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Abstract

Users increasingly store their data in the cloud, thereby benefiting from easy access, sharing,
and redundancy. To additionally guarantee security of the outsourced data even against a server
compromise, some service providers have started to offer end-to-end encrypted (E2EE) cloud
storage. With this cryptographic protection, only legitimate owners can read or modify the
data. However, recent attacks on the largest E2EE providers have highlighted the lack of solid
foundations for this emerging type of service.

In this paper, we address this shortcoming by initiating the formal study of E2EE cloud
storage. We give a formal syntax to capture the core functionality of a cloud storage system,
capturing the real-world complexity of such a system’s constituent interactive protocols. We then
define game-based security notions for confidentiality and integrity of a cloud storage system
against a fully malicious server. We treat both selective and fully adaptive client compromises.
Our notions are informed by recent attacks on E2EE cloud storage providers. In particular
we show that our syntax is rich enough to capture the core functionality of MEGA and that
recent attacks on it arise as violations of our security notions. Finally, we present an E2EE cloud
storage system that provides all core functionalities and that is both efficient and provably secure
with respect to our selective security notions. Along the way, we discuss challenges on the path
towards bringing the security of cloud storage up to par with other end-to-end primitives, such
as secure messaging and TLS.
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1 Introduction

The cloud, which outsources data storage and computation to third party services, is one of the
prevalent computing paradigms today. Our focus in this paper is on cloud storage. Aimed at
consumers and enterprises alike, cloud storage relieves users of worrying about backups and data
availability, and allows the data to be accessed from anywhere. But what about other security
properties, beyond availability? Users should be rightly concerned about the confidentiality and
integrity of their data too. Today the largest service providers such as Google and Microsoft ex-
pect users to trust them to look after these aspects on their behalf; data can be cryptographically
protected, but using keys under the control of the service provider. If the providers are ever com-
promised (or compelled to provide access by law enforcement agencies) then all security guarantees
may be voided.

However, there is an alternative approach for cloud storage, often referred to as End-to-End
Encryption (E2EE). Here, encryption is carried out by the users themselves – under keys that they
control – before uploading files to the cloud. If properly executed, this results in cryptographic
confidentiality and authenticity guarantees: The service provider may learn some metadata about
files, but nothing about the data content, nor can they modify individual files in an undetectable
manner, thanks to the integrity protection provided by the encryption. As a consequence, security
of users’ data is guaranteed even in the event of a compromise of the service. Ideally, these security
guarantees should continue to hold even against a fully malicious service provider, removing the
need for users to trust the providers with anything but the availability of their data.

A particular challenge for E2EE cloud storage is that key management is delegated from the
service provider to the individual user. But users, as humans, are not particularly good at memoriz-
ing the cryptographic key material necessary to access their data from anywhere. For this reason,
security in such services is typically bootstrapped from a user-memorable secret such as a password.
The reliance on passwords brings fundamental security limitations to E2EE cloud storage, since
a malicious server can always carry out variants of dictionary attacks. This risk can be partially
obviated with strong password policies, trading convenience for security.

The lack of trust in the service provider also brings other challenges for E2EE cloud storage
services. A primary feature target is file sharing : the capacity for a file’s owner to share access to
the file with selected other users. Services offering file sharing face another difficulty related to key
management. For the recipient to access the shared file, they need the relevant decryption keys.
But these keys cannot be sent unprotected via the service provider if the provider is not trusted.
Consequently, file sharing is typically done by encrypting the file key under the authenticated public
key of the recipient, or via some out-of-band mechanism.

Despite the challenges associated to combining strong security with usability, E2EE encrypted
cloud storage is on the rise. Prominent providers include MEGA [40], Nextcloud [48] and recently
also Apple, who added optional support for E2EE to iCloud in 2023 [4]. To illustrate their scale,
MEGA claims to have 300 million users and store more than 150 billion files, corresponding to 1000
petabytes of data [40]. Smaller E2EE providers (such as icedrive [42], pCloud [1], Seafile [43] and
Tresorit [52]) also exist in abundance, with tens of millions of users collectively.

This development should delight privacy-minded users. However, recent analyses have thrown
doubt on the security claims of MEGA and Nextcloud [6, 30, 3, 2] – the two largest providers
of E2EE cloud storage by default – finding multiple attacks on their E2EE security. While both
providers patched their systems quickly against the specific attacks, they still rely on complex, ad
hoc cryptographic designs that lack any formal security guarantees. The MEGA case is particularly
interesting – with so much data encrypted under keys known only to the users, migrating to more
secure cryptographic mechanisms proved to be infeasible, since re-encryption would require user
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participation. Hence, MEGA initially adopted a minimal approach to patching after the initial
attacks in [6], which was quickly found to be insufficient [3], leading to a second round of more
complex patching. The consequences for Nextcloud were even more dire: they were forced to turn
off their E2EE file sharing service altogether until a full redesign could be carried out, constituting
a significant feature regression [2].

These examples highlight the value of starting with a formally analyzed cryptographic design.
The security of the other above-mentioned providers is unknown, but all rely on proprietary designs
that are yet to be analyzed. Overall, our confidence in the security of E2EE cloud storage lags
far behind that of other E2EE applications such as messaging and browsing, which have seen
significantly more design input and analysis from the cryptographic research community.

1.1 Our Contributions

In this paper, we initiate the formal study of E2EE cloud storage. Our goal is to construct a solid
foundation on which we can build our understanding of its security, as a first step towards bringing
it up to par with other E2EE applications. We are driven by practicality – we want E2EE cloud
storage systems that are as efficient as those deployed today and with the same functionality. We
hence accept passwords as the basis of security. At the same time, we want to be able to formally
analyze the systems – we want security models that are rich enough to capture all the key features
of E2EE cloud storage, whilst still being tractable enough to use for proofs. We offer four main
contributions towards this goal:

1. We give a formal syntax capturing the core functionality of E2EE cloud storage. Our syntax
encompasses user registration and authentication, as well as upload, download and sharing
of files. Each of these operations is modeled as a stateful, potentially multi-round interactive
protocol executed between a client and a server. For file sharing, we modularize the out-of-
band component, allowing it to be instantiated in practice in a variety of different ways (e.g.,
by link sharing or the use of a PKI, if available).

2. We define game-based security notions for E2EE cloud storage, which we refer to as Client-to-
Client (C2C) security to emphasize that the end points are (user) clients. Our notions hence
focus on the setting where the adversary is a malicious service provider aiming to subvert
data confidentiality or file integrity. Our C2C models allow the adversary to interact in a
fine-grained manner with the clients of honest users. For example, it can execute a single step
of a protocol at a time (without running it to completion), arbitrarily interleave protocol runs
across users and functions, as well as deviate in any way from the honest behavior of the party
it emulates. The model additionally supports compromise of honest users. In tackling this
complexity, we took inspiration from the key exchange literature. We consider both selective
and adaptive versions of our C2C security notions; in the former, the set of compromised
users is specified up front by the adversary, while in the latter, the adversary can compromise
users in a fully adaptive manner.

3. We put our model to the test and use it to formally capture some of the recent attacks on
MEGA [6, 3, 30]. We thereby show that our framework is rich enough to model the complexity
of a deployed system, and that our notions capture practical attacks.

4. We present a provably secure E2EE cloud storage system called CSS. Our construction
makes use of standard components: an oblivious pseudorandom function (OPRF) called
2HashDH [32, 34] is used to convert a user’s password into a user-specific root key, a pseudo-
random function is then used to derive separate keys for (key) encryption and authentication
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from the root key. Finally, a nonce-based AEAD scheme is used to build a key hierarchy
(which allows password-rotation without file re-encryption): the key encryption key is used
to encrypt a user-specific master key, which in turn encrypts randomly sampled file keys, each
of which protect a single file. We prove the confidentiality and integrity of CSS in our selec-
tive C2C model, achieving bounds that reflect the unavoidable brute-force password attacks
by a malicious server. In principle, our CSS system, if implemented, would provide a fully
functional E2EE cloud storage system with proven security guarantees.

Finally, we point to many open problems and topics for future work.

1.2 On Modeling Choices

Our model is a formal answer to the question “what security should an end-to-end encrypted
cloud storage system provide?” At first glance, this seems to have a relatively simple solution,
one that is outright stated in the name of the system. The term “end-to-end encryption” denotes
confidentiality against a malicious service provider, and “cloud storage” suggests that users can
access their files with a high degree of reliability, tamper-resistance, and portability.

However, the intuitive notion that first emerges from these constraints might look very different
from our final definitions. In the abstract, a perfectly secure cloud storage system might register
clients by their passwords, then take in client files and release them unchanged only to authorized
clients, while revealing to the server only the number and length of files. We would like this perfect
security definition to include strong guarantees, including a treatment of adaptive corruption and
some protection against offline password-guessing attacks from external adversaries in the presence
of an honest service provider. Without concern for undue complexity, we might even go further
and also address advanced features like metadata hiding, key rotation, and forward security.

However, a good security definition also possesses two other properties: first, it should be
achievable by at least one practical system, and second, it should accommodate convincing and
legible proofs of security. It is in accomplishing these two goals that the “intuitive” notion described
above breaks down irretrievably. Our security definitions are the result of many carefully weighed
decisions and compromises that maximize feasibility, generality, and comprehensibility, while still
preserving the spirit of that first intuition.

The first significant choice is our use of a game-based model. Many password-based crypto-
graphic schemes prove security in simulation-based settings, most notably the universal compos-
ability (UC) framework [15]. Secure UC-realizable protocols emulate an “ideal functionality” that
captures the intended behavior of a protocol, with only unavoidable deviations from this ideal.
Because UC provides very strong security, not all ideal functionalities are realizable [18]. In partic-
ular, fully secure channels cannot be constructed without non-standard encryption primitives that
are not likely to see practical adoption [17]. Cloud storage systems experience the same obstacle to
UC realization as secure channels, and the UC technique used to build a “weakly-secure” channel
from standard primitives does not apply due to the use of passwords as the root of trust.

A similar problem arises in the treatment of adaptive security. Because we empower our ad-
versaries with decryption oracles, cloud storage, like encryption, requires attacks to identify their
targeted ciphertexts in advance. In our CSS system, some of these ciphertexts appear in the user
registration and authentication process to enable a practical key hierarchy, leading to so-called
commitment issues when simulating these operations for honest users in the proof. Hence, in order
for the reductions to hold, we need attackers to identify not only their target files but also the
users that they will compromise in advance. Due to file sharing, the loss in security from the stan-
dard technique for avoiding this (guessing the choices of the adversary, also known as complexity
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leveraging) would be exponential. The consequence is that we prove selective rather than adaptive
security for CSS; efficiently achieving the latter remains an open challenge.

To minimize complexity in our game-based model, we restrict ourselves to the core set of
features and security properties common to existing E2EE services. Even in the simplified setting,
complications arise when we consider that real-world attacks may interleave the various multi-step
subprotocols of a cloud storage system and attempt to exploit state confusion between simultaneous
operations of many users on many files. This type of non-atomic interchange also appears to a lesser
degree in many key exchange security models. A secure cloud storage system could in theory be
used to instantiate a key exchange protocol (simply put the key in a shared file!), so it is not
surprising that the complexity we encounter is (at least) as high as that of key exchange.

File sharing also adds significant complexity, as it allows interaction between honest and ma-
licious users, allowing malicious users to learn some plaintext without using decryption oracles.
Tracking this in the security model requires care. Furthermore, users may expect to be able to
share files without relying on a trusted service provider to authenticate the recipient. We idealize
this part of the system via an “out of band” (OOB) mechanism. This makes our model general
enough to capture many different choices of implementing such a channel, such as link sharing
(as in MEGA), using public key encryption (as in Nextcloud), or even sending keys over a secure
messenger.

We do make one choice that increases complexity, in service of future results. In our C2C
setting, a malicious server can eschew any steps a protocol takes to disambiguate clients. As a
consequence of this, we could obtain equivalent levels of security for CSS by using a salted hash
to convert user passwords into keys as we do by using a stronger primitive like an OPRF. But the
OPRF and its security properties will come to the fore in the external adversary setting; there
we expect CSS to limit password guesses to one per client login attempt (comparable to what one
hopes to achieve in a PAKE protocol).

1.3 Related Work

The reader may wonder: is E2EE cloud storage not already a solved problem? The short answer
is that while many schemes for cloud storage have been proposed in the literature, only some of
them address the E2EE problem, and few of them come with formal security analysis.

Table 1 lists properties covered by representative work from different areas. All of these works
propose cloud storage systems, in some cases with more advanced security features such as key
rotation, forward security, master key recovery, or metadata hiding. However, none of them offer a
formal security proof that models all core components of cloud storage. Many consider the server to
be honest (but curious), do not model file sharing, or ignore the security impact of outsourcing key
material to the server. One feature in particular emerges as unique to our work: the modeling of
non-atomic, multi-step protocols, with adversary-controlled arbitrary interleaving of protocol steps
in the security games. This adds significant complexity to our model, but in return captures the
interactive nature of cloud storage operations in practice.

Companies like Apple and Meta have recently launched systems providing encrypted backups
for user data with user-controlled encryption [4, 54]. There is no public specification or analysis
of E2EE in iCloud, but the WhatsApp backup system was formally analyzed in [24] using a UC
approach. The latter analysis does not model a fully-malicious server but relies on a (trusted)
hardware security module on the WhatsApp server instead. Like our CSS scheme, the WhatsApp
system uses an OPRF to derive keys from passwords. This usage prevents pre-computation attacks
on user passwords by snapshot adversaries, as well as offline attacks by an external adversary,
explaining its common appearance in their setting and ours. Backups by nature only pertain to a
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formal share pw mal m-sess non-atomic single advanced

SiRiUs [27]

DepSky [13]

Mylar [50]

Burnbox [53]

OKMS [36]

PFS [5]

Metal [22]

Titanium [21]

DPaSE [23]

PBCS [20]

This work

Table 1: Representative work from different areas and the features they consider: formal security analysis
(formal), file sharing (share), modeling password-based security (pw), considering malicious servers and users
(mal), key management across sessions on multiple devices (m-sess), non-atomic operations and arbitrary
interleavings (non-atomic), single server instead of requiring multiple servers, some of which are honest
(single), and advanced security guarantees (advanced) such as hiding access patterns and metadata, forward
security, or temporary access revocation. We denote missing, partially covered, and fully covered properties
with , , and , respectively.

single user, and hence do not need to address the complexity of file sharing.
The core idea of using an OPRF in these settings seems to date back to [25], which introduced the

concept of a “PRF as a service”, and proposed various applications using Partially Oblivious PRFs
(PO-PRFs), including enterprise password storage. Follow-up works propose password-hardened
encryption and key management services [39, 38, 36, 20, 23]. These are related to our notion of
E2EE cloud storage, but do not include the file sharing capability or key hierarchies to support
efficient password changes. While some of them suggest cloud storage as an application, most do
not specify in detail how files are encrypted. Moreover, none of these works seem to consider the
malicious server setting. See also [32, 37] for the use of OPRFs in password-based authentication
protocols. An excellent overview of OPRFs and their applications can be found in [19].

Closely related in (proof) techniques is the prior work on password-based encryption [9, 12].
While focused on simpler primitives, their techniques for capturing passwords in game-based se-
curity models assisted us in establishing the security achievable in password-based settings and in
developing the proofs of our proposed system.

2 Preliminaries

Notation. If w is a vector then |w| is its length (the number of its coordinates) and w[i] is its i-th
coordinate. By ε we denote the empty string or vector. By x ∥ y we denote the concatenation of
(bit-)strings x, y. Using a tuple (x, y) where a string is required indicates an unambiguous encoding
of (x, y) into a string. If S is a finite set, then |S| denotes it size. We use x ← a for assigning the
variable x to a, and let x←$ S denote picking an element of S uniformly at random and assigning
it to x. For conciseness, we use the bulk assignment x, y, z ← a as abbreviation for x← a, y ← a,
and z ← a. Furthermore, we use pattern matching to assign variables to elements of tuples, e.g.,
(x, (y, z)) ← (a, (b, c)) assigns x, y, and z to a, b, and c respectively. For sets S1 and S2, the
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shorthand S1
∪←− S2 denotes S1 ← S1 ∪ S2.

If A is an algorithm, we let y ← AO1,...(x1, . . .) denote running A on inputs x1, . . . with oracle
access to O1, . . ., and assigning the output to y. The output assignment of randomized algorithms
is denoted with y←$ AO1,...(x1, . . .). Running time is worst case, which for an algorithm with access
to oracles means across all possible replies from the oracles. We use ⊤ (top) and ⊥ (bot) as special
symbols, not in {0, 1}∗, to denote acceptance and rejection, respectively.

We use the notation T[k] ← v to denote storing the key-value pair (k, v) in table T. In case
k = ⊥, the lookup aborts. The keys are unique and reusing an existing key k overwrites the
previous value stored in T[k]. Table entries are assumed to be implicitly initialized to ⊥, such that
the comparison T[k] = ⊥ is well-defined (and evaluates to true when no entry for k was stored).
Furthermore, every table has the entry T[ε] = ε to map the empty index to an empty entry. We
use k ∈ T as shorthand for checking whether T[k] ̸= ⊥. Let |T| denote the number of key-value
pairs in the table. We use a dot (e.g., T[(k, ·)]) to denote a wildcard matching any element (here,
any tuple where element one is k).

We use the dot notation from object-oriented programming to access specific elements of a tuple
when the context is clear. For instance, to store a password pw and an account ID aid in a state
st, we write st ← (pw , aid) and access these values directly using st.pw and st.aid. Furthermore,
we use this notation to set values, e.g., st.sid ← sid appends a session ID sid to st. such that it
now stores (pw , aid, sid).

Games. We use the code-based game-playing framework of [11]. By GSec-b
S (A), we denote running

the game for security experiment Sec, parameterized by scheme S and (optionally) bit b ∈ {0, 1},
with adversary A. We denote the probability that the execution of game G results in the output y
as Pr [G(A)⇒ y ], and write just Pr [G ] for Pr [G(A)⇒ 1 ] and Pr [G(A)⇒ true ]. Our proofs are
in the random oracle model [10]. In games, this is modeled via an oracle ROi(v), which implements
lazy sampling for some random oracle Hi on input v.

In games, integer variables, set variables boolean variables and string variables are assumed
initialized, respectively, to 0, the empty set ∅, the boolean false and ε. We use global to mark
variables with global scope, i.e., accessible from all parts of the game, including oracles. The symbol
ιmal is reserved for tracking actions by the adversary and is assumed not to be in N.

3 A Framework for Cloud Storage

Our framework for cloud storage systems identifies seven core operations:

Account registration (areg). Register an account with the cloud storage server.

Session authentication (auth). Authenticate registered user and create a new (client) session to
interact with the server over the following operations.

File upload (put). Upload a file to the server.

File update (upd). Replace an existing file on the server.

File download (get). Retrieve a file from the server.

File share (share). Prepare sharing an existing file with another user.

Accept share (accept). Accept the sharing of a file by another user.
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Each of these operations generally involves an interaction between a client (session) and the cloud
storage server, which we will capture as interactive, message-based protocols. In our framework,
we explicitly treat the operations described above (and their expected security properties), but
the notation is generic and can be extended to cover further operations one might be interested
in when capturing systems that allow for, e.g., account deregistration, session deauthentication, or
password recovery mechanisms. In the following, we will first introduce a generic syntax that allows
us to capture all of the above protocols in a unified manner, then discuss the specific behavior and
inputs of each protocol.

3.1 Syntax

Syntactically, we consider a cloud storage scheme CS = (Πareg,Πauth,Πput,Πupd,Πget,Πshare,Πaccept)
to consist of the seven core protocols outlined above and described in detail in Section 3.2; see also
Table 2 for their minimal input-output behavior. Each of these is a two-party interactive protocol
executed between a client and a server, the formalities of which we define next.

Protocol steps. The execution of protocol Π involves Π.SN protocol steps overall, alternating
between client and server. We denote each round of the interaction as Π(C:i) and Π(S:i), for step i of
client and server, respectively. Syntactically, we write the i-th protocol step of a party P ∈ {C, S}
as

(stP , st
tmp
P , outP ,mout)←$ Π(P :i)(stP , st

tmp
P , [inP ,]min),

where stP and sttmp
P is the local (persistent resp. temporary/protocol) state of party P , inP is the

local input [present only in the first step, i = 1], min and mout is the incoming resp. outgoing
message of the protocol,1 and outP is the local output of party P . As a convention, we set empty
protocol inputs to ε.

For a first, rough example, a file download protocol Πget might, in step Π(C:1), take a file
identifier fid as client-side input inC and send that identifier to the server as part its output
message mout. The server step Π(S:1) then receives fid as message input min, might use it to look
up the corresponding file f in its persistent state stS , and send f back within its output message.
In step Π(C:2), the client would then receive the file f from the server in the input message min and
output that file to the user within outC .

We use the convention that the client sends the first message and the server sends the last
message. This restricts the syntax to client-initiated protocols, but we argue that it suffices to
model all operations relevant for the cryptographic core of a cloud storage protocol. For example,
our syntax cannot capture “pushing notifications” from the server to clients, say to inform the laptop
of a user that their phone just uploaded a new file. However, in most cases, such functionality can
be handled by the surrounding, non-cryptographic protocol: the cryptographic core functionality
can simply assume that it is known which files can be requested. Alternatively, if necessary for
security, a server-initiated operation can be modeled in our syntax by setting the first client message
to the empty message (effectively turning a “push” mechanism into “polling”).

Full execution. We write the full execution of the protocol Π on initial states stC , stS and inputs
inC , inS , of client and server respectively,2 as

(m, st′C , st
′
S , outC , outS)←$ ExecΠ(stC , stS , inC , inS).

1The input message min is empty, i.e., min = ε, for the initiating party in step i = 1.
2Note that the inputs inC and inS are only arguments to the first step of their respective protocols. We discuss the

reasons behind this choice and its implications in the general discussion of our cloud storage framework, Section 4.4.
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ExecΠ(stC , stS , inC , inS):

1 (stC , st
tmp
C , outC ,m[1])←$ Π(C:1)(stC , ε, inC , ε)

2 (stS , st
tmp
S , outS ,m[2])←$ Π(S:1)(stS , ε, inS ,m[1])

3 for i = 3, . . . ,Π.SN:

4 r ← ⌈i/2⌉ ; if i odd: P ← C else P ← S

5 if outP .dec = ⊥: (stP , sttmp
P , outP ,m[i])←$ Π(P :r)(stP , st

tmp
P ,m[i− 1])

6 return (m, stC , stS , outC , outS)

Figure 1: Execution ExecΠ of a protocol Π between client C and server S.

Protocol Inputs inC Outputs outC

Account registration Πareg aid, pw —
Session authentication Πauth aid, pw — (stC created)

File upload Πput fid, f —
File update Πupd fid, f —
File download Πget fid f
File share Πshare raid, fid oob
Accept share Πaccept fid, oob —

Table 2: Core protocols making up a cloud storage scheme CS, along with their mandatory client-side inputs
and outputs; see the detailed explanation in Section 3.2.

The output of the execution is a transcript m of the interaction, which is the sequence of messages
exchanged, the new persistent states st′C , st

′
S of the parties, and their respective outputs outC , outS .

As part of the output, the decision of party P ∈ {C, S} to accept or reject is encoded as outP .dec ∈
{true, false}.

We specify the details of ExecΠ in Figure 1: it calls the protocol for each party and relays
messages as long as parties have not finalized their decisions outP .dec. We will use this full (or
“atomic”) execution of a protocol Π to define correctness, where we assume that operations are
executed honestly and in sequential order (per client session). Later, when defining security, we
allow the adversary to arbitrarily and maliciously interleave protocol steps.

Termination. For more concise return statements in standard success or failure cases, we introduce
shorthands successP and failP for P ∈ {C, S} defined as

successP (mP ) : outP .dec ← true; return(stP , st
tmp
P , outP ,mP ),

failP : outP .dec ← false; return(stP , st
tmp
P , outP ,⊥),

where by convention successP := successP (⊤) returns the success symbol ⊤.
Failing procedures and operations – including failP , calls returning the error symbol ⊥, op-

erations on ⊥, and using index ⊥ for tables – propagate this failure through calling procedures
(comparable to program exceptions), causing the caller of the failing procedure to return failP .

3.2 The Protocols

Let us now describe the formalized core protocols of a cloud storage scheme CS in more detail.
Table 2 lists them along with their mandatory inputs and outputs.
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Registration and authentication. The account registration protocol Πareg creates a new user
in the system, represented by an account ID (e.g., an email address) provided by the client. It
expects that account ID aid as well as the user’s password pw as (minimal) client-side input
within inC and must be run before any other protocols can be run on behalf of that user.3 The
account registration protocol does not involve any persistent client session state yet (i.e., stC =
st′C = ε), as such state pertains only to active sessions.

A registered user can then run the authentication protocol Πauth to authenticate to the server
and initiate a new client session, again using account ID aid and password pw as client-side input,
and upon empty client state stC = ε. This creates a persistent client session state st′C , which is
shared among all protocols run within that session. A user can initiate multiple client sessions in
parallel (each holding their own state stC), which can concurrently access the user’s files in the
cloud storage.

All remaining protocols operating on files can only be called with non-empty client state stC (i.e.,
we implicitly require them to fail otherwise). Overall, this enforces that account registration must
be run before authentication, and authentication must be run before any file operation protocol.

File up- and download. Within an active session, a client can upload a new file using Πput on
input a (globally unique) file identifier fid and file content f . File retrieval is correspondingly done
via Πget on (client-side) input the file’s identifier fid.4 We handle file updates and deletions through
the Πupd protocol, taking as client-side input an existing identifier fid and the updated file content f .
File deletion can be interpreted as setting the file f in the client input to ⊥.

File sharing. We capture file sharing through two operations, Πshare and Πaccept. The sharing
protocol Πshare allows a client to prepare sharing a file identified by fid,5 and notify the server
about its intent to share said file with another user, identified by the receiver account ID raid. To
capture that means of access (e.g., key material) might be exchanged between sender and receiver
of a shared file through some out-of-band channel (e.g., messaging a sharing link), we allow the
sharing protocol to output some dedicated out-of-band information outC .oob. Apart from the OOB
channel, there is no other client-to-client communication.

To accept the sharing of a file, the receiver client session runs Πaccept with the server. On input
the file identifier fid of the shared file and the obtained out-of-band information oob, the Πaccept

operation integrates the key material for the shared file into this client’s cloud storage for future
access (through Πget, Πupd, or Πshare). In our notion, sharer and sharees all have full access to the
same file with no distinction between the original file owner and share recipients.

While, in syntax, we do not put constraints on the out-of-band information, in practice, such
out-of-band channels are highly restricted and hence realistic schemes will have to restrict their use
of it.6 In our proposed cloud storage scheme in Section 6, we use it only to exchange keys that are
a few bytes long (embedded, e.g., in a URL or QR code) for providing access to shared files.

3We list here only the minimal required client-side inputs to protocols, needed to define basic functionality as well
as security. A concrete cloud storage scheme might take further (client- or server-side) inputs.

4Clients can learn fid from communication outside of our modeled core protocols, e.g., by fetching a mapping from
file names to file identifiers from the server.

5Some cloud storage protocols may use account-dependent globally unique file identifiers (e.g., (aid, n) where n is
a monotonic counter). In such a protocol, sharing files with user raid may require changing the file identifier (in the
previous example, to (raid, n′)). This can still be modeled in with our framework, but the protocol description needs
to introduce a level of indirection and map account-dependent identifiers to account-independent ones that can be
used by multiple users simultaneously, and then translate them depending on context.

6There may be trivially secure schemes that make heavy use of the out-of-band channel, e.g., by using the channel
to entirely bypass the service provider. While such protocols might match our definitions, they are not interesting in
practice as they do not adhere to said real-world constraints.
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There is no dedicated mechanism to revoke access to a shared file from a user. However, since
all users share access to the same file, any one of them can delete and re-upload the file to create
a version of it which is not shared. It is possible that by explicitly modeling revocation, one could
capture further security guarantees associated to access rights management. For example, in the
honest-server setting, it might be possible to ensure that a user who gets their access to a file
revoked cannot download that file in the future, nor see updates or new versions of the file. We
discuss extensions such as these to the functionality and security of our model in Section 4.4.

3.3 Correctness

We now define the expected functional behavior, i.e., correctness, of a cloud storage scheme CS
in executions of honestly behaving clients and server. Due to the potential interleavings between
protocol executions of different client sessions, we do this via the game Gcorr

CS given in Figure 2,
with oracles defined in Figure 3.

The intuition of the correctness game is that if a user successfully uploaded a file to the server,
or if a file was shared with them, then fetching that file should succeed and return the expected
file content. Put differently, if the server behaves honestly (and in particular does not perform any
availability attacks), then users can successfully recover their cloud storage files. Formally, this is
captured by letting the adversary win the game (by setting a win flag) if a Πget operation does not
return the expected file content (see Figure 3, line 20) or if a Πaccept operation fails even though
the file has been shared with the receiving user (Figure 3, line 35).

Definition 3.1 (Cloud storage correctness) Let CS be a cloud storage scheme and Gcorr
CS be the

correctness game for CS defined in Figures 2 and 3. We define the advantage of an adversary A
playing this game as

Advcorr
CS (A) := Pr [Gcorr

CS (A) ],
and say that CS is correct if Advcorr

CS (A) = 0 for all (even unbounded) A.

Game Gcorr
CS (A):

1 global SA,nc, stS ,TstC,Tf ,Toob, Sshr,win

2 win← false ; nc ← 0

3 AAReg,Auth,Put,Upd,Get,Share,Acpt()

4 return win

RunProt(Π, ic, inC , inS):

5 pre: (TstC[ic] ̸= ⊥) or inC .{aid}
6 if TstC[ic] ̸= ⊥: (aid, stC)← TstC[ic] � Load client session state for Put, Get, Share, Acpt

7 else: stC ← ε � No client session state for AReg, Auth

8 (m, stC , stS , outC , outS)←$ ExecΠ(stC , stS , inC , inS)

9 if (outC .dec ∧ outS .dec):

10 if Π = Πareg: SA
∪←− {aid} � Register account upon successful AReg

11 if Π = Πauth: TstC[ic]← (aid, stC) � Register client session state upon successful Auth

12 if Π /∈ {Πareg,Πauth}: TstC[ic]← (aid, stC)

13 return (m, stC , stS , outC , outS)

Figure 2: Correctness game Gcorr
CS for cloud storage scheme CS, with oracles given in Figure 3, and helper

function RunProt used by oracles.
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AReg(inC , inS):

1 pre: inC .aid /∈ SA, inC .{aid,pw}
2 return RunProt(Πareg,⊥, inC , inS)

Auth(inC , inS):

3 pre: inC .aid ∈ SA, inC .{aid,pw}
4 nc ← nc + 1 � increment client session counter

5 return RunProt(Πauth, nc, inC , inS)

Put(ic, inC , inS):

6 pre: ic ∈ TstC, inC .{fid, f }
7 if fid ∈ Tf : return ⊥ � not allowed to upload same file id twice

8 (m, stC , stS , outC , outS)← RunProt(Πput, ic, inC , inS)

9 if outS .dec:

10 ow ← {TstC[ic].aid}; Tf [fid]← (ow , f ) � store owner and file in file table

11 return (m, stC , stS , outC , outS)

Upd(ic, inC , inS):

12 pre: ic ∈ TstC, inC .{fid, f }
13 if TstC[ic].aid /∈ Tf [fid].ow : return ⊥ � only allow updated by file owners

14 (m, stC , stS , outC , outS)← RunProt(Πupd, ic, inC , inS)

15 if outS .dec: Tf [fid].f ← f � update file in file table

16 return (m, stC , stS , outC , outS)

Get(ic, inC , inS):

17 pre: ic ∈ TstC, inC .{fid}
18 if TstC[ic].aid /∈ Tf [fid].ow : return ⊥ � only allow downloads by file owners

19 (m, stC , stS , outC , outS)← RunProt(Πget, ic, inC , inS)

20 if (outC .dec and outC .f ̸= Tf [fid].f ): win← true � retrieved unexpected file

21 if (¬outC .dec and fid ∈ Tf [fid]): win← true � fail to retrieve uploaded file

22 return (m, stC , stS , outC , outS)

Share(ic, inC , inS):

23 pre: ic ∈ TstC, inC .{raid, fid}
24 if TstC[ic].aid /∈ Tf [fid].ow : return ⊥ � only allow sharing by file owners

25 (m, stC , stS , outC , outS)← RunProt(Πshare, ic, inC , inS)

26 if outC .dec:

27 Sshr
∪←− {(raid, fid)}; Toob[(raid, fid)]← outC .oob � store OOB info for receiver

28 return (m, stC , stS , outC , outS)

Acpt(ic, inC , inS):

29 pre: ic ∈ TstC, inC .{fid}
30 if (Toob[(TstC[ic].aid,fid)] = ⊥): return ⊥ � only proceed if out-of-band info available

31 (inC .oob)← Toob[(TstC[ic].aid, fid)] � retrieve out-of-band info for receiver

32 (m, stC , stS , outC , outS)← RunProt(Πaccept, ic, inC , inS)

33 if outS .dec: Tf [fid].ow
∪←− {TstC[ic].aid} � mark receiver as file owner

34 if outC .dec: Toob[(TstC[ic].aid, fid)]← ⊥ � remove out-of-band info for receiver

35 if ¬outC .dec ∧ (TstC[ic].aid, fid) ∈ Sshr: win← true � fail to accept shared file

36 return (m, stC , stS , outC , outS)

Figure 3: Oracles for the correctness game Gcorr
CS for cloud storage scheme CS. The helper function RunProt,

given in Figure 2, captures core execution steps the protocols.
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Let us explain some further technical details of the correctness game.

Atomic execution. Recall that, for simplicity, correctness is defined w.r.t. “atomic” protocol
executions where individual protocol steps are executed sequentially and cannot be interleaved.
This simplifies tracking of variables and avoids handling race conditions (e.g., which file version
should be expected to be downloaded after two concurrent file uploads using the same file id?).
We emphasize that when defining security later, we capture arbitrary and malicious interleaving of
individual protocol steps.

Focus on core functionality. Our correctness definition only captures the core functionality
of a cloud storage scheme: a successfully uploaded or shared file should be retrievable by authorized
clients. In particular, correctness does not demand that uploading or sharing operations have to be
successful. This is intentional: it allows for different instantiations of these protocols. For example,
a scheme might reject files that are too large or whose file identifiers are malformatted – but we
do not want to prescribe such rules for a generic scheme. As another example, one scheme may
allow sharing a file only with existing accounts while another might allow sharing with non-existing
accounts (e.g., to invite a new user to the system via their not-yet-registered email address) – hence,
we do not prescribe when sharing ought to be successful. We note that this opens our correctness
notion up to “correct” dummy schemes (e.g., where uploading or sharing is never successful); in
practice such schemes are trivially uninteresting, and we accept this trade-off in favor of being able
to express a rich variety of cloud storage schemes in our framework.

Preconditions and other notation. We annotate game oracles with preconditions (written
pre: . . .) which specify the minimal set of input values required by the game for the oracle call of
some protocol to be meaningful. An oracle may for example specify pre: inC .{fid, f } to indicate
that it requires the values inC .fid and inC .f to be set. For brevity, we refer to the values required
in a precondition without the prefix inC inside the code of the oracle (in the above example: fid
instead of inC .fid). Unsatisfied preconditions cause the oracle to abort.

Accounts and clients. Users are identified via their account ID aid, set as client input by the
adversary in the oracles AReg for account registration and Auth for session authentication. The
game keeps a count of all authenticated client sessions; whenever authentication succeeds in Auth
on input account ID aid, it associates a new client session counter value ic with aid and the session’s
state stC (see Figure 2, line 11).

Global game variables. The correctness game tracks several global variables across oracle calls.
This includes the set SA of all IDs for registered accounts, the counter nc for client sessions, the server
state stS , and the table TstC which tracks client session states. Uploaded files and their owners
are tracked using table Tf , which is indexed via the (globally unique) file identifiers fid specified
by the adversary. The game enforces globally unique file identifiers that are never repurposed by
never resetting the owner set of a file (even when a file is “deleted” by overwriting it with ⊥).
Out-of-band information exchanged between the sender and receiver of file shares is tracked using
table Toob.

The game oracles update most of these global variables only if operations succeed (indicated
by outC .dec and outS .dec being true), encoding that most correctness guarantees only apply after
a successful protocol run. For instance, the oracle Πput updates the file table Tf after the protocol
run succeeds on the server (see Figure 3, line 9). However, we do not require that both parties
always succeed. Indeed, for all file-related protocols, we update the client session states in TstC on
line 12 of Figure 2 irrespective of the output decisions. This captures that even a correct scheme
might be expected to fail, for instance, when trying to upload a file with a malformed file ID, but
that in case of such a protocol failure, the scheme should still continue to function. (That is, the
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failed operation should not lead to a corrupted state on either client or server.) In contrast, for
registration and authentication, line 9 of Figure 2 ensures that TstC is only updated when both
parties succeed, capturing that these protocols can only be correct if both participants agree on
their outcome. This is necessary, as later operations for the same user or in the same session rely
on registration and authentication, respectively, to have been successful.

4 Client-to-Client Security of Cloud Storage

In our cloud storage framework, we are interested in guaranteeing end-to-end encryption security
for the data of clients. We call this client-to-client (C2C) security. The aim is to protect honest
clients against a fully malicious, adversarially-controlled cloud provider, giving both confidentiality
(C2CConf) and integrity (C2CInt) guarantees. Our security model focuses on the operations of
the cloud storage system itself. We hence assume clients communicate with the storage server
over a server-authenticated and confidential channel (e.g., a TLS connection) and do not concern
ourselves with capturing the setup or concrete security of that channel. We point out subtle reasons
for further modeling choices where they arise, and expand on them in the discussion in Section 4.4.
There, we also discuss potential extensions to our security model, including additional protection
against weaker adversaries that do not control the cloud server, as well as the modeling of metadata.
More future work is mentioned in Section 7.

Password modeling. Users in our cloud storage framework are authenticated through passwords
(see Section 3). All of our security games are parameterized by PWn, a distribution of pass-
word vectors of cardinality n (the maximal number of user accounts), and pre-sample a password

vector pw
−→v←− PWn from this distribution. Security is then defined with respect to the distribu-

tion PWn. This approach is inspired by prior game-based treatments of password-based encryp-
tion [9, 12], modeling non-uniform password distributions and correlated or even identical passwords
in game-based proofs – i.e., the choices users make when picking passwords.

Previous work [9, 12] assumed that pw consists of unique passwords to “avoid trivial attacks.”
We do not make this assumption, as we deem it impossible to enforce in practice even for an honest
service provider. Instead, we assume that the account IDs aid are globally unique for honest users.
This can be enforced in practice, e.g. by taking email addresses as account IDs, possibly verified via
a token exchange. We hence demand that the cloud storage scheme achieves security even when
multiple users have the same password. Note that we do assume that the password distribution is
independent from the hash functions used to hash passwords in our proposed cloud storage scheme.
This is required for our cloud storage proofs, as the existence of pathological distributions otherwise
make the derivation of pseudorandom keys from passwords impossible.

Security obviously depends on the strength of the passwords chosen by users (as modeled by the
distribution PWn). More specifically, it depends on the chances of an adversary outright guessing
a user’s password. Following [9, 12], we are then interested in the security of a cloud storage
scheme beyond the “guessing probability” of passwords from the given distribution. Naturally, a
heavily skewed password distribution where guessing user passwords is easy leads to poor security
guarantees for such users; real-world systems (e.g., Nextcloud [48] and OnePassword [49]) employ
according mitigations to assist users in picking secure passwords.

We capture the password-guessing probability through the game in Figure 4, where the adver-
sary, given selective access to the passwords of compromised users, wins by guessing the password
of an uncorrupted user.

Definition 4.1 (Password guessing) Let GPG
n,PWn

be the password-guessing game defined in Fig-
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Game GPG
n,PWn

(A):
1 global Scomp, pw, win

2 pw
−→v←− PWn

3 Scomp←$A()
4 for iu ∈ Scomp: pwcomp[iu]← pw[iu]

5 ATest(pwcomp)

6 return win

Test(iu, pw):

7 if (pw = pw[iu]) ∧ (iu /∈ Scomp):

8 win← true

Figure 4: Password guessing game with selective compromises against a password distribution PWn and at
most n users.

ure 4, for at most n users and with respect to a password distribution PWn. We define the password-
guessing advantage of an adversary A playing this game as

AdvPG
n,PWn

(A) := Pr
[
GPG

n,PWn

]
.

Adversarial interaction. Before introducing our confidentiality and integrity notions, we ex-
plain some common features of our games with respect to the interaction with the adversary. The
first surrounds the fine-grained level at which we capture the operation of the cloud storage scheme:
As mentioned in earlier sections, the protocols comprising a cloud storage scheme may consist of
several, interactive steps. For instance, the file update protocol Πupd might first fetch some informa-
tion about the file to be updated from the storage server before uploading the updated file content.
In practice, a dishonest server might maliciously interleave the executions of these protocol steps to
its benefit. Our cloud storage security games hence allow step-by-step execution of the protocols,
with arbitrary, adversary-controlled interleaving across protocols.

In the games (see Figures 5 and 6), this multi-step nature of protocols is captured by providing
the adversary with oracles to initiate each protocol run (AReg1, Auth1, etc.), which check po-
tential preconditions, and a “stepping” oracle Step through which the adversary can trigger the
next client-side step of a protocol (identified by some process ID ip). The games use the table Tp

to keep track of the state of each ongoing protocol execution, including the participants’ state.

On the client side, the adversary gets to pick relevant inputs (e.g., account and file identifiers,
file contents) for honest clients. The server instead is embodied by the adversary, capturing the
C2C guarantees against malicious cloud providers. In particular, this means that the adversary
receives the honest clients’ messages and controls the server’s responses in each protocol step.

4.1 Client-to-Client Confidentiality

We first define client-to-client confidentiality, via the game GC2CConf S
CS,n,PWn

given in the top panel of
Figure 5, together with oracles and helper functions in Figures 5 and 6. (Our integrity game is
defined through the same figures, as it heavily overlaps in the basic structure; it contains the code
lines in dashed boxes, which are not present in the confidentiality game. These can hence safely
be ignored for now.) The game is parameterized by the maximum number of user accounts n and a
distribution PWn of password vectors of the same cardinality. We further distinguish two versions
of the game, depending on whether the adversary is allowed to adaptively (C2CConf) or selectively
(C2CConfS) compromise clients; the latter version includes the code in dotted boxes.

16



In brief, confidentiality is captured as left-or-right indistinguishability7(akin to classical IND-
CCA security for encryption): The game samples a random challenge bit b and provides the adver-
sary A with a special challenge oracle Chall which uploads fb out of a pair of files (f0, f1), via a
put or upd operation of an adversary-selected client. The adversary’s task is to determine b, while
acting as the malicious server and interacting with honest clients through the game oracles. To
prevent trivial attacks, the adversary cannot compromise any user that owns a challenge file. We
first state the formal security definition before we explain the game in more detail.

Definition 4.2 (Client-to-client confidentiality) Let CS be a cloud storage scheme and let

GC2CConf S
CS,n,PWn

be the adaptive (selective) client-to-client confidentiality (C2CConf S ) game for CS
defined in Figures 5 and 6, for at most n honest users and with respect to a password distribu-
tion PWn. We define the advantage of an adversary A playing this game as

AdvC2CConf S
CS,n,PWn

(A) := 2 · Pr
[
GC2CConf S

CS,n,PWn

]
− 1.

Oracles. In game GC2CConf S
CS,n,PWn

, the adversary A has access to the following oracles: one oracle of
the form Orc1 for each CS protocol (used to initiate a protocol run), the oracle Step to perform
the next client step in a protocol, the challenge oracle Chall for uploading a challenge file, and
the oracle Comp to compromise (the entire knowledge) of a user. As in the correctness game
(see Section 3.3), we annotate oracles with preconditions where, e.g., pre: inC .{fid} indicates that
inC .fid must be set.

Oracles of the form Orc1 capture basic protocol operations. Each of them simulates an honest
client (session) initiating the corresponding CS protocol. The game tracks the honest clients’
accounts, passwords, as well as persistent session state (stC) and temporary, protocol-internal state
(sttmp

C ). Since the adversary plays the role of the (malicious) server, the game does not keep
any server state, but only tracks client-related information relevant for checking trivial winning
conditions, e.g., which files an honest user has uploaded or shared.

In more detail, the basic oracles work as follows:

� AReg1 initiates registering a new, honest account for a user with index iu and account
ID aid, setting the user password to pw[iu] (hidden from A). The game allows repeated
account registration attempts of honest clients, but enforces that the user index to account
ID mapping is bijective.

� Auth1 initiates a new session ic of an honest user with given user index iu, tracking the new
session’s user index in Tu[ic] and persistent session state in TstC[ic].

� Put1 and Upd1 let session ic initiate an upload resp. update of a file f under ID fid, both
adversary-chosen. The precondition of Put1 enforces unique file IDs fid, which can be
achieved in practice by prefixing file IDs by aid. For a newly put file, the user ID of the
calling client is tracked as an owner in the set Tf [fid].U.

� Get1 lets session ic initiate fetching a file with given ID fid. Successfully downloaded files
are handed to A in the helper function Check (serving as a decryption oracle), except for
challenge files (to prevent trivial wins).

� Share1 and Acpt1 let session ic initiate sharing a file resp. accepting a shared file. The
game tracks the owners of shared files in Tf [fid].U, and of challenge files in SchallOwners, and
keeps track of the out-of-band information in Toob. Note that to prevent trivial attacks, the

7Our framework does not single out “ciphertext” outputs, leaving the cloud storage scheme maximal freedom in
how it implements E2EE. Consequently left-or-right indistinguishability is the appropriate confidentiality notion, as
an IND$-style notion would require such a distinguished ciphertext (in order to replace it by random).
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Game GC2CConf S
CS,n,PWn

(A) :
1 global Tuaid, Tu, TstC, Tp, Toob, Tf , Sreg, Schall, Shon, Scomp, SchallOwners, pw, b

2 pw
−→v←− PWn ; nc ← 0 ; np ← 0 ; b←$ {0, 1}

3 Scomp←$A()
4 b′←$AStep,AReg1,Auth1,Put1,Upd1,Get1,Share1,Acpt1,Chall,Comp()

5 trivial← ∃iu ∈ SchallOwners : iu ∈ Scomp ∨ iu /∈ Shon � ∃ adversary-owned challenge file

6 return ¬trivial ∧ (b′ = b)

Game GC2CIntS
CS,n,PWn

(A) :
7 global Tuaid, Tu, TstC, Tp, Toob, Tf , Sreg, Shon, Scomp, pw, win

8 pw
−→v←− PWn ; np ← 0 ; nc ← 0 ; Tf [·].F← ∅ ; Tf [·].U← ∅ ; win← false

9 Scomp←$A()
10 AStep,AReg1,Auth1,Put1,Upd1,Get1,Share1,Acpt1,Comp()

11 return win

Step1(Π, ic, ir, inC):

12 (TstC[ic], st
tmp
C , outC ,m

′)←$ Π(C:1)(TstC[ic], ε, inC , ε)

13 ip ← np++ ; Tp[(Π, ip)]← (ic, ir, st
tmp
C , inC , 2)

14 return Check(Π, ip, outC ,m
′)

Check(Π, ip, outC ,m
′):

15 (ic, ir, st
tmp
C , inC , r)← Tp[(Π, ip)] ; fid ← inC .fid

16 if Π = Πareg ∧ outC .dec: Sreg
∪←− {Tu[ic]}

17 if Π = Πget:

18 if Tu[ic] ∈ Shon \ Scomp:

19 win← outC .dec ∧ outC .f /∈ Tf [fid].F ∧ Tf [fid].U ⊆ Shon \ Scomp

20 if fid ∈ Schall: outC .f ← ⊥
21 return (outC .f ,m

′)

22 if (Π = Πshare and outC .dec): Toob[(ir, fid)]← outC .oob

23 if (Π = Πaccept and outC .dec): Toob[(Tu[ic], fid)]← ⊥
24 return m′

Step(Π, ip,m):

25 (ic, st
tmp
C , inC , r)← Tp[(Π, ip)]

26 if r > Π.SN ∨ (Π = Πareg ∧ Tu[ic] ∈ Sreg): return ⊥
27 (TstC[ic], st

tmp
C , outC ,m

′)←$ Π(C:r)(TstC[ic], st
tmp
C ,m)

28 Tp[(Π, ip)]← (ic, st
tmp
C , inC , r + 1)

29 return Check(Π, ip, outC ,m
′)

Figure 5: Client-to-client confidentiality C2CConf S (top) and integrity C2CIntS (middle) games for security
against a fully malicious cloud storage server with fine-grained control, as well as helper functions Step1 and
Check and oracle Step (bottom). Code only included in the C2CConf S or C2CIntS game is marked with
boxed and dashed boxes, respectively. Moreover, dotted code is only included in the selective security
version of the games; the adversary is implicitly assumed to be stateful in that case.
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AReg1(iu, inC):

1 pre: inC .{aid}, (∄i′u ∈ Tuaid \ {iu}) : aid = Tuaid[i
′
u], iu /∈ Sreg

2 inC .pw ← pw[iu] ; Shon
∪←− {iu}

3 if iu ∈ Tuaid: inC .aid ← Tuaid[iu] else: Tuaid[iu]← aid

4 return Step1(Πareg, ε, ε, inC)

Auth1(iu, inC):

5 inC .aid ← Tuaid[iu] ; inC .pw ← pw[iu] ; ic ← nc++ ; Tu[ic]← iu ; TstC[ic]← ε

6 return Step1(Πauth, ic, ε, inC)

Put1(ic, inC):

7 pre: inC .{fid, f }, fid /∈ Tf

8 U← {Tu[ic]} ; F← {f }
9 Tf [fid]← (U,F)

10 return Step1(Πput, ic, ε, inC)

Upd1(ic, inC):

11 pre: inC .{fid, f }
12 if Tu[ic] ∈ Tf [fid].U: Tf [fid].F← Tf [fid].F ∪ {f }
13 return Step1(Πupd, ic, ε, inC)

Get1(ic, inC):

14 pre: inC .{fid}
15 return Step1(Πget, ic, ε, inC)

Share1(ic, ir, inC):

16 pre: inC .{fid}
17 Tf [fid].U

∪←− {Tu[ic]}
18 if ir ∈ Tuaid: inC .raid ← Tuaid[ir]

19 if fid ∈ Schall: SchallOwners
∪←− {ir,Tu[ic]}

20 return Step1(Πshare, ic, ir, inC)

Acpt1(ic, inC):

21 pre: inC .{fid}, inC .oob ̸= ⊥ ∨ Toob[(ir, fid)] ̸= ⊥
22 ir ← Tu[ic]

23 Tf [fid].U
∪←− {ir}

24 if inC .oob = ⊥: inC .oob← Toob[(ir,fid)]

25 else: Tf [fid].U
∪←− {ιmal}; if fid ∈ Schall: SchallOwners

∪←− {ιmal}
26 return Step1(Πaccept, ic, ε, inC)

Chall(ic, inC , f0, f1,Orc):

27 pre: inC .{fid}, |f0| = |f1|,Orc ∈ {Put1,Upd1}
28 if (Orc = Upd1 ∧ fid /∈ Schall): return ⊥
29 inC .f ← fb ; Schall

∪←− {fid}; SchallOwners
∪←− Tu[ic] ∪ Tf [fid].U

30 return Orc(ic, inC)

Comp(iu):

31 if iu /∈ Scomp return ⊥
32 Scomp ← Scomp ∪ {iu}
33 return (pw[iu], {TstC[ic] | ∃ic : Tu[ic] = iu}, {Toob[(iu, ·)]})

Figure 6: Oracles for the client-to-client games (see Figure 5). Code only included in the C2CConf S or
C2CIntS game is marked with boxed and dashed boxes, respectively. Moreover, dotted code is only
included in the selective security version of the games.
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sharer is added as an owner on lines 17 and 19 in oracle Share1. This avoids attacks from
compromised users sharing files which they do not own with honest users, causing the receiver
to use malicious file key material for future file updates. The game allows the adversary itself
to share files with and accept files from honest users by specifying the out-of-band message
inC .oob in Acpt1 or using the special index ιmal as recipient in Share1, respectively.

All basic oracles use the common subroutine Step1 (in Figure 5) to initialize a protocol run and
game-internal process tracking. The adversary can then use Step to execute the next client step in
an already running protocol Π, identified by process index ip, on input the next (adversary-chosen)
server message m.

Finally, security is captured via the challenge (Chall) and compromise (Comp) oracles:

� Chall takes two files (f0, f1) of equal size and an oracle name {Πput,Πupd}. If Orc = Πput,
the oracle uploads fb, depending on the game bit b. The adversary can subsequently update
the challenge file by running Chall again on the same file ID with Orc = Πupd. The game
allows for multiple challenge files, the IDs of which are tracked in the set Schall.

� Comp compromises a given honest user iu, yielding their password and entire (current) state
to the adversary. It may be called at any time, and repeatedly, to capture a persistent
user compromise. Compromised users are tracked via Scomp. We do not model partial user
compromise. That is, the adversary can only compromise the full state of a user, including
all of its active sessions.

Malicious vs compromised clients. Beyond orchestrating actions of honest clients, the adver-
sary can directly simulate any number ofmalicious clients locally, without the need for oracles, since
it fully controls the server state. Furthermore, after compromising a client via the oracle Comp,
the server can continue using the protocol oracles on that client, but can also use the compromised
client state to compute operations outside the honest behavior of clients.

Client compromise in particular models that an adversary may learn information about the
password distribution. For instance, a scheme that leaks which users have the same password is
vulnerable to attacks compromising passwords.

Selective security. In the selective security version of the game, C2CConfS, the adversary has
to commit to the set Scomp of users it is allowed to compromise at the outset of the game (see
Figure 5, line 3). It can then still call Comp adaptively at any point and repeatedly in the game,
but only on these selected users, to learn their current state.

Winning condition. The adversary wins the game if it correctly guesses the challenge bit b in a
non-trivial way. Line 5 of Figure 5 encodes this trivial win check: files that the adversary called
the challenge oracle on may only be owned by or shared with honest and non-compromised users
iu ∈ Shon \ Scomp. (Note that this in particular encodes that challenge files may not be shared with
fully malicious, adversary-controlled clients.)

4.2 Client-to-Client Integrity

We now turn to the second security goal, client-to-client integrity, captured by the game GC2CInt
CS,n,PWn

given in the middle panel of Figure 5, again with oracles and helper functions in Figures 5 and 6.
The integrity game includes the dashed code and excludes that in solid boxes; in particular, the
challenge oracle Chall is not present in the integrity game.

The task of the adversary in the integrity game is to forge the content of a file, i.e., to make
an honest user successfully retrieve a file with a content that differs from what they uploaded or
received as a share. This is captured by setting a win flag in line 19 of Figure 5, conditioned on
there being no trivial attacks. We define the resulting client-to-client integrity as follows.
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Definition 4.3 (Client-to-Client Integrity) Let CS be a cloud storage scheme and GC2CIntS
CS,n,PWn

be the adaptive (selective) client-to-client integrity (C2CIntS ) game for CS defined in Figures 5
and 6, for at most n honest users and with respect to a password distribution PWn. We define the
advantage of an adversary A playing this game as

AdvC2CIntS
CS,n,PWn

(A) := Pr
[
GC2CIntS

CS,n,PWn

]
.

What counts as a forgery. To evaluate the winning condition (in Figure 5, line 19), we track
the content of honestly uploaded files in set Tf .F and their owners in Tf .U, both of which are
implicitly initialized to ∅.8 As a valid forgery we count any successful get operation (i.e., for which
outC .dec = true) for which either (1) the file ID does not exist, meaning that the file is not tracked
in the game, or (2) the retrieved file content does not match any version of the file stored in Tf .F.
For case (2), we also need to ensure the file is not owned by a compromised or malicious user; i.e.,
the file owners Tf .U must be a subset of Shon \ Scomp.

Note that a file can be either entirely or partially untracked, but line 19 covers both cases. That
is, if Tf [fid].F = ∅, then outC .f /∈ Tf [fid].F evaluates to true. The file then counts as forgery if
Tf [fid].U ⊆ Shon \ Scomp is true too, either because the file is entirely untracked and Tf [fid].U = ∅,
or because the owner set only contains honest users who shared or accepted a file ID that was never
uploaded through oracle Put1.

To prevent trivial attacks, the win flag is only set to true if the get operation is performed
for an honest user (line 18, Figure 5). That is, the user ID Tu[ic] of the calling client must be in
Shon \ Scomp. Otherwise, the adversary could easily forge a file, since it knows the retrieving user’s
key material.

The tracking of file content and owners in table Tf is conservative, in three aspects.

� In Put1 and Upd1, we set resp. add the to-be-uploaded file content immediately in the
table, without waiting for successful termination of the protocol. The reasoning here is
that we cannot know at which point in the execution of a generic upload protocol a file
should be considered successfully stored on the server. In particular, the adversary acting
as the malicious server might claim that an upload failed, when it actually did store the
corresponding file information which would make a later download successful. However, we
only update the tracked file content in oracle Upd1 if the calling user is already an owner
of the file. This reflects that the “expected content” (for the purpose of what constitutes a
forgery) is only modified if an owner performs the update.

� We never remove file contents from the set of uploaded files under some file ID. This captures
that we do not aim to protect against rollback attacks, i.e., a server serving an old copy of a
file to a client does not count as an integrity attack.

� As in the confidentiality game, we add sharers as owners of the files they share. This prevents
a trivial attack where the adversary uses a compromised user to share a file that is not yet
tracked by the game with an honest user. Since the adversary knows the key material of the
compromised user, it can create a file header containing a malicious file key which the sharer
will decrypt and put in the OOB channel. Upon accepting the shared file, the honest user
would then be the (only) owner of a file for which the adversary knows the file key, making
a forgery trivial. Adding the sharer as an owner ensures that the file is correctly tracked as
owned by a compromised user.

8We combine our convention for tables and sets and consider the table entry uninitialized while the sets are
implicitly initialized to empty. That is, we let fid /∈ Tf evaluate to true while Tf [fid] = (∅, ∅).
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4.3 Designing a Security Model for Cloud Storage: UC vs. Game-Based

Having introduced our security definitions in detail, let us take a moment to explain our decision
to propose game-based definitions for cloud storage instead of simulation-based security notions in
the universal composability (UC) framework [15].

Many protocols with similar aims, particularly those in the multi-server password-protected
secret sharing line of research ([7], [35], [14] [33]), analyze their security in the UC framework. This
approach has obvious advantages: only one proof is needed to capture all security properties, the
results can build upon the framework’s powerful composition theorem, and a proof in this model can
argue about the security of users’ files relative to their passwords without attempting to quantify
password security directly.

When we attempt to capture single-server cloud storage security, however, a commitment prob-
lem arises. In the UC framework, all honest clients are controlled by the environment, which
chooses their inputs to the protocol. If the environment instructs an honest client C to store a
file f with a malicious server, the simulator must produce, without knowledge of f , a ciphertext
indistinguishable from the one C would send in an honest protocol interaction. If C should later
become compromised, the simulator will learn f and must reveal some key under which the prior
ciphertext decrypts to f . This is only possible if the cloud storage scheme employs some form of
non-committing encryption.

A similar problem appears in the UC treatment of secure channels, where a client can send a
message that must be decryptable after compromise [17]. Canetti et al. proposed as a solution
an auxiliary “non-information oracle”, which takes in client messages (or files, in our setting) and
outputs information to the simulator which is computationally independent from the input mes-
sages. Effectively, the non-information oracle produces committing ciphertexts for the simulator,
and the computational independence of the ciphertexts from their plaintexts demonstrates that no
leakage occurs. Upon client compromise, the non-information oracle can forward its internal keys
and assist in decryption. This technique achieves UC channel security from standard primitives,
and similar methods are used to capture secure messaging in the UC model [16].

Unfortunately, the non-information oracle strategy breaks down when applied to cloud storage
due to our reliance on passwords as a basis for security rather than strong cryptographic keys.
No matter how many layers of keys a protocol introduces between clients’ passwords and the
ciphertexts they upload, a client must always be able to recover files using only its password as
input by running the auth and get protocols. Consequently the ciphertexts cannot possibly be
computationally independent from their underlying files. To achieve a UC security proof, we would
instead require some computational secrecy property that relates the degree of leakage from the
non-information oracle to the probability of a successful password-guessing attack. By moving
the bulk of the simulation into an oracle with knowledge of client files and then making a separate
computational argument about the secrecy of this oracle’s outputs, we effectively introduce a game-
based confidentiality model. The advantages of the UC framework if we must also have games are
significantly less. Thus, we focus solely on game-based notions in the remainder of this work.

4.4 Extensions, Limitations and Rationale of the Model

In the process of defining our cloud storage framework and security notions, there were many
choices to be made for how to abstract and formalize real-world cloud storage schemes. Here, we
provide rationale for certain aspects of our framework and why we did or did not include certain
real-world facets in the model, and discuss the limitations that these choices imply. We also list
possible extensions to the security model that could be interesting for future work.
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Protocol inputs. In our syntax, the execution of a cloud storage protocol only takes external
input from the client and server in the first step of the respective party. (See Section 3.1.)

This is a design decision that we made for two reasons. First, it reduces the complexity of
games. If we were to allow inputs at all protocol steps, it would be substantially more complex to
track the security critical variables. For instance, our correctness and security games need to track
the file identifier fid in file operations to check (trivial) win conditions. A game that supports taking
fid as input at any protocol step would require a precondition to check that fid is not set multiple
times (otherwise the adversary could interfere with the game-internal tracking). Additionally, the
tracking and checks could only be performed once fid has been provided, and this time-point would
now be protocol specific, making generic tracking more difficult.

Second, all protocols that we are aware of can be expressed with a single, initial input, even
if it may seem like they require communication at first sight. For instance, consider a protocol to
get a file that first fetches a file tree, presents it to the user to let them pick a file name, and then
downloads the file with the ID corresponding to the name specified by the user. It may seem like
the file ID is needed as a separate input in the second client-side step. However, we can easily
model this protocol in our single input syntax by encoding the user action of translating a file name
to a file ID into the client-side protocol. A user calls the file retrieval algorithm with the name of
the file it wants to download. The client downloads the file tree, resolves the file name to a file ID,
and fetches the file.

It is more challenging to accurately model a protocol that uses an out-of-band channel between
server and client. (Such channels are not captured by our model, which only supports the client-
to-client OOB channel used for file sharing.) An example of such a server-to-client channel could
be email or SMS, as used e.g. for two factor authentication. If values exchanged through this
channel appear as inputs in intermediate protocol steps, then these inputs cannot be captured by
omitting the interaction or reordering (as in the file fetching example above), since they might be
influenced by earlier protocol steps. We can either get around this limitation by only modeling the
authentication after out-of-band material was already received (see our modeling of email tokens
for MEGA in Appendix A.1), or by including the OOB message exchange in the protocol messages
over the normal client-server channel. Both approaches do not affect C2C security as the adversary
playing the server anyway sees all exchanged messages. However, more accurate modeling would
be required for security against external adversaries, as discussed later in this section.

Client-side state. We use a single persistent client-side session state stC (beyond the temporary
per-protocol execution state sttmp

C ). Therefore, when modeling real-world schemes, our state han-
dling might sometimes need to differ from their actual implementation. For instance, consider a
cloud storage scheme that stores the user password on the device after the first login. This increases
usability at the cost of security as the user does not need to enter their credentials for every login.
However, if the device is corrupted, then the password is compromised, even if there is currently
no active session on the device. In our model, we would either model such a protocol by storing
the password in the session state, or by requiring the user to enter it for each operation. Both
approaches lead to the same adversarial strength in our model with respect to compromise, as
the adversary can only compromise users completely, learning both their password and any session
state. In other words, we cannot capture that not storing the password offers better security against
device compromise.

A more fine-grained model could distinguish between user, device, and session states, capturing
settings where one device runs multiple sessions in parallel, keeping some information in device
memory and other information in per-session memory. This could allow to capture more fine-
grained compromise notions, e.g., the security effects of a compromise of an old, revoked user device
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on later-uploaded files, or that of a compromised session on one device on another, uncompromised
session on the same device. We leave capturing such aspects to future work.

Out-of-band channel. Our model modularizes the out-of-band channel used for file sharing.
This allows it to capture a wide range of real-world instantiations, such as sharing via a PKI
or through links with encoded passwords. However, this modularization also means that within
our confidentiality and integrity notions, the security of the out-of-band channel is idealized; it
is assumed to be perfectly secure and incorruptible. A full security analysis of a concrete cloud
storage system would hence need to separately prove the security of the actual channel used, and
additionally analyze the security of its composition with the cloud storage scheme.

Security against external adversaries. An alternative security notion to the client-to-client
security given above would be to consider security against an external adversary that does not
control the server but only plays the role of malicious clients. While this at first seems strictly
weaker, in this model one could capture security properties which are trivially broken by a malicious
cloud provider in the C2C setting, e.g.:

� Limited password guessing: an external adversary must interact with the server to verify
password guesses online. In particular, the protocol does not leak any information to unau-
thenticated users that would allow offline password guesses. (In the C2C setting, the malicious
server can always perform offline password guesses against the stored files of honest users.)

� No rollback attacks: an external adversary should not be able to serve old versions of a
file to honest users. (In the C2C setting, rollback attacks cannot be prevented without
additional assumptions, such as MPC, third parties, or direct device-to-device communication:
a malicious server can always roll back the full server state and serve a previous version to a
user who is logging in from a fresh device. We are not aware of any currently deployed E2EE
cloud storage system that attempts to protect against such rollback attacks.)

� Availability: an external adversary should not be able to prevent honest users from fetching
files which are not owned or shared with compromised or malicious users. (In the C2C setting,
the malicious server can always reject to serve, or garble, the data of honest users.)

� OOB channels: real systems often use multiple channels between the server and the client,
beyond the main TLS connection. For instance, using email or SMS as an out-of-band channel
for multi-factor authentication is common practice. While the malicious server trivially knows
the messages exchanged in these channels, the benefit of multiple channels becomes visible
against an external adversary who may compromise some, but not all, channels.

We leave formalizing security against external adversaries as future work, but note that we kept
the above properties in mind when designing the cloud storage protocol in Section 6.

Additional functionality. The core functionality considered in this paper could be extended
– at the cost of higher complexity – with extra features such as file deletion, revocation of shared
files, password recovery, session deauthentication (and ensuing security notions for adversaries
with access to expired sessions), account deregistration, and distinguishing between read and write
access to files. Out of these, more advanced access management (e.g., supporting revocation of
access to shared files, or providing distinct access classes such as “owner”, “editor” or “read-only”)
is especially interesting in the external adversary setting, where the server can be (at least partially)
trusted to help enforce access restrictions.

Metadata. Protection of metadata, such as file names, types and paths, can be crucial for the
overall security of a cloud storage system. For instance, insufficient encryption of file names or
paths would leak information about the uploaded file to the server. Moreover, not protecting the
integrity of metadata may directly affect the file integrity (e.g., when a file length field is modified).
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In our security notions, we implicitly model strong security guarantees for metadata by treating
it as part of the “file” plaintext input to oracle Put1. This implies that the metadata must be
confidential and integrity-protected even from a malicious server. Note that protocols which encrypt
metadata separately from files for efficiency can still be captured in this model (e.g., by treating
the metadata as its own “file”).

For the sake of complexity, we leave the modeling of weaker security guarantees of metadata –
such as “authentication-only” – and the impact thereof on file security to future work. Moreover,
our CSS protocol does not aim to protect against usage metadata, such as file access patterns
and share relationships. Constructing a protocol that achieves the metadata-hiding properties of
Metal [22] and Titanium [21] while having the provable guarantees of our detailed security models
– including password-based security, a single fully malicious server, non-atomic operations, and
considering multiple devices – is an open problem.

Channel assumptions. Additional work could explore different channel assumptions. For in-
stance, only assuming an authenticated but not confidential communication channel would give the
adversary access to the exchanged messages. This may be interesting as a standalone solution, or as
defense-in-depth measure to protect against implementation failures that occasionally undermine
confidentiality guarantees in practice. For instance, implementation failures of TLS session tickets
lead to the loss of confidentiality of early data for some implementations [29].

Moreover, specific instantiations of the OOB channel, especially those operated by the malicious
server, could be integrated into CSS and analyzed.

Advanced security guarantees. It is an open question how post-compromise and forward
security apply to the cloud storage setting, and what is achievable; key rotation has been considered
in prior works [36], as has fine-grained forward security via puncturing techniques [5, 53], but not
in combination with the full feature set we target. Furthermore, CSS does not attempt to protect
against partial rollback attacks. For instance, future work could attempt to protect the integrity
of the user’s cloud storage state to prevent a malicious server from selectively serving some old and
some new files.

5 Formally Breaking MEGA

To put our new cloud storage framework to the test, we will give both a negative analysis, capturing
some of the recent attacks against the MEGA cloud storage system from [6, 3, 30] in our framework
(in this section), and a positive one, presenting a provably secure cloud storage scheme (in the
Section 6).

MEGA provides end-to-end encrypted cloud storage since 2013 and is currently the largest
provider with E2EE by default, with roughly 300 million users [40]. In addition to its popularity,
MEGA is an interesting system to study because recent cryptanalysis [6, 3, 30] showed that clients
released prior to June 2022 [44] were vulnerable to a range of attacks by a malicious server. In the
following, we show that MEGA can be cast in our syntax, demonstrating the expressiveness of our
framework, and that recent attacks [6, 3, 30] arise in our framework as formal violations of the C2C
security notions (already for selective security, as the attacks do not rely on client compromise).
While the attacks discussed here target the unpatched version of MEGA, the patched protocol still
cannot be proven secure in our model due to various design decisions, including key reuse and the
lack of binding between file IDs and files.

In this section, we only highlight the core, vulnerable protocol components and how the main
attack ideas can be cast in our security framework. We defer the full details of formalizing the
MEGA protocols, attacks, and barriers for proving the patched protocol secure to Appendix A.
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...
client: M

(C:3)
auth (stC , st

tmp
C ,mS):

1 (cm, (pk, crsa), csid)← mS

2 km ← AES-ECB.Dec(ke , cm)

3 sk ← AES-ECB.Dec(km, crsa)

4 stC .sid ← RSA.Dec(sk, csid) ; stC .km ← km

5 stC .pk ← pk ; stC .sk ← sk

6 return (stC , st
tmp
C , outC , stC .sid)

M
(C:4)
auth (stC , st

tmp
C ,mS):

7 if mS = ⊥: failC else: successC

...
server: M

(S:2)
auth (stS , st

tmp
S ,mC):

8 aid ← sttmp
S .aid

9 (nC , cm, ha, pk, crsa)← stS .acc[aid]

10 . . . � omitted

11 csid ← RSA.Enc(pk, sid)

12 mS ← (cm,pk, crsa, csid)

13 return (stS , st
tmp
S , ε,mS)

M
(S:3)
auth (stS , st

tmp
S ,mC):

14 if mC ̸= sid: failS

15 stS .sess[sid]← sttmp
S .aid

16 successS

Figure 7: The part of MEGA’s authentication protocol Mauth hosting the core vulnerabilities; see Figure 12
in Appendix A.1 for the full protocol.

The vulnerable core of MEGA, formalized. Highly simplified, in the account registration
protocolMareg, a client generates a uniform, symmetric master key km and anRSA key pair (pk, sk).
It then encrypts sk under km, and km in turn under a password-derived key ke , using AES-ECB
encryption for both, and uploads the resulting ciphertexts crsa and cm, respectively, to the server.

During authentication (Mauth, see Figure 7), the server sends crsa and cm back to the client,
along with another ciphertext csid which encrypts a server-chosen session ID sid under the client’s
RSA public key. The client decrypts, in order, cm, crsa, and csid, and sends the obtained session
ID value back to the server to complete authentication.

To upload a new file (Mput), the MEGA client generates a new file key kf and encrypts the file
using a custom-made authenticated encryption algorithm. For the attack, the key thing to note
is that the file key is encrypted (alongside a nonce and an authentication tag) under the master
key km using AES-ECB and stored on the server, just like the user’s RSA private key.

The authentication protocol hosts the core vulnerability; we hence show its relevant steps in
Figure 7. The full details of all protocols are in Appendix A.1.

Breaking confidentiality. The attacks from [3, 6, 30] now translate into formal violations of
our security games for the MEGA cloud storage scheme. We summarize the attacks and their
formalization in our framework here and provide the full pseudocode of the adversaries for attacks
1–3 from [6] (discussing aspects from [3, 30]) in Appendix A.2.

We begin by showing how the RSA key and plaintext recovery attacks by Backendal et al. [6]
break C2CConfS confidentiality, by combining them into an adversaryAconf that wins theG

C2CConfS
M,n,PWn

game (see Definition 4.2) with high probability. The adversary starts by registering an honest user
and lets them upload two distinct files as challenge. It then runs a simpler version of the RSA
key recovery attack [6, Section III] by letting the user repeatedly authenticate, tampering with
the AES-ECB ciphertext crsa and exploiting the returned session ID sid as a partial decryption
oracle. For the latter, observe that Aconf , acting as the malicious server in the Mauth protocol, can
pick an arbitrary ciphertext (on line 12 of Figure 7) which the honest client will decrypt using the

maliciously modified RSA secret key sk, and send back in the client message mC of M
(S:3)
auth . This

allows Aconf to recover the user’s sk through a binary search.

Knowing the user’s RSA secret key, the adversary can then mount the AES-ECB decryption
attack from [6, Section IV] to decrypt the challenge file. On a high level, Aconf injects the en-
crypted challenge file key into the RSA ciphertext crsa sent in the authentication protocol. This
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is possible because both the RSA key and file keys are encrypted with the master key km using
AES-ECB, enabling the replacement of individual ciphertext blocks in crsa. This second attack
step is probabilistic and fails with probability at most 2−30 (see [6]). Adversary Aconf wins with
advantage AdvC2CConfS

M,n,PWn
(Aconf ) = 1−2−30, making 1023 calls to Mauth. (The number of oracle calls

to Mauth needed to mount the attack was since reduced to 6 by Heninger and Ryan [30].)

Breaking integrity. To violate C2CIntS integrity, we formalize the integrity attack from [6,
Section V.B.2]. Instead of assuming the knowledge of a plaintext-ciphertext pair (which is required
for their attack) we integrate the AES-ECB encryption oracle identified by Albrecht et al. [3,
Section 2.2] to exercise the full scope of our framework. This allows the adversary to obtain the
ciphertext for a chosen plaintext via the sharing protocol.

The C2CIntS adversary Aint first honestly registers and authenticates a user, and then makes
them accept a shared file chosen byAint (which, of course, does not count as win yet). The client will
re-encrypt the shared file key under its master key using AES-ECB, at which point the adversary
knows both the plaintext and ciphertext of the file key. Adversary Aint can exploit that MEGA’s
custom decryption algorithm causes the client to derive an all-zero file key during file downloads
when an AES-ECB block is duplicated in the file key ciphertext. Knowing the decryption of one
ciphertext block and carefully crafting an encrypted file (see Appendix A.2 and [6, Section V.B.3]),
Aint succeeds in making the user decrypt a forged file and thus wins the integrity game. This
adversary Aint has advantage AdvC2CIntS

M,n,PWn
(Aint) = 1 with a total of only four oracle calls.

In conclusion, we observe that problems with the E2EE cloud storage protocol of MEGA show
up naturally when it is written down in our syntax and tested against our security games.

6 A Provably Secure Cloud Storage Scheme

In this section, we showcase the instantiability of our framework by presenting a concrete cloud
storage scheme CSS which enjoys provable client-to-client security. The scheme provides all func-
tionality from the core protocols, including file sharing, and supports password rotation without file
re-encryption. We first introduce the building blocks used in our construction, before explaining the
scheme itself and then analyzing its security. Appendix 6.5 presents limitations and extensions of
the scheme, including a discussion of selective vs. adaptive security and considerations in practice.

6.1 Building Blocks

PRF, AEAD and MAC. We use the following basic building blocks, further specified in Ap-
pendix B.1, in our cloud storage scheme:

� a PRF F : {0, 1}kl×{0, 1}∗ → {0, 1}kl taking a key k ∈ {0, 1}kl and a variable-length label x ∈
{0, 1}∗ as inputs and returning a string of length kl.

� a message authentication code MAC = (Tag,Vrfy) with key space {0, 1}kl.
� a nonce-based authenticated encryption scheme with associated data AEAD = (Enc,Dec),
also with key space {0, 1}kl. We write c ← Enc(k, n,m, ad) to encrypt message m ∈ {0, 1}∗
using key k ∈ {0, 1}kl, nonce n ∈ {0, 1}nl, and associated data ad ∈ {0, 1}∗, and m← Dec(k,
n, c, ad) for the corresponding decryption of the ciphertext c ∈ {0, 1}∗.

Note that, for ease of presentation, we assume that the output length kl of the PRF is the key
length of the MAC and AEAD scheme.

2HashDH OPRF. Our construction further uses 2HashDH [32, 34], an oblivious pseudorandom
function (OPRF) [47, 26], to derive a hardened secret from the user password. An OPRF is an
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interactive protocol between two parties (henceforth called client and server), which allows the
client, holding a secret input x, to compute a PRF evaluation y = F(k, x) with the help of the
server, which holds the key k. In our use, we let the client sample the OPRF key k during account
registration and subsequently send it to the server; this ensures that the initial client output is
computed with an honestly generated key.

We briefly recap the 2HashDH OPRF here. Let G be a group of prime order q, and let
H1 : {0, 1}∗ → G and H2 : {0, 1}∗ × G → {0, 1}kl be two hash functions. The 2HashDH OPRF in-
teractively computes H2(x,H1(x)

k)) for the client secret input x ∈ {0, 1}∗ and server-side key k ∈
Zq. In the interactive protocol, the input x is hidden from the server with a random blinding
value r←$ Zq. The client sends α ← H1(x)

r to the server, which computes the blind evaluation
β ← αk . The result is recovered on the client by unblinding β using r, computing y ← H2(x, β

1/r)).
We give the full specification in our syntax in Appendix B.2.

The goal of using an OPRF in our cloud storage protocol is to provide a means for the client to
derive a key from the user password, which is secure against a malicious server. This is a somewhat
non-standard setting for an OPRF, prompting us to adapt 2HashDH in the following ways (further
discussed in Section 6.3):

� The client secret x consists of (aid,pw), i.e., the combination of the public account ID and
the user password. Thanks to the assumption that account IDs are unique, this implies that
client secrets are unique.

� The OPRF key is sampled by the client during registration, and subsequently sent to the
server; this ensures that the initial client output is computed with an honestly generated key.

� H1 and H2 should ideally be memory-hard and slow, to increase the work required for a
password-guessing attack from a malicious server.

6.2 Scheme Overview

We specify the protocols that make up our cloud storage scheme CSS = (CSSareg,CSSauth,CSSput,
CSSupd,CSSget,CSSshare,CSSaccept), in pseudocode in Figures 8–10. Let us first explain the core
design rationale behind our cloud storage scheme, before describing the algorithms in more detail.

Registration and authentication. To register an account, a user first derives a hardened
secret rw from their account ID and password using the 2HashDH OPRF. They then AEAD-
encrypt a randomly generated master key under a key derived from rw . To complete registration,
the client uploads the encrypted master key, the OPRF server key and a MAC key derived from
rw to the server.

To authenticate, a user evaluates the 2HashDH OPRF on their account ID and password with
the help of the server(-side key) to recover rw , and from it the master key and MAC key. The server
assigns a fresh session ID (sid) to the client and uses the MAC key to verify that the client can
produce a valid tag for the sid (and interaction transcript) as a means of authentication. Subsequent
requests in the same session are authenticated by sending along the session ID.

File handling. Our scheme follows the established approach of using a key hierarchy, employing
the master key as key encryption key to wrap file keys, which in turn encrypt single files. Both file
keys and files are AEAD-encrypted, bound to the owner and file ID, respectively. Each encrypted file
is stored along with a header containing the wrapped file key. Importantly, we use the independently
sampled master key as the root of the key-wrapping hierarchy in our cloud storage scheme instead
of directly using the raw secret rw derived from the password; this way, users can change their
password without having to re-encrypt all their data. The server stores the encrypted files and
headers and maintains a record of owners to perform access control.
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Sharing and updates. To share access to a file with another registered user, an owner shares
the file key with the recipient out-of-band and informs the server about the added owner. The
newly added user can then wrap the file key under its own master key and add it to the file header,
allowing regular future access to the file.

The separation between headers and encrypted file content allows lightweight updates of shared
files: any owner can update the encrypted file content while preserving the file key, thereby retaining
access for all other owners.

6.3 Detailed Description

Notational conventions. In the pseudocode description of the CSS scheme in Figures 8–10,
we use the convention that subroutines returning ⊥ cause their callers to abort by running the
appropriate choice of failC or failS .

Account registration. In the account registration protocol CSSareg, shown at the top of Fig-
ure 8, the client samples a 2HashDH OPRF key k and locally computes the OPRF value rw on its
account ID aid and password pw . Involving the unique account ID here ensures uniqueness of the
OPRF input (even if passwords are reused across users), preventing a malicious server from serving
encrypted files across users that it suspects to share the same password. In a sense, we use the pair
(aid, pw) as what was the password input in prior usage of 2HashDH [32, 34]; this allows us to avoid
assuming that passwords are unique – an assumption that was necessary in other password-based
encryption work [12], but is problematic in practice – and only make the milder assumption that
(honest) users use unique account IDs, such as email addresses.

The client then derives a key encryption key kkek and MAC key kmac from rw using a PRF F,
samples a symmetric master key kmk uniformly at random, and AEAD-encrypts kmk under kkek
(bound to the account ID via the associated data field). It sends its aid, the OPRF key k, the
MAC key kmac , and the computed ciphertext and used nonce to the server for storage in its account
registry acc.

Authentication. In the authentication protocol CSSauth (Figure 8 bottom), the client sends the
blinded hash α = H1(aid,pw)r to initiate a 2HashDHOPRF run. The server computes the 2HashDH
evaluation β = αk and samples a random, unused session ID sid (of bit-length sidl), sending both
to the client. The client unblinds the OPRF value to obtain its raw secret rw and derives kkek
and kmac from it. It then authenticates to the server by sending a MAC value over the first
two protocol messages (in particular containing sid as random challenge), using key kmac . Upon
successful verification of the MAC, the server adds the client to its session registry sess and sends
back the client’s encrypted master key. The client AEAD-decrypts its master key kmk using kkek
(aborting implicitly upon failure) and saves the session state stC containing aid, sid, and kmk .

Core file operations. The core operations for handling files in the protocols CSSput, CSSupd,
CSSget, CSSshare, and CSSaccept (all in Figure 9) is captured through subroutines for getting/down-
loading and putting/uploading headers and contents of files, shown in Figure 10.

putFile, putHeader. In the core operation for putting a file or header, the client AEAD-encrypts
the given file resp. file key under the file resp. master key, to be sent to the server. The
server ensures that the client user is an owner of the file (aid ∈ ows[fid]) and then stores the
encryption in its file or file-key registry (fs and fks), respectively.

getFile, getHeader. Conversely, for fetching a file or header, the client first sends the corresponding
file ID fid. The server ensures that the client user owns the requested file and then returns the
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encrypted header and (for getFile) file content from its registries. The client AEAD-decrypts
the header ciphertext cfk using its master key, and, for a file download, the file ciphertext cf
using the resulting file key.

In each of these subroutines, the client sends its session ID sid as authentication token along
with its message. The server uses sid to associate the request to an authenticated user account
aid ← sess[sid], implicitly failing if sid /∈ sess.

Up- and download. The complete upload of a file (CSSput, first box in Figure 9) consists of the
client sampling a fresh AEAD file key kf ←$ {0, 1}kl and uploading that key as header (putHeader)
along with the file content (putFile); the server in turn ensures that this file ID is unused (fid /∈ ows)
and then registers the client user as owner and stores the encrypted header and file content. To
update a file (CSSupd, second box in Figure 9), the client first fetches the file key kf via getHeader
and then uses it to upload the updated file content (putFile). Downloading a file (CSSget, third box
in Figure 9) uses getFile to retrieve the file content.

Sharing. Our CSS scheme allows sharing of files with other, registered users. To this end, a
client invokes the CSSshare protocol (fourth box in Figure 9) on input a file ID fid and the account
ID raid of the receiving user with whom that file shall be shared. The sharing client fetches the
file key kf via getHeader, upon whose success the server adds raid to the set of owners for file fid.
The client can then share kf out-of-band with the receiving user by setting outC .oob ← kf . We
intentionally leave the details of the out-of-band channel open; we only assume that it is inaccessible
to the malicious cloud adversary (except for compromised clients), and aim to minimize its usage.
Possible instantiations include using a secure messaging app or an external PKI infrastructure.

To accept the sharing of a file, a client in the CSSaccept protocol (last box in Figure 9) uses
the putHeader subroutine to upload the shared file key obtained through the out-of-band channel
(inC .oob), encrypted under the user’s master key, as a new header for the shared file ID fid. That
is, each file owner has its own file header (which all contain the same file key, wrapped under their
individual master keys), but the actual file ciphertext is shared among all owners. Hence, CSSupd
reuses the file key to ensure that access to shared files is maintained across updates. We do not
model an “unshare” operation; however, any owner can delete a file by overwriting it with ⊥.

6.4 Proving CSS Secure

We are now ready to present our fully quantified bounds on the selective confidentiality and integrity
of CSS. They are dominated by the probability of a successful offline dictionary attack on user
passwords, which is inherent in the malicious-server setting due to unavoidable guessing attempts.
That is, since the server possesses ciphertexts created by the user under a key derivable from their
password, a malicious server can attempt to brute-force the password and use the ciphertexts to
verify guesses without any client interaction. The only protection against this type of attack is hence
to choose a strong password; this is reflected in our theorem bounds by the term corresponding to
the password-guessing advantage against the password distribution from which users sample their
passwords in our model.

As we outlined in the introduction, our proofs pertain to our selective security notions rather
than the adaptive notions because of the commitment issues that arise with adaptive compromises.
For CSS, in particular, the most challenging issues arise because the challenge files can be shared
with multiple users. In the proof, this means that the reduction needs to replace the master keys
of all owners of challenge files with random in order for us to be able to reduce to the security of
the AEAD scheme used for file key encryption in the next step. This replacement needs to happen
during registration, since the master key is generated in that step and then stored in encrypted form
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CSS
(C:1)
areg (ε, ε, inC , ε) :

1 pre: inC .{aid, pw}
2 k←$ Zq

3 rw ← H2(aid, pw ,H1(aid, pw)k)

4 kkek ← F(rw , “kek”)

5 kmk ←$ {0, 1}kl ; nmk ←$ {0, 1}nl

6 cmk ← Enc(kkek , nmk , kmk , (aid, “mk”))

7 kmac ← F(rw , “mac”)

8 mC ← (aid, k, nmk , cmk , kmac)

9 successC(mC)

CSS
(S:1)
areg (stS , ε, inS ,mC):

10 pre: stS .{acc}
11 (aid, k, nmk , cmk , kmac)← mC

12 acc[aid]← (k, nmk , cmk , kmac)

13 successS

CSS
(C:1)
auth (stC , ε, inC , ε):

14 pre: inC .{aid, pw}
15 r←$ Zq ; α← H1(aid, pw)r

16 mC ← (aid, α)

17 sttmp
C ← (aid,pw , r,mC)

18 return (stC , st
tmp
C , ε,mC)

CSS
(C:2)
auth (stC , st

tmp
C ,mS):

19 (sttmp
C .sid, β)← mS

20 (aid, pw , r,m′
C)← sttmp

C

21 if β /∈ G: failC

22 γ ← β1/r; rw ← H2(aid, pw , γ)

23 sttmp
C .kkek ← F(rw , “kek”)

24 kmac ← F(rw , “mac”)

25 mC ← Tag(kmac , (m
′
C ,mS))

26 return (stC , st
tmp
C , ε,mC)

CSS
(C:3)
auth (stC , st

tmp
C ,mS):

27 pre: sttmp
C .{kkek , aid, sid}

28 (nmk , cmk)← mS

29 kmk ← Dec(kkek ,nmk , cmk , (aid, “mk”))

30 stC ← (aid, sid, kmk)

31 successC

CSS
(S:1)
auth (stS , ε, inS ,mC):

32 pre: stS .{acc, sess}
33 (aid, α)← mC

34 if (aid /∈ acc) ∨ (α /∈ G): failS

35 (k, nmk , cmk , kmac)← acc[aid]

36 β ← αk

37 sid←$ {0, 1}sidl s.t. sid /∈ sess

38 mS ← (sid, β)

39 sttmp
S ← (aid, kmac ,mC ,mS)

40 return (stS , st
tmp
S , ε,mS)

CSS
(S:2)
auth (stS , st

tmp
S ,mC):

41 pre: stS .{sess}
42 (aid, kmac ,m

′
C ,m

′
S)← sttmp

S

43 if ¬Vrfy(kmac , (m
′
C ,m

′
S),mC): failS

44 sess[sid]← aid

45 mS ← (nmk , cmk)

46 successS(mS)

Figure 8: Account registration and authentication protocols of CSS.

on the server. But in the adaptive game, the reduction does not know at the time of registration
whether a user will become the owner of a challenge file later, or be compromised. Hence we run
into a commitment issue: the reduction needs to commit to a ciphertext corresponding to the user
master key during registration, but it does not yet know whether it will later have to open this
commitment (if the user is compromised) or if this ciphertext should be independent of the actual
master key (if the user is made the owner of a challenge file).

We are not aware of any attacks on CSS in the adaptive setting. We hence hypothesize that
this is a proof technique issue, rather than an issue with the protocol. Indeed, one could possibly
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CSS
(C:1)
put (stC , ε, inC , ε):

1 pre: inC .{fid, f } stC .{sid}
2 kf ←$ {0, 1}kl

3 mfk ←$ putHeader(C:1)(stC ,fid, kf )

4 mf ←$ putFile(C:1)(stC ,fid, kf , f )

5 mC ← (fid,mf ,mfk)

6 successC(mC)

CSS
(S:1)
put (stS , ε, inS ,mC):

7 pre: stS .{ows, sess}
8 (fid,mf ,mfk)← mC

9 if fid ∈ ows: failS

10 ows[fid]← {sess[sid]}
11 putHeader(S:1)(stS ,mfk)

12 putFile(S:1)(stS ,mf )

13 successS

CSS
(C:1)
upd (stC , ε, inC , ε):

14 pre: inC .{fid, f }, stC .{sid}
15 mC ← getHeader(C:1)(stC , fid)

16 sttmp
C .{fid, f } ← {fid, f }

17 return (stC , st
tmp
C , ε,mC)

CSS
(C:2)
upd (stC , st

tmp
C ,mS):

18 pre: sttmp
C .{fid, f }

19 kf ← getHeader(C:2)(stC , fid,mS)

20 mC ← putFile(C:1)(stC , fid, kf , f )

21 successC(mC)

CSS
(S:1)
upd (stS , ε, inS ,mC):

22 mS ← getHeader(S:1)(stS ,mC)

23 return (stS , ε, ε,mS)

CSS
(S:2)
upd (stS , st

tmp
S ,mC):

24 putFile(S:1)(stS ,mC)

25 successS

CSS
(C:1)
get (stC , ε, inC , ε):

26 pre: inC .{fid}, stC .{sid}
27 mC ← getFile(C:1)(stC ,fid)

28 sttmp
C .fid ← fid

29 return (stC , ε, ε,mC)

CSS
(C:2)
get (stC , st

tmp
C ,mS):

30 pre: stC .{aid}, sttmp
C .{fid}

31 f ← getFile(C:2)(stC ,fid,mS)

32 outC .f ← f

33 successC

CSS
(S:1)
get (stS , ε, inS ,mC):

34 mS ← getFile(S:1)(stS ,mC)

35 successS(mS)

CSS
(C:1)
share (stC , ε, inC , ε):

36 pre: inC .{raid, fid} stC .{sid}
37 m′

C ← getHeader(C:1)(stC , fid)

38 sttmp
C .fid ← fid

39 return (stC , st
tmp
C , ε, (m′

C , raid,fid))

CSS
(C:2)
share (stC , st

tmp
C ,mS):

40 pre: sttmp
C .{fid}

41 kf ← getHeader(C:2)(stC , fid,mS)

42 outC .oob← kf � share file key out-of-band

43 successC

CSS
(S:1)
share (stS , ε, inS ,mC):

44 pre: stS .{ows}
45 (m′

C , raid,fid)← mC

46 mS ← getHeader(S:1)(stS ,m
′
C)

47 ows[fid]
∪←− {raid} � authorize receiver

48 successS(mS)

CSS
(C:1)
accept(stC , ε, inC , ε):

49 pre: inC .{fid, oob} stC .{sid}
� kf received in oob

50 mC ← putHeader(C:1)(stC ,fid, oob)

51 successC(mC)

CSS
(S:1)
accept(stS , ε, inS ,mC):

52 putHeader(S:1)(stS ,mC)

53 successS

Figure 9: File download, upload, update, share, and accept protocols for CSS.
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putFile putHeader
(C:1)

(stC , fid, kf , f ):

1 n←$ {0, 1}nl

2 md ← (stC .aid,fid, “fk”)

3 cfk ← Enc(stC .kmk ,n, kf ,md)

4 cf ← Enc(kf , n, f , (fid, “file”))

5 mC ← (stC .sid,fid,n , cfk , cf )

6 return mC

putFile putHeader
(S:1)

(stS ,mC):

7 pre: stS .{sess, ows, fks, fs}
8 (sid, fid, n , cfk , cf )← mC

9 aid ← sess[sid]

10 if aid /∈ ows[fid]: return ⊥
11 fks[(aid, fid)]← (n, cfk)

12 fs[fid]← (n, cf )

getFile getHeader
(C:1)

(stC , fid):

13 mC ← (stC .sid,fid)

14 return mC

getFile getHeader
(C:2)

(stC , fid,mS):

15 ((nfk , cfk) , (nf , cf ) )← mS

16 md ← (stC .aid,fid, “fk”)

17 kf ← Dec(stC .kmk ,nfk , cfk ,md)

18 return kf

19 f ← Dec(kf , nf , cf , (fid, “file”))

20 return f

getFile getHeader
(S:1)

(stS ,mC):

21 pre: stS .{sess, ows, fks, fs}
22 (sid, fid)← mC

23 aid ← sess[sid]

24 if aid /∈ ows[fid]: return ⊥
25 mS ← (fks[(aid, fid)] , fs[fid] )

26 return mS

Figure 10: Subroutines for putting and getting header and/or files for CSS. Solid-boxed , dashed-boxed
code is included in the correspondingly marked algorithms.

prove CSS adaptively secure by guessing the subset of users which will become compromised and/or
the challenge file owners. However, the loss from this näıve “complexity leveraging” technique would
be expontential, because the reduction needs to guess one subset in the full power set of the set of
users. Developing other proof techniques to show that CSS is adaptively secure with less loss is an
interesting question for future work.

An interesting proof artifact in the confidentiality bound is our reductions to two different AEAD
security notions of indistinguishability. We could equally have reduced twice to AE security, which
implies both IND-CCA and IND$; we find that the extra granularity adds clarity to the proof.
One AEAD security property we do not require is key robustness, which protects password-based
cryptography against partitioning oracle attacks allowing an adversary to test several passwords in
one interaction. In our setting, key derivation employs a random oracle and becomes interactive,
so partitioning oracle attacks do not decrease adversarial interaction costs.

In the following, we let QOrc(A) denote the number of queries to oracle Orc by adversary A.
Similarly, we let qOrc(A) be the maximum number of queries per user made to oracle Orc by
adversary A. We use the convention that QPut1(A) and QUpd1(A) include indirect queries made
via oracle Chall. To count only queries via oracle Chall, we let CPut1 and CUpd1 denote
oracle Chall with input Orc set to Put1 and Upd1, respectively.

Theorem 6.1 (C2CConfS of CSS) Let CSS be the cloud storage scheme defined in Figures 8–10,
with building blocks specified in Section 6.1 and hash functions H1, H2 modeled as random oracles.
Let A be an adversary against the C2CConfS security of CSS. Then we can construct adversaries
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Bpg, Bprf , B12aead and B3aead such that

AdvC2CConfS
CSS,n,PWn

(A) ≤ 2 ·
(
AdvPG

n,PWn
(Bpg) +AdvPRF

F (Bprf) + 2AdvIND$
AEAD(B

12
aead)

+
(QUpd1(A) + 1)2 + (qPut1(A) + qAcpt1(A))2

2nl+1

)
+AdvIND-CCA

AEAD (B3aead).

The query counts of adversaries the adversaries Bpg, Bprf , B12aead, and B3aead are bounded by the total
query counts of adversary A, as detailed in Appendix C.1. The running times of all adversaries
are approximately that of A.

Proof sketch. We give an overview over the main proof steps here; the full proof is in Ap-
pendix C.1. The proof proceeds through a sequence of games G0–G7, which step by step replaces
the keys in the key hierarchy of honest users (iu ∈ (Shon\Scomp)) by keys generated independently at
random, reducing to the relevant security properties of the respective parts of CSS. The advantage
of A in the final game then reduces to the left-or-right IND-CCA security of the AEAD scheme
used for file encryption.

Games G0–G3: Replacing rw by random. We begin with game G0, which is equivalent to
GC2CConfS

CSS,n,PWn
(A), except that whenever a protocol uses the hash functions H1 or H2, the game

instead queries the random oracles RO1 or RO2, respectively. The effect of this change is only to
model the hash functions as random oracles. Hence

AdvC2CConfS
CSS,n,PWn

(A) := 2 · Pr [G0]− 1 . (1)

In the first sequence of games, the goal is to move to game G3, where the client-side output
rw ∈ {0, 1}kl from the OPRF flow in protocols CSSareg and CSSauth is replaced by an independent
random string in {0, 1}kl for all honest (uncompromised) users.

We claim that the change from G0 to G3 is indistinguishable to an adversary, except with some
small probability. Formally, we want to bound Pr[G0]− Pr[G3]. We do this through a sequence of
game hops over two additional games, G1 and G2, which allow us to show that Pr[G0]− Pr[G3] ≤
Pr [Bad], where (informally) Bad is the event that adversary A made a query RO1(aid,pw) or
RO2(aid,pw , ∗) such that aid and pw are the account ID and password of an uncompromised user.
We then construct an adversary Bpg such that Pr [Bad] ≤ AdvPG

n,PWn
(A). Combined with standard

equation rewriting, this gives

Pr [G0] ≤ AdvPG
n,PWn

(A) + Pr[G3] . (2)

Games G4–G7: Random keys and nonce collisions. In the following hops, we apply PRF
and AEAD security to ensure that keys in the key hierarchies of honest users are uniformly ran-
dom and independent from anything the server sees. We also handle nonce collisions in AEAD
encryptions.

First, in the hop to G4, we replace kkek and kmac derived from rw with PRF F by random
strings. This hop is bounded by

Pr[G3]− Pr[G4] ≤ AdvPRF
F (Bprf). (3)

G5 then replaces the encrypted master keys cmk of honest clients by independent random strings,
simultaneously ensuring that any deviation from the protocol by the server in authentication leads
to a decryption failure when the client attempts to retrieve its master key. This hop is bounded by

Pr[G4]− Pr[G5] ≤ AdvIND$
AEAD(B

1
aead). (4)
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In G6 we handle nonce collisions in file and file key encryptions. We introduce a bad event if any
two nonces for the same key collide, and in G6 sample a guaranteed fresh nonce as replacement.
The bad event, and hence hop from G5 to G6 is bounded (through two birthday bounds) by

Pr[G5]− Pr[G6] ≤
(QUpd1(A) + 1)2 + (qPut1(A) + qAcpt1(A))2

2nl+1
. (5)

In the final game hop, to G7, we replace the encrypted file keys cfk of all honest users by random
strings, again ensuring that only honest keys can be decrypted in get, update and share operations.
This step is bounded by

Pr[G6]− Pr[G7] ≤ AdvIND$
AEAD(B

2
aead). (6)

Bounding G7: IND-CCA security of file encryption. In the last step of the proof, we bound
the success probability of A in game G7 by the advantage of an adversary B3aead against the
IND-CCA security of AEAD. This step requires careful checking of the trivial attack conditions,
to ensure that B3aead can properly simulate the game unless A performs a trivial attack. We con-
clude that

2 · Pr[G7]− 1 ≤ AdvIND-CCA
AEAD (B3aead). (7)

Merging adversaries B1aead and B2aead into an adversary B12aead and putting Equations (1)–(7)
together yields the theorem statement. □

Theorem 6.2 (C2CIntS of CSS) Let CSS be the cloud storage scheme defined in Figures 8–10,
with building blocks specified in Section 6.1 and hash functions H1, H2 modeled as random oracles.
Let A be an adversary against the C2CIntS security of CSS making at most p queries to oracle Put1.
We construct adversaries Bpg, Bprf , B1aead, B2aead, B3aead and B4aead such that

AdvC2CIntS
CSS,n,PWn

(A) ≤ AdvPG
n,PWn

(Bpg) +AdvPRF
F (Bprf) +AdvIND$

AEAD(B
1
aead)

+
(QUpd1(A) + 1)2 + (qPut1(A) + qAcpt1(A))2

2nl+1
+AdvINT-CTXT

AEAD (B2aead)

+ p ·
(
AdvIND$

AEAD(B
3
aead) +AdvINT-CTXT

AEAD (B4aead)
)
.

The query counts for adversaries Bpg, Bprf and B1aead are as in the proof of Theorem 6.1, the others
are described in Appendix C.2. The running times of all adversaries are approximately that of A.

The proof is analogous to that of Theorem 6.1, except for the last few steps. That is, the proof
proceeds through a sequence of games G0–G8, which step by step replaces the keys in the key hier-
archy of honest users by keys generated independently at random, reducing to password-guessing,
PRF and AEAD advantages along the way. In contrast to in the confidentiality proof, these hops
to not incur a factor 2 in the bound, due to the advantage definition for C2CInt (Definition 4.3).
Additionally, there is an intermediate hop to guess the file ID for which A performs its forgery
attempts, incurring a loss by a factor p. The advantage of A in the final game reduces to the
INT-CTXT security of the AEAD scheme used for file encryption. The full details of the proof are
in Appendix C.2.

6.5 Limitations and Extensions of CSS

CSS is meant a as a proof-of-concept cloud storage scheme, illustrating our formalism and security
model. For the scope of this work, the design focuses on core cloud storage operations and security
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mechanisms. We had to analyse CSS in the weaker selective security game to avoid commitment
issues, leaving open the challenging task of achieving adaptive security for a scheme relying on
standard cryptographic components. Moreover, in a real-world implementation, one would have to
consider further functional requirements and additional security mechanisms, e.g., to strengthen
the system’s behavior against external adversaries under an honest cloud service. In the following,
we discuss limitations of our design in this regards and possible extensions.

Adaptive security. Plausibly, the flexible password-based encryption (FPBE) approach by Bel-
lare and Shea described in [12] could be used to achieve adaptive security when applied to cloud
storage protocols. FPBE’s flat key hierarchy omits the key-encrypting ciphertexts that would cause
issues in an adaptive analysis of CSS. However, there are concerns about the practicality of FPBE:
Bellare and Shea omit any consideration of file-sharing. Without decoupling file keys from the
password through key wrapping, it is unclear how to efficiently share files if all of a user’s keys
are derived from their password (as in FPBE). Without näıve file replication, users sharing a file
would need to derive the same key but from different passwords. Moreover, caching the password
in clients (as it is needed for every operation) may be an operational security concern. Additionally,
directly deriving file keys from user passwords makes password rotation very expensive: if a user
wants to change their password, they have to re-encrypt all of their files.

However, FPBE is only one avenue towards achieving adaptive security. It might well be the
case that CSS is adaptively secure; the challenge lies in constructing a proof which does not suffer
an exponential loss (from näıve complexity leveraging) when addressing the commitment issues.
We leave it as an open problem to prove stronger security of CSS, or to construct an adaptively-
secure cloud storage scheme which avoids the commitment issues while still supporting all core
functionality and not compromising on practicality.

Enforcing unique identifiers. In our security model, we assume unique account identifiers for
honest users (e.g., email accounts) and file identifiers (e.g., by prefixing account IDs). This allows
us to easily define what constitutes a “user” and a “file”: they correspond to an account ID and
a file ID, respectively. As a consequence, we also rule out trivial collision attacks by a malicious
cloud provider. Our CSS protocol hence, for reduced complexity in presentation, does not check
for colliding identifiers (e.g., in CSSareg); in an actual implementation, an honest server would
reasonably check for those to prevent malicious clients from overwriting data of other (honest)
clients. Providing provably secure schemes under weaker assumptions on the uniqueness of account
or file identifiers is an interesting direction for future work.

Password-authenticated channel establishment. Instead of relying on a secure channel
protocol (like TLS), a protocol might expand the OPRF usage to a full password-based key ex-
change, e.g., employing the OPAQUE [37] protocol, possibly in combination with TLS [31].

7 Conclusion and Future Work

The deployment of E2EE systems began over a decade ago and brought major security improve-
ments to areas like secure messaging (e.g., the Signal protocol) and browsing (TLS). Despite cloud
storage seeing comparable adoption, these advancements have not translated to this area, as recent
attacks on the largest E2EE cloud providers [6, 30, 3, 2] have shown. The vulnerabilities in the
end-to-end security of these cloud storages are at least in part due to the complexity of the setting
– which, when taking into consideration features like file sharing, is at least as intricate as key
exchange – leaving it easy for providers to introduce subtle mistakes in protocols. These mistakes
motivate the need for a strong cryptographic foundation for E2EE cloud storage.
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In this paper, we initiated the formal study of E2EE cloud storage. As central contributions
towards this, we introduced a syntax capturing the core functionality of cloud storage, as well as
game-based security notions for the desired confidentiality and integrity against a malicious service
provider. We put our model to test by both capturing recent attacks on MEGA as well as proving
secure our own E2EE cloud storage scheme CSS.

In order to tame the complexity of the problem, we had to make some simplifying assumptions,
leaving many opportunities for future work, including both model and protocol extensions. (See
Sections 4.4 and 6.5, respectively.)

A natural next step is to consider Client-to-Server (C2S) security of CSS, i.e., security against
external adversaries. We have sketched how to adapt our existing models to this C2S setting, and
we expect the C2S security of CSS to follow smoothly. Working with an honest server and assuming
a secure channel between clients and server allows C2S to avoid many complexities (e.g. malicious
choices of the OPRF keys, offline password brute-forcing, etc).

Second, we had to analyse CSS in the weaker selective security setting to avoid commitment
issues, leaving open the challenging task of achieving adaptive security for a scheme relying on
standard cryptographic components. Plausibly, the flexible password-based encryption (FPBE)
approach described in [12] could be used to achieve this, because FPBE’s flat key hierarchy omits
the key-encrypting ciphertexts that would cause issues in an adaptive analysis of CSS. However,
FPBE omits any consideration of file-sharing, and it not clear how to efficiently achieve this if all
of a user’s keys are derived from their password (as in FPBE), other than by naive file replication.

Third, the core functionality considered in this paper could be extended – at the cost of higher
complexity – with extra features such as file “unsharing” and deletion, password recovery, session
deauthentication (and ensuing security notions for adversaries with access to expired sessions), and
account deregistration.

Finally, many more advanced security properties could be considered. For example, it is an
open question how post-compromise and forward security apply to the cloud storage setting, and
how much is achievable; key rotation has been considered in prior works [36], as has fine-grained
forward security via puncturing techniques [5, 53], but not in combination with the full feature set
we target. Furthermore, CSS does not attempt to protect against roll-back attacks, nor provide
advanced metadata-hiding, cf. [22, 21].

This paper introduces formally analyzed protocols instead of relying on ad hoc and/or pro-
prietary designs. We hope that users will eventually enjoy the benefits of a single, well-analyzed
scheme with provable security guarantees, akin to E2EE communication today. Standardization
of such a scheme would resolve the long-standing issues that untrusted cloud providers need to be
trusted with the design of a secure system and serving benign client code. A standardized scheme
could have independent client implementations (i.e., not under the control of the potentially ma-
licious provider) and even lead to interoperability between cloud storage providers. Our work is a
first step towards bringing modern cryptographic guarantees to cloud storage.
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A Details of Formalizing (the Attacks on) MEGA

This section formalizes a simplified version of the cryptographic protocol implemented by MEGA
in our syntax. We use MEGA’s whitepaper [41], their client source code [45], and previous analyses
of their system [6, 28] as sources to aggregate a description of their protocol. The server code is
closed-source and the official documentation only describes the server API. Thus, the server-side
in our protocol is inferred from the cryptographic operations on the client and may differ from
the actual implementation. For simplicity, we focus on cryptographic operations and omit various
input validation and error messages. While this is sufficient to capture the attacks from [6] on
MEGA, we remark that modeling the error messages would be essential for a full security proof.
For instance, Albrecht et al. [3] exploited error messages in a now-patched client implementation
of MEGA to build a plaintext recovery attack for a malicious server.

A.1 Formalizing MEGA as a Cloud Storage Scheme

We define the MEGA cloud storage scheme M as a tuple of seven protocols M = (Mareg,Mauth,
Mput,Mupd,Mget,Mshare,Maccept) to register accounts, authenticate clients, as well as upload, update,
download, share, and accept files.

The following simplified descriptions of MEGA build on the symmetric encryption schemes
AES-ECB, AES-CBC, and AES-CCM, as well as the asymmetric RSA encryption scheme.
MEGA further uses the password-based key derivation function PBKDF [46] and a collision-
resistant hash function H.

Our modeling focuses on the version of MEGA that was vulnerable to the attacks by Backendal
et al. [6]. To this end, we omit functionality such as ephemeral accounts, two-factor authentication,
account recovery, remote session deauthentication, and public sharing links (see MEGA whitepaper
Sections 3.3 to 3.6 and 5 [41]). We describe the core protocols of MEGA in the remainder of this
section, before discussing attacks.

Account registration Mareg (Figure 11). The client first picks a random master key km and
client nonce nC . It derives the encryption key ke and authentication key ka, from PBKDF applied
to the concatenation of the user password pw and a salt s. The salt is the hash of the nonce nC
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client: M
(C:1)
areg (ε, ε, inC , ε):

1 pre: inC .{aid, pw , tk}
2 km←$ {0, 1}128 ; nC ←$ {0, 1}128

3 s ← H(const ∥nC)

4 ke ∥ ka ← PBKDF(s,pw)

5 ha ← H(ka)

6 cm ← AES-ECB.Enc(ke , km)

7 (pk, sk)←$ RSA.Gen(2048)

8 crsa ← AES-ECB.Enc(km, sk)

9 mC ← (aid, tk, nC , cm, ha, pk, crsa)

10 return (ε, ε, ε,mC)

M
(C:2)
areg (ε, sttmp

C ,mS):

11 if mS = ⊥: failC else: successC

server: M
(S:1)
areg (stS , ε, inS ,mC):

12 pre: stS .{tokens, acc}
13 (aid, tk, nC , cm, ha, pk, crsa)← mC

14 if (aid, tk) /∈ tokens: failS

15 acc[aid]← (nC , cm, ha, pk, crsa)

16 successS

Figure 11: MEGA’s account registration protocol Mareg.

concatenated to a constant const. Furthermore, the client generates the RSA secret key sk and
public key pk.9 The client then sends nC , km encrypted under ke using AES-ECB, pk, crsa, and
the hash of ka to the server.

We do not model the preliminary account registration step where a user provides their email
address aid and the server verifies that address by emailing a randomly-generated token tk.10 The
cryptographic account registration starts when the user already received tk – inputting it in inC

to the client – and returns to permanently store their encrypted key material. In M
(S:1)
areg , if the

account ID aid and token tk sent by the client matches the ones stored in stS .tokens, the server
considers account registration to be successful and stores (nC , cm,ha) in persistent state.

Authentication Mauth (Figure 12). To authenticate, a client sends its email address aid, en-
tered by the user in inC , to the server. If aid is stored in the user table stS .acc, the server answers
with the correct salt. As a countermeasure against email enumeration, the server generates a
random salt for non-existent users.

The client uses the salt to derive the encryption and authentication keys, ke and ka, respectively.
It sends ka in plaintext to the server. If the hash of ka matches ha (stored during registration), the
server responds with the encrypted master key cm and the (half-encrypted) RSA key pair (pk, crsa).
Moreover, the server sends the randomized session ID inS .sid (picked by the server in the bigger
context of the protocol) encrypted for the RSA public key pk of the user that tries to authenticate.

The client recovers its key material (km and sk) from the ciphertexts sent by the server and
uses them to decrypt the session ID sid. It sends sid back to the server, which considers a correct
value as proof that the client successfully recovered its key material. Additionally, the client stores
km, sk, and sid in the persistent client session state stC to enable file operations.

Upload Mput (Figure 13). For every file, the MEGA client picks a new file key kf and nonce nf .
It then encrypts the file inC .f with a custom authenticated encryption algorithm that we call mfile

9We deviate slightly from MEGA’s protocol actual registration protocol here for the sake of simplicity. In the real
system, the key material is only generated after the first successful login.

10Formalizing this would require a syntax extension to allow individual client-side inputs per protocol-step to
capture the email out-of-band channel. (See “Protocol inputs” in Section 4.4.) Since the generated token in MEGA
does not seem to depend on client input, we opt for a simplified representation taking the token as initial client input.
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client: M
(C:1)
auth (stC , ε, inC , ε):

1 pre: inC .{aid, pw}
2 sttmp

C .pw ← pw

3 return (stC , st
tmp
C , ε, aid)

M
(C:2)
auth (stC , st

tmp
C ,mS):

4 pre: sttmp
C .{pw}

5 ke ∥ ka ← PBKDF(mS ,pw)

6 sttmp
C .ke ← ke

7 return (stC , st
tmp
C , ε, ka)

M
(C:3)
auth (stC , st

tmp
C ,mS):

8 pre: sttmp
C .{ke}

9 (cm, (pk, crsa), csid)← mS

10 km ← AES-ECB.Dec(ke , cm)

11 sk ← AES-ECB.Dec(km, crsa)

12 stC .sid ← RSA.Dec(sk, csid)

13 stC .km ← km

14 stC .pk ← pk ; stC .sk ← sk

15 return (stC , st
tmp
C , outC , stC .sid)

M
(C:4)
auth (stC , st

tmp
C ,mS):

16 if mS = ⊥: failC else: successC

server: M
(S:1)
auth (stS , ε, inS ,mC):

17 pre: stS .{acc}, inS .{sid}
18 sttmp

S .sid ← sid

19 if mC ∈ acc:

20 sttmp
S .aid ← mC

21 (nC , cm,ha,pk, crsa)← acc[mC ]

22 s ← H(const ∥nC)

23 else:

24 s ← H(mC ∥ const′ ∥ stS .nS)

25 return (stS , st
tmp
S , ε, s)

M
(S:2)
auth (stS , st

tmp
S ,mC):

26 pre: stS .{acc}, sttmp
S .{aid, sid}

27 (nC , cm, ha, pk, crsa)← acc[aid]

28 if H(mC) ̸= ha: failS

29 csid ← RSA.Enc(pk, sid)

30 mS ← (cm, pk, crsa, csid)

31 return (stS , st
tmp
S , ε,mS)

M
(S:3)
auth (stS , st

tmp
S ,mC):

32 pre: stS .{sess}, sttmp
S .{sid}

33 if mC ̸= sid: failS

34 sess[sid]← sttmp
S .aid

35 successS

Figure 12: MEGA’s authentication protocol Mauth.

which returns the file ciphertext cf and authentication tag τf .
11 The client encrypts the file key

material dfkm – consisting of file key, nonce, and tag – with AES-ECB using the master key km.
The client metadata dmd, including file size and parent handle for the file’s position in the file tree,
is encrypted with AES-CBC using the file key kf . Finally, the client sends the session ID sid, file
ID fid, and ciphertexts for the file key material, metadata, and file (cfkm, cmd, and cf , respectively)
to the server.

For a valid session ID, the server persistently stores the file ID fid, encrypted key material cfkm,
and metadata cmd in the file tree of the user (identified by their email aid).12 Furthermore, the file
ciphertext cf is also stored in stS under the user’s files.

Update Mupd (Figure 13). Updating files is almost identical to Mput, except that it reuses the
file key kf and nonce nf picked during the first upload. These values come from a file tree stC .tree
that is cached in the client state and updated on Mget operations (described next).

Download Mget (Figure 14). The client first downloads the file tree tree containing the en-
crypted file key material cfkm and metadata cmd for every file and stores it in the client state stC
(e.g., to be used by Mupd).

13 Note that fetching tree requires knowledge of the session token sid; the

11We abstract away the details of the file encryption as they do not matter for our purposes. Figure 2–4 of
Backendal et al. [6] describes the chunkwise file encryption using a variant of AES-CCM performed by mfile.

12The server data structures are proprietary and, thus, unknown to us. Our abstractions stS .tree and stS .files are
merely convenient to express MEGA’s protocols.

13In practice, the client regularly polls for updates of this file tree, independent of Mget. For the purposes of our
security analysis, this is equivalent to only fetching updates for the file tree on a file download request.
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client: M
(C:1)
put M

(C:1)
upd (stC , ε, inC , ε):

1 pre: inC .{fid, f }inC .{md}
2 kf ←$ {0, 1}128 ; nf ←$ {0, 1}64

3 (·, (kf ,nf , ·))← stC .tree[fid]

4 (cf , τf )← Emfile(kf ,nf , f )

5 dfkm ← (kf ,nf , τf )

6 cfkm ← AES-ECB.Enc(stC .kmk ,dfkm)

7 cmd ← AES-CBC.Enc(kf ,md)

8 mC ← (stC .sid,fid, cfkm, cmd, cf )

9 return (stC , ε, ε,mC)

M
(C:2)
put M

(C:2)
upd (stC , st

tmp
C ,mS):

10 if mS = ⊥: failC else: successC

server: M
(S:1)
put M

(S:1)
upd (stS , ε, inS ,mC):

11 pre: stS .{sess, tree, files}
12 (sid, fid, cfkm, cmd, cf )← mC

13 aid ← sess[sid]

14 tree[aid]
∪←− {(fid, cfkm, cmd)}

15 files[fid]← cf

16 successS

Figure 13: MEGA’s file upload and update protocols Mput and Mupd. The boxed line is only included in Mput,
the dashed line only in Mupd.

client: M
(C:1)
get (stC , ε, inC , ε):

1 pre: inC .{fid}stC .{sid}
2 sttmp

C .fid ← fid

3 return (stC , st
tmp
C , ε, sid)

M
(C:2)
get (stC , st

tmp
C ,mS):

4 pre: stC .{kmk}, sttmp
C .{fid}

5 for (fid′, cfkm, cmd) ∈ mS :

6 dfkm ← AES-ECB.Dec(kmk , cfkm)

7 (kf , nf , τf )← dfkm

8 dmd ← AES-CBC.Dec(kf , cmd)

9 stC .tree[fid
′]← (dmd,dfkm)

10 return (stC , st
tmp
C , outC , fid)

M
(C:3)
get (stC , st

tmp
C ,mS):

11 pre: stC .{tree}, sttmp
C .{fid}

12 (dmd, dfkm)← tree[fid]

13 (f , outC .dec)← Dmfile(dfkm,mS)

14 if outC .dec: outC .f ← f

15 successC

server: M
(S:1)
get (stS , ε, inS ,mC):

16 pre: stS .{tree, sess}
17 return (stS , ε, ε, tree[sess[mC ]])

M
(S:2)
get (stS , st

tmp
S ,mC):

18 pre: stS .{files}
19 successS(files[mC ])

Figure 14: MEGA’s file download protocol Mget.

server fails by returning ⊥ for non-existent sid. The client decrypts the file key material with the
master key stored in the client session state stC . It then requests the file with identifier fid14 from
the server and decrypts it using the key material in the file tree and MEGA’s custom decryption
algorithm Dmfile, returning the decrypted file f and a success boolean (stored directly in client
protocol success decision outC .dec).

14Clients find the file identifier fid corresponding to a file of a particular name in the decrypted file tree. However,
our games require specifying fid in inC in the first round, which can be interpreted as using the identifier from the
cached file tree of a previous Mget call (say, for a dummy fid).
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client: M
(C:1)
share (stC , ε, inC , ε):

1 pre: inC .{raid, fid}inC .{rpk}
2 (dmd, dfkm)← stC .tree[fid]

3 cfkm ← RSA.Enc(rpk, dfkm)

4 mC ← (stC .sid, raid, fid, cfkm)

5 return (stC , ε, ε,mC)

M
(C:2)
share (stC , st

tmp
C ,mS):

6 if mS = ⊥: failC else: successC

server: M
(S:1)
share (stS , ε, inS ,mC):

7 pre: stS .{sess, acc, tree, shrtree}
8 (sid, raid, fid, cfkm)← mC

9 if sid /∈ sess or raid /∈ acc: failS

10 if (fid, ·, ·) /∈ tree[sess[sid]]:

11 failS

12 shrtree[raid][fid]← cfkm

13 successS

Figure 15: Simplified version of MEGA’s legacy file sharing protocol Mshare.

client: M
(C:1)
accept(stC , ε, inC , ε):

1 pre: inC .{fid}, stC .{sid}, inC .{dmd}
2 sttmp

C .dmd ← dmd

3 return (stC , ε, ε, (sid, fid))

M
(C:2)
accept(stC , st

tmp
C ,mS):

4 pre: stC .{sk, kmk}, sttmp
C .{dmd}

5 dfkm ← RSA.Dec(sk,mS)

6 cfkm ← AES-ECB.Enc(km, dfkm)

7 (kf , nf , τf )← dfkm

8 cmd ← AES-CBC.Enc(kf , dmd)

9 return (stC , st
tmp
C , outC , (cfkm, cmd))

M
(C:3)
accept(stC , st

tmp
C ,mS):

10 if mS = ⊥: failC else: successC

server: M
(S:1)
accept(stS , ε, inS ,mC):

11 pre: stS .{sess, acc, tree, shrtree}
12 (sid, sttmp

S .fid)← mC

13 sttmp
S .aid ← sess[sid]

14 mS ← shrtree[sttmp
S .aid][sttmp

S .fid]

15 return (stS , st
tmp
S , ε,mS)

M
(S:2)
accept(stS , st

tmp
S ,mC):

16 pre: stS .{tree}, sttmp
S .{aid, fid}

17 cfkm, cmd ← mC

18 tree[aid]← (fid, cfkm, cmd)

19 successS

Figure 16: Simplified version of MEGA’s legacy protocol to accept shared files Maccept.

Sharing Mshare (Figure 15). Backendal et al. [6] exploited a deprecated code path that was still
present in web clients before their disclosure. To show how their attack shows up in our security
games, we describe a simplified version of this legacy file sharing protocol.

In MEGA’s system, users establish contact relationships and sign the public key material of
their contacts on first use (Trust On First Use). Instead of modeling this complex setup, we assume
that the client obtained the public key rpk of receiver with account ID raid over some out-of-band
channel and provides it as input to Mshare in inC . The client encrypts the file key material dfkm
with the RSA public key of the recipient and sends all encrypted file material to the server. If
the session sid and receiver account raid exist, and the caller owns the file to be shared (line 11 in
Figure 15), the server temporarily stores the encrypted file keys cfkm in the share tree shrtree.

Receiving Maccept (Figure 16). The recipient of a file gets notified that a file with ID fid was
shared with them by polling the server (we do not model this mechanism). The user then calls
Maccept to fetch the encrypted file key material and re-encrypt it using their RSA secret key sk (for
decryption) and master key kmk (for encryption), likely to avoid expensive public key operations
in the future. Next, the new encrypted file key material cfkm and metadata cmd are uploaded to
the server and stored in the server’s persistent file tree data structure stS .tree.

15

15In practice, the metadata contains user-specific values such as a pointer to the parent folder of the file in a user’s
storage. These values would need to be replaced when sharing a file, which we model as a user input for simplicity.
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ExecHonOrc,Π(inS , stadv,arg):

1 pre: Orc ̸= Get1

2 m′ ← Orc(arg)

3 (stadv, st
tmp
adv , outadv,m)← Π(S:1)(stadv, st

tmp
adv , inS ,m

′)

4 sttmp
adv ← ε ; i← 2

5 while (outadv.dec ̸= ε or outC .dec ̸= ε):

6 m′ ← Step(Π, ip,m)

7 (stadv, st
tmp
adv , outadv,m)← Π(S:i)(stadv, st

tmp
adv ,m

′)

8 i← i+ 1

9 return stadv, outadv

Figure 17: Honest execution by using oracles and following the protocol steps.

A.2 Formal Attacks against MEGA

We proceed to show how attacks 1–3 from [6] (incorporating results from [3, 30]) against the
previously-described MEGA protocol M lead to adversaries with non-negligible winning probabili-
ties in games GC2CConfS

M,n,PWn
and GC2CIntS

M,n,PWn
for an arbitrary number of accounts n ≥ 1. Moreover, we

discuss a generic attack that more fundamentally prevents a security proof, even of the patched
MEGA protocol.

The following attacks perform a number of operations honestly, for which we use the shared
subroutine depicted in Figure 17.

C2CConfS attack. The adversary Aconf , described in Figure 18, combines the RSA key and
plaintext recovery attacks from Backendal et al. [6] to winGC2CConfS

M,n,PWn
with non-negligible probability.

The adversary starts by honestly registering a user with email address aid. It picks two distinct
files (f0 and f1) of the same length and uploads them as challenge. Next, Aconf runs the RSA key
recovery attack from [6, Section III] to recover the prime factors p and q from the RSA modulus N .
In short, the attack exploits the lack of integrity protection for the RSA secret key ciphertext crsa
and properties of MEGA’s RSA decryption RSA.Dec on the client to perform a binary search for
the smaller factor of the modulus N . The adversary tampers with the AES-ECB ciphertext crsa on
line 18 of Figure 18 to partially garble the secret key. Due to MEGA’s implementation of RSA.Dec,
clients leak whether the encrypted challenge value p′ is less than the smaller RSA prime factor
min(p, q) (by responding with mC = 0) or greater (resulting in mC > 0 with high probability).

With knowledge of the RSA secret key, adversary Aconf runs the plaintext recovery attack [6,
Section IV] to decrypt the challenge file. On a high level, the adversary injects the encrypted file key
material cfkm for the challenge file in the RSA secret key ciphertext crsa that is exchanged during
the authentication protocol. This is possible because both the RSA key and file keys are encrypted
with the master key and AES-ECB, enabling the replacement of individual ciphertext blocks in
crsa and cfk . Together with a specially crafted session ID (the value u′ ·q′, using the recovered RSA
secret key), the client inadvertently decrypts the injected file key material (kf ,nf , τf ) in the session

ID that it sends back to the server in M
(C:3)
auth . The attack is probabilistic and fails with probability

at most 2−30 (as explained by [6]). As a successful file decryption always results in the adversary
winning the game GC2CConfS

M,n,PWn
, it has advantage AdvC2CConfS

M,n,PWn
(Aconf ) = 1− 2−30 with 1023 calls to

Mauth. Implementing the optimization of [6], the adversary Aconf can stop the binary search after
512 queries to Mauth and recover the missing part of the secret key with lattice-based techniques.
Moreover, Heninger and Ryan [30] proposed a tailored lattice-based RSA key recovery attack that
further reduces the cost to 6 calls to Mauth.
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adversary AAReg1,Auth1,Put1,Upd1,Get1,Share1,Acpt1,Chall,Comp
conf ():

� Attack setup: honest account creation and challenge file upload

1 aid ← “evil@email.com” ; inC .aid ← aid ; iu ← 0 ; ic ← 0 ; fid ← 0

2 inC .tk←$ {0, 1}128 ; stadv.tokens ← {(aid, inC .tk)}
3 (stadv, outadv)← ExecHonAReg1,Mareg(ε, stadv, (iu, inC))

4 sid←$ S ; inS .sid←$ sid

5 (stadv, outadv)← ExecHonAuth1,Mauth(inS , stadv, (iu, inC))

6 inC .fid ← fid

7 f0 ← 0 ; f1 ← 1

8 (stadv, outadv)← ExecHonChall,Mput(ε, stadv, (ic, inC , f0, f1,Put1))

� Read target user ciphertexts from malicious server state

9 (nC , cm, ha, (pk, crsa))← stadv.acc[sid]

10 for (fid′, c′fkm, c
′
md) ∈ stadv.tree[aid]: � Find key material ciphertext cfkm for the newly uploaded file

11 if fid = fid′: cfkm ← c′fkm
12 cf ← stadv.files[fid]

� Recover RSA private key (see [6, Section III])

13 l ← 0 ; r ← ⌊
√
N⌋ ; ip ← 4

14 do:

15 p′ ← ⌊ r+l
2
⌋ ; inC .aid ← aid

16 mC ← Auth1(iu, inC)

17 mC ← Step(Mauth, ip,H(const ∥ nC))

18 madv ← (cm, (pk, crsa ⊕ 1),RSA.Enc(pk,p′))

19 mC ← Step(Mauth, ip,madv)

20 if mC = 0: r ← p′ else: l ← p′ + 1

21 ip ← ip + 1

22 until p′ | N
� Decrypt the challenge file (see [6, Section IV])

23 q′ ← N/p′ ; u′ ← (p′)−1 mod q′

24 inC .aid ← aid

25 mC ← Auth1(iu, inC)

26 mC ← Step(Mauth, ip,H(const ∥ nC))

27 c′rsa ← ⌊crsa · 2−8·128⌋ ∥ cfkm ∥ (crsa mod 26·128)

28 madv ← (cm, (pk, c
′
rsa),RSA.Enc(pk, u′ · q′))

29 mC ← Step(Mauth, ip,madv)

30 for y = 0, 1, . . . , 216 − 1:

31 (kf ,nf , τf )←
⌊ y ∥mC

q
· 256123

⌋
mod 25632

32 (f , succ)← Dmfile(kf , nf , τf , cf )

33 if succ: return If=f1

34 return 0 � (attack failed; reached with probability less than 230)

Figure 18: Adversary running RSA key attack (recovering prime factors p, q of the modulus N = p · q) and
the plaintext recovery attack from [6].

C2CIntS Attack. Figure 19 describes the adversary Aint , running the integrity attack from Back-
endal et al. [6] to win GC2CIntS

M,n,PWn
with non-negligible probability. The integrity attack from [6]

requires knowing a plaintext-ciphertext pair. Instead of building on Aconf and decrypting a ran-
domly picked AES-ECB ciphertext (to chain this attack with the previous two as in [6]), adversary
Aint uses the AES-ECB encryption oracle from [3, Section 2.2] to obtain the ciphertext for a cho-
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sen plaintext from the share accept protocol, as follows. The adversary first honestly registers and
authenticates a user, and then makes them accept a “shared” file chosen by the adversary. The
client decrypts the shared file key material dfkm from cfkm (using RSA) and re-encrypts it under
the user’s master key (using AES-ECB), sending the resulting c′fkm to the server.

Since the adversary picked the file key material dfkm (which consists of two AES blocks, the
first containing the file key kf , and the second a nonce nf and tag τf ), it now knows both the
plaintext blocks and the corresponding ciphertext blocks c′fkm. It will use the second one of these
known blocks to mount the integrity attack of [6].

Note that local file key ciphertexts are encrypted with AES-ECB, and therefore not integrity-
protected. Hence, as [6] describe, the adversary can trivially create a forged file key ciphertext.
For this attack, it will use the second of the ciphertext blocks from above for which it knows the
corresponding plaintext (namely, the nonce nf and tag τf ), and create a ciphertext which consists
of that block duplicated twice. That is, the forged ciphertext consists of two identical AES-ECB
blocks, for which the adversary knows the plaintext value nf ∥ τf .

Due to the way dfkm is parsed in MEGA’s custom decryption algorithm Dmfile, the duplicate
ciphertext blocks cause the client to derive the all-zeros file encryption key k′′

f = 0128 when it
decrypts the malicious file key ciphertext. Hence, the adversary knows which key the user derives
(despite that this key was never used before), and can use it to fabricate a file and metadata
ciphertext. The nonce nf and tag τf , which are also derived using Dmfile on the file key ciphertext,
are unaffected by this vulnerability. Hence, in addition to knowing the file key, that adversary also
knows the nonce nf and tag τf that will be used during file decryption. This is needed for the
attack, since encrypting the fabricated file must produce the tag τf when using nonce nf in order
to pass verification during decryption.

Figure 6 of [6] explains how it is possible to create such a file by changing only 128 bits of an
arbitrary file; we call this algorithm Emfile′ . As long as the file encrypted by Emfile′ is not the
file that was shared in the first step of the attack, this leads to a win in GC2CIntS

M,n,PWn
. Therefore,

adversary Aint has advantage AdvC2CConf
M,n,PWn

(Aint) = 1 with only a single call to each of Mareg, Mauth,
Maccept, and Mget.

Remaining obstacles in the patched MEGA protocol. Despite having mitigated the at-
tacks from [6, 3, 30], MEGA still cannot be proven secure in our model. Even with the patches,
the encryption scheme remains vulnerable to theoretic attacks which prevent the protocol from
satisfying our security notions. Unfortunately, mitigating these attacks is infeasible for MEGA, as
it would require all of their users to re-encrypt all of their files.

One example of a remaining issues shows up in Figure 19. In their patches, MEGA decided
to retain the file sharing feature that exposes an AES-ECB encryption oracle unchanged, instead
of switching to more expensive asymmetric encryption. Hence, an adversary could still run the
the attack until line 12 of Figure 19 and obtain file key material dfkm that is encrypted with the
target user’s master key. Instead of running the integrity attack from [6] to achieve a full break in
practice, the adversary could also win GC2CIntS

M,n,PWn
with a more theoretical attack by reusing the file

key material dfkm to encrypt a new file. This is possible because file keys are not bound to the file
or identifier fid, hence allowing an adversary that knows any file key material to reuse it to encrypt
other files. The new file is not tracked as shared by the adversary, and therefore constitutes a valid
forgery.
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adversary AAReg1,Auth1,Put1,Upd1,Get1,Share1,Acpt1,Comp
int ():

� Attack setup: honest account creation

1 aid ← “evil@email.com” ; inC .aid ← aid ; iu ← 0 ; ic ← 0

2 inC .tk←$ {0, 1}128 ; stadv.tokens ← {(aid, inC .tk)}
3 (stadv, outadv)← ExecHonAReg1,Mareg(ε, stadv, (iu, inC))

4 sid←$ S ; inS .sid←$ sid

5 (stadv, outadv)← ExecHonAuth1,Mauth(inS , stadv, (iu, inC))

� Prepare adversary chosen “shared file”

6 (nC , cm, ha, (pk, crsa))← stadv.acc[sid]

7 (kf , nf )←$ ({0, 1}128 × {0, 1}64)
8 (cf , τf )← Emfile(kf , nf , 0) � Encrypt any file, for instance “0”

9 dfkm ← (kf , nf , τf ) ; cfkm ← RSA.Enc(pk,dfkm)

� Obtain valid plaintext-ciphertext pair (over file sharing, see [3, Section 2.2])

10 ip ← 3 ; inC .fid ← 0 ; inC .dmd ← ε

11 (stadv, outadv)← Acpt1(ic, inC)

12 (c′fkm, c
′
md)← Step(Maccept, ip, cfkm) � Now, c′fkm = AES-ECB.Enc(km, dfkm)

� Fabricate file ciphertext

13 c0 ∥ c1 ← c′fkm ; c′′fkm ← c0 ∥ c0 � for |c0| = |c1| = 128 bits

14 k′′
f ← 0128 � Result of decrypting c′′fkm, an artifact of MEGA’s encryption Emfile

15 c′′f ← Emfile′

k′′
f

(nf , τf ) � Creating some file encryption that produces tag τf , see [6, Figure 6].

16 c′′md ← AES-CBC.Enc(k′′
f , ε)

� Serve fabricated file

17 ip ← ip + 1 ; inC .fid ← 0

18 (stadv, outadv)← Get1(ic, inC)

19 mC ← Step(Mget, ip, {(inC .fid, c
′′
fkm, c

′′
md)})

20 mC ← Step(Mget, ip, c
′′
f ) � client succeeds because c′′f was encrypted with k′′f

21 return

Figure 19: Adversary running the integrity attack from [6, Section V] with a valid plaintext-ciphertext pair
from the sharing feature exploited in follow-up work by Albrecht et al. [3, Section 2.2].

B Building Block Details

This section specifies the building blocks used in Section 6 to prove the security of our cloud storage
scheme in more detail.

B.1 Standard Building Blocks

We use the following standard building blocks:

PRF. Let F : {0, 1}kl × {0, 1}∗ → {0, 1}kl be a function family. We define GPRF-1
F to be the multi-

user [8] PRF game in which an adversary A can generate new PRF keys through oracle New
and through oracle Fn(·, ·), on input i, x, gets back F(ki, x), where ki is the ith key generated
by New. Game GPRF-0

F is identical, except that Fn(i, x) returns a consistently sampled random
string in {0, 1}kl. We define the advantage of adversary A against the PRF security of F to be
AdvPRF

F (A) := Pr
[
GPRF-1

F

]
− Pr

[
GPRF-0

F

]
.

AEAD. We define a nonce-based authenticated encryption scheme with associated data [51] as
AEAD = (Enc,Dec), where we write c ← Enc(k, n,m, ad) and m ← Dec(k,n, c, ad) for encryption
resp. decryption of a message m ∈ {0, 1}∗ resp. ciphertext c ∈ {0, 1}∗ using key k ∈ {0, 1}kl,

50



Game GIND$-b
AEAD (A):

1 global u, Sn, TAEAD

2 b′←$ANew,Enc,Dec()

3 return b′

New():

4 u← u+ 1

5 ku←$ {0, 1}kl

Enc(i,n,m, ad):

6 if (i,n) ∈ Sn:

7 return ⊥
8 Sn

∪←− {(i,n)}
9 c1 ← Enc(ki, n,m, ad)

10 c0←$ {0, 1}|c1|

11 TAEAD[i,n, cb, ad]← m

12 return cb

Dec(i,n, c, ad):

13 m1 ← Dec(ki, n, c, ad)

14 m0 ← TAEAD[i,n, c, ad]

15 return mb

Game GIND-CCA-b
AEAD (A):

1 global u, Sn, TAEAD

2 b′←$ANew,Enc,Dec()

3 return b′

New():

4 u← u+ 1

5 ku←$ {0, 1}kl

Enc(i,n,m0,m1, ad):

6 if (i, n) ∈ Sn ∨ |m0| ̸= |m1|:
7 return ⊥
8 Sn

∪←− {(i,n)}
9 c0 ← Enc(ki, n,m0, ad)

10 c1 ← Enc(ki, n,m1, ad)

11 Sc
∪←− {(i,n, cb, ad)}

12 return cb

Dec(i, n, c, ad):

13 if (i, n, c, ad) ∈ Sc:

14 return ⊥
15 m← Dec(ki, n, c, ad)

16 return m

Game GINT-CTXT
AEAD (A):

17 global win, u, Sn, Sc

18 ANew,Enc,Dec()

19 return win

New():

20 u← u+ 1

21 ku←$ {0, 1}kl

Enc(i,n,m, ad):

22 if (i,n) ∈ Sn:

23 return ⊥
24 Sn

∪←− {(i, n)}
25 c ← Enc(ki, n,m, ad)

26 Sc
∪←− {(i,n, c, ad)}

27 return c

Dec(i,n, c, ad):

28 m← Dec(ki, n, c, ad)

29 if (i, n, c, ad) /∈ Sc ∧ m ̸= ⊥:
30 win← true

31 return m

Figure 20: Games formalizing authenticated encryption (IND$), confidentiality (IND-CCA) and integrity of
ciphertexts (INT-CTXT) of an authenticated encryption scheme with associated data AEAD.

nonce n ∈ {0, 1}nl, and associated data ad ∈ {0, 1}∗.
Below, we formally define the advantage of an adversary A against the IND$, IND-CCA and

INT-CTXT security of AEAD in the multi-user setting denoted as AdvIND$
AEAD(A), AdvIND-CCA

AEAD (A),
and AdvINT-CTXT

AEAD (A), respectively. The games formalizing IND$, IND-CCA and INT-CTXT of
an AEAD scheme are given in Figure 20. We define

AdvIND$
AEAD(A) = Pr

[
GIND$-1

AEAD

]
− Pr

[
GIND$-0

AEAD

]
,

AdvIND-CCA
AEAD (A) = Pr

[
GIND-CCA-1

AEAD

]
− Pr

[
GIND-CCA-0

AEAD

]
, and

AdvINT-CTXT
AEAD (A) = Pr

[
GINT-CTXT

AEAD

]
.

MAC. A message authentication code MAC = (Tag,Vrfy) consists of a tag generation algorithm
Tag : {0, 1}kl × {0, 1}∗ → {0, 1}tl and a verification algorithm Vrfy : {0, 1}kl × {0, 1}∗ × {0, 1}tl →
{⊥,⊤}. Both take a key k of length kl and an arbitrary length message m as input, Tag produces
a tag of length tl. Correctness is defined as Vrfy(k,m,Tag(k,m)) = ⊤.

B.2 OPRF Building Block

We describe the 2HashDH OPRF in Figure 21, which we will use inlined in the protocols of CSS. It is
based on a group G of prime order q and two hash functions H1 : {0, 1}∗ → G and H2 : {0, 1}∗×G →
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2HashDH.Req(x):

1 r←$ Zq ; α← H1(x)
r

2 return ((r, x), α)

2HashDH.Finalize((r, x), β):

3 if β /∈ G: return ⊥
4 γ ← β1/r

5 y ← H2(x, γ)

6 return y

2HashDH.KeyGen():

7 k←$ Zq

8 return k

2HashDH.BlindEv(k, α):

9 if α /∈ G: return ⊥
10 β ← αk

11 return β

Figure 21: The 2HashDH OPRF operations (client on the left, server on the right) for a group G and hash
functions H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → {0, 1}kl which compute 2HashDHk(x) := H2(x,H1(x)

k)) for
a client-chosen value x and server key k. The colored values α and β are the messages exchanged between
client and server.

{0, 1}kl. The server-side key k ∈ Zq is generated using KeyGen(). The client computes a request
via Req(x), which samples a random blinding value r ∈ Zq, computes the request to be sent to the
server as α← H1(x)

r and outputs it together with local state (r, x). The server computes the blind
evaluation BlindEv(k, α) as β ← αk . The client finally in Finalize unblinds β using r and outputs
y ← H2(x, γ)).

C Proofs of Client-To-Client Security for CSS

C.1 Proof of Theorem 6.1

This section provides the full details of the proof of the selective client-to-client confidentiality
of CSS, as stated in Theorem 6.1. Recall that QOrc(A) and qOrc(A) denote the maximum number
of queries to oracle Orc by adversary A in total and per user, respectively. We use the convention
that QPut1(A) and QUpd1(A) include indirect queries made via oracle Chall. To count only
queries via oracle Chall, we let CPut1 and CUpd1 denote oracle Chall with input Orc set to
Put1 and Upd1, respectively.

The proof proceeds through a sequence of games G0 – G7, which all provide the oracles from
game GC2CConfS

CSS,n,PWn
. Each game will begin by sampling a challenge bit b, which determines the file

that is encrypted in oracle Chall. The finalize procedure in each game is equivalent to that of
GC2CConfS

CSS,n,PWn
. Namely, the game runs A to obtain b′. It returns ¬trivial∧ (b′ = b), where trivial is the

predicate (defined on line 5 of Figure 5) indicating if A performed a trivial attack. Throughout,
we let Pr [Gi ] denote the probability that Gi(A) returns true.

We model the hash functions H1, H2 used in account registration and authentication as (pro-
grammable) random oracles, implemented through lazy sampling with consistency ensured by tables
TH1[·, ·] and TH2[·, ·, ·]. The adversary can interact with the tables through oracles RO1 and RO2.

Games G0–G3: Replacing rw by random. We begin with game G0, which is equivalent to
GC2CConfS

CSS,n,PWn
(A). In particular, the client-side output rw ∈ {0, 1}kl from the OPRF flow in protocols

CSSareg and CSSauth is computed using the random oracles RO1 and RO2 in place of H1 and H2.
For example, line 3 of Figure 8 is replaced by

G0: CSS
(C:1)
areg :

3 rw ← RO2(aid,pw , (RO1(aid, pw))k)

where we only display the modified line.
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The effect of this change is only to model the hash functions as random oracles. Hence

AdvC2CConfS
CSS,n,PWn

(A) := 2 · Pr [G0]− 1. (8)

In the first sequence of games, the goal is to move to game G3, where rw is replaced by an
independent random string in {0, 1}kl for all honest (uncompromised) users.

Specifically, G3 differs from G0 in the following ways. In protocol CSSareg, when the adversary
registers a user iu /∈ Scomp (by calling oracle AReg1 for iu) the calls to RO1 and RO2 computing
γ and rw are replaced with consistent random sampling from G and {0, 1}kl, respectively. That is,
line 3 in G0 is replaced by the following lines

G3: CSS
(C:1)
areg :

3 if iu ∈ Scomp:

γ ← (RO1(aid, pw))k ; rw ← RO2(aid, pw , γ)

4 else:

5 TI[aid, pw ]←$ G; γ ← (TI[aid, pw ])k

6 Trw[aid, pw , γ]←$ {0, 1}kl; rw ← Trw[aid,pw , γ]

The same change is also applied in CSSauth for all iu /∈ Scomp. That is, α ← (RO1(aid,pw))r on
line 15 of Figure 8 is replaced by

G3: CSS
(C:1)
auth :

15 if iu ∈ Scomp: α← (RO1(aid, pw))r else: α← (TI[aid, pw ])r

and on line 22, computing rw ← RO2(aid,pw , γ) is replaced by

G3: CSS
(C:2)
auth :

22 if iu ∈ Scomp: rw ← RO2(aid,pw , γ)

23 else:

24 if Trw[aid, pw , γ] = ⊥: Trw[aid, pw , γ]←$ {0, 1}kl

25 rw ← Trw[aid, pw , γ]

We claim that the change from G0 to G3 is indistinguishable to an adversary, except with some
small probability. Formally, we want to bound Pr[G0] − Pr[G3]. To this end, we introduce two
additional games, G1 and G2. In the following, we focus on the places where these games differ
from GC2CConfS

CSS . To this end, we let Auth2(ip,m) := Step(CSSauth, ip,m) be an oracle which takes
care of the query processing when A runs the second client-side step of protocol CSSauth through
oracle Step.

Games G1 and G2 function exactly like G3, except in oracles RO1 and RO2, and where rw
is computed in oracles AReg1 and Auth2. There, as shown in Figure 22, a flag bad is set to
true if oracle RO1 resp. RO2 is queried by the adversary on inputs (a, b) resp. (a, b, c) such that
TI[a, b] ̸= ⊥, resp. Trw[a, b, c] ̸= ⊥. (That is, if the adversary queries the random oracles on inputs
corresponding to the aid and pw of a non-compromised user that has been previously registered
and/or authenticated.) Game G1, which contains the boxed code, then overwrites TH1[a, b] resp.
TH2[a, b, c] with TI[a, b], resp. Trw[a, b, c], whereas G2 does nothing. Additionally, bad is also set
to true in AReg1 and Auth2 if the adversary has already queried RO1 resp. RO2 on input
(aid, pw) resp. (aid, pw , γ), such that TH1[aid, pw ] resp. TH2[aid,pw , γ] are initiated. Game G1

then overwrites the affected entry in tables TI and/or Trw with these values, whereas G2 again
does nothing.
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It is clear that G2 is equivalent to G3 (the only difference being that the bad flag is set, which
does not affect the adversary’s chances of winning), and hence that Pr[G2] = Pr[G3]. Let Bad denote
the event that G2 sets the bad flag. G1 and G2 are identical-until-Bad, so Pr[G1]−Pr[G2] ≤ Pr[Bad]
by the fundamental lemma of game playing [11]. Finally, we claim that G1 is equivalent to G0. To
see this, note that in G1, all rw values are computed in a way that is consistent with the random
oracles – any potential inconsistency is fixed through the programming after the bad event. Hence,
Pr[G0] = Pr[G1].

Through standard equation rewriting, this gives

Pr[G0] = Pr[Bad] + Pr[G3]. (9)

Games G0–G3: Bounding Bad. Next, we proceed to bound the probability that G2 sets bad.
Let G′

2 be identical to G2, except that instead of returning ¬trivial∧(b = b′) in the finalize procedure,
it returns bad, such that Pr [Bad] = Pr [G′

2]. Next, we construct a game G′′
2, which is identical to

G′
2, except that it additionally keeps track of the queries made by adversary A, as follows. All

queries RO1(a, b) resp. RO2(a, b, c) by adversary A (notably, not by the game itself!) are collected
in sets SH1 and SH2, respectively, through SH1

∪←− {(a, b)}, SH2
∪←− {(a, b, c)}. Queries to oracle

AReg1 and Auth2 which initialize table entries TI[aid,pw ] resp. Trw[aid, pw , γ] are collected in
SI

∪←− {(aid,pw)} and Srw
∪←− {(aid, pw , γ)}. Furthermore, instead of returning bad, G′′

2 returns
(SI ∩ SH1) ∪ (Srw ∩ SH2) ̸= ∅. Games G′

2 and G′′
2 are given in Figure 23.

We claim that the two return statements are equivalent. The flag bad is set to true for one of two
reasons: (1) when the adversary16 makes a query RO1(a, b) resp. RO2(a, b, c) such that TI[a, b] resp.
Trw[a, b, c] is already initialized. This implies that (a, b) ∈ SH1 ∩ SI or (a, b, c) ∈ SH2 ∩ Srw. Or (2)
A makes a query using user values aid,pw and γ such that it has previously queried RO1(aid,pw)
or RO2(aid, pw , γ). This implies that (aid, pw) ∈ SH1 ∩ SI or (aid,pw , γ) ∈ SH2 ∩ Srw. Hence,

Pr [Bad] = Pr
[
G′

2

]
= Pr

[
G′′

2

]
. (10)

Next, we construct an adversary Bpg against the password-guessing game (see Figure 4) for the
distribution PWn such that

AdvPG
n,PWn

(Bpg) ≥ Pr
[
G′′

2

]
. (11)

On a high level, adversary Bpg will use the RO queries from A to guess passwords: Whenever

adversary A makes a query RO1(a, b) or RO2(a, b, c), Bpg lets SH
∪←− {(a, b)}. When A halts, Bpg

checks for every element (a, b) ∈ SH if there exists a user iu s.t. the account ID of iu is a. If so, it
queries Test(iu, b). This way, Bpg makes a password guess for every element (a, b) resp. (a, b, c) in
SH1 resp. SH2 of G′′

2 where a corresponds to an account ID of a registered user. In particular, it will
query Test(iu, b) for each (a, b) ∈ SI ∩ SH1 and each (a, b, c) ∈ Srw ∩ SH2 such that Tuaid[iu] = a.
Since SI and Srw only contain account IDs and passwords of honestly registered users not in Scomp,
adversary Bpg wins game GPG

n,PWn
if (SI ∩ SH1) ∪ (Srw ∩ SH2) ̸= ∅, proving Equation (11).

Formally, we also need to take care that adversary Bpg can properly simulate game G′′
2 for

A. This is possible thanks to the selective compromises in the password guessing game, and the
fact that for non-compromised users, the OPRF values γ and rw are independent from the user’s
password in game G′′

2. The selective compromises are used to handle queries from A on iu ∈ Scomp:
In the first stage of the simulation, adversary Bpg runs A to get Scomp and returns this to its own
challenger, receiving the vector pwcomp of compromised passwords back. In the second stage, Bpg
uses pwcomp[iu] in place of pw[iu] to handle queries from A on iu ∈ Scomp.

16Note that this relies on the assumption that aids are unique per user, so that there is no overlap between game
queries to RO1 and RO2 for users in Scomp and queries from A.
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Games G1 , G2:
...

AReg1(iu, inC):
...

3 if iu ∈ Scomp: γ ← (RO1(aid,pw))k ; rw ← RO2(aid, pw , γ)

4 else:

5 TI[aid, pw ]←$ G � aid is unique and AReg1 can only be called once, so no resampling

6 if TH1[aid, pw ] ̸= ⊥:
bad← true; TI[aid, pw ]← TH1[aid, pw ]

7 γ ← (TI[aid,pw ])k

8 Trw[aid, pw , γ]←$ {0, 1}kl

9 if TH2[aid, pw , γ] ̸= ⊥:
bad← true; Trw[aid, pw , γ]← TH2[aid, pw , γ]

10 rw ← Trw[aid,pw , γ]
...

Auth1(iu, inC):
...

15 if iu ∈ Scomp: α← (RO1(aid, pw))r else: α← (TI[aid, pw ])r

...

Auth2(ip,mS) � Oracle Step for CSS
(C:2)
auth

:
...

22 if iu ∈ Scomp: rw ← RO2(aid,pw , γ)

23 else:

24 if Trw[aid, pw , γ] = ⊥: Trw[aid, pw , γ]←$ {0, 1}kl

25 if TH2[aid, pw , γ] ̸= ⊥:
bad← true; Trw[aid, pw , γ]← TH2[aid, pw , γ]

26 rw ← Trw[aid,pw , γ]
...

Game G0, G3

RO1(a, b):

27 if TH1[a, b] = ⊥:
28 TH1[a, b]←$ G

29 return TH1[a, b]

RO2(a, b, c):

30 if TH2[a, b, c] = ⊥:
31 TH2[a, b, c]←$ {0, 1}kl

32 return TH2[a, b, c]

Game G1 , G2

RO1(a, b):

33 if TH1[a, b] = ⊥: TH1[a, b]←$ G

34 if TI[a, b] ̸= ⊥:
35 bad← true; TH1[a, b]← TI[a, b]

36 return TH1[a, b]

RO2(a, b, c):

37 if TH2[a, b, c] = ⊥: TH2[a, b, c]←$ {0, 1}kl

38 if Trw[a, b, c] ̸= ⊥:
39 bad← true; TH2[a, b, c]← Trw[a, b, c]

40 return TH2[a, b, c]

Figure 22: Games and additional oracles for the first game hops in proof of Theorem 6.1. G is a group of
prime order q with generator g .
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Games G′
2, G

′′
2 :

...

1 return bad � G′
2

2 return (SI ∩ SH1) ∪ (Srw ∩ SH2) ̸= ∅ � G′′
2

AReg1(iu, inC):
...

3 k←$ Zq

4 if iu ∈ Scomp:

5 if TH1[aid,pw ] = ⊥: TH1[aid, pw ]←$ G

6 γ ← (TH1[aid, pw ])k

7 if TH2[aid,pw , γ] = ⊥: TH2[aid,pw , γ]←$ {0, 1}kl

8 rw ← TH2[aid, pw , γ]

9 else: TI[aid, pw ]←$ G

10 if TH1[aid,pw ] ̸= ⊥: bad← true � (aid, pw) ∈ SH1 � G′
2

11 SI
∪←− {(aid, pw)} � G′′

2

12 γ ← (TI[aid, pw ])k

13 Trw[aid,pw , γ]←$ {0, 1}kl

14 if TH2[aid,pw , γ] ̸= ⊥: bad← true; � (aid, pw, γ) ∈ SH2 � G′
2

15 Srw
∪←− {(aid, pw , γ)} � G′′

2

16 rw ← Trw[aid, pw , γ]
...

Auth1(iu, inC):
...

17 if iu ∈ Scomp: α← (TH1[aid,pw ])r else: α← (TI[aid, pw ])r

...

Auth2(ip,mS):
...

18 if iu ∈ Scomp:

19 if TH2[aid,pw , γ] = ⊥: TH2[aid,pw , γ]←$ {0, 1}kl

20 rw ← TH2[aid, pw , γ]

21 else:

22 if Trw[aid,pw , γ] = ⊥: Trw[aid,pw , γ]←$ {0, 1}kl

23 if TH2[aid,pw , γ] ̸= ⊥: bad← true; � (aid, pw, γ) ∈ SH2 � G′
2

24 Srw
∪←− {(aid, pw , γ)} � G′′

2

25 rw ← Trw[aid, pw , γ]
...

Games G′
2, G

′′
2

RO1(a, b):

26 if TH1[a, b] = ⊥: TH1[a, b]←$ G

27 if TI[a, b] ̸= ⊥: bad← true � (a, b) ∈ SI � G′
2

28 SH1
∪←− {(a, b)} � G′′

2

29 return TH1[a, b]

RO2(a, b, c):

30 if TH2[a, b, c] = ⊥: TH2[a, b, c]←$ {0, 1}kl

31 if Trw[a, b, c] ̸= ⊥: bad← true � (a, b, c) ∈ Srw � G′
2

32 SH2
∪←− {(a, b, c)} � G′′

2

33 return TH2[a, b, c]

Figure 23: Games G′
2 and G′′

2 for the first game hops in proof of Theorem 6.1. G is a group of prime order
q with generator g .
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If iu ∈ (Shon \ Scomp), Bpg instead samples γ and/or rw (depending on the oracle) uniformly
at random and stores them for consistency in TI[iu] and Trw[iu, γ], respectively. Note here that
swapping aid, pw for iu in the key for the tables is sound thanks to the assumption that account IDs
are globally unique and the fact that the game enforces a single aid per registered user. With this
strategy, adversary Bpg perfectly simulates game G′′

2 for A, making at most QRO1(A) +QRO2(A)
queries to oracle Test.

Game G4: Replace kkek and kmac with random.
We begin with a change in bookkeeping. Let G′

3 be identical to G3, except that table Trw tracking
the rw values of honest clients is indexed by iu, γ rather than aid,pw , γ. Thanks to the one-to-
one mapping between aid and iu, this has no effect on the functionality of the game, implying
Pr[G3] = Pr[G′

3].

Next, G4 replaces kkek and kmac , derived from rw using F on lines 4, 7 of CSSareg, and 23, 24

of CSS
(C:2)
auth (Figure 8) with consistently sampled random strings of length kl. We construct an

adversary Bprf such that

Pr[G′
3]− Pr[G4] ≤ AdvPRF

F (Bprf). (12)

Adversary Bprf acts as the challenger in game G′
3. In particular, it samples a bit b and uses it to

determine which file to encrypt in queries from A to oracle Chall. In contrast to the challenger
in game G′

3, adversary Bprf does not itself sample the table entries in Trw used as keys for F.
Instead, it calls oracle New for every new iu, γ combination (where iu /∈ Scomp) that it sees in A’s
queries to AReg1 and Auth2, storing the index of the new key in place of the key itself in table
Trw[iu, γ]. Furthermore, instead of computing F itself for uncompromised clients, it calls oracle
Fn(Trw[iu, γ], x) for x ∈ {“kek”, “mac”} to compute kkek and kmac . This way, Bprf simulates game
G′

3 when playing GPRF-1
F and G4 when playing GPRF-0

F , making at most QAReg1(A) +QAuth1(A)
queries to both oracles New and Fn. (Note that QAuth2(A) ≤ QAuth1(A), since the second step
of a protocol can only be run if it the first has been executed, allowing us to bound the number
subsequent protocol steps by the initial queries.)

When A halts and returns bit b′, adversary Bprf halts and returns 1 if b′ = b, else it returns 0.
This gives Equation (12).

Game G5: Replace encrypted master key with random.
Next, in game G5, the goal is to apply AEAD security for the encryption of the client master key

kmk in CSS
(C:1)
areg for honest users. All of the following changes apply only if iu /∈ Scomp; otherwise

the game remains unchanged.

In game G5, the encryption cmk of the master key is replaced by a randomly sampled string

c′mk of length |cmk | in line 6 of CSS
(C:1)
areg . Additionally, the game stores the master key kmk in table

TAEAD[(iu, γ), nmk , c
′
mk , (aid, “mk”)], and instead of using Dec to decrypt cmk in line 29 of CSS

(C:3)
auth ,

the table entry corresponding to the inputs from the server is used. Note that this means that if
the table entry has not been initialized in CSSareg, kmk is set to ⊥ in CSSauth.

We construct an adversary B1aead against the IND$ security of AEAD such that

Pr[G4]− Pr[G5] ≤ AdvIND$
AEAD(B

1
aead). (13)

Adversary B1aead acts like the challenger in game G4, with the following exceptions. First, instead
of sampling kkek at random for each iu, γ pair s.t. iu /∈ Scomp in AReg1 and the second step of
Auth, adversary B1aead queries oracle New and stores the index of the new key in TF[iu, γ, “kek”].
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This gives QNew(B1aead) ≤ QAReg1(A) + QAuth1(A). Second, instead of encrypting kmk itself in
AReg1, adversary B1aead queries oracle Enc in the IND$ game with key index TF[iu, γ, “kek”] and
message input kmk and uses the resulting ciphertext as cmk . Note that thanks to the precondition
iu /∈ Sreg in AReg1 and the fact that CSSareg always succeeds on the client, A can query oracle
AReg1 at most once per iu. Hence adversary B1aead will make at most one Enc query per key in
the IND$ game, ensuring that nonce collisions are not a problem. Last, instead of decrypting cmk

in the third step of Auth, B1aead queries oracle Dec in its own game with key index TF[iu, γ, “kek”].
This way, B1aead simulates game G4 and G5 for A when the hidden bit in the IND$ game is 1 and
0, respectively. We have QEnc(B1aead) ≤ QAReg1(A) and QDec(B1aead) ≤ QAuth1(A).

Let b denote the bit sampled by B1aead at the start of the simulation and bB the bit sampled
by the challenger in GIND$

AEAD. When A halts and returns b′, B1aead returns 1 if b′ = b, otherwise it
returns 0. This gives Equation (13).

Game G6: Avoid nonce collisions.
In G6, we take care of nonce collisions for AEAD encryptions. These occur with a probability that
relates to the nonce length nl and the number of operations per user which sample nonces. In CSS,
the nonces for file resp. file key encryptions are sampled in subroutines putFile resp. putHeader,
which are called by protocols CSSput (both) and CSSupd resp. CSSaccept. Formally, we introduce a
bad flag which is set to true whenever nonces collide in both G5 and G6, and game G6 only differs
from G5 in that if bad is set, the nonce is resampled such that it is guaranteed to be fresh. That
is, line 1 of both putFile and putHeader in Figure 10 is replaced by

G5, G6 : putFile , putHeader :

1 n←$ {0, 1}nl

2 if n ∈ SpF
n,iu

SpH
n,iu

:

bad← true; n←$ {0, 1}nl \ SpF
n,iu

SpH
n,iu

� Boxed code only in G6

3 SpF
n,iu

SpH
n,iu

∪←− {n}

Here iu ← Tu[ic] is the user index tracked by the game corresponding to the client index ic
input by A to oracles Put1 and Acpt1. Since the games are identical until the bad flag is set,
Pr[G5]− Pr[G6] ≤ Pr [G5 sets bad] by the fundamental lemma of game-playing [11].

Let BadpF resp. BadpH be the event that G5 sets bad in putFile resp. putHeader. We have
that Pr [G5 sets bad] = Pr [BadpF ∨ BadpH] = Pr [BadpF] + Pr [BadpH], since the two bad events
are independent. We now proceed to bound Pr [BadpF] and Pr [BadpH]. Recall that qPut1(A),
qUpd1(A) and qAcpt1(A) are the maximum number of queries made by A to oracles Put1 and
Acpt1 per user iu, respectively. Pr [BadpH] is then bounded from above by the collision probability
C(2nl, qPut1(A)+qAcpt1(A)), which denotes the probability that from qPut1(A)+qAcpt1(A) elements
sampled uniformly at random out of a set of size 2nl, any two collide. By a birthday bound, this
gives

Pr [BadpH] ≤
(qPut1(A) + qAcpt1(A))2

2nl+1
.

For BadpF, the tightest upper bound would be achieved by considering the number of nonces
sampled per file, which is at most the number of calls to Upd1 for that file (across all users), plus
one (for the nonce sampled when the file is first put). However, since the number of update calls per
file is at most the total number of update queries QUpd1(A) (across all files), we bound Pr [BadpF]
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by C(2nl,QUpd1(A) + 1), for simplicity. This gives

Pr [BadpF] ≤
(QUpd1(A) + 1)2

2nl+1
,

again by a birthday bound. Together, this gives

Pr[G5]− Pr[G6] ≤
(QUpd1(A) + 1)2 + (qPut1(A) + qAcpt1(A))2

2nl+1
. (14)

Game G7: Replace encrypted file keys with random.
Next, we apply AEAD security to the file key encryptions of honest users. Briefly, the aim of this
step is to replace each file key ciphertext of honest users with a randomly sampled string of the
same length, such that the key used to encrypt the file is independent from the ciphertext sent to
the server.

Formally, game G7 differs from G6 in line 3 of putHeader (Figure 10), which in G7 is replaced by

G7: putHeader:

3 cfk ← Enc(stC .kmk ,n, kf ,md); cfk ←$ {0, 1}|cfk |; Tkf [iu, n, cfk ,md]← kf

if called from oracle Put1 or Acpt1 on input a client index ic s.t. Tu[ic] /∈ Scomp. Note that putFile
remains unchanged. In particular, the file is still encrypted with the file key kf given as input to
the subroutine. To ensure that file decryption works, game G7 also replaces line 17 of getHeader
and getFile (Figure 10) with

G7: getFile, getHeader:

16 kf ← Tkf [iu,n, cfk ,md]

if called from the oracles running procedures CSSupd, CSSget and CSSshare with a client index ic s.t.
Tu[ic] /∈ Scomp. Note that this means that kf is set to ⊥ if the table entry has not been initialized.

We construct an adversary B2aead against the IND$ security of AEAD such that

Pr[G6]− Pr[G7] ≤ AdvIND$
AEAD(B

2
aead). (15)

Adversary B2aead acts like the challenger in game G6, with the following exceptions on operations
for users iu /∈ Scomp. First, instead of sampling kmk at random in AReg1, adversary B2aead queries
oracle New and stores the index of the new key in TAEAD[(iu, γ), nmk , c

′
mk , (aid, “mk”)], where

γ, nmk , c′mk and aid are defined as in game G6. This gives QNew(B2aead) ≤ QAReg1(A). Sec-
ond, when A runs procedure CSSauth via Auth1 and Step, adversary B2aead sets stC .kmk ←
TAEAD[(iu, γ),nmk , c

′
mk , (aid, “mk”)]. (If the table entry is ⊥, B2aead will respond with ⊥ to all

future queries within the session which uses stC .kmk .)

Next, when A queries Put1 or Acpt1, adversary B2aead queries oracle
Enc(stC .kmk ,n, kf ,md) to encrypt the newly sampled kf and uses the resulting ciphertext as
cfk . Thanks to how nonce sampling in putHeader is handled in G6, these queries from B2aead are
guaranteed to be nonce-respecting. Finally, instead of decrypting cfk when simulating oracles which
call getFile and getHeader, B2aead queries oracle Dec in its own game with key index stC .kmk on the
inputs provided by A. This way, B2aead simulates game G6 and G7 for A when the hidden bit in
the IND$ game is 1 and 0, respectively. It makes at most QPut1(A) +QAcpt1(A) queries to oracle
Enc and at most QUpd1(A) +QShare1(A) +QGet1(A) to oracle Dec.
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Let b denote the bit sampled by B2aead at the start of the simulation and bB the bit sampled
by the challenger in GIND$

AEAD. When A halts and returns b′, B1aead returns 1 if b′ = b, otherwise it
returns 0. This gives Equation (15).

File encryption: Bounding game G7. The final reduction in the proof is concerned with the
encryption of challenge files in G7. We construct an adversary B3aead against the IND-CCA security
of AEAD such that

2 · Pr[G7]− 1 ≤ AdvIND-CCA
AEAD (B3aead). (16)

Adversary B3aead acts as the challenger in G7, with some exceptions. First, B3aead does not sample
a bit b. Second, B3aead will use the oracles in its own game to handle some file operations, as follows.
Let iu be the user index of the client for which A runs a protocol through its oracle queries. We
consider three cases for operations on a file with file ID fid:

(a) fid /∈ Schall: In this case, B3aead will sample the file key itself when the file is first put, and
perform subsequent file encryptions and decryptions exactly as the challenger in G7.

(b) (fid ∈ Schall) ∧ (iu /∈ Scomp ∪ {ιmal}): In this case, B3aead will query oracle New to request a
new file key when the file is first put, and then use oracles Enc and Dec in game GIND-CCA

AEAD

to encrypt and decrypt, respectively.

(c) (fid ∈ Schall) ∧ (iu ∈ Scomp ∪ {ιmal}): If adversary A makes a query that falls into this case,
B3aead will either return ⊥ to A (if that is what G7 would do), or halt and return 0 (if it cannot
continue to simulate).

Next, we will go through the implications of this strategy, protocol by protocol, focusing on
cases (b) and (c), since that is where B3aead differs from the challenger in G7. Hence, the following
applies only when fid ∈ Schall.

Challenge put. In case (b), adversary B3aead generates a new key via oracle New in game GIND-CCA
AEAD ,

and stores the index i in Tkf [iu, nfk , cfk ,md]. Here cfk is a random string of appropriate length (as
per game G7), nfk is the file key nonce sampled in putHeader and md = (stC .aid,fid, “fk”) includes
the file ID fid. The file ciphertext is generated as cf ← Enc(i,n, f0, f1, (fid, “file”)), where n is the
nonce sampled in putFile. Thanks to nonces being sampled without collisions (see G6), adversary
B3aead is guaranteed to be nonce-respecting. This correctly simulates game G7.

In case (c), adversary B3aead halts and returns 0. We note that in this case, iu is added to
SchallOwners on line 29 of Figure 6. Since iu ∈ Scomp ∪ {ιmal} in this case, trivial (defined on line 5 of
Figure 5) will evaluate to true.

Challenge update. In case (b), i ← Tkf [iu, nfk , cfk ,md], retrieved by B3aead in getHeader, either
contains the index i of a key registered with oracle New (if the file has been put or its sharing
accepted by user iu before, and A inputs the honest cfk and nfk) or is ⊥ (if iu is not an owner of this
file or A does not provide honest inputs). In either case, B3aead attempts to encrypt the challenge
files with cf ← Enc(i,n, f0, f1, (fid, “file”)) (returning ⊥ if i = ⊥). This correctly simulates game
G7.

In case (c), B3aead returns ⊥ in place of cf if Tkf [iu, nfk , cfk ,md] = ⊥. (This occurs if iu is not
an owner of fid from a prior put or accept operation, or if A does not provide honest inputs.) This
correctly simulates game G7. Otherwise, if the table entry exists, B3aead halts and returns 0. We
note that in this case, iu was either added to Tf [fid].U when it first put the file in oracle Chall and
is therefore added to SchallOwners on line 29, or, if the file was shared with iu through the game, they
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were added to SchallOwners as a recipient on line 19, both in Figure 6. In the case that iu accepts the
file as a share directly from the adversary, the adversary ιmal is added to SchallOwners on line 25 of
Figure 6. In either case, trivial = true.

We note that in case (a), B3aead will act as the challenger in the game and return ⊥ if Upd1
is called through oracle Chall on fid /∈ Schall. The reason that such queries are silenced is that
B3aead will have sampled the file key itself when the file was first put, and hence could not embed
a challenge to its own game in this case. (That is, allowing this would encode a form of adaptive
security, whch is not present in the selective game, as it would lead to a commitment issue.)

Get. In case (b), B3aead lets i ← Tkf [iu, nfk , cfk ,md] and attempts to decrypt the file ciphertext
with f ← Dec(i,nf , cf , (fid, “file”)). For the same reasons as in case (b) of Update, this correctly
simulates game G7.

In case (c), B3aead returns ⊥ in place of the file. Thanks to line 20 of Figure 5, this correctly
simulates game G7.

Share. In case (b), the file is being shared by an honest user. B3aead then acts differently depending
on the identity of the receiver: If the receiver is also honest (ir /∈ Scomp ∪ {ιmal}), B3aead lets
i ← Tkf [iu, nfk , cfk ,md] and sends i over the OOB channel. For the same reasons as in case (b)
of Update, this correctly simulates game G7. If instead ir ∈ Scomp ∪ {ιmal}, then B3aead halts and
returns 0. We note that in this case, ir is added to SchallOwners on line 19, Figure 6. Hence trivial
is true in this case. Note that as a consequence of this strategy, the OOB channel Toob[(ir, ·)] of a
user ir ∈ Scomp only ever contains file keys sampled by B3aead itself (for non-challenge files).

In case (c), B3aead halts and returns 0. We note that in this case, iu was added to SchallOwners on
line 19 of Figure 6, causing trivial to be true.

Accept. Note that we call the share-receiving user ir here rather than iu, to stay consistent with
the game.

In case (b), if inC .oob = ⊥, B3aead samples a file key nonce nfk and ciphertext cfk independently
at random, as would the challenger in G7. It then lets Tkf [iu,nfk , cfk ,md] ← Toob[(ir, fid)]. This
correctly simulates game G7. If inC .oob ̸= ⊥, then B3aead halts and returns 0. We note that in this
case, ιmal was added to SchallOwners on line 25 of Figure 6, causing trivial to be true.

In case (c), B3aead checks if both inC .oob and Toob[(ir,fid)] are ⊥. If so, it returns ⊥. Otherwise,
it halts and returns 0. We note that in this case, ιmal is either added to SchallOwners on line 25,
Figure 6 (if inC .oob ̸= ⊥), or ir was already added on line 19 (when Toob[(ir,fid)] was initialized
in Share1). Since ir ∈ Scomp ∪ {ιmal} in this case, this implies that trivial is true.

If adversary A makes any other query not covered above that sets trivial to true, adversary B3aead
halts and returns 0. Otherwise, adversary B3aead simulates the game as above until adversary A halts
and returns b′, in which case B3aead does the same. This means that B3aead either returns the same bit
guess as A (if ¬trivial) or 0 (if trivial). In terms of query counts, we have QNew(B3aead) ≤ QCPut1(A),
QEnc(B3aead) ≤ QCPut1(A) +QCUpd1(A), QDec(B3aead) ≤ QGet1(A).

Let Gb
7 denote G7 with hidden bit b. With this strategy, adversary B3aead perfectly simulates Gb

7

for A when playing game GIND-CCA-b
AEAD , unless it halts before A does. In particular, B3aead is able to

simulate queries to oracle Comp for iu ∈ Scomp; it samples pw and kmk itself (like the challenger in
G7, thanks to prior game hops) and the OOB channel only contains file keys that B3aead sampled
itself, as noted in case (b) of Share.

Let Tb be the event that trivial is set to true by A when adversary B3aead plays game GIND-CCA-b
AEAD .
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By applying the law of total probability to the IND-CCA advantage definition, we have

AdvIND-CCA
AEAD (B3aead) = Pr

[
GIND-CCA-1

AEAD

]
− Pr

[
GIND-CCA-0

AEAD

]
= Pr

[
GIND-CCA-1

AEAD |T1

]
· Pr [T1]− Pr

[
GIND-CCA-0

AEAD |T0

]
· Pr [T0]

+ Pr
[
GIND-CCA-1

AEAD | ¬T1

]
· Pr [¬T1]− Pr

[
GIND-CCA-0

AEAD | ¬T0

]
· Pr [¬T0] .

Furthermore, since B3aead returns 0 if trivial = true,

Pr
[
GIND-CCA-1

AEAD |T1

]
· Pr [T1]− Pr

[
GIND-CCA-0

AEAD |T0

]
· Pr [T0] = 0.

Next, by the definition of conditional probability, and since B3aead returns the same bit as A in case
¬trivial,

Pr
[
GIND-CCA-1

AEAD | ¬T1

]
· Pr [¬T1]− Pr

[
GIND-CCA-0

AEAD | ¬T0

]
· Pr [¬T0]

= Pr
[
A ⇒ 1 in G1

7 ∧ ¬T1

]
− Pr

[
A ⇒ 1 in G0

7 ∧ ¬T0

]
= 2 · Pr [G7]− 1,

where the last equality follows from standard advantage rewriting, conditioning on the value of b.

Conclusion. Combining Equations (8)–(16) gives

AdvC2CConfS
CSS,n,PWn

(A) ≤ 2 ·
(
AdvPG

PW(Bpg) +AdvPRF
F (Bprf)

+
(QUpd1(A) + 1)2 + (qPut1(A) + qAcpt1(A))2

2nl+1

+AdvIND$
AEAD(B

1
aead) +AdvIND$

AEAD(B
2
aead)

)
+AdvIND-CCA

AEAD (B3aead) . (17)

We merge B1aead and B2aead into B12aead, as follows. B12aead samples a bit β←$ {0, 1} and runs Bβ+1
aead,

forwarding any oracle queries to its own oracles and returning whatever Bβ+1
aead returns. This gives

AdvIND-CCA
AEAD (B12aead) =

1

2
·AdvIND-CCA

AEAD (B1aead) +
1

2
·AdvIND-CCA

AEAD (B2aead), (18)

with query counts QOrc(B12aead) ≤ max(QOrc(B1aead) +QOrc(B2aead)) for Orc ∈ {New,Enc,Dec}.
Combining Equations (17) and (18) gives the bound claimed in Theorem 6.1 with the following
query counts in summary:

QTest(Bpg) ≤ QRO1(A) +QRO2(A),

QNew(Bprf) ≤ QFn(Bprf) ≤ QAReg1(A) +QAuth1(A)
QNew(B12aead) ≤ QAReg1(A) +QAuth1(A) ,
QEnc(B12aead) ≤ max(QAReg1(A),QPut1(A) +QAcpt1(A)) ,
QDec(B12aead) ≤ max(QAuth1(A),QUpd1(A) +QShare1(A) +QGet1(A)) ,
QNew(B3aead) ≤ QCPut1(A) ,
QEnc(B3aead) ≤ QCPut1(A) +QCUpd1(A) , and

QDec(B3aead) ≤ QGet1(A).
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C.2 Proof of Theorem 6.2

This section provides the details of the last steps of the proof of the selective client-to-client integrity
of CSS. The proof is analogous to the proof of Theorem 6.1 up until and including G6, with the
difference that games G0–G6 provide the oracles named in game GC2CIntS

CSS,n,PWn
, and also match the

finalize procedure thereof. That is, the games run (the stateful) adversary A with no oracle access
to obtain Scomp, and then run A again with access to all oracles until the adversary halts. They
return win; a flag set to true (on line 19 of Figure 5) if A makes a client successfully retrieve a file
which has not been added via the Put oracle, or which is only owned by honest users, but the file
content does not match what is expected. Throughout, we let Pr [Gi ] denote the probability that
Gi(A) returns true, and note that, by definition,

AdvC2CIntS
CSS,n,PWn

(A) = Pr [G0 ]. (19)

Furthermore, with only slight adaptations to the reductions provided in the proof of Theo-
rem 6.1, we have

Pr[G0]− Pr[G3] ≤ AdvPG
n,PWn

(Bpg), (20)

Pr[G3]− Pr[G4] ≤ AdvPRF
F (Bprf), (21)

Pr[G4]− Pr[G5] ≤ AdvIND$
AEAD(B

1
aead), and (22)

Pr[G5]− Pr[G6] ≤
(QUpd1(A) + 1)2 + (qPut1(A) + qAcpt1(A))2

2nl+1
. (23)

Adversary Bpg works exactly as in the proof of Theorem 6.1. Adversaries Bprf and B1aead no longer
sample a bit at the start of the game; instead, they run A and return 1 in their respective games
if A sets win to true in the simulated game. This gives the bounds above.

We now provide the final steps in the proof of Theorem 6.2. Recall that in game G6 (as per the
proof of Theorem 6.1), the OPRF client secret rw , the key encryption key kkek derived therefrom
and the registered master key kmk of all honest clients are uniformly random and independent from
anything that the server sees. The master key recovered by honest clients during authentication
and used in the subsequent sessions is additionally ensured to be equal to their registered master
key. That is, malicious inputs from the server during authentication of an honest user will result
in the client failing to derive the master key. Furthermore, in game G6 all nonces sampled during
file key and file encryption are guaranteed to be unique per encryption key.

Game G7: Rule out completely forged file headers. In this step, we rule out the possibility
of win being set to true for a file ID which has not been uploaded via oracle Put1. To this end, we
introduce a bad flag in G6, which is set to true in procedure Check if either a get or share operation
is successful, when run for an honest user, on a file ID which has no tracked content and no or only
honest owners. That is, we cover both the case when the file ID is not tracked by the game at all,
as well as when the file ID has not been uploaded through oracle Put1, but shared or received, in
which case the file has owners but no content.

In the game, we modify lines 18–20 and add lines 23–24 to subroutine Check in Figure 5, as
shown below.
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G6, G7 : Check(Π, ip, outC ,m
′):

17 if Π = Πget:

18 if Tu[ic] ∈ Shon \ Scomp ∧ outC .dec ∧ Tf [fid].U ⊆ Shon \ Scomp:

19 if Tf [fid].F = ∅: bad← true; return ⊥
20 win← outC .f /∈ Tf [fid].F

21 return (outC .f ,m
′)

22 if (Π = Πshare and outC .dec): Toob[(ir,fid)]← outC .oob

23 if Tu[ic] ∈ Shon \ Scomp ∧ Tf [fid].F = ∅ ∧ Tf [fid].U ⊆ Shon \ Scomp:

24 bad← true; Toob[(ir, fid)]← ⊥; Tf [fid].U← Tf [fid].U \ {Tu[ic]}; return ⊥

We additionally modify the return statement on line 11 of Figure 5 to

G6, G7 :

11 if bad: win← false

12 return win

where, in both of the above, the boxed code is not present in game G6. We note that neither of
these changes affect the winning condition, hence the modified G6 is equivalent to the original and
any adversary has the same probability of winning in both. We now create game G7, which is
identical to G6, except that it contains the boxed code shown on lines 19, 24 and 11 above.

Let Bad denote the event that G6 sets the bad flag. G6 and G7 are identical-until-Bad, so by
the fundamental lemma of game playing [11], Pr[G6]− Pr[G7] ≤ Pr[Bad].

We construct an adversary B2aead against the INT-CTXT security of AEAD such that

Pr[Bad] ≤ AdvINT-CTXT
AEAD (B2aead). (24)

Adversary B2aead acts as the challenger in game G6, with the following differences on operations
for users iu /∈ Scomp. First, instead of sampling kmk at random in AReg1, adversary B2aead queries
oracle New and stores the index of the new key in a table indexed by the relevant messages in the
transcript of the registration protocol. (Cf. adversary B2aead in the proof of Theorem 6.1, hop from
G6 to G7.) This gives QNew(B2aead) ≤ QAReg1(A). Second, when A runs procedure CSSauth via
Auth1 and Step, adversary B2aead sets stC .kmk to the indexed stored in the table. (If the table
entry is ⊥ due to malicious server messages during authentication, B2aead will respond with ⊥ to all
future queries within the session which uses stC .kmk .)

Next, when adversary A queries oracles Put1 or Acpt1, adversary B2aead queries oracle
Enc(stC .kmk , n, kf ,md) to encrypt the newly sampled kf or the key from inC .oob or Toob, re-
spectively. It uses the resulting ciphertext as cfk . Thanks to how nonce sampling in putHeader is
handled in G6, these queries from B2aead are guaranteed to be nonce-respecting. Finally, instead of
decrypting cfk when simulating oracles which call getFile and getHeader, B2aead queries oracle Dec
in its own game with key index stC .kmk on the inputs provided by A.

Adversary B2aead handles queries to oracle Comp as would the challenger in game G6, since –
due to the fact that A announces all of its compromise queries in advance – adversary B2aead knows
all of the values to be returned in response to such a query. (It only does not know the master
key of honest users, which are never revealed to the adversary in the selective security game.) This
way, B2aead simulates game G6 for A and makes at most QPut1(A) + QAcpt1(A) queries to oracle
Enc and at most QUpd1(A) +QShare1(A) +QGet1(A) to oracle Dec.

We claim that Pr[Bad] ≤ AdvINT-CTXT
AEAD (B2aead). To see this, observe that bad is set to true in

G6 if the adversary has successfully run the get or share protocols on a file ID fid such that

(Tu[ic] ∈ Shon \ Scomp) ∧ (outC .dec) ∧ (Tf [fid].F = ∅) ∧ (Tf [fid].U ⊆ Shon \ Scomp) .
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In order, these conditions correspond to (1) the get or share operation is performed by an honest
user, (2) the protocol concluded successfully on the client, (3) the file content is not tracked by the
game, and (4) the file is only owned by honest users. We now claim that together, these conditions
correspond to a file header forgery for the file ID fid which sets bad. To see this, note that point
(3) implies that fid has not been queried to oracle Put1 and consider the following two cases for
point (4):

1. Tf [fid].U = ∅. (The set of file owners is empty.) In this case, fid has not been queried to
oracle Share1 or Acpt1, and, hence, putHeader has not been performed for fid. However, a
successful get or share operation means that protocol getFile or getHeader, respectively, has
been run successfully for an honest user. This in turn means that adversary B2aead queried
oracle Dec(stC .kmk ,nfk , cfk ,md) on the master key index of the honest client, the file header
(nfk , cfk) supplied by adversary A and the metadata md = (stC .aid,fid, “fk”) and that the
decryption succeeded. Since no file header has been put for fid, and hence not queried to
oracle Enc by adversary B2aead, this is a valid forgery in the INT-CTXT game of AEAD. (Note
that fid is part of the metadata md. Hence, fid being fresh implies that the decryption query
does not count as a trivial attack on line 29 of game GINT-CTXT

AEAD in Figure 20.)

2. ∅ ̸= Tf [fid].U ⊆ Shon \ Scomp. (The set of file owners is non-empty, but only contains honest
users.) In this case, the file has been queried to oracle Share1 and/or Acpt1 (where the
share query can be the one that sets bad) with only honest users as sharer and receiver,
respectively. We identify the following sub-cases:

(a) fid has not been queried to oracle Acpt1. Then it is again the case that putHeader has
not been performed for fid, as putHeader is only run in CSSput and CSSaccept. Hence, by
the same reasoning as in case 1, this implies that adversary B2aead successfully forged a
file header.

(b) fid has been queried to oracle Acpt1. Then, by the precondition for oracle Acpt1, on
line 21 of Figure 6, either inC .oob ̸= ⊥, or Toob[ir, fid] ̸= ⊥. If inC .oob ̸= ⊥, then ιmal

is added to the set of owners, and hence the file is no longer only owned by honest users,
ruling out this possibility. If Toob[ir, fid] ̸= ⊥, then the OOB table entry must have been
previously initialized by some user via a successful query to oracle Share1. This user
must be honest (otherwise the file would be owned by the compromised sharer), implying
that there was a point in time when fid had not yet been queried to oracle Acpt1, but
was queried to oracle Share1 with all of the conditions necessary for setting bad being
true. Hence, we are back in case 2(a).

Therefore, Bad implies that adversary B2aead set win to true in game GINT-CTXT
AEAD , yielding Equa-

tion (24).

Game G8: Guess a forgery attempt. We now observe that in game G7, the file ID fid of any
successful forgery attempt must have appeared in a query to oracle Put1. To see this, note that,
thanks to the modified return statement in game G7, the condition for setting the win flag can be
changed to

G7: Check(Π, ip, outC ,m
′):

...

17 if Π = Πget:

18 win← (Tu[ic] ∈ Shon \ Scomp) ∧ (outC .dec) ∧ (Tf [fid].F ̸= ∅) ∧ (outC .f /∈ Tf [fid].F)

∧(Tf [fid].U ⊆ Shon \ Scomp)
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without changing the outcome of the game. That is, adversary A can only win if it successfully
gets a file fid through the client of an honest user, such that the file content is tracked (meaning the
file has been put or updated at least once), the decrypted file content does not match any tracked
version of the file, and the file is owned only by honest users. Now consider the possible ways in
which the adversary can initialize Tf [fid].F, while ensuring that fid is only owned by honest users.

Tf [fid].F is only set in oracles Put1 andUpd1. In the latter, it is only updated if the calling user
is already an owner of fid tracked in TF[fid].U. TF[fid].U, in turn, is only updated in oracles Put1,
Share1 and Acpt1. This leads to the following cases:

1. fid was first uploaded via oracle Put1.

2. fid was updated via oracle Upd1 without first having been put. Then it must be the case
that the updating user is already an owner of the file, and hence either:

(a) The updating user was added as an owner in a query to oracle Share1 while Tf [fid].F =
∅. If the sharing user is compromised, the owner set no longer only contains honest
users, so this case is ruled out. If instead the sharing client is an honest user, then by
line 24 of game G7 (as shown in the previous game hop above) the sharer is not added
to TF[fid].U. Hence this case is also ruled out.

(b) The updating user was added as an owner while receiving fid as ir in oracle Acpt1. By
the precondition of oracleAcpt1, it is either the case that inC .oob ̸= ⊥, or Toob[ir,fid] ̸=
⊥. In the former case, ιmal is added to the set of owners, and hence the file is no longer
only owned by honest users, ruling out this possibility. In the latter case, Toob[ir,fid]
must have been previously initialized by some user via a query to oracle Share1. But
this is again ruled out by the same reasoning as in case 2(a), since either the sharer
was compromised, in which case the file is no longer only owned by honest users, or
Toob[ir, fid] has been set to ⊥ on line 24 of game G7.

Hence, we are left only with case 1, that fid was first uploaded via oracle Put1. We now proceed
to guess among the files uploaded via oracle Put1 one that will constitute a successful forgery.

Let Sf denote the set of file IDs of all files uploaded to the server by an honest user during the
course of the game. That is, Sf = {fid | fid was queried to oracle Put1 with Tu[ic] ∈ Shon \Scomp}.
Furthermore, let S∗f ⊆ Sf be the subset of uploaded file IDs for which A performed a successful
forgery. That is, S∗f contains the file IDs of every file for which win evaluated to true during the
course of game G7. (As noted above, win can only be set to true for file IDs in Sf .) Assume without
loss of generality that S∗f ̸= ∅. (Otherwise A has 0 advantage.) As per the theorem statement, let p
be an upper bound on the number of queries to Put1 by adversaryA. By definition, p ≥ |Sf | ≥ |S∗f |.

In game G8, the challenger begins by sampling j ∈ {1, . . . ,p}. When, during the came, A makes
the j-th call to Put1, the challenger remembers the file ID fid∗ it uses. Furthermore, in the Check
procedure, the win condition is modified to

G8: Check(Π, ip, outC ,m
′):

...

17 if Π = Πget:

18 win← (Tu[ic] ∈ Shon \ Scomp) ∧ (outC .dec) ∧ (Tf [fid].F ̸= ⊥) ∧ (outC .f /∈ Tf [fid].F)

∧(Tf [fid].U ⊆ Shon \ Scomp) ∧ (fid = fid∗)

That is, fid = fid∗ is added as a condition for win to be set to true. Hence, in game G8, adversary A
wins only if it performs a successful forgery of fid∗, the file ID uploaded in its j-th Put1 query.
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Let E be the event that fid∗ ∈ S∗f . Then Pr [E ] ≥ 1/p, since by definition p ≥ |S∗f | > 0
and j is sampled uniformly at random among the p queries to Put1. Furthermore, Pr [G8 |E ] =
Pr [G7 |E ] = Pr [G7 ], since the outcome of the games is equivalent if E occurs, and the outcome
of G7 is independent of E. Hence

Pr [G7 ] ≤ p · Pr [G8 ]. (25)

Game G9: Replace the encrypted file key of fid∗ with random. Next, we apply AEAD se-
curity to the file key encryption of file fid∗, the file uploaded through the j-th Put1 query by an
honest user. As in the hop to game G7 in the confidentiality proof, the aim of this step is to replace
the file key ciphertext with a randomly sampled string of the same length, such that the key used
to encrypt the file is independent from the ciphertext sent to the server.

We construct game G9, which replaces line 3 of putHeader (Figure 10) in G8 with

G9: putHeader:

3 cfk ← Enc(stC .kmk ,n, kf ,md); cfk ←$ {0, 1}|cfk |; Tkf [iu, n, cfk ,md]← kf

when called for the j-th time in oracle Put1 for an honest user (where j is sampled by the
challenger at the start of the game as per game G8 of this proof), or subsequently when called
through oracle Acpt1 for any honest user on input file ID fid∗, as recorded in the j-th put query.
Note that putFile remains unchanged. In particular, the file is still encrypted with the file key
kf given as input to the subroutine. To ensure that file decryption works, game G9 also replaces
line 17 of getHeader and getFile (Figure 10) with

G9: getFile, getHeader:

16 kf ← Tkf [iu,n, cfk ,md]

if called for an honest user from the oracles running procedures CSSupd, CSSget and CSSshare on
input file ID fid∗. Note that this means that kf is set to ⊥ if the table entry has not been initialized.

We construct an adversary B3aead against the IND$ security of AEAD such that

Pr[G8]− Pr[G9] ≤ AdvIND$
AEAD(B

3
aead). (26)

Adversary B3aead acts like the challenger in game G8, with the following exceptions on operations
for users iu /∈ Scomp. First, instead of sampling kmk at random in AReg1, adversary B3aead queries
oracle New and stores the index of the new key in table TAEAD[(iu, γ),nmk , c

′
mk , (aid, “mk”)], in-

dexed by the relevant messages in the transcript of the registration protocol. (Cf. adversary B2aead
in the proof of Theorem 6.1, hop from G6 to G7.) This gives QNew(B3aead) ≤ QAReg1(A). Sec-
ond, when A runs procedure CSSauth via Auth1 and Step, adversary B3aead sets stC .kmk ←
TAEAD[(iu, γ), nmk , c

′
mk , (aid, “mk”)]. (If the table entry is ⊥, B3aead will respond with ⊥ to all

future queries within the session which uses stC .kmk .)
Next, when A makes the j-th query to oracle Put1 for an honest user, adversary B3aead queries

oracle Enc(stC .kmk , n, kf ,md) to encrypt the newly sampled kf and uses the resulting ciphertext
as cfk . It records the file ID of the new file as fid∗. If adversary A makes subsequent queries
to oracle Acpt1 for an honest client on input file ID fid∗, adversary B3aead again queries oracle
Enc(stC .kmk , n, kf ,md) to encrypt the key from Toob and uses the resulting ciphertext as cfk .
Thanks to how nonce sampling in putHeader is handled from the hop to G6, the encryption queries
from B3aead are guaranteed to be nonce-respecting.

Finally, instead of decrypting cfk when simulating oracles which call getFile and getHeader for
an honest client on input file ID fid∗, B3aead queries oracle Dec in its own game with key index
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stC .kmk on the inputs provided by A. This way, B3aead simulates game G8 and G9 for A when the
hidden bit in the IND$ game is 1 and 0, respectively. It makes at most 1 +QAcpt1(A) queries to
oracle Enc and at most QUpd1(A) +QShare1(A) +QGet1(A) to oracle Dec.

When A halts and returns b′, B3aead returns 1 if adversary A managed to set win to true (as
defined in game G9), otherwise it returns 0. This gives Equation (26).

File integrity: Bounding game G9. In the final step of the proof, we construct an adversary
B4aead such that

Pr [G9 ] ≤ AdvINT-CTXT
AEAD (B4aead). (27)

Adversary B4aead acts as the challenger in game G9, with some exceptions, which only apply if
fid∗ first appears through a query to Put1 for an honest client (i.e., Tu[ic] ∈ Shon \ Scomp). The
first exception is that when fid∗ is first uploaded through oracle Put1, adversary B4aead does not
sample the file key used to encrypt file fid∗ itself, but instead queries oracle New to set up a new
key in the integrity game. Then, adversary B4aead uses oracle Enc to encrypt the file under the new
key. This encryption step is repeated (for the new file content) in case of subsequent updates to
fid∗. Second, when adversary A performs the second step of protocol get for fid∗, adversary B4aead
forwards the inputs provided by A to oracle Dec to decrypt the file.

If at some point adversary A shares fid∗ with a recipient ir ∈ Scomp, and subsequently attempts
to accept the share, then adversary B4aead halts and aborts the simulation. Note that at this point,
adversary A can no longer set the win flag to true in game G9, since fid

∗ is owned by a compromised
user, per line 23 of Figure 6.

With this strategy, B4aead simulates G9 (until A performs an operation which prevents win∗ from
being set to true). Furthermore, if A sets win∗ to true, then by definition it must have provided
inputs to protocol CSSget such that the decryption of fid∗ is successful and does not result in any
of the plaintexts provided as input to the encryption oracle by B4aead in simulations of put and
update operations. By correctness of the AEAD scheme, the file content being new means that the
combination of nonce, file ciphertext or associated data input to decryption must be new. Hence
B4aead has performed a successful forgery in the INT-CTXT game, proving Equation (27).

Adversary B4aead has query countsQNew(B4aead) ≤ 1,QEnc(B4aead) ≤ 1+QUpd1(A) andQDec(B4aead) ≤
QGet1(A).

Conclusion. Combining Equations (19) through (27) yields the bound from Theorem 6.2 with
the following query counts in summary:

QTest(Bpg) ≤ QRO1(A) +QRO2(A) ,

QNew(Bprf) ≤ QFn(Bprf) ≤ QAReg1(A) +QAuth1(A) ,
QNew(B1aead) ≤ QAReg1(A) +QAuth1(A) ,
QEnc(B1aead) ≤ QAReg1(A) ,
QDec(B1aead) ≤ QAuth1(A) ,
QNew(B2aead) ≤ QAReg1(A) ,
QEnc(B2aead) ≤ QPut1(A) +QAcpt1(A) ,
QDec(B2aead) ≤ QUpd1(A) +QShare1(A) +QGet1(A) ,
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QNew(B3aead) ≤ QAReg1(A) ,
QEnc(B3aead) ≤ 1 +QAcpt1(A) ,
QDec(B3aead) ≤ QUpd1(A) +QShare1(A) +QGet1(A) ,
QNew(B4aead) ≤ 1 ,

QEnc(B4aead) ≤ 1 +QUpd1(A) , and

QDec(B4aead) ≤ QGet1(A) .
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