi Ð Π.ProveHpcrsΠ, ppp

1, pkiq, skiq Ź Game0
πi Ð Sim1pcrsΠ, ppp

1, pkiqq Ź Game1 – Game4
end for

ppm0
i ,m

1
i qiPrℓs, pmiqiPrℓ:Ns, ppki, πiqiPrℓ:Ns, stq{K Ð ADec0

1 pppki, πiqiPrℓs, stq
req: @i P rℓs, |m0

i | “ |m
1
i |

req: @i P rℓ : N s, Π.VerifypcrsΠ, ppp
1, pkiq, πiq “ 1

bÐ t0, 1u
ctÐ mmPKE1.mmEncppp1, ppkiqiPrNs, pm

b
i qiPrℓs, pmiqiPrℓ:Nsq Ź Game0 – Game3

for all i P rℓ : N s
ski Ð Multi-Extractp1λ, QH, Qs, 1{PrrE2s, τ, pki, πiq Ź Game3 – Game4
req: ppki, skiq P mmPKE1.K

end for
ctÐ Cppm0

i ,m
1
i qiPrℓs, pmiqiPrℓ:Ns, ppki, skiqiPrℓ:Nsq Ź Game4

b1
Ð ADec1

2 pct, stq
return rb “ b1

s

Oracle Dec0pi, ctq

req: i P rℓs
mÐ mmPKE1.mmDecppp, ski, ctq

mÐ C.Dec0pi, ctq Ź Game4

return m

Oracle Dec1pi, ctq

req: i P rℓs
req: ct ‰ mmExtpct, iq
mÐ mmPKE1.mmDecppp, ski, ctq

mÐ C.Dec2pi, ctq Ź Game4

return m

Fig. 24: Game0 - Game4 for the proof of Theorem G.10. For ATK “ CPA, the
adversary A does not have the access to decryption oracles Dec0 and Dec1.

G.6 Security Proof for Adaptive Security Compiler

We restate Theorem D.2 below and provide their formal proofs.

Theorem G.11 (Security). If mmPKE1 is mmIND-CPA secure and Π1 is a
NIZK argument system satisfies correctness, zero knowledge, and simulation
soundness, our mmPKE Ð CompCCArmmPKE1,Π1s output by Construction D.1 is
mmIND-CCACor secure.

Proof. Let A be an PPT adversary against the mmIND-CCACor security of
mmPKE. We define the following sequence of games where the first and last
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game are the game GAMEmmIND-CCACor

mmPKE,N,0,Apλq and GAMEmmIND-CCACor

mmPKE,N,1,Apλq, respectively.
Denote Ei as the event that A wins the game Gamei.

– Game0: The game is the real security game GAMEmmIND-CCACor

mmPKE,N,0,Apλq shown in
Figure 11 with the challenge bit b “ 0. It means that the challenger encrypts
the messages pm0

i qiPrℓs and pmiqiPrℓ:Ns to the challenge ciphertext ct.

PrrE0s “ Pr
”

GAMEmmIND-CCACor

mmPKE,N,0,Apλq “ 1
ı

.

– Game1: The game is the same as Game0 except that the challenger simulates
the proof pπiqiPrNs in the ciphertext ct by the simulator Sim1 as shown in
Figure 25.
Hence, there exists a reduction B0 to the computational zero knowledge of
Π1 such that

|PrrE1s ´ PrrE0s| ď N ¨ AdvZKΠ1,B0
pλq.

– Game2: The game is the same as Game1 except that the challenger switches

pm0
i qiPrNs to pm1

i qiPrNs in ppct
piq
0 qiPrNs, the first key-dependent ciphertext of

ppcti :“ ppct
piq
0 , pct

piq
1 qqiPrNs, as shown in Figure 25. Note that here we set

m0
i “ m1

i “ mi for i P rℓ : N s to simplify the presentation.

r0 Ð Di, ct0 Ð mmPKE1.mmEnc
i
ppp; r0q

β⃗ :“ pβiqiPrNs Ð t0, 1uN

for all i P rN s

r̂piq

0 , r̂piq

1 Ð Dd

pct
piq

0 Ð mmPKE1.mmEnc
d
ppp, pkpiq

βi
, m1

i ; r0, r̂
piq

βi
q Ź Game2

pct
piq

1 Ð mmPKE1.mmEnc
d
ppp, pkpiq

1´βi
, m0

i ; r0, r̂
piq

1´βi
q Ź Game2

πi Ð Sim1pcrsΠ1 , ppp1, pkpiq

0 , pkpiq

1 , pct, pct
piq

0 , pct
piq

1 , βiqq Ź Game1 - Game2

pcti :“ ppct
piq

0 , pct
piq

1 q

end for
return ct :“ pct0, ppctiqiPrNs, β⃗, pπiqiPrNsq

Fig. 25: Game1 and Game2 for the proof of Theorem G.11.

Let BAD be the event that the adversary A can make a valid but improper
query (e.g., double encryption for different message) to the decryption oracle
(different from the challenge ciphertext ct). If BAD happens, we abort the
reduction. We claim that there exists an reduction algorithm B1 whose
running time is about the same as A, such that

|PrrE2s ´ PrrE1s| ď AdvmmIND-CPA
mmPKE1,2N,B1

pλq ` PrrBADs.

The reduction B1 is described in Figure 26.
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The proof is a combination between the proof in [5, 33, 35] and [51, 61].
Roughly, B1 combines two key-dependent ciphertext of mmPKE1 to form the
ciphertext of mmPKE, which one is encrypted by the public keys from B1’s
challenger and the other is encrypted by the public keys from B1 itself. B1 will
switch the message pm0

i qiPrNs to pm1
i qiPrNs in the key-dependent ciphertext

encrypted by its challenger’s public key. If A can identify the modification,
B1 can utilize A to break the mmIND-CPA security of mmPKE1.

Specifically, after receiving ℓ public keys ppk˚
i qiPrℓs from the challenger of

mmPKE1, B1 picks these ℓ public keys as the part of the public keys for
mmPKE and generates the rest ℓ public-private key pair ppk1

i, sk
1
iqiPrℓs by

itself. To decide which one of the two pubic keys in each public keys pki of
mmPKE is from the challenger, B1 tosses a random bit αi: if αi “ 0, then
pki :“ ppk˚

i , pk
1
iq; otherwise, pki :“ ppk1

i, pk
˚
i q. Then, like Game1, B1 runs the

simulator to get pppΠ1 , τq Ð Sim0 and sends the public parameter along with
the public keys to the adversary A.

To handle the corruption query, B1 can just flip the random bit αi in the
private key and provide the private key corresponding to public key generated
by itself as the respond. And the adversary A cannot distinguish between
the two public key since the random bit αi in each uncorrupted private key
is information-theoretically hiding to A.

To handle the decryption query, B1 can use the private key generated by
itself to decrypt the ciphertext. If BAD does not happen, it means that the
adversary A cannot generate a valid proof for a ciphertext with different
message to distinguish between the two public keys, even after seeing the
simulated proof in the challenge ciphertext ct. Thus, we can bound PrrBADs

by constructing a reduction B2 to the computational simulation soundness of
Π1, i.e.,

PrrBADs ď QD ¨ AdvSSΠ1,B2
pλq

where QD denotes the number of the adversary A’s queries to the decryption
oracles Dec0 and Dec1.

To encrypt the challenge ciphertext, after receiving the public keys and
message chosen by the adversary A, B1 set β⃗ :“ α⃗ for switching the public
keys during the encryption. It leads that the first key-dependent ciphertext

pct
piq
0 in each key-dependent ciphertext ppct

piq
0 , pct

piq
1 q of mmPKE is encrypted

by the challenger’s public key. Since these cases are exclusive, αi or βi is
uniformly random in A’s view. After sending the public keys along with the
two message vectors to its challenger, B1 obtains the ciphertext from its
challenger. Like Game1, B1 runs the simulator to obtain the proof πi Ð Sim1

for each i P rN s. The challenge ciphertext with the proofs are sent to the
adversary A.

In the end, B1 uses the guess bit b1 from A to break the mmIND-CPA security
of mmPKE1. Thus, if mmPKE1 is mmIND-CPA secure, the adversary A cannot
know whether B1 switches the message m0 to m1 or not in the first key-
dependent ciphertext. We get the above bound.
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– Game3: The game is the same as Game2 except that the challenger switches

pm0
i qiPrNs to pm1

i qiPrNs in ppct
piq
1 qiPrNs, the second key-dependent ciphertext of

ppcti :“ ppct
piq
0 , pct

piq
1 qqiPrNs.

If mmPKE1 is mmIND-CPA secure, the adversary A is indistinguished between
Game2 and Game3. We claim that there exists an reduction algorithm B3

whose running time is about the same as A, such that

|PrrE3s ´ PrrE2s| ď AdvmmIND-CPA
mmPKE1,2N,B3

pλq ` PrrBADs.

The reduction B3 is analogous to B1 in Game1 except that the challenger’s
public key is the second one in the public key of mmPKE.

– Game4: The game is the same as Game3 except that the challenger generates
the proof pπiqiPrNs in the ciphertext ct by Π1.Prove. Hence, there exists a
reduction B4 to the computational zero knowledge of Π1 such that

|PrrE4s ´ PrrE3s| ď N ¨ AdvZKΠ1,B4
pλq.

Finally, Game4 is the mmIND-CCACor security game with the challenge bit
b “ 1. And if the honestly generated proof πi is not valid, the reduction
aborts. Thus, we have

PrrE4s “ Pr
”

GAMEmmIND-CCACor

mmPKE,N,1,Apλq “ 1
ı

.

Collecting all the games from Game0 to Game4, we get the mmIND-CCACor

security of mmPKE. [\
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Reduction B1

pA0,A1,A2q Ð A
pp˚

Ð mmPKE1.Cp2Nq
crsΠ1 Ð Π1.Setupp1λq
pℓ, stq Ð A0ppp

˚, crsΠ1q

req: ℓ P rN s
ppk˚

i qiPrℓs Ð mmPKE1.Cpℓq
α⃗ :“ pα0, . . . .αN´1q Ð t0, 1uN

for all i P rℓs

ppk1
i, sk

1
iq Ð mmPKE1.mmKGenppp˚

q

if αi “ 0 do pki :“ ppk
˚
i , pk

1
iq else pki :“ ppk

1
i, pk

˚
i q

ski :“ p1´ αi, sk
1
iq

end for
CorÐH

ppm0
i ,m

1
i qiPrℓs, pmiqiPrℓ:Ns, ppkiqiPrℓ:Ns, stq Ð ACor,Dec0

1 p pp :“ ppp˚, crsΠ1q , ppkiqiPrℓsq

β⃗ :“ α⃗

for all i P rℓ : N s do rmi :“ mi, rmN`i :“ mi

for all i P rℓs do rm0
i :“ m0

i , rm1
i :“ m1

i , rmN`i :“ m0
i

for all i P rℓs do ĂpkN`i :“ pk1
i

for all i P rℓ : N s
ppk:

i,0, pk
:

i,1q Ð pki

Ăpki :“ pk:

i,βi
; ĂpkN`i :“ pk:

i,1´βi

end for
pct0, prctiqiPr2Nsq Ð mmPKE1.CppĂpkiqiPrℓ:2Ns, prm

0
i , rm

1
i qiPrℓs, prmiqiPrℓ:2Nsq

for all i P rℓs do pk:

i,αi
:“ pk˚

i , pk:

i,1´αi
:“ pk1

i

for all i P rN s

ppct
piq

βi
, pct

piq

1´βi
q :“ prcti, rctN`iq

πi Ð Sim1pcrsΠ1 , ppp1, pk:

i,0, pk
:

i,1, ct0, pct
piq

0 , pct
piq

1 , βiqq

end for
b1
Ð ACor,Dec1

2 pct :“ pct0, ppct
piq

0 , pct
piq

1 qiPrNs, β⃗, pπiqiPrNsq, stq
req: @i P rℓs, m0

i “ m1
i _ ppki R Cor ^ |m0

i | “ |m
1
i |q

return b1

Oracle Corpiq

req: i P rℓs
Cor` Ð i

return p1´ αi, sk
1
iq

Oracle Decbtpi, ctq

req: i P rℓs
pct0, pct0, pct1, π, βq Ð ct
req: Π1.VerifypcrsΠ1 , pp˚, pki, ct0, pct0, pct1, β, πq “ 1
if bt “ 1 req: ct ‰ mmExtpct, iq
mÐ mmPKE1.mmDecppp, sk1

i, ppct, pct1´αiqq

return m

Fig. 26: The reduction B1 using a distinguisher A between Game1 and Game2 to
break the mmIND-CPA security of mmPKE1 in Theorem G.11. Decbt oracle is
assigned to Abt for bt P t0, 1u. The parts where B1’s operations are different from

mmIND-CCACor security game are marked by boxes .
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