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Abstract

The use of small fields has come to typify the design of modern, efficient SNARKs. In recent work,
Diamond and Posen (EUROCRYPT ’25) break a key trace-length barrier, by treating multilinear polyno-
mials even over tiny fields—fields with fewer elements than the polynomial has coefficients. In this work,
we make that advance applicable globally, by generically reducing the problem of tiny-field commitment
to that of large-field commitment. We introduce a sumcheck-based technique—called “ring-switching”—
which, on input a multilinear polynomial commitment scheme over a large extension field, yields a
further scheme over that field’s ground field. The resulting tiny-field scheme, like Diamond and Posen’s,
lacks “embedding overhead”, in the sense that its commitment cost is identical to that of the large-field
scheme on each input size (measured in bits). Its evaluation protocol’s overhead is linear for the prover
and logarithmic for the verifier, and is essentially optimal.

Instantiating our compiler on the BaseFold (CRYPTO ’24) large-field multilinear polynomial com-
mitment scheme—or more precisely, on a characteristic-2 adaptation of that scheme, which we develop
at length—we obtain an extremely efficient scheme for multilinears over tiny binary fields. Our scheme
outperforms Diamond–Posen and Hashcaster (’24) and represents a new state-of-the-art.

1 Introduction

The small-field revolution in SNARK design continues apace. The ethSTARK [Sta21] and Plonky2 [Pol22]
systems were the first to decouple their respective arithmetization and cryptographic fields. Those SNARKs
use small fields—prime fields sized roughly like a 64-bit register—in their arithmetizations; each, during its
security-critical portions, opportunistically passes to a cryptographically large field extension of its arith-
metization field. Subsequent production-oriented SNARKs, like Plonky3 and RISC Zero, have embraced
similar designs, based on prime fields of just under 32 bits; Stwo has adopted a related architecture based
on Haböck, Levit and Papini’s Circle STARK [HLP24]. These techniques have delivered strong prover
performance, which surpasses that available in elliptic curve-based SNARKs like Sonic [MBKM19], PlonK
[GWC19] andMarlin [Chi+20] (which all use the KZG [KZG10] univariate polynomial commitment scheme).

These SNARKs all use arithmetization fields which—though relatively “small”—are nonetheless at least
as large as the statements they’re capable of proving. This fact is not a coincidence. Indeed, all of them
operate by, roughly, arranging their witness data into a trace table and Reed–Solomon-encoding that table’s
columns, before ultimately using a low-degree test based on FRI [BBHR18a]. Reed–Solomon codes exist
only for alphabet–block-length pairs for which the alphabet is at least as large as the block length.

A recent work of Diamond and Posen [DP25] breaks this trace-length barrier, in that it treats even
polynomials over tiny fields—fields smaller than the statement’s trace length. Crucially, that work does so
without “embedding overhead”, a phenomenon we briefly recall. One might trivially commit to a tiny-field
polynomial simply by tacitly embedding its coefficients into a sufficiently large field, and then blackbox-
applying a standard scheme on the resulting object. That approach would face at least two deficiencies.
On the efficiency front, it would induce a cost profile no better than that attached to an input polynomial
without tiny coefficients. Rather, it would impose an artificial penalty proportional to the difference in size
between its input polynomial’s tiny coefficient field and the scheme’s native field. On the security front, it
would fail to guarantee the tininess of the prover’s input, a security desideratum which, in practice, turns
out to be essential. As Diamond and Posen [DP25] argue, many of today’s production-oriented SNARKs
suffer from some form of embedding overhead.
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In this work, we introduce a generic reduction from the problem of tiny-field multilinear polynomial
commitment to that of large-field multilinear commitment. Our techniques are rather different from those
of Diamond–Posen [DP25]. Our reduction, applied to any large-field scheme, yields a corresponding tiny-
field scheme, which moreover lacks embedding overhead. In fact, our reduction in principle applies even to
brand-new, concurrently-developed large-field schemes like Blaze [Bre+25] and WHIR [ACFY24], and even
to large-field schemes that haven’t been created yet. Its overhead over the underlying large-field scheme is
essentially optimal, and beats that associated with alternative constructions (we survey those in detail in
Subsection 1.5 below). This work thus solves the problem of tiny-field multilinear polynomial commitment.

1.1 Some Historical Remarks

Diamond and Posen [DP25] break the trace-length barrier by further decoupling two fields which, in each
of those small-field schemes cited above, coincide: the arithmetization field and the alphabet field. All of
those schemes use just one prime field—again, sized just under 32 or 64 bits—both as the coefficient field
of the polynomials committed and as the alphabet of the Reed–Solomon code used to encode them. The
scheme [DP25] makes possible the simultaneous use of a tiny arithmetization field and a small alphabet
field. Separately, that work reintroduces the use of binary fields, fields of characteristic 2; these fields have
figured in various previous works, like FRI [BBHR18a] and STARK [BBHR18b]. Finally, that work treats
exclusively multilinear polynomials; in this capacity, it extends an important line of work which includes
Libra [Xie+19], Virgo [ZXZS20], Spartan [Set20], Brakedown [Gol+23], and HyperPlonk [CBBZ23].

To make their technique work, Diamond and Posen [DP25] tie together these various threads. They
introduce a data-casting operation—which they call packing, and which is based on field extensions—which
serves to recast a witness defined over F2, say, into a shorter witness over the larger field F232 . They then
apply a Brakedown-like multilinear commitment procedure to the resulting witness, whose coefficient field,
crucially, is large enough to be used as a Reed–Solomon alphabet. Using various mathematical techniques,
those authors manage to make that scheme work (using Brakedown in a näıve, “fire-and-forget” manner
on the packed, F232 -witness would lead to information loss). That work, therefore, treats three generally
distinct fields at once: the tiny coefficient field, the small alphabet field, and the huge cryptographic field.

We mention a further observation essential to that work. In those small-field schemes above—which are
themselves based on the DEEP-ALI [BGKS19] paradigm—the Reed–Solomon code plays two separate roles
at once. On the one hand, it plays the role of an error-correcting linear block code, a mathematical object
which amplifies errors and corruptions and makes them efficiently detectable. On the other hand, it serves
the distinct end of polynomial extrapolation. It is essential to those DEEP-ALI-based schemes that the
Reed–Solomon codewords that arise within them be, semantically, evaluations of polynomials. In particular,
those constraint polynomials which, if the prover is honest, must vanish identically over its witnesses must
likewise vanish identically over the Reed–Solomon encodings of those witnesses.

As Diamond and Posen [DP25] implicitly observe, unlike DEEP-ALI [BGKS19], Brakedown [Gol+23]—
as does its predecessor works Ron-Zewi and Rothblum [RR24] and Bootle, Chiesa and Groth [BCG20]—
decouples the coding-theoretic aspects of its code from the semantics of its code. That is, Brakedown’s Ligero-
inspired [AHIV23] polynomial commitment scheme uses its error-correcting code only for error-amplification;
the semantics of that code are irrelevant to it. (That protocol could freely substitute its code with an
otherwise-arbitrary code of identical alphabet, message length, block length, and distance, to no effect.)
This decoupling makes Diamond and Posen’s packing procedure coherent, since that procedure garbles the
semantics of Reed–Solomon extrapolation.

On the other hand, most transparent, hash-based proofs which achieve polylogarithmic verifiers—like
Aurora [Ben+19], or those based on DEEP-ALI [BGKS19]—use univariate quotienting. (We refer also to
Haböck [Hab22] for a useful survey of these techniques.) As Diamond and Posen [DP25] note, quotienting
seems incompatible with their packing technique.

Zeilberger, Chen and Fisch’s BaseFold PCS [ZCF24, § 5] seems to be the first multilinear polynomial
commitment scheme with a polylogarithmic verifier that doesn’t use quotienting. That scheme, as written,
works only for large fields of odd characteristic. That scheme is simple, elegant, and efficient, and represents
a compelling candidate for adaptation to the binary case.

This work’s small-field PCS works in a drop-in way with the PIOP of [DP25]; in conjunction with that
work’s PIOP, our PCS stands to yields an efficient SNARK for binary witnesses.
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1.2 Our Contributions

We sketch our contributions here; in Subsections 1.3 and 1.4 below, we explain them in more detail.

A reduction from tiny-field commitment to huge-field commitment. We fix a field extension
L / K. For technical reasons, we require that the extension degree of L over K be a power of 2, say
2κ. We allow K to be arbitrarily small and of arbitrary characteristic. We describe a protocol which,
given blackbox access to a secure polynomial commitment scheme for multilinears over L, yields a secure
polynomial commitment scheme for multilinears over K. The resulting scheme lacks “embedding overhead”,
in a sense we presently explain. We recall first the packing procedure of [DP25, § 4]; that procedure recasts
each ℓ-variate multilinear t(X0, . . . , Xℓ−1) over K into an ℓ−κ-variate multilinear t′(X0, . . . , Xℓ−κ−1) over L.
(Packing proceeds by reinterpreting each 2κ-element chunk of t(X0, . . . , Xℓ−1)’s Lagrange coefficient vector
as a single L-element, using a fixed K-basis of L.) The multilinears t(X0, . . . , Xℓ−1) and t′(X0, . . . , Xℓ−κ−1)
are of equal size, “in bits”; they contain “the same amount of information”. Our K-scheme’s commitment
procedure, on the input t(X0, . . . , Xℓ−1), simply invokes the underlying L-scheme’s commitment procedure
on the packed polynomial t′(X0, . . . , Xℓ−κ−1). Our K-scheme’s evaluation protocol invokes the underlying
L-scheme’s evaluation protocol once; it adds to the cost of that protocol essentially just that of an ℓ − κ-
variate sumcheck over L, as well as a small further premium for the verifier (dependent only on the security
parameter). Our protocol, “ring-switching”, is loosely inspired by Ron-Zewi and Rothblum [RR24, Fig. 2]’s
“code-switching” technique. Under the hood, ring-switching intermediates between K-evaluation and L-
evaluation using the tensor algebra L⊗K L, the tensor product of L with itself over its own subfield K.

BaseFold in characteristic 2. The BaseFold multilinear polynomial commitment scheme of Zeilberger,
Chen and Fisch [ZCF24, § 5] identifies a new connection between Ben-Sasson, Bentov, Horesh and Riabzev’s
[BBHR18a] celebrated FRI IOP of proximity and multilinear evaluation. That work observes that the
FRI prover’s final constant message doesn’t merely serve the verifier’s proximity test, but moreover conveys
important information about the message hidden beneath the prover’s word. That is, in a certain restricted
setting—that of odd prime characteristic, where FRI is carried out over a power-of-2-sized subgroup of
multiplicative units, and the FRI folding arity is fixed at η = 1—the prover’s message relates to its final FRI
constant just as a multilinear’s vector of coefficients relates to its evaluation. In other words, prime-field
FRI with η = 1 implicitly contains multilinear evaluation “built in”. Using this idea, as well as a further
innovation which interleaves the FRI protocol with a sumcheck (using the same stream of verifier challenges
for both), BaseFold [ZCF24, § 5] delivers a new and highly interesting PCS.

BaseFold PCS fails to work straightforwardly in characteristic 2. Indeed, while FRI [BBHR18a] certainly
works in characteristic 2—and was originally presented that way—binary FRI is more complicated than
prime-field FRI is. It replaces that variant’s squaring maps X 7→ X2 with degree-2 linear subspace polyno-
mials X 7→ q(i)(X). For linear subspace maps q(0), . . . , q(ℓ−1) chosen arbitrarily—and, we emphasize, FRI
does not suggest a choice—BaseFold’s built-in multilinear evaluator fails to work, in general.

Below, we suggest FRI domain maps q(0), . . . , q(ℓ−1) which serve to recover BaseFold PCS in characteristic
2. Interestingly, our maps are related to the novel polynomial basis of Lin, Chung and Han [LCH14],
and surface a before-unnoted connection between that work and binary FRI. This technique appears to
independently interesting, and has already been used in various subsequent works [Fs24] [Bre+25].

A competitive PCS for multilinears over tiny binary fields. Putting the two parts above together,
we obtain a tiny-field multilinear PCS with compelling performance characteristics. We present our combined
scheme in Section 5 below, and benchmark our Rust implementation of it, which is production-grade. Our
multithreaded implementation commits to and opening-proves a 28-variate multilinear over F232 in just 6 and
10 seconds, respectively (see Table 3). It commits and opens a 28-variate multilinear over F2 in a stunning
0.15 and 0.33 seconds. The resulting proofs are 0.359 MiB and 0.228 MiB, respectively.

Diamond and Posen [DP25]’s scheme is somewhat faster, especially during proving (as opposed to com-
mitting) and over larger fields. That scheme commits and proves a 28-variate multilinear over F232 in just 5
and 1 seconds, respectively. Over F2, it commits and proves a 28-variate multilinear in 0.15 and 0.17 seconds
(these latter figures are similar to ours). On the other hand, it has much larger proofs: of 3.884 and 2.849
MiB, respectively, for 28-variate multilinears over F232 and F2 (see Table 1).
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1.3 Ring-Switching

In this subsection, we gently introduce ring-switching, prioritizing technical simplicity and accuracy. We fix
a field extension L / K of power-of-2 degree 2κ. Though ring-switching works for any such field extension,
of any characteristic, we note the important special case K = F2 and L = F2128 . We write Bκ := {0, 1}κ for
the κ-dimensional unit cube.

The problem. We assume access to a large-field multilinear polynomial commitment scheme, for multi-
linears over L. How might we obtain a small-field commitment scheme for multilinears over K, assuming
access to that large-field scheme?

We begin with a small-field multilinear, say t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]
⪯1, that we’d like to

commit to. Following Diamond and Posen [DP25], we fix a basis (βv)v∈Bκ
of L over K, write ℓ′ := ℓ − κ,

and define the packed multilinear :

t′(X0, . . . , Xℓ′−1) :=
∑
v∈Bκ

t(v0, . . . , vκ−1, X0, . . . , Xℓ′−1) · βv. (1)

The multilinear t′(X0, . . . , Xℓ′−1)’s coefficients relate to t(X0, . . . , Xℓ−1)’s by a “packing” operation,
as Diamond and Posen explain. That is, t′(X0, . . . , Xℓ′−1)’s Lagrange coefficient vector arises from
t(X0, . . . , Xℓ−1)’s by a procedure which reinterprets each 2κ-element chunk of that latter vector’s elements
as a single L-element.

How should we commit to t(X0, . . . , Xℓ−1)? Our commitment procedure is simple: it just invokes the
underlying large-field scheme’s commitment procedure on t′(X0, . . . , Xℓ′−1). This procedure lacks embedding
overhead, since t(X0, . . . , Xℓ−1) and t′(X0, . . . , Xℓ′−1) are of the same size (in bits).

To check an evaluation claim on t(X0, . . . , Xℓ−1), we must reduce it to one on t′(X0, . . . , Xℓ′−1). We fix

a point (r0, . . . , rℓ−1) and an evaluation claim s
?
= t(r0, . . . , rℓ−1). We emphasize that the evaluation point r

is defined over L, and not over K (we refer to [DP25, § 3.2], as well as to Subsection 2.8 below, for security
definitions).

A strawman approach. We begin with a tempting “strawman” approach, which exhibits the difficulty
of the problem. This first approach, though correct, is insecure. On the other hand, it prefigures a few of
our techniques, and serves as a jumping-off point.

This simple technique proceeds in the following way. First, the prover sends values (ŝv)v∈Bκ
which—it

claims—respectively satisfy

ŝv
?
= t(v0, . . . , vκ−1, rκ, . . . , rℓ−1), (2)

for each v ∈ Bκ. The verifier begins by checking whether

s
?
=
∑
v∈Bκ

ẽq(v0, . . . , vκ−1, r0, . . . , rκ−1) · ŝv (3)

holds. This equality will certainly hold if the prover is honest, since

t(r0, . . . , rℓ−1) =
∑
v∈Bκ

ẽq(v0, . . . , vκ−1, r0, . . . , rκ−1) · t(v0, . . . , vκ−1, rκ, . . . , rℓ−1).

On the other hand, if s ̸= t(r0, . . . , rℓ−1), then the prover can cause (3) to pass only by sending claims
(ŝv)v∈Bκ

for which at least one of the equalities (2) does not hold.
The linear combination, over the basis (βv)v∈Bκ

, of all 2κ instances of (2) is:∑
v∈Bκ

ŝv · βv
?
=
∑
v∈Bκ

t(v0, . . . , vκ−1, rκ, . . . , rℓ−1) · βv. (4)

On the other hand, by (1), the right-hand side of (4) is simply t′(rκ, . . . , rℓ−1), which the verifier has
direct access to. The verifier may thus use the underlying large-field scheme to compare

∑
v∈Bκ

βv · ŝv to
t′(rκ, . . . , rℓ−1). We summarize this approach in Figure 1 below.
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P(r, s; t) V(r, s)

for each v ∈ Bκ, set ŝv := t(v0, . . . , vκ−1, rκ, . . . , rℓ−1).
(ŝv)v∈Bκ check s

?
=

∑
v∈Bκ

ẽq(v0, . . . , vκ−1, r0, . . . , rκ−1) · ŝv.

set s
′ :=

∑
v∈Bκ

ŝv · βv.

check s
′ ?
= t

′
(rκ, . . . , rℓ−1) using large-field scheme.

Figure 1: A simple—but insecure—straw-man variant of ring-switching.

While this protocol is complete, it’s not secure. The problem is the linear combination (4) of (2). The
set (βv)v∈Bκ

is a basis of L over K. In particular, it’s linearly independent over K: each distinct K-vector
yields a unique combination of (βv)v∈Bκ . But it’s not linearly independent over L! It’s easy to write down
two L-combinations of (βv)v∈Bκ , with unequal coefficient vectors, which nonetheless equal the same value.

The problem is that the individual equations (2) are defined over L, and not K. Thus, combining them is
not secure. In particular, the prover can easily contrive to construct values (ŝv)v∈Bκ

which don’t individually
equal (t(v0, . . . , vκ−1, rκ, . . . , rℓ−1))v∈Bκ

, but for which
∑

v∈Bκ
ŝv · βv = t′(rκ, . . . , rℓ−1) nonetheless holds.

Our solution. Our idea is—very roughly—to further decompose the claims (2), until they are defined
over K. We may then apply the “tempting” linear combination (4) to the resulting decomposed claims,
proceeding “slice-wise”. We explain the details now.

For each v ∈ Bκ, the verifier can freely basis-decompose the prover’s quantity ŝv, writing

ŝv =
∑
u∈Bκ

ŝu,v · βu (5)

for appropriate K-elements (ŝu,v)u∈Bκ
. Moreover, for each v ∈ Bκ,

t(v0, . . . , vκ−1, rκ, . . . , rℓ−1) =
∑

w∈Bℓ′

ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) · t(v0, . . . , vκ−1, w0, . . . , wℓ′−1). (6)

Combining (5) and (6), we basis-decompose (2) as follows. For each v ∈ Bκ, we have the claim:∑
u∈Bκ

ŝu,v · βu
?
=
∑

w∈Bℓ′

ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) · t(v0, . . . , vκ−1, w0, . . . , wℓ′−1). (7)

We’re not quite done. While, for each w ∈ Bκ, t(v0, . . . , vκ−1, w0, . . . , wℓ′−1) is of course a K-element,
ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) is not. On the other hand, we can basis-decompose these latter quantities
too. For each w ∈ Bℓ′ , we can freely write down K-elements (Aw,u)u∈Bκ

for which

ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) =
∑
u∈Bκ

Aw,u · βu. (8)

Using these, we further re-express (7) in the following way. For each v ∈ Bκ, we obtain the claim:∑
u∈Bκ

ŝu,v · βu
?
=
∑

w∈Bℓ′

ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) · t(v0, . . . , vκ−1, w0, . . . , wℓ′−1) (this is (7).)

=
∑

w∈Bℓ′

(∑
u∈Bκ

Aw,u · βu

)
· t(v0, . . . , vκ−1, w0, . . . , wℓ′−1) (by definition of (Aw,u)u∈Bκ

(8).)

=
∑
u∈Bκ

 ∑
w∈Bℓ′

Aw,u · t(v0, . . . , vκ−1, w0, . . . , wℓ′−1)

 · βu (rearrange the sum.)

We’ve finally reached something we can basis-decompose!
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Indeed, everything in the left-hand and right-hand sides of the above identity is defined over K, except
for the basis-elements (βu)u∈Bκ . To check the claim above for each v ∈ Bκ, it’s thus equivalent for the verifier
to check whether, for each u ∈ Bκ and each v ∈ Bκ,

ŝu,v
?
=
∑

w∈Bℓ′

Aw,u · t(v0, . . . , vκ−1, w0, . . . , wℓ′−1). (9)

Here is the key point: unlike (2), the claims (9) are purely defined over K. We can thus basis-combine the
claims (9) using (βv)v∈Bκ

, as opposed to the claims (2). We do exactly this. For each u ∈ Bκ, combining (9)
over v ∈ Bκ, we obtain the claim:

∑
v∈Bκ

ŝu,v · βv
?
=
∑
v∈Bκ

 ∑
w∈Bℓ′

Aw,u · t(v0, . . . , vκ−1, w0, . . . , wℓ′−1)

 · βv (combine (9) over (βv)v∈Bκ
.)

=
∑

w∈Bℓ′

Aw,u ·

(∑
v∈Bκ

t(v0, . . . , vκ−1, w0, . . . , wℓ′−1) · βv

)
(rearrange the sum.)

=
∑

w∈Bℓ′

Aw,u · t′(w0, . . . , wℓ′−1). (by the definition (1).)

Up to defining

ŝu :=
∑
v∈Bκ

ŝu,v · βv, (10)

we thus have the claims
ŝu

?
=
∑

w∈Bℓ′

Aw,u · t′(w0, . . . , wℓ′−1) (11)

for each u ∈ Bκ. This combination is secure. Moreover, its right-hand side depends only on t′(X0, . . . , Xℓ′−1),
as well as on (Aw,u)w∈Bℓ′

. We’re getting close to something that we can run the sumcheck on.

The verifier must check (11) for each u ∈ Bκ. In light of standard sumcheck batching techniques,
though, this fact presents no obstacle. In practice, up to a soundness error of just κ

|L| , the verifier

may simply sample further random scalars (r′′0 , . . . , r
′′
κ−1), and batch both sides of (11) by the L-vector(

ẽq(u0, . . . , uκ−1, r
′′
0 , . . . , r

′′
κ−1)

)
u∈Bκ

, over varying u ∈ Bκ. That is, the verifier may check whether

∑
u∈Bκ

ẽq(u, r′′) · ŝu
?
=
∑

w∈Bℓ′

(∑
u∈Bκ

ẽq(u, r′′) ·Aw,u

)
· t′(w) (12)

holds. We summarize our amended protocol in Figure 2 below.

P(r, s; t) V(r, s)

for each v ∈ Bκ, set ŝv := t(v0, . . . , vκ−1, rκ, . . . , rℓ−1).
(ŝv)v∈Bκ check s

?
=

∑
v∈Bκ

ẽq(v0, . . . , vκ−1, r0, . . . , rκ−1) · ŝv.

for each v ∈ Bκ, decompose ŝv =
∑

u∈Bκ

ŝu,v · βu.

for each u ∈ Bκ, combine ŝu :=
∑

v∈Bκ

ŝu,v · βv.

(r
′′
0 , . . . , r

′′
κ−1) sample batching scalars (r

′′
0 , . . . , r

′′
κ−1)← L

κ
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P and V run the sumcheck (12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

at the end of the sumcheck, evaluate∑
u∈Bκ

ẽq
(
u, r

′′) · Au(r
′
) and t

′
(r

′
),

where r = (r
′
0, . . . , r

′
ℓ′−1) is the sumcheck challenge.

Figure 2: A rough sketch of our full ring-switching protocol.
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There is one, final issue that we’ve glossed over. In Figure 2 above, for each u ∈ Bκ, we abbreviate
Au(X0, . . . , Xℓ′−1) for the multilinear extension of the function Au : w 7→ Aw,u on Bℓ′ . At the end of the sum-
check, the verifier may learn t′(r′0, . . . , r

′
ℓ′−1) by invoking the underlying large-field scheme’s evaluation pro-

tocol once. How might the verifier locally—and efficiently—obtain the evaluations
(
Au(r

′
0, . . . , r

′
ℓ′−1)

)
u∈Bκ

?

Here, (r′0, . . . , r
′
ℓ−1) ∈ Lℓ′ is the random point sampled by the verifier during the course of the sumcheck.

This issue brings us to the trickiest part of our entire theory. We claim that the multilin-
ears (Au(X0, . . . , Xℓ′−1))u∈Bκ

are succinct. In fact, the verifier may learn all of the evaluations
(Au(r0, . . . , rℓ′−1))u∈Bκ

, in one shot, by expending just 2 · 2κ · ℓ′ L-multiplications. This fact is non-obvious;
we sketch it now.

To do this, we recall how the multilinears Au(X0, . . . , Xℓ′−1) are defined. Indeed, for each u ∈ Bκ,
Au(X0, . . . , Xℓ′−1) is defined, in the Lagrange basis, as the uth “coordinate slice” of the partially-specialized
equality indicator ẽq(X0, . . . , Xℓ′−1, rκ, . . . , rℓ−1). Moreover, for each u ∈ Bκ,

Au(r
′
0, . . . , r

′
ℓ−1) =

∑
w∈Bℓ′

Aw,u · ẽq(w0, . . . , wℓ′−1, r
′
0, . . . , r

′
ℓ−1) (13)

obviously holds. Writing all 2κ copies—i.e., over varying u ∈ Bκ—of the sum (13) into the rows of a square,
2κ × 2κ matrix, we obtain the sum expression depicted in Figure 3 below.

u
∈
B

κ
v
a
ry

in
g

A(0,...,0)(r
′
0, . . . , r

′
ℓ′−1

)

.

.

.

A(1,...,1)(r
′
0, . . . , r

′
ℓ′−1

)



=

ẽ
q
(r

κ
,
.
.
.
,
r
ℓ
−

1
,
0
,
.
.
.
,
0
)

ẽq(0, . . . , 0, r′0, . . . , r
′
ℓ′−1

)

+ · · ·+

ẽ
q
(r

κ
,
.
.
.
,
r
ℓ
−

1
,
1
,
.
.
.
,
1
)

ẽq(1, . . . , 1, r′0, . . . , r
′
ℓ′−1

)

w ∈ Bℓ′ varying

Figure 3: Vertically stacking (13), we express
(
Au(r

′
0, . . . , r

′
ℓ′−1)

)
u∈Bκ

as the rows of an unusual sum.

In the right-hand sum of Figure 3, for each w ∈ Bℓ′ , we’ve drawn a square in which
ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) is written vertically and ẽq(w0, . . . , wℓ′−1, r

′
0, . . . , r

′
ℓ′−1) horizontally. By

each such square, we mean the 2κ × 2κ K-matrix whose cells are the “exterior product” of
ẽq(rκ . . . , rℓ−1, w0, . . . , wℓ′−1) and ẽq(w0, . . . , wℓ′−1, r

′
0, . . . , r

′
ℓ′−1). That is, we basis-decompose each of these

L-elements, and take all cross-products between the resulting two K-vectors.
Why did we do such a thing? Because this is simply the definition of (13)! Indeed, if we “zoom into” a

single row u ∈ Bκ of Figure 3, then we obtain (13) on the nose (we recall that Aw,u is defined to be the uth

coordinate slice of ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1)).
The point of Figure 3 is that it lets us explain our succinct algorithm for (Au(r0, . . . , rℓ′−1))u∈Bκ

. If we
write ⋆ for the “exterior product” operation between K-vectors, then Figure 3 shows us that:

(Au(r0, . . . , rℓ′−1))u∈Bκ
=
∑

w∈Bℓ′

ẽq(rκ . . . , rℓ−1, w0, . . . , wℓ′−1) ⋆ ẽq(w0, . . . , wℓ′−1, r
′
0, . . . , r

′
ℓ′−1). (14)

The right-hand side of (14) almost looks like the equality indicator expression ẽq(rκ, . . . , rℓ−1, r
′
0, . . . , r

′
ℓ′−1);

on the other hand, it differs from that simple expression in its use of cross-products. As we will argue below,
(14) does become expressible as an equality indicator evaluation, once we pass to a suitable ring—one whose
multiplication operation appropriately captures the exterior product. As we argue below, this ring arises in
the form of the tensor product of algebras of L by itself, over its subfield K—that is, the ring A := L⊗K L.
Below, we resurface rigorously this algebraic object, and show that it gives us exactly the structure we need.
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Hashcaster. We undertake a detailed comparison of ring-switching to Hashcaster. Soukhanov’s Hashcaster
[Sou24] is a SNARK for binary (i.e., specifically F2-valued) witnesses. At the PIOP level, that work introduces
a number of innovations, including an efficient “ternary” sumcheck for domains of power-of-3 size. For the
purposes of this work, we survey just that work’s ideas at the PCS level, which are also important. Indeed,
that work yields an alternative reduction from the problem of evaluating the K-multilinear t(X0, . . . , Xℓ−1)
to that of evaluating its packed L-multilinear t′(X0, . . . , Xℓ′−1). For self-containedness, we reproduce that
work’s technique here in some detail; we then compare it to ring-switching, the approach of this work.

We again fix a degree-2κ field extension L / K, and write (βv)v∈Bκ
for a basis of L over K. We write

σ ∈ Gal(L / K) for the Frobenius automorphism of L over K. As a notational device, for each v ∈ Bκ, we
write {v} :=

∑κ−1
i=0 2i · vi.

Hashcaster begins with the same observation as Subsection 1.3 does. That is, for the verifier to assess

the evaluation claim s
?
= t(r0, . . . , rℓ−1), it suffices for the prover to send it quantities (ŝv)v∈Bκ

respectively
claimed to equal (t(v0, . . . , vκ−1, rκ, . . . , rℓ−1))v∈Bκ

(recall (2)). Indeed, given these, the verifier can check

s
?
=
∑
v∈Bκ

ẽq(v0, . . . , vκ−1, r0, . . . , rκ−1) · ŝv, (15)

as usual (just as in (3)).
At this point, Hashcaster diverges. Hashcaster’s idea is to relate the claimed partial evaluations (ŝv)v∈Bκ

to the respective evaluations of the packed multilinear t′(X0, . . . , Xℓ′−1) at
(
σ{v}(rκ), . . . , σ

{v}(rℓ−1)
)
v∈Bκ

,

the componentwise Galois orbit of the suffix (rκ, . . . , rℓ−1).
There are various ways to make this task precise. Hashcaster’s idea hinges on the following matrix

identity:  σ{u}(βv)

 ·
 ŝv

 ?
=

σ{u}(t′)(rκ, . . . , rℓ−1)
. (16)

On the left, we have the 2κ×2κ matrix whose ({u}, {v})th entry is σ{u}(βv), the {u}th Galois image of the vth

basis vector. On the right-hand side, we have the vector containing the respective evaluations at (rκ, . . . , rℓ−1)
of t′(X0, . . . , Xℓ′−1)’s various “Galois twists”. Indeed, for each u ∈ Bκ, we define σ{u}(t′)(X0, . . . , Xℓ′−1) by
the Lagrange basis prescription σ{u} : w 7→ σ{u}(t′(w)), for each w ∈ Bℓ′ . It is a nontrivial fact of field theory

that the matrix
[
σ{u}(βv)

]
is nonsingular; we refer to Lidl and Niederreiter [LN96, Lem. 3.51]. Assuming

this fact, it’s not too hard to show that (16) holds if and only if the prover is honest (i.e., if each of its

claims ŝv
?
= t(v0, . . . , vκ−1, rκ, . . . , rℓ−1), for v ∈ Bκ, is true).

Upon receiving the prover’s vector of claims (ŝv)v∈Bκ
, the verifier could thus compute the matrix trans-

formation (16) on that vector. By moreover “peeling off” the twists σ{u}, for each u ∈ Bκ, the verifier
could thereby obtain a further vector supposedly equal to

(
t′
(
σ{−u}(rκ), . . . , σ

{−u}(rℓ−1)
))

u∈Bκ
, the vector

of evaluations of t′(X0, . . . , Xℓ′−1) on the Galois orbit of (rκ, . . . , rℓ−1).
In fact, we will do Hashcaster one better. We claim that, up to performing a transposition of the

sort already discussed above in the context of ring-switching, the verifier may simplify its job; specifically,
it might directly relate (ŝv)v∈Bκ

to
(
t′
(
σ{v}(rκ), . . . , σ

{v}(rℓ−1)
))

v∈Bκ
(with no twists necessary). Indeed,

given (ŝv)v∈Bκ
, the verifier may freely, as before, decompose ŝv =

∑
u∈Bκ

ŝu,v · βu (just as in (5)), and write
ŝu :=

∑
v∈Bκ

ŝu,v · βv (just as in (10)). In this setting, we obtain the further identity:

[
ŝu

]
︸ ︷︷ ︸

u∈Bκ varying

·

 σ{v}(βu)

 ?
=
[

t′
(
σ{v}(rκ), . . . , σ

{v}(rℓ−1)
) ]

︸ ︷︷ ︸
v∈Bκ varying

. (17)

We claim that (17) also holds if and only if the prover is honest (i.e., if ŝv
?
= t(v0, . . . , vκ−1, rκ, . . . , rℓ−1) for

each v ∈ Bκ). Importantly, the right-hand side of (17) directly yields the evaluations of t′(X0, . . . , Xℓ′−1)
over (rκ, . . . , rℓ−1)’s Galois orbit, with no “twisting” or “peeling off” necessary.
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To check the validity of the prover’s claim, then, it’s thus enough for the verifier to compute

[
sv

]
︸ ︷︷ ︸

v∈Bκ varying

:=
[

ŝu

]
︸ ︷︷ ︸

u∈Bκ varying

·

 σ{v}(βu)

, (18)

i.e. the left-hand side of (17), and then check whether, for each v ∈ Bκ,

sv
?
= t′

(
σ{v}(rκ), . . . , σ

{v}(rℓ−1)
)

(19)

holds.
We’ve made progress, since each right-hand side of (19) (for v ∈ Bκ) is an evaluation of t′(X0, . . . , Xℓ′−1).

On the other hand, we’d prefer to evaluate t′(X0, . . . , Xℓ′−1) at just one place, as opposed to over the entire
orbit

(
σ{v}(rκ), . . . , σ

{v}(rℓ−1)
)
v∈Bκ

. To this end, we again apply a sumcheck-based batching technique, due

this time to Ron-Zewi and Rothblum [RR24, Fig. 3]. Indeed, we note that, for each v ∈ Bκ, (19) is equivalent
to the sum claim:

sv
?
=
∑

w∈Bℓ′

ẽq
(
σ{v}(rκ), . . . , σ

{v}(rℓ−1), w0, . . . , wℓ′−1

)
· t′(w). (20)

After sampling batching scalars (r′′0 , . . . , r
′′
κ−1), the verifier may batch both sides of (20) by the vector(

ẽq(v0, . . . , vκ−1, r
′′
0 , . . . , r

′′
κ−1)

)
v∈Bκ

, and in this way obtain the batched sum claim:

∑
v∈Bκ

ẽq(v, r′′) · sv
?
=
∑

w∈Bℓ′

(∑
v∈Bκ

ẽq(v, r′′) · ẽq
(
σ{v}(rκ), . . . , σ

{v}(rℓ−1), w0, . . . , wℓ′−1

))
· t′(w). (21)

This is finally something we can run the sumcheck on. Combining these observations, we obtain the protocol
sketched in Figure 4.

P(r, s; t) V(r, s)

for each v ∈ Bκ, set ŝv := t(v0, . . . , vκ−1, rκ, . . . , rℓ−1).
(ŝv)v∈Bκ check s

?
=

∑
v∈Bκ

ẽq(v0, . . . , vκ−1, r0, . . . , rκ−1) · ŝv.

for each v ∈ Bκ, decompose ŝv =
∑

u∈Bκ

ŝu,v · βu.

for each u ∈ Bκ, combine ŝu :=
∑

v∈Bκ

ŝu,v · βv.

set [ sv ] := [ ŝu ] ·
[
σ
{v}

(βu)
]
as in (18)

(r
′′
0 , . . . , r

′′
κ−1) sample batching scalars (r

′′
0 , . . . , r

′′
κ−1)← L

κ
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P and V run the sumcheck (21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

at the end of the sumcheck, evaluate∑
v∈Bκ

ẽq
(
v, r

′′) · ẽq(σ{v}
(r), r

′
)

and t
′
(r

′
),

where r = (r
′
0, . . . , r

′
ℓ′−1) is the sumcheck challenge,

and we set σ
{v}

(r) :=
(
σ
{v}

(rκ), . . . , σ
{v}

(rℓ−1)
)
.

Figure 4: A sketch of the Hashcaster [Sou24] protocol.

This is a perfectly correct and sound protocol, which moreover wards off the tensor-algebraic complexities
of ring-switching (cf. Figure 3). But what about its efficiency? We claim that ring-switching is more efficient
than Hashcaster for both the prover and the verifier. We note that the comparison we undertake below pits
ring-switching against our improved variant of Hashcaster (see above for details). The “original” version of
Hashcaster is still worse, albeit just by a bit. (We expand this analysis further in Subsection 3.2 below.)
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We begin with our protocols’ verifiers. The verifier complexities of Figures 2 and 4 turn out to be almost
identical, except for the Hashcaster verifier’s matrix transformation (18). Hashcaster’s verifier must compute
this matrix product; ours has no analogue of this task. This transformation entails a quadratic number of L-
multiplications in the extension degree 2κ. (There might be an “NTT analogue” for this matrix; we haven’t
investigated this thoroughly.) Thus Hashcaster’s verifier’s number of L-multiplications grows quadratically
in the extension degree 2κ; ours grows only linearly. We do not know how to modify Hashcaster so as to
make its verifier complexity match ours (other than by replacing it entirely with ring-switching).

Our protocols’ provers tell a similar story. To calculate (ŝv)v∈Bκ
, both provers must begin by tensor-

expanding (rκ, . . . , rℓ−1), which takes 2ℓ
′
L-by-L multiplications, and then performing 2ℓ L-by-K multiplica-

tions and just under 2ℓ L-additions. To prepare the sumcheck (12), our prover must further basis-decompose
this tensor, and row-combine the resulting 2κ × 2ℓ

′
K-matrix by the L-vector (ẽq(u, r′′))u∈Bκ

. We thus

further obtain again 2ℓ L-by-K multiplications and just under 2ℓ L-additions. To prepare the analogous
sumcheck (21), Hashcaster’s prover must do something more complex. It must first obtain the respective
tensor-expansions of each of the elements of the Galois orbit

(
σ{v}(rκ), . . . , σ

{v}(rℓ−1)
)
v∈Bκ

. This task, at

least implemented naively, entails 2ℓ
′
L-by-L multiplications and 2ℓ Frobenius applications. Finally, it must

multiply the row-combination vector (ẽq(u, r′′))u∈Bκ
by the resulting 2κ× 2ℓ

′
L-matrix, thereby spending 2ℓ

L-by-L multiplications. Hashcaster’s prover, if implemented naively, is about 2κ-fold more costly than ours.
On the other hand, Hashcaster develops various concrete optimizations, which serve to make its prover

more efficient. These all have the same flavor, however; to explain it, we need to develop a bit more theory.
For each Galois extension L / K, the L-algebras

L⊗K L ∼=
∏

ρ∈Gal(L/K)

L (22)

are isomorphic. This fact is of some importance in arithmetic geometry (see e.g. Waterhouse [Wat79]).
We record a proof here. The left-hand ring should be familiar to the reader as the tensor algebra. We
understand that ring as an L-algebra by letting L act on the right-hand tensor factor; that is, we define
α · (a0⊗a1) := (a0⊗α ·a1) on simple tensors (we refer to Subsection 2.5 below for more details on the tensor
algebra). We understand the right-hand ring as an L-algebra via the standard componentwise action. As
for the isomorphism itself, we map simple tensors in the following way:

(a0 ⊗ a1) 7→
(
σ0(a0) · a1, . . . , σ2κ−1(a0) · a1

)
. (23)

To describe this isomorphism in coordinates, we must pick bases for both algebras in (22). In the left-hand
ring, we pick the L-basis (βu ⊗ 1)u∈Bκ

; as for the right, we use the standard basis.
It’s not hard to show that the matrix of the map (23)—once expressed in coordinates with respect to

these bases (and acting on row-vectors by right-multiplication)—is nothing other than the matrix σ{v}(βu)

; (24)

of (17); that is, the isomorphism (22) and the transformation (17) are one and the same map. Of course,
since we already know that (24) is nonsingular (see again [LN96, Lem. 3.51]), (22) is indeed an isomorphism.

Hashcaster turns out to be a parallel instantiation of our theory which takes place on the right-hand ring
of (22), as opposed to on the left. (Hashcaster’s various “optimizations” serve to move certain among its
steps to the left.) In this dictionary, (11) and (20) correspond, (12) and (21) correspond, and finally the final
evaluations (Au(r0, . . . , rℓ′−1))u∈Bκ

and
(
ẽq
(
σ{v}(rκ), . . . , σ

{v}(rℓ−1), r
′
0, . . . , r

′
ℓ′−1

))
v∈Bκ

correspond. These

“correspondences” are not merely suggestive, but are rather entirely rigorous; in each case, the relevant
quantities differ exactly by the isomorphism (22). On the other hand, the check (15) (see also (3)) can only
be performed in the left-hand side of (22). That isomorphism’s left-hand side is thus the most natural side
within which to remain throughout. By failing to stay there, Hashcaster imposes upon its prover and verifier
the costs—which are ultimately artificial—of traversing the isomorphism (22). The hard part, of course, is
to find out an analogue on the left-hand side of (22) of the verifier’s final check, and to remain on the left for
good. This is what we’ve done by identifying the tensor algebra, and by developing the theory of this work.

10



1.4 Binary BaseFold

In order to apply ring-switching, we need a large-field scheme to invoke it on. To this end, we adapt BaseFold
PCS [ZCF24, § 5] to the characteristic 2 setting. In the process, we revisit binary-field FRI [BBHR18a], and
surface a new connection between that protocol and the additive NTT of Lin, Chung and Han [LCH14]. We
carry out this work rigorously in Section 4 below.

Some background. Each honest FRI prover begins with the evaluation of some polynomial P (X) :=∑2ℓ−1
j=0 aj ·Xj over its initial domain S(0). Under certain mild conditions—specifically, if the folding factor

η divides ℓ, and the recursion is carried out to its end—the prover’s final oracle will be identically constant
over its domain; in fact, the prover will rather send the verifier this latter constant in the clear. What will
the value of this constant be, as a function of P (X) and of the verifier’s folding challenges?

In the setting of prime field multiplicative FRI, in which the folding arity η moreover equals 1, the
folding maps q(i) all take the especially simple form X 7→ X2. BaseFold [ZCF24, § 5] makes the interesting
observation whereby—again, in the prime field setting, and for q(0), . . . , q(ℓ−1) defined in just this way—
the prover’s final FRI response will be nothing other than a0 + a1 · r0 + a2 · r1 + · · · + a2ℓ−1 · r0 · · · · rℓ−1,
where (r0, . . . , rℓ−1) are the verifier’s FRI folding challenges. That is, it will be exactly the evaluation of the
multilinear polynomial a0 + a1 ·X0 + a2 ·X1 + · · ·+ a2ℓ−1 ·X0 · · · ·Xℓ−1 at the point (r0, . . . , rℓ−1).

What about in characteristic 2? In this setting, the simple folding maps X 7→ X2 no longer work, as
[BBHR18a, § 2.1] already notes. (These maps are nowhere 2-to-1, and in fact are field isomorphisms.) Rather,
we must set as our q(i) certain linear subspace polynomials of degree 2. FRI does not suggest precise choices
for these polynomials, beyond merely demanding that they feature the right linear-algebraic syntax. That
is, each q(i)’s kernel must reside entirely inside the domain S(i) (see also Subsection 2.4). Given syntactically
valid subspace polynomials q(i) chosen otherwise arbitrarily—and, we emphasize, FRI does not suggest a
choice—the constant value of the prover’s final oracle will relate in a complicated way to the coefficient
vector (a0, . . . , a2ℓ−1) and to the verifier’s folding challenges ri.

We recall Lin, Chung and Han [LCH14]’s novel polynomial basis (Xj(X))
2ℓ−1
j=0 and additive NTT (see

Subsection 2.3). That algorithm computes, from the vector (a0, . . . , a2ℓ−1) of coefficients of a polynomial

P (X) :=
∑2ℓ−1

j=0 aj · Xj(X) expressed with respect to the novel basis, P (X)’s vector of evaluations over
S ⊂ L, itself an affine F2-linear subspace of L (and in quasilinear time in the size of S).

Our goal is to recover in the binary setting the “classical” FRI folding pattern identified above. Essentially,
our insight is that, if we choose the FRI subspace maps q(0), . . . , q(ℓ−1) appropriately, then the prover’s final
FRI oracle becomes once again meaningfully related to P (X)’s initial coefficient vector (a0, . . . , a2ℓ−1); that
is, it becomes—as it was in the prime-field setting—a0 + a1 · r0 + a2 · r1 + · · ·+ a2ℓ−1 · r0 · · · · rℓ−1.

The problem. BaseFold PCS doesn’t “just work” in characteristic 2. To achieve our adaptation, we
must develop a degree of machinery. Specifically, we must specialize binary FRI; that is, we must carefully
choose that protocol’s codeword domains S(i) ⊂ L (for i ∈ {0, . . . , ℓ}) and its two-to-one collapsing maps
q(i) : S(i) → S(i+1) (for i ∈ {0, . . . , ℓ− 1}). Our choice serves to make FRI compatible with Lin, Chung and
Han’s [LCH14] additive NTT.

In this technical overview, we sketch why it doesn’t work to just “do the simple thing” in characteristic
2. We also sketch our solution to this problem. For the sake of this illustration, we work in a toy-sized, 8-bit
field: the AES field. That is, we work in the field

F2[X] /
(
x8 + x4 + x3 + x+ 1

) ∼= F28 .

We set ℓ = 2 and R = 1. We fix the 2-variate input multilinear

t(X0, X1) := 0xde · 1 + 0xad ·X0 + 0xbe ·X1 + 0xef ·X0 ·X1.

This field’s elements correspond in a one-to-one way with bytes. We finally fix the evaluation point

(r0, r1) := (0xab, 0xcd).

We note that
t(r0, r1) = 0x89. (25)

11



In order to set up FRI, we need a Reed–Solomon domain S(0) ⊂ L of dimension ℓ+R = 3, together with
a system of collapsing maps.

S(0) 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

S(1) 0x00 0x06 0x14 0x12

S(2) 0x00 0x73

q(0) : X 7→ X · (X + 0x01)

q(1) : X 7→ X · (X + 0x06)

Figure 5: A possible system of domains and collapsing maps in the AES field.

In Figure 5, we sketch a plausible choice for these maps in the 8-bit AES field. We initialize S(0) :=
⟨0x01, 0x02, 0x04⟩. For our first collapsing map q(0) : S(0) → S(1), we use X 7→ X2+X; this map annihilates
the one-dimensional subspace of S(0) generated by 0x01. For our next map, we annihilate the image in S(1)

(namely 0x06) of the next basis vector of S(0) (namely 0x02).
Figure 5’s parameterization, while coherent—and perfectly suitable for FRI—fails to work for binary

BaseFold. To show why, we give the thing a try. As prescribed by BaseFold PCS, we begin by “flattening”
the input multilinear t(X0, X1) into a univariate polynomial of degree less than 2ℓ. In this way, we obtain

P (X) = 0xde · 1 + 0xad ·X + 0xbe ·X2 + 0xef ·X3.

We next Reed–Solomon-encode—that is, we evaluate—P (X) on the domain S(0); finally, we FRI-fold the
resulting codeword using the challenges r0 = 0xab and r1 = 0xcd. This process appears in Figure 6 below.

0xde · 1 + 0xad ·X + 0xbe ·X2 + 0xef ·X3

f (0)

simple evaluation

0xde 0x22 0x68 0xc0 0x9a 0x85 0xba 0xf1

f (1) 0x2c 0x76 0xeb 0xb1

f (2) 0x36 0x36

fold using Fig. 5 and r0 = 0xab

fold using Fig. 5 and r1 = 0xcd

✗

Figure 6: If we don’t choose our domains carefully, then FRI-folding fails to capture multilinear evaluation.

The final FRI oracle in Figure 6 is constant, as is liable to hold generically in FRI. On the other hand,
its value is wrong. We already agreed in (25) that t(r0, r1) = 0x89; on the other hand, we obtained 0x36

above. BaseFold works only when these values are equal.
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In Figure 7 below, we reveal our choice of domains S(0), S(1) and S(2) and folding maps q(0) and q(1).

S(0) 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

S(1) 0x00 0x01 0x06 0x07

S(2) 0x00 0x01

q(0) : 0x7b ·
(
X2 +X

)

q(1) : 0xaa ·
(
X2 +X

)

Figure 7: A further binary FRI configuration, this time BaseFold-compatible.

The choice procedure underlying Figure 7 is given rigorously in Subsection 4.1 below (see Definition 4.1).
Actually, the method is not hard to describe. At each stage i, we begin with the simple map q(i) : X 7→ X2+X,
which annihilates the subspace of S(i) generated by 1. Then, however, we “twist” the map q(i), so as to
make the first element of its image 1. This choice guarantees to boot that 1 will be in S(i+1) = q(i)

(
S(i)

)
,

so that the initial choice q(i+1) : X 7→ X2 +X makes sense (that map too, though, will need to be twisted).
This process can be seen in Figure 7 above. Under the map X 7→ X2 +X, 0x02 maps to 0x06, whose

inverse is the scaling factor 0x7b. Similarly, under X 7→ X2 +X, 0x06 maps to 0x12, whose inverse is 0xaa.
The point of our theory is that, if we choose our collapsing maps in the right way—that is, as Figure

7 does—then we recover multilinear evaluation after all. Crucially, we must also replace our initial Reed–
Solomon encoding with Lin–Chung–Han’s variant. We depict this “happy path” in Figure 8.

0xde · 1 + 0xad ·X1(X) + 0xbe ·X2(X) + 0xef ·X3(X)

f (0)

Lin–Chung–Han [LCH14] additive NTT

0xde 0x73 0xe4 0xa6 0xbe 0x47 0xbd 0xab

f (1) 0xba 0x4e 0xb4 0x40

f (2) 0x89 0x89

fold using Fig. 7 and r0 = 0xab

fold using Fig. 7 and r1 = 0xcd

✓

Figure 8: Upon parameterizing FRI carefully, we recover that protocol’s built-in multilinear evaluator.

In Section 4 below, we prove that our collapsing maps work out this way, in general. To carry out that
proof, we must study Lin–Chung–Han’s additive NTT with some care (the key result is Theorem 4.12).
In fact, we further enrich our binary BaseFold variant in various interesting ways. For example, using an
“oracle-skipping” optimization—which itself exploits a recent tensor-style proximity gap, due to Diamond
and Gruen [DG25]—we shrink that scheme’s proofs by over half. We explain these ideas in full in Section 4.
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1.5 Concurrent and Subsequent Works

In this subsection, we discuss an important subsequent work, Brehm et al.’s Blaze [Bre+25].

Blaze. Brehm et al.’s Blaze [Bre+25] is a polynomial commitment scheme for multilinears over large binary
fields.

We fix an ℓ-variate multilinear t(X0, . . . , Xℓ−1) over a large binary field L. Using a technique based
in code-switching [RR24], Blaze obtains a strictly linear-time commitment procedure, a linear-time prover,
and a polylogarithmic verifier; we presently sketch its approach. Blaze begins how Brakedown does, except
with a wide matrix—shaped something like 2a × 2ℓ−a, where the matrix height 2a is just polynomial in ℓ.
That is, Blaze inscribes t(X0, . . . , Xℓ−1)’s Lagrange coefficients, in row-major order, into that wide matrix.
Its prover encodes that matrix row-wise under a RAA (repeat, accumulate accumulate) code—or under a
“packed” variant of that code—and commits to the resulting matrix, which we presently call M .

To begin its evaluation procedure, the verifier samples a vector of 2a random coefficients. Just as Brake-
down [Gol+23] does, Blaze reduces the problem of evaluating t(X0, . . . , Xℓ−1) at some point (r0, . . . , rℓ−1)
to that of evaluating the message underneath rT ·M—whatever it may be—at the suffix (ra, . . . , rℓ−1).

As of this point, Blaze has shrunk its problem size by a polylogarithmic factor, and so can freely begin
using “heavier”—i.e., quasilinear-time—techniques. The overhead to the verifier of this reduction is propor-
tional to 2a, which is just polylogarithmic in 2ℓ. (This is code-switching in action.) Blaze, indeed, must
now securely evaluate a multilinear whose coefficients are themselves encoded underneath the RAA code.
To this end, it introduces a further protocol, which is based on BaseFold (and in fact on this work’s binary
variant). That is, it commits using binary BaseFold to the claimed RAA codeword rT ·M , to the message
supposedly underneath that codeword, and finally to all of the intermediate RAA encoding steps which inter-
vene between those two quantities. It then uses sumcheck-based techniques, as well as the native evaluation
procedure of BaseFold PCS, to check the validity of the RAA encoding and evaluate the committed message.

The Blaze PCS is functionally an alternative to the binary BaseFold PCS construction we present in
Section 4. Operating over F2128 throughout, Blaze [Bre+25, § 8] reports commitment and proving times
which improve upon binary BaseFold’s by roughly threefold at the ℓ = 28 problem size, though its proofs
are larger. The key point is that though Blaze’s RAA code is very fast to encode, its relative distance is
middling (e.g., just 0.19 at the rate ρ = 1

4 ). Blaze reports a proof of 2.5 MiB in the ℓ = 28 case, compared
with 1.4 MiB for their binary BaseFold benchmark. In this work, we develop a binary BaseFold variant that
further reduces proof sizes, using the nontrivial enhancement whereby we skip FRI round oracles (see Section
4). Incorporating our oracle-skipping technique, as well as various further concrete proof size optimizations
(described in Subsection 5.2), we obtain a proof size of 0.633 MiB in the ℓ = 28 case. It seems plausible that
these enhancements could improve Blaze’s proof sizes too.

Blaze’s RAA code depends on a randomized, transparent setup, which involves an expensive verification
procedure, itself necessary to bound that setup’s probability of failure. That test must be independently
rerun by each of the protocol’s users; it requires more than a day of computation on a laptop [Bre+25,
§ 1.1]. The outcome of that test could, in theory, be attested to by a further SNARK, or else checked more
quickly with the aid of a GPU-accelerated implementation. Blaze’s RAA setup procedure must be carried
out independently for each instance size and each code rate.

Blaze’s failure analysis assumes that its sampler’s coins are uniform. In order to make that analysis
applicable in practice, Blaze’s sampler must use public, nothing-up-my-sleeve randomness. Blaze’s security
analysis becomes voided if some protocol administrator is able to influence its setup’s choice of random seed.

While Blaze supports only cryptographically large fields, its authors note the compatibility of Blaze PCS
with this work’s ring-switching compiler. This compatibility calls to mind the small-field scheme which would
arise upon the instantiation of our ring-switching reduction (see Section 3) on the Blaze large-field PCS; the
resulting small-field scheme would yield an interesting alternative to our combined scheme (see Section 5).

Acknowledgements. We would like to acknowledge our colleagues at Irreducible for their insights and
contributions to the Binius implementation of these techniques. We would like to gratefully thank Benedikt
Bünz, Giacomo Fenzi, Angus Gruen, Ulrich Haböck, Joseph Johnston, Raju Krishnamoorthy, Eugene Rabi-
novich, Justin Thaler and Benjamin Wilson, whose collective comments and suggestions contributed signifi-
cantly to this work. We thank Ron Rothblum for patiently explaining code-switching to us.
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2 Background and Notation

We write N for the nonnegative integers. All fields in this work are finite. We fix a binary field L. For each
ℓ ∈ N, we write Bℓ for the ℓ-dimensional boolean hypercube {0, 1}ℓ ⊂ Lℓ. We occasionally identify Bℓ with

the integer range {0, . . . 2ℓ − 1} by mapping v 7→ {v} :=
∑ℓ−1

i=0 2
i · vi. The rings we treat are nonzero and

commutative with unit. For our purposes, an algebra A over a field L is a commutative ring A together with

an embedding of rings L ↪→ A. For L a field and R ⊂ Lϑ a subset, we write µ(R) := |R|
|L|ϑ .

2.1 Multilinear Polynomials

We review various normal forms for multilinear polynomials, following [DP25, § 2.1]. An ℓ-variate polynomial
in L[X0, . . . , Xℓ−1] is multilinear if each of its indeterminates appears with individual degree at most 1; we
write L[X0, . . . , Xℓ−1]

⪯1 for the set of multilinear polynomials over L in ℓ indeterminates. Clearly, the set of
monomials (1, X0, X1, X0 ·X1, . . . , X0 · · · · ·Xℓ−1) yields a L-basis for L[X0, . . . , Xℓ−1]

⪯1; we call this basis
the multilinear monomial basis in ℓ variables.

We introduce the 2 · ℓ-variate polynomial

ẽq(X0, . . . , Xℓ−1, Y0, . . . , Yℓ−1) :=
ℓ−1∏
i=0

(1−Xi) · (1− Yi) +Xi · Yi.

It is essentially the content of Thaler [Tha22, Fact. 3.5]) that the set (ẽq(X0, . . . , Xℓ−1, w0, . . . , wℓ−1))w∈Bℓ

yields a further L-basis of the space L[X0, . . . , Xℓ−1]
⪯1.

For each fixed (r0, . . . , rℓ−1) ∈ Lℓ, the vector (ẽq(r0, . . . , rℓ−1, w0, . . . , wℓ−1))w∈Bℓ
takes the form(

ℓ−1∏
i=0

ri · wi + (1− ri) · (1− wi)

)
w∈Bℓ

= ((1− r0) · · · · · (1− rℓ−1), . . . , r0 · · · · · rℓ−1).

We call this vector the tensor product expansion of (r0, . . . , rℓ−1) ∈ Lℓ, and denote it by
⊗ℓ−1

i=0(1 − ri, ri).
We note that it can be computed in 2ℓ L-additions and 2ℓ L-multiplications (see e.g. [Tha22, Lem. 3.8]).

As a notational device, we introduce the further 2 · ℓ-variate polynomial:

m̃on(X0, . . . , Xℓ−1, Y0, . . . , Yℓ−1) :=

ℓ−1∏
i=0

1 + (Xi − 1) · Yi;

we note that (m̃on(X0, . . . , Xℓ−1, w0, . . . , wℓ−1))w∈Bℓ
is the multilinear monomial basis in ℓ indeterminates.

2.2 Error-Correcting Codes

We recall details on codes, referring throughout to Guruswami [Gur06]. A code of block length n over the
alphabet Σ is a subset of Σn. In Σn, we write d for the Hamming distance between two vectors (i.e., the
number of components at which they differ). We fix a field L. A linear [n, k, d]-code over L is a k-dimensional
linear subspace C ⊂ Ln for which d(v0, v1) ≥ d holds for each unequal pair of elements v0 and v1 of C. The
unique decoding radius of the [n, k, d]-code C ⊂ Ln is

⌊
d−1
2

⌋
; indeed, we note that, for each word u ∈ Ln, at

most one codeword v ∈ C satisfies d(u, v) < d
2 (this fact is a direct consequence of the triangle inequality).

For u ∈ Ln arbitrary, we write d(u,C) := minv∈C d(u, v) for the distance between u and the code C.
For each linear code C ⊂ Ln and each integer m ≥ 1, we define C’s m-fold interleaved code as the

subset Cm ⊂ (Ln)
m ∼= (Lm)

n
. We understand this latter set as a length-n block code over the alphabet

Lm. In particular, its elements are essentially matrices in Lm×n each of whose rows is a C-element. We
write matrices (ui)

m−1
i=0 ∈ Lm×n row-wise. By definition of Cm, two matrices in Lm×n differ at a column if

they differ at any of that column’s components. That a matrix (ui)
m−1
i=0 ∈ Lm×n is within distance e to the

code Cm—in which event we write dm
(
(ui)

m−1
i=0 , Cm

)
≤ e—thus entails precisely that there exists a subset

D := ∆m
(
(ui)

m−1
i=0 , Cm

)
, say, of {0, . . . , n− 1}, of size at most e, for which, for each i ∈ {0, . . . ,m− 1}, the

row ui admits a codeword vi ∈ C for which ui|{0,...,n−1}\D = vi|{0,...,n−1}\D.
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We recall Reed–Solomon codes (see [Gur06, Def. 2.3]). For notational convenience, we consider only
Reed–Solomon codes whose message and block lengths are powers of two. We fix nonnegative message

length and rate parameters ℓ and R, as well as a subset S ⊂ L of size 2ℓ+R. We write C ⊂ L2ℓ+R
for the

Reed–Solomon code RSL,S [2
ℓ+R, 2ℓ], itself defined to be the set

{
(P (x))x∈S

∣∣∣ P (X) ∈ L[X]≺2
ℓ
}
. That is,

RSL,S [2
ℓ+R, 2ℓ] is the set of those 2ℓ+R-tuples which arise as the evaluations of some polynomial of degree

less than 2ℓ over S. The distance of RSL,S [2
ℓ+R, 2ℓ] is d = 2ℓ+R − 2ℓ + 1. We write Enc : L[X]≺2

ℓ → LS for
the encoding function which maps P (X) to its tuple of evaluations over S.

We recall the Berlekamp–Welch algorithm for Reed–Solomon decoding within the unique decoding radius
(see [Gur06, Rem. 4]).

Algorithm 1 (Berlekamp–Welch [Gur06, Rem. 4].)

1: procedure DecodeReedSolomon
(
(f(x))x∈S

)
2: allocate A(X) and B(X) of degrees

⌊
d−1
2

⌋
and 2ℓ+R−

⌊
d−1
2

⌋
−1; write Q(X,Y ) := A(X) ·Y +B(X).

3: interpret the equalities Q(x, f(x)) = 0, for x ∈ S, as a system of 2ℓ+R equations in 2ℓ+R+1 unknowns.
4: by finding a nonzero solution of this linear system, obtain values for the polynomials A(X) and B(X).
5: if A(X) ∤ B(X) then return ⊥.
6: write P (X) := −B(X)/A(X).
7: return P (X).

We note that the unknown polynomial Q(X,Y ) above indeed has
⌊
d−1
2

⌋
+1+ 2ℓ+R −

⌊
d−1
2

⌋
= 2ℓ+R +1

coefficients, as required.
Upon being given an input word f : S → L for which d(f, C) < d

2 , Algorithm 1 necessarily returns

the unique polynomial P (X) of degree less than 2ℓ for which d(f,Enc(P (X))) < d
2 holds. Indeed, this is

simply the correctness of Berlekamp–Welch algorithm on input assumed to reside within the unique decoding
radius; we refer to [Gur06, Rem. 4] for a thorough treatment. (We note that the (1, 2ℓ − 1)-weighted degree
of Q(X,Y ) is at most D = 2ℓ+R −

⌊
d−1
2

⌋
− 1, while t = 2ℓ+R −

⌊
d−1
2

⌋
; the hypothesis of [Gur06, Lem. 4.3]

is therefore fulfilled. We conclude that Q(X,P (X)), of degree at most D with at least t zeros, is in fact
identically zero, so that Y − P (X) | Q(X,Y ).)

We discuss this algorithm further in Remark 4.26 below.

2.3 The Novel Polynomial Basis

We recall in detail the novel polynomial basis of Lin, Chung and Han [LCH14, § II. C.]. We fix again a
binary field L, of degree r, say, over F2. For our purposes, a subspace polynomial over L is a polynomial
W (X) ∈ L[X] which splits completely over L, and whose roots, each of multiplicity 1, form an F2-linear
subspace of L. For a detailed treatment of subspace polynomials, we refer to Lidl and Niederreiter [LN96,
Ch. 3. § 4.]. For each subspace polynomial W (X) ∈ L[X], the evaluation map W : L→ L is F2-linear.

For each fixed ℓ ∈ {0, . . . , r−1}, the set L[X]≺2
ℓ

of polynomials of degree less than 2ℓ is a 2ℓ-dimensional

vector space over L. Of course, the set (1, X,X2, . . . , X2ℓ−1) yields a natural L-basis of L[X]≺2
ℓ

. Lin,

Chung and Han define a further L-basis of L[X]≺2
ℓ

—called the novel polynomial basis—in the following
way. We fix once and for all an F2-basis (β0, . . . , βr−1) of L (which we view as an r-dimensional vector
space over its subfield F2). For each i ∈ {0, . . . , ℓ}, we write Ui := ⟨β0, . . . , βi−1⟩ for the F2-linear span of
the prefix (β0, . . . , βi−1), and define the subspace vanishing polynomial Wi(X) :=

∏
u∈Ui

(X − u), as well

as its normalized variant Ŵi(X) := Wi(X)
Wi(βi)

(we note that βi ̸∈ Ui, so that Wi(βi) ̸= 0). In words, for each

i ∈ {0, . . . , ℓ}, Wi(X) vanishes precisely on Ui ⊂ L; Ŵi(X) moreover satisfies Ŵi(X)(βi) = 1. Finally, for

each j ∈ {0, . . . , 2ℓ − 1}, we write (j0, . . . , jℓ−1) for the bits of j—so that j =
∑ℓ−1

k=0 2
k · jk holds—and set

Xj(X) :=
∏ℓ−1

i=0 Ŵi(X)ji . We note that, for each j ∈ {0, . . . , 2ℓ−1}, Xj(X) is of degree j. We conclude that

the change-of-basis matrix from (1, X, . . . ,X2ℓ−1) to (X0(X), X1(X), . . . , X2ℓ−1(X)) is triangular (with an

everywhere-nonzero diagonal), so that this latter list indeed yields a L-basis of L[X]≺2
ℓ

.
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We now fix moreover a rate parameter R ∈ {1, . . . , r−ℓ} and a union S ⊂ L of 2R distinct cosets of Uℓ =
⟨β0, . . . , βℓ−1⟩. For example, we may take as S ⊂ L any affine translate of the ℓ +R-dimensional subspace
⟨β0, . . . , βℓ+R−1⟩. For each S ⊂ L of this form, Lin, Chung and Han [LCH14, § III. B.]’s O(ℓ · 2ℓ+R)-time

algorithm serves to compute, on input the polynomial P (X) :=
∑2ℓ−1

j=0 aj ·Xj(X) (expressed in coordinates
with respect to the novel polynomial basis), its encoding (P (x))x∈S . In fact, that algorithm takes exactly

ℓ · 2ℓ+R L-additions and ℓ · 2ℓ+R−1 L-multiplications [LCH14, § III. D.].
In Remark 4.14 below, we suggest a new interpretation of Lin, Chung and Han’s algorithm [LCH14, § III.]

based on the techniques of this paper. For now, for self-containedness, we record here the key algorithm in
full, in our notation. We note that Algorithm 2’s equivalence with [LCH14, § III.] is not obvious; we explain
the correctness of our description in Remark 4.14 below. In what follows, we fix as above the degree and

rate parameters ℓ and R. We finally fix a polynomial P (X) =
∑2ℓ−1

j=0 aj ·Xj(X); we write b : Bℓ+R → L for

(aj)
2ℓ−1
j=0 ’s 2R-fold tiling; in other words, for each v ∈ Bℓ+R, we set b(v0, . . . , vℓ+R−1) := a{(v0,...,vℓ−1)}.

Algorithm 2 (Lin–Chung–Han [LCH14, § III.].)

1: procedure AdditiveNTT
(
(b(v))v∈Bℓ+R

)
2: for i ∈ {ℓ− 1, . . . , 0} (i.e., in downward order) do
3: for (u, v) ∈ Bℓ+R−i−1 × Bi do
4: define the twiddle factor t :=

∑ℓ+R−i−2
k=0 uk · Ŵi(βi+1+k).

5: overwrite first b(u ∥ 0 ∥ v) += t · b(u ∥ 1 ∥ v) and then b(u ∥ 1 ∥ v) += b(u ∥ 0 ∥ v).
6: return (b(v))v∈Bℓ+R

.

We note that the twiddle factor t above depends only on u, and not on v, and can be reused accordingly.
Finally, in the final return statement above, we implicitly identify Bℓ+R ∼= S using the standard basis
β0, . . . , βℓ+R−1 of the latter space (see also Subsection 4.1 below).

2.4 FRI

We recall Ben-Sasson, Bentov, Horesh and Riabzev’s [BBHR18a] Fast Reed–Solomon Interactive Oracle Proof
of Proximity (FRI). For L a binary field, and size and rate parameters ℓ and R fixed, FRI yields an IOP of
proximity for the Reed–Solomon code RSL,S [2

ℓ+R, 2ℓ]; here, we require that S ⊂ L be an affine, F2-linear
subspace (of dimension ℓ + R, of course). That is, FRI yields an IOP for the claim whereby some oracle

[f ]—i.e., representing a function f : S → L—is close to a codeword (P (x))x∈S (here, P (X) ∈ L[X]≺2
ℓ

represents a polynomial of degree less than 2ℓ). FRI’s verifier complexity is polylogarithmic in 2ℓ. We
abbreviate ρ := 2−R, so that RSL,S [2

ℓ+R, 2ℓ] is of rate ρ.
Internally, FRI makes use of a folding constant η—which we fix to be 1—as well as a fixed, global sequence

of subspaces and maps of the form:

S = S(0) q(0)−−→ S(1) q(1)−−→ S(2) q(2)−−→ · · · q(ℓ−1)

−−−−→ S(ℓ). (26)

Here, for each i ∈ {0, . . . , ℓ − 1}, q(i) is a subspace polynomial of degree 2η = 2, whose kernel, which is
1-dimensional, is moreover contained in S(i). By linear-algebraic considerations, we conclude that S(i+1)’s
F2-dimension is 1 less than S(i)’s is; inductively, we conclude that each S(i) is of dimension ℓ +R − i. In
particular, S(ℓ) is of dimension R.

2.5 Tensor Products of Fields

We record algebraic preliminaries, referring throughout to Lang [Lan02, Ch. XVI]. We fix a field extension
L/K. We define the tensor product A := L⊗KL of L with itself over K as in [Lan02, Ch. XVI § 6]. Here, we
view L as a K-algebra; the resulting object A := L⊗K L is likewise a K-algebra. We would like to sincerely
thank Benjamin Wilson for first suggesting to us this tensor-theoretic perspective on the tower algebra of
[DP25, § 3.4].
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We recall from [Lan02, Ch. XVI, § 1] the natural K-bilinear mapping φ : L× L→ L⊗K L which sends
φ : (α0, α1) 7→ α0⊗α1. We write φ0 and φ1 for φ’s restrictions to the subsets L×{1} and {1}×L of L×L,
and moreover identify these latter subsets with L. That is, we write φ0 : α 7→ α⊗1 and φ1 : α 7→ 1⊗α, both
understood as maps L→ A. We claim that these maps are injective (i.e., that they’re not identically zero).
We follow Lang [Lan02, Ch. XVI, § 2, Prop. 2.3]. The mapping f : L×L→ L sending f : (α0, α1) 7→ α0 ·α1

is K-bilinear; by the universal property of the tensor product, f induces a K-linear map h : L ⊗K L → L,
for which, for each α ∈ L, h(α⊗ 1) = f(α, 1) = α · 1 = α holds; we see that α⊗ 1 = 0 if and only if α = 0.

We assume once and for all that deg(L /K) is a power of 2, say 2κ. We fix a K-basis (βv)v∈Bκ
of L. We

moreover impose the simplifying assumption whereby β(0,...,0) = 1. By [Lan02, Ch. XVI, § 2, Cor. 2.4], the
set (βu ⊗ βv)(u,v)∈Bκ×Bκ

yields a K-basis of A. We thus see that each A-element is, concretely, a 2κ × 2κ

array of K-elements. For each a ∈ A given, there is a unique 2κ-tuple of L-elements (av)v∈Bκ for which
a =

∑
v∈Bκ

av ⊗ βv holds. (Indeed, this is just [Lan02, Ch. XVI, § 2, Prop. 2.3].) Similarly, there is a
unique 2κ-tuple of L-elements (au)u∈Bκ

for which a =
∑

u∈Bκ
βu⊗au holds. We call the tuples (av)v∈Bκ

and
(au)u∈Bκ

a’s column and row representations, respectively. We depict the tensor algebra in Figure 9 below.

2κ

2κ

⟨1⊗ 1⟩ ⟨1⊗ β2κ−1⟩

⟨1⊗ 1⟩

⟨β2κ−1 ⊗ 1⟩

K φ1(L) K

φ0(L)

K


Figure 9: A depiction of our “tensor algebra” data structure.

The maps φ0 and φ1 respectively embed L into A’s left-hand column and top row. That is, the image
of φ0 : L ↪→ A is the set of K-arrays which are 0 except in their respective left-most columns; the image of
φ1 : L ↪→ A is the set of K-arrays which are 0 outside of their top rows. We finally characterize concretely
the products φ0(α) · a and φ1(α) · a, for elements α ∈ L and a ∈ A arbitrary. It is a straightforward to
show that φ0(α) · a =

∑
v∈Bκ

(α · av) ⊗ βv and φ1(α) · a =
∑

u∈Bκ
βu ⊗ (α · au) both hold; here, we again

write (av)v∈Bκ
and (au)u∈Bκ

for a’s column and row representations. That is, φ0(α) · a differs from a by
column-wise multiplication by α; φ1(α) · a differs from a by row-wise multiplication by α. In short, φ0

operates on columns; φ1 operates on rows.
Below, the tensor algebra A := L⊗K L plays a critical role in our “ring-switching” technique (see Section

3). For now, we record a simple polynomial-packing operation, which is implicit in [DP25, § 3.4]. We obtain
a natural K-isomorphism K2κ → L via the basis-combination procedure (αv)v∈Bκ

7→
∑

v∈Bκ
αv · βv. By

applying this map in chunks, we may associate to each ℓ-variate K-multilinear an ℓ−κ-variate L-multilinear.

Definition 2.1. For each extension L/K, withK-basis (βv)v∈Bκ
say, and each multilinear t(X0, . . . , Xℓ−1) ∈

K[X0, . . . , Xℓ−1]
⪯1, we write ℓ′ := ℓ − κ, and define the packed polynomial t′(X0, . . . , Xℓ′−1) ∈

L[X0, . . . , Xℓ′−1]
⪯1 by declaring, for each w ∈ Bℓ′ , that t′ : w 7→

∑
v∈Bκ

t(v0, . . . , vκ−1, w0, . . . , wℓ′−1) · βv.

Definition 2.1 replaces each little-endian chunk—consisting of 2κ adjacent K-elements—of
t(X0, . . . , Xℓ−1)’s Lagrange coefficient vector with a single L-element, by basis-combining that chunk.

We emphasize that Definition 2.1’s packing procedure is reversible (see also [DP25, Thm. 3.9]); that is,
t′(X0, . . . , Xℓ′−1) can be “unpacked”. We note that Definition 2.1 is essentially the same as [DP25, § 4.3].

We finally write φ1(t
′)(X0, . . . , Xℓ′−1) ∈ A[X0, . . . , Xℓ′−1] for the result of embedding t′(X0, . . . , Xℓ′−1)

componentwise along the inclusion φ1 : L ↪→ A.
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2.6 Binary Towers

We recall towers of binary fields, referring throughout to [DP25, § 2.3]. For simplicity, we present only
Wiedemann’s tower [Wie88]; on the other hand, our results go through without change on other binary
towers (cf. e.g. the Cantor tower given in Li et al. [Li+18, § 2.1]). That is, we set T0 := F2 and T1 :=
F2[X0]/(X

2
0 + X0 + 1), as well as, for each ι > 1, Tι := Tι−1/(X2

ι−1 + Xι−2 · Xι−1 + 1). Fan and Paar

[FP97] observe that the multiplication and inversion operations in Wiedemann’s tower admit O
(
2log(3)·ι

)
-

time algorithms.
The monomial F2-basis of the binary tower Tτ is (βv)v∈Bτ

:= (m̃on(X0, . . . , Xτ−1, v0, . . . , vτ−1))v∈Bτ
.

More generally, for each pair of integers ι ≥ 0 and τ ≥ ι, the set (m̃on(Xι, . . . , Xτ−1, v0, . . . , vτ−ι−1)v∈Bτ−ι

likewise yields a Tι-basis of Tτ ; we again write (βv)v∈Bτ−ι
for this basis.

The tower algebra data structure of Diamond and Posen [DP25, § 3.4] is essentially nothing other than
Tτ ⊗Tι Tι+κ. We use tensor-notation in this work; we thus avoid referring to that algebra directly. In this
work, we moreover only consider “square” tensors (i.e., of the same field with itself). That work’s “constant”
and “synthetic” embeddings correspond to our embeddings φ0 and φ1, respectively.

2.7 Proximity Gaps

We turn to proximity gaps, following Ben-Sasson, et al., [Ben+23], Diamond and Posen [DP24], and Diamond
and Gruen [DG25]. Throughout this subsection, we again fix a Reed–Solomon code C := RSL,S [2

ℓ+R, 2ℓ];
we moreover write d := 2ℓ+R − 2ℓ + 1 for C’s distance. In the following results, for notational convenience,
we abbreviate n := 2ℓ+R for the Reed–Solomon code C’s block length.

We recall the notion of proximity gaps, both over affine lines [DG25, Def. 1] and over tensor combinations
[DG25, Def. 2]. The following key result entails that Reed–Solomon codes exhibit proximity gaps for affine
lines, for each proximity parameter e ∈

{
0, . . . ,

⌊
d−1
2

⌋}
within the unique decoding radius.

Theorem 2.2 (Ben-Sasson, et al. [Ben+23, Thm. 4.1]). For each proximity parameter e ∈
{
0, . . . ,

⌊
d−1
2

⌋}
and each pair of words u0 and u1 in L2ℓ+R

, if

Pr
r∈L

[d((1− r) · u0 + r · u1, C) ≤ e] >
n

|L|
,

then d2
(
(ui)

1
i=0, C

2
)
≤ e.

Diamond and Gruen [DG25, Thm. 2], making use of a result of Angeris, Evans and Roh [AER24] (see
also [DG25, Thm. 3]), show that each code C for which the conclusion of Theorem 2.2 holds also exhibits
tensor-style proximity gaps in the sense of Diamond and Posen [DP24, Thm. 2] (although they sharpen by
a factor of two that result’s false witness probability). Applying their result to Theorem 2.2, those authors
obtain:

Theorem 2.3 (Diamond–Gruen [DG25, Cor. 1]). For each proximity parameter e ∈
{
0, . . . ,

⌊
d−1
2

⌋}
, each

tensor arity ϑ ≥ 1, and each list of words u0, . . . , u2ϑ−1 in L2ℓ+R
, if

Pr
(r0,...,rϑ−1)∈Lϑ

d
[ ⊗ϑ−1

i=0 (1− ri, ri)
]
·


u0

...

u2ϑ−1

, C
 ≤ e

 > ϑ · n

|L|
,

then d2
ϑ
(
(ui)

2ϑ−1
i=0 , C2ϑ

)
≤ e.

2.8 Security Definitions

We record security definitions. We begin by defining various abstract oracles, following [DP25, § 4.1].
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FUNCTIONALITY 2.4 (FL
Vec—vector oracle).

An arbitrary alphabet L is given.

• Upon receiving (submit,m, f) from P, where m ∈ N and f ∈ LBm , output (receipt, L, [f ]) to all
parties, where [f ] is some unique handle onto the vector f .

• Upon receiving (query, [f ], v) from V, where v ∈ Bm, send V (result, f(v)).

FUNCTIONALITY 2.5 (Fλ,ℓ
Poly—polynomial oracle).

A security parameter λ ∈ N and a number-of-variables parameter ℓ ∈ N are given. The functionality
constructs and fixes a field L (allowed to depend on λ and ℓ).

• Upon receiving (submit, t) from P, where t(X0, . . . , Xℓ−1) ∈ L[X0, . . . , Xℓ−1]
⪯1, output

(receipt, [t]) to all parties, where [t] is some unique handle onto the polynomial t.

• On input (query, [t], r) from V, where r ∈ Lℓ, send V (result, t(r0, . . . , rℓ−1)).

FUNCTIONALITY 2.6 (Fλ,K,ℓ
SFPoly—small-field polynomial oracle).

A security parameter λ ∈ N, a number-of-variables parameter ℓ ∈ N, and a ground field K are given.
The functionality constructs and fixes a field extension L / K (allowed to depend on λ, ℓ and K).

• Upon receiving (submit, t) from P, where t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]
⪯1, output

(receipt, [t]) to all parties, where [t] is some unique handle onto the polynomial t.

• On input (query, [t], r) from V, where r ∈ Lℓ, send V (result, t(r0, . . . , rℓ−1)).

An IOP, by definition, is a protocol in which P and V may make free use of the abstract Functionality
2.4; in a PIOP, the parties may instead use Functionality 2.5. Interactive oracle polynomial commitment
schemes (IOPCSs) serve to bridge these two models. They’re IOPs; that is, they operate within the abstract
computational model in which Functionality 2.4 is assumed to exist. On the other hand, they “emulate” the
more-powerful Functionality 2.5, in the sense that each given PIOP—by inlining in place of each of its calls
to Functionality 2.5 an execution of the IOPCS—stands to yield an equivalently secure IOP.

Departing slightly from previous works, we treat polynomial commitment in the IOP model; that is,
for our purposes, a “polynomial commitment scheme” is an IOP (i.e., a protocol in which a string oracle is
available to both parties) which captures the commitment, and subsequently the evaluation, of a polynomial.
Our approach contrasts with that taken by various previous works (we note e.g. Diamond and Posen [DP25]
and Setty [Set20]). Those works opt to define polynomial commitment schemes in the plain (random oracle)
model, noting that a plain PCS, upon being inlined into a secure PIOP, yields a sound argument. This
latter approach absorbs the Merklization process both into the PCS and into the composition theorem. Our
approach bypasses this technicality, and separates the relevant concerns. Indeed, given a PIOP, we may first
inline our IOPCS into it; on the resulting IOP, we may finally invoke generically the compiler of Ben-Sasson,
Chiesa and Spooner [BCS16]. This “two-step” compilation process serves to transform any secure PIOP into
a secure argument in the random oracle model.

We also define the security of IOPCSs differently than do [Set20, Def. 2.11] and [DP25, § 3.5]. Our
definition below requires that E extract t(X0, . . . , Xℓ−1) immediately after seeing A’s commitment (that is,
before seeing r, or observing any evaluation proofs on the part ofA). This work’s IOPCS constructions indeed
meet this stricter requirement, owing essentially to their use of Reed–Solomon codes, which are efficiently
decodable. (In the setting of general—that is, not-necessarily-decodable—codes, extraction becomes much
more complicated, and requires rewinding.) On the other hand, our strict rendition of the IOPCS notion
makes its key composability property—that is, the fact whereby a secure IOPCS, upon being inlined into a
secure PIOP, yields a secure IOP—easier to prove. (We believe that this composability property should, on
the other hand, nonetheless hold even under various weakenings of Definition 2.8.)
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Definition 2.7. An interactive oracle polynomial commitment scheme (IOPCS) is a tuple of algorithms
Π = (Setup,Commit,P,V) with the following syntax:

• params← Π.Setup(1λ, ℓ). On input the security parameter λ ∈ N and a number-of-variables parameter
ℓ ∈ N, outputs params, which includes, among other things, a field L.

• [f ] ← Π.Commit(params, t). On input params and a multilinear polynomial t(X0, . . . , Xℓ−1) ∈
L[X0, . . . , Xℓ−1]

⪯1, outputs a handle [f ] to a vector.

• b ← ⟨P([f ], s, r; t),V([f ], s, r)⟩ is an IOP, in which the parties may jointly leverage the machine FL
Vec.

The parties have as common input a vector handle [f ], an evaluation point (r0, . . . , rℓ−1) ∈ Lℓ, and
a claimed evaluation s ∈ L. P has as further input a multilinear polynomial t(X0, . . . , Xℓ−1) ∈
L[X0, . . . , Xℓ−1]

⪯1. V outputs a success bit b ∈ {0, 1}.

The IOPCS Π is complete if the obvious correctness property holds. That is, for each multilin-
ear polynomial t(X0, . . . , Xℓ−1) ∈ L[X0, . . . , Xℓ−1]

⪯1 and each honestly generated commitment [f ] ←
Π.Commit(params, t), it should hold that, for each r ∈ Lℓ, setting s := t(r0, . . . , rℓ−1), the honest prover
algorithm induces the verifier to accept with probability 1, so that ⟨P([f ], s, r; t),V([f ], s, r)⟩ = 1.

We now define the security of IOPCSs.

Definition 2.8. For each interactive oracle polynomial commitment scheme Π, security parameter λ ∈ N,
number-of-variables parameter ℓ ∈ N, PPT adversary A, and PPT emulator E , we define the following
experiment:

• The experimenter samples params← Π.Setup(1λ, ℓ), and gives params, including L, to A and E .

• The adversary, after interacting arbitrarily with the vector oracle, outputs a handle [f ]← A(params).

• On input A’s record of interactions with the oracle, E outputs t(X0, . . . , Xℓ−1) ∈ L[X0, . . . , Xℓ−1]
⪯1.

• The verifier outputs (r0, . . . , rℓ−1)← V(params, [f ]); A responds with an evaluation claim s← A(r).

• By running the evaluation IOP with A as V, the experimenter obtains the bit b← ⟨A(s, r),V([f ], s, r)⟩.

• The experimenter defines two quantities:

– RealΠ,ℓ
A (λ): is defined to be s if b = 1, and ⊥ otherwise.

– IdealΠ,ℓ
E,A(λ): is defined to be t(r0, . . . , rℓ−1) if t(X0, . . . , Xℓ−1) ̸= ⊥ and b = 1, and ⊥ otherwise.

The IOPCS Π is said to be secure if, for each PPT adversary A, there exists a PPT emulator E and a

negligible function negl such that, for each λ ∈ N and each ℓ ∈ N, Pr
[
RealΠ,ℓ

A (λ) ̸= IdealΠ,ℓ
E,A(λ)

]
≤ negl(λ).

We finally record a variant of Definition 2.7 in which the parties may fix a small coefficient field K.

Definition 2.9. A small-field interactive oracle polynomial commitment scheme (small-field IOPCS) is a
tuple of algorithms Π = (Setup,Commit,P,V) with the following syntax:

• params← Π.Setup(1λ, ℓ,K). On input the security parameter λ ∈ N, a number-of-variables parameter
ℓ ∈ N and a field K, outputs params, which includes, among other things, a field extension L / K.

• [f ] ← Π.Commit(params, t). On input params and a multilinear polynomial t(X0, . . . , Xℓ−1) ∈
K[X0, . . . , Xℓ−1]

⪯1, outputs a handle [f ] to a vector.

• b ← ⟨P([f ], s, r; t),V([f ], s, r)⟩ is an IOP, in which the parties may jointly leverage the machine FL
Vec.

The parties have as common input a vector handle [f ], an evaluation point (r0, . . . , rℓ−1) ∈ Lℓ, and
a claimed evaluation s ∈ L. P has as further input a multilinear polynomial t(X0, . . . , Xℓ−1) ∈
K[X0, . . . , Xℓ−1]

⪯1. V outputs a success bit b ∈ {0, 1}.

We define the security of small-field IOPCSs Π exactly as in Definition 2.8, except that we require that
E output a polynomial t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]

⪯1.
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3 Ring-Switching

In this section, we formally present ring-switching. First, we review in a bit more detail the material of
Subsection 1.3. Our main goal is to reframe that subsection’s content tensor-theoretically.

As usual, we fix a field extension L/K and a basis (βv)v∈Bκ
of L over K. We moreover fix a K-multilinear

t(X0, . . . , Xℓ−1) and an evaluation point (r0, . . . , rℓ−1) over L. Finally, we again write t′(X0, . . . , Xℓ′−1) for
t(X0, . . . , Xℓ−1)’s packed multilinear (see (1)). Above, we argued that, in order for the verifier to assess the

claim t(r0, . . . , rℓ−1)
?
= s, it’s enough for the prover to send values (ŝv)v∈Bκ

respectively claimed to equal
(t(v0, . . . , vκ−1, rκ, . . . , rℓ−1))v∈Bκ

. Provided it can verify these latter claims, the verifier must simply check
(3).

At the core of our theory rests the following characterization of the partial evaluations
(t(v0, . . . , vκ−1, rκ, . . . , rℓ−1))v∈Bκ
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Figure 10: A graphical depiction of t(X0, . . . , Xℓ−1)’s partial evaluations.

The partial evaluations (t(v0, . . . , vκ−1, rκ, . . . , rℓ−1))v∈Bκ
appear as the columns of the left-hand matrix

of Figure 10. In Figure 10’s right-hand side, we have the sum, over varying w ∈ Bℓ′ , of the matrices
ẽq(w0, . . . , wℓ′−1, rκ, . . . , rℓ−1) ⋆ t′(w). Here, we again use the ⋆ symbol to denote the “exterior product”
between two L-elements (recall Subsection 1.3). That is, we basis-decompose both operands into K-vectors,
and then take the 2κ × 2κ K-matrix of cross-products between these vectors.

Figure 10 is true essentially by definition of t′(X0, . . . , Xℓ′−1). Indeed, we fix a column index v ∈ Bκ, and
“zoom into” the vth column of Figure 10. We first note that

t(v0, . . . , vκ−1, rκ, . . . , rℓ−1) =
∑

w∈Bℓ′

ẽq(rκ, . . . , rℓ′−1, w0, . . . , wℓ−1) · t(v0, . . . , vκ−1, w0, . . . , wℓ′−1). (27)

Moreover, for each w ∈ Bℓ′ , t(v0, . . . , vκ−1, w0, . . . , wℓ′−1) is exactly the vth horizontal slice of of t′(w) (this is
(1) again). Figure 10 thus amounts to the horizontal “stacking” of all 2κ instances of the relationship (27),
as the column index v ∈ Bκ varies.

On the other hand, by taking the exact same picture and viewing it row-wise, we obtain relationships
that we sumcheck. As in Subsection 1.3, for each w ∈ Bℓ′ , we write (Aw,u)u∈Bκ

for the basis-decomposition
of ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1); that is,

ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) =
∑
u∈Bκ

Aw,u · βu (28)

holds for each w ∈ Bℓ′ (recall also (8)). Interpreting Figure 10 row-wise, we obtain Figure 11 below, which,
again, is true essentially by definition. Indeed, “zooming into” some row u ∈ Bκ of Figure 11, we note that
that Figure 11’s right-hand side sums the slice-product Aw,u · t′(w) over w ∈ Bℓ′ .
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Figure 11: A row-wise viewpoint into the same exact expression.

The point is that the rows of Figure 11 are amenable to the sumcheck protocol—provided, that is, that
the verifier can efficiently evaluate

(
Au(r

′
0, . . . , r

′
ℓ′−1)

)
u∈Bκ

, for some random point (r′0, . . . , r
′
ℓ′−1) that arises

during the sumcheck. Here, for each u ∈ Bκ, we define Au(X0, . . . , Xℓ′−1) to be the multilinear extension
of the map Au : w 7→ Aw,u, for w ∈ Bℓ′ varying. This gets us to where we left off in Subsection 1.3 (recall
again Figure 3).

In fact, Figures 3, 10 and 11 all arise naturally as tensor-algebraic expressions. We recall the tensor
algebra A := L⊗K L from Subsection 2.5. Each element of the tensor algebra looks, concretely, like a 2κ×2κ

array of K-elements. We may freely interpret each such element, say ŝ ∈ A, both column-wise and row-wise.
That is, we can interpret each of ŝ’s columns as an L-element, and so obtain a list (ŝv)v∈Bκ of L-elements;
alternatively, we can interpret each of ŝ’s rows as an L-element, thereby obtaining a further list (ŝu)u∈Bκ .
As should be clear by now, our theory hinges on a viewpoint that maintains both of these perspectives at
once. The tensor algebra furnishes the arena within which we might best do this.

The important thing about the tensor algebra is its multiplication operation, and in particular how that
operation handles columns and rows. Given some L-element α, we can obtain an A-element by inscribing α’s
K-decomposition into the left-hand column of a 2κ × 2κ array. The resulting A-element is φ0(α). Similarly,
we may equally inscribe α’s K-decomposition into the top row of a 2κ × 2κ K-array; this operation yields
φ1(α). (We again recall Subsection 2.5.) The important thing about the tensor algebra’s multiplication
structure is that it captures the ⋆ operation. In fact, for each pair of L-elements α0 and α1,

α0 ⋆ α1 = φ0(α0) · φ1(α1). (29)

In (29), the left-hand product is of course the exterior product, whereas the right-hand product is the ambient
multiplication operation in the tensor algebra.

Figures 10 and 11 represent the tensor-algebric identity

φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)) =

∑
w∈Bℓ′

φ0(ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1)) · φ1(t
′(w0, . . . , wℓ′−1)). (30)

The identity (30) captures, in just one expression, “both views” (i.e., the views respectively expressed by
Figures 10 and 11). Here, we write φ1(t

′)(X0, . . . , Xℓ′−1) for the A-valued multilinear defined by the Lagrange
prescription w 7→ φ1(t

′(w)) (i.e., for w ∈ Bℓ′ varying).
Our key claim is that the right-hand side of Figure 3 is simply

ẽq
(
φ0(rκ), . . . , φ0(rℓ−1), φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
(31)

(recall also (14)). This nontrivial fact is key to our theory; it implies that the verifier may locally compute
the right-hand side of Figure 3 succinctly. In fact, the verifier may compute (31) concretely in just 2 · ℓ′ · 2κ
L-multiplications, a fact we explain rigorously in Remark 3.4 below. In Subsection 3.2 below, we argue that
ring-switching is concretely and asymptotically efficient for both the prover and the verifier, and is essentially
optimal.
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3.1 Ring-Switching Protocol

We now record our ring-switching reduction.

CONSTRUCTION 3.1 (Ring-Switching Compiler).
A large-field scheme Π′ =

(
Setup′,Commit′,P ′,V ′

)
is given as input. We define the small-field scheme

Π = (Setup,Commit,P,V) in the following way.

1. params← Π.Setup(1λ, ℓ,K). On input 1λ, ℓ, and K, run and output Π′.Setup′(1λ, ℓ′), where ℓ′ is
such that the field L / K returned by that routine, of degree 2κ over K say, satisfies ℓ′ = ℓ− κ.

2. [f ]← Π.Commit(params, t). On input t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]
⪯1, fix the packed poly-

nomial t′(X0, . . . , Xℓ′−1) ∈ L[X0, . . . , Xℓ′−1]
⪯1 as in Definition 2.1; output Π′.Commit′(params, t′).

We define (P,V) as the following IOP, in which both parties have the common input [f ], s ∈ L, and
(r0, . . . , rℓ−1) ∈ Lℓ, and P has the further input t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]

⪯1.

1. P computes ŝ := φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)) and sends V the A-element ŝ.

2. V decomposes ŝ =:
∑

v∈Bκ
ŝv ⊗ βv. V requires s

?
=
∑

v∈Bκ
ẽq(v0, . . . , vκ−1, r0, . . . , rκ−1) · ŝv.

3. V samples batching scalars (r′′0 , . . . , r
′′
κ−1)← Lκ and sends them to P.

4. For each w ∈ Bℓ′ , P decomposes ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) =:
∑

u∈Bκ
Aw,u ·βu. P defines the

function A : w 7→
∑

u∈Bκ
ẽq(u0, . . . , uκ−1, r

′′
0 , . . . , r

′′
κ−1) ·Aw,u on Bℓ′ and writes A(X0, . . . , Xℓ′−1)

for its multilinear extension. P defines h(X0, . . . , Xℓ′−1) := A(X0, . . . , Xℓ′−1) · t′(X0, . . . , Xℓ′−1).

5. V decomposes ŝ =:
∑

u∈Bκ
βu ⊗ ŝu, and sets s0 :=

∑
u∈Bκ

ẽq(u0, . . . , uκ−1, r
′′
0 , . . . , r

′′
κ−1) · ŝu.

6. P and V execute the following loop:

1: for i ∈ {0, . . . , ℓ′ − 1} do
2: P sends V the polynomial hi(X) :=

∑
w∈Bℓ′−i−1

h
(
r′0, . . . , r

′
i−1, X,w0, . . . , wℓ′−i−2

)
.

3: V requires si
?
= hi(0) + hi(1). V samples r′i ← L, sets si+1 := hi(r

′
i), and sends P r′i.

7. P computes s′ := t′(r′0, . . . , r
′
ℓ′−1) and sends V s′.

8. V sets e := ẽq
(
φ0(rκ), . . . , φ0(rℓ−1), φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
and decomposes e =:

∑
u∈Bκ

βu ⊗ eu.

9. V requires sℓ′
?
=
(∑

u∈Bκ
ẽq(u0, . . . , uκ−1, r

′′
0 , . . . , r

′′
κ−1) · eu

)
· s′.

10. P and V engage in the evaluation protocol b′ ← ⟨P ′([f ], s′, r′; t′),V ′([f ], s′, r′)⟩; V outputs b := b′.

Theorem 3.2. If Π′ =
(
Setup′,Commit′,P ′,V ′

)
is complete, then Π = (Setup,Commit,P,V) also is.

Proof. We must prove three main things. First, we must show that, if P constructs ŝ ∈ A honestly, then V’s
check s

?
=
∑

v∈Bκ
ẽq(r0, . . . , rκ−1, v0, . . . , vκ−1) · ŝv will pass. Further, we must show that V’s quantity s0 :=∑

u∈Bκ
ẽq(u0, . . . , uκ−1, r

′′
0 , . . . , r

′′
κ−1) · ŝu will satisfy s0 =

∑
w∈Bℓ′

h(w), so that V will accept throughout its
sumcheck. Finally, we must show that V’s final check will pass; this task amounts to showing that e’s row-
representation e =

∑
u∈Bκ

βu ⊗ eu will satisfy A(r′0, . . . , r
′
ℓ′−1) =

∑
u∈Bκ

eu · ẽq(u0, . . . , uκ−1, r
′′
0 , . . . , r

′′
κ−1).

We begin with the first fact above. If P operates as prescribed, then its initial message ŝ ∈ A will satisfy:

ŝ := φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)) =

∑
w∈Bℓ′

ẽq(φ0(rκ), . . . , φ0(rℓ−1), w0, . . . , wℓ′−1) · φ1(t
′)(w). (32)

By the definition of φ1(t
′)(X0, . . . , Xℓ′−1), for each w ∈ Bℓ′ , we have the column decomposition φ1(t

′)(w) =∑
v∈Bκ

t(v0, . . . , vκ−1, w0, . . . , wℓ′−1) ⊗ βv. On the other hand, ẽq(φ0(rκ), . . . , φ0(rℓ−1), w0, . . . , wℓ′−1) =
φ0(ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1)). Using the column-multiplication rule, we obtain, for each summand
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w ∈ Bℓ′ of the sum (32) above, the column decomposition φ0(ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1)) · φ1(t
′)(w) =∑

v∈Bκ
(ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) · t(v0, . . . , vκ−1, w0, . . . , wℓ′−1))⊗ βv. Inlining this expression into the

sum (32) above, we obtain:

ŝ =
∑

w∈Bℓ′

ẽq(φ0(rκ), . . . , φ0(rℓ−1), w0, . . . , wℓ′−1) · φ1(t
′)(w) (by (32).)

=
∑

w∈Bℓ′

(∑
v∈Bκ

(ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) · t(v0, . . . , vκ−1, w0, . . . , wℓ′−1))⊗ βv

)
(column values.)

=
∑
v∈Bκ

 ∑
w∈Bℓ′

ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) · t(v0, . . . , vκ−1, w0, . . . , wℓ′−1)

⊗ βv (rearranging sums.)

=
∑
v∈Bκ

t(v0, . . . , vκ−1, rκ, . . . , rℓ−1)⊗ βv. (fundamental property of multilinears.)

That is, V’s column-decomposition ŝ =
∑

v∈Bκ
ŝv ⊗ βv will satisfy ŝv = t(v0, . . . , vκ−1, rκ, . . . , rℓ−1) for each

v ∈ Bκ. Assuming now that P’s initial claim s
?
= t(r0, . . . , rℓ−1) is true, we obtain:

s = t(r0, . . . , rℓ−1) (by the truth of P’s claim.)

=
∑
v∈Bκ

ẽq(v0, . . . , vκ−1, r0, . . . , rκ−1) · t(v0, . . . , vκ−1, rκ, . . . , rℓ−1) (partial multilinear expansion.)

=
∑
v∈Bκ

ẽq(v0, . . . , vκ−1, r0, . . . , rκ−1) · ŝv. (by the calculation just carried out.)

In particular, V will accept its first check s
?
=
∑

v∈Bκ
ẽq(v0, . . . , vκ−1, r0, . . . , rκ−1) · ŝv.

We turn to the sumcheck. As a notational device, we define the A-valued polynomial:

ĥ(X0, . . . , Xℓ′−1) := ẽq(φ0(rκ), . . . , φ0(rℓ−1), X0, . . . , Xℓ′−1)) · φ1(t
′)(X0, . . . , Xℓ′−1).

Informally, we must show that P’s polynomial h(X0, . . . , Xℓ′−1) above is a “row-combination” of

ĥ(X0, . . . , Xℓ′−1) by the vector
(
ẽq(u0, . . . , uκ−1, r

′′
0 , . . . , r

′′
κ−1)

)
u∈Bκ

.
On the one hand, we note immediately that∑

w∈Bℓ′

ĥ(w) =
∑

w∈Bℓ′

ẽq(φ0(rκ), . . . , φ0(rℓ−1), w0, . . . , wℓ′−1) · φ1(t
′)(w) = φ1(t

′)(φ0(rκ), . . . , φ0(rℓ−1)) = ŝ;

the last equality holds precisely when P constructs ŝ honestly.
On the other hand, for each w ∈ Bℓ′ :

ĥ(w) = ẽq(φ0(rκ), . . . , φ0(rℓ−1), w0, . . . , wℓ′−1) · φ1(t
′)(w) (by definition of ĥ.)

=

(∑
u∈Bκ

βu ⊗Aw,u

)
· (1⊗ t′(w)) (by the definitions of φ1(t

′) and of Aw,u.)

=
∑
u∈Bκ

βu ⊗ (Aw,u · t′(w)). (distributing and using the multiplicative structure of A.)

We explain in slightly further detail the second equality above. Indeed, we use first the fact—already noted
above—whereby ẽq(φ0(rκ), . . . , φ0(rℓ−1), w0, . . . , wℓ′−1) = φ0(ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1)). On the other
hand, since the basis decomposition ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) =

∑
u∈Bκ

Aw,u · βu holds by definition
of the elements Aw,u, the row representation of this quantity’s image under φ0 can be none other than∑

u∈Bκ
βu ⊗Aw,u, which is what appears above.

Combining the above two calculations, we conclude that, if P is honest, then

ŝ =
∑

w∈Bℓ′

ĥ(w) =
∑

w∈Bℓ′

(∑
u∈Bκ

βu ⊗ (t′(w) ·Aw,u)

)
=
∑
u∈Bκ

βu ⊗

 ∑
w∈Bℓ′

Aw,u · t′(w)

 (33)
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will hold, so that V’s row decomposition ŝ =
∑

u∈Bκ
βu ⊗ ŝu will satisfy ŝu =

∑
w∈Bℓ′

Aw,u · t′(w) for each
u ∈ Bκ. We conclude that, if P constructs ŝ correctly, then∑
w∈Bℓ′

h(w) =
∑

w∈Bℓ′

A(w) · t′(w) (by definition of h(X0, . . . , Xℓ′−1).)

=
∑

w∈Bℓ′

(∑
u∈Bκ

ẽq(u0, . . . , uκ−1, r
′′
0 , . . . , r

′′
κ−1) ·Aw,u

)
· t′(w) (by definition of A(X0, . . . , Xℓ′−1).)

=
∑
u∈Bκ

ẽq(u0, . . . , uκ−1, r
′′
0 , . . . , r

′′
κ−1) ·

∑
w∈Bℓ′

Aw,u · t′(w) (interchanging the above sums.)

=
∑
u∈Bκ

ẽq(u0, . . . , uκ−1, r
′′
0 , . . . , r

′′
κ−1) · ŝu (by (33) and the remarks below it.)

= s0 (by definition of the verifier.)

will hold, so that P’s sumcheck claim s0 =
∑

w∈Bℓ′
h(w) will be valid, and V will accept throughout the

course of its sumcheck, by the completeness of that latter protocol.
We turn to V’s final check. If P is honest, then s′ = t′(r′0, . . . , r

′
ℓ′−1) will hold; moreover, by definition

of the sumcheck, we will have sℓ′ = h(r′0, . . . , r
′
ℓ′−1). To treat V’s final check, it thus suffices to argue that

h(r′0, . . . , r
′
ℓ′−1) = t′(r′0, . . . , r

′
ℓ′−1) ·

∑
u∈Bκ

ẽq(u0, . . . , uκ−1, r
′′
0 , . . . , r

′′
κ−1) ·eu will hold; to show this, it in turn

suffices, by definition of h(X0, . . . , Xℓ′−1), to prove that

A(r′0, . . . , r
′
ℓ′−1) =

∑
u∈Bκ

ẽq(u0, . . . , uκ−1, r
′′
0 , . . . , r

′′
κ−1) · eu.

We proceed as follows. We note first that:

e = ẽq
(
φ0(rκ), . . . , φ0(rℓ−1), φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
(by definition.)

=
∑

w∈Bℓ′

ẽq(φ0(rκ), . . . , φ0(rℓ−1), w0, . . . , wℓ′−1) · ẽq
(
φ1(r

′
0), . . . , φ1(r

′
ℓ′−1), w0, . . . , wℓ′−1

)
(see below.)

=
∑

w∈Bℓ′

φ0(ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1)) · φ1

(
ẽq(w0, . . . , wℓ′−1, r

′
0, . . . , r

′
ℓ′−1)

)
(pulling out φ0 and φ1.)

=
∑

w∈Bℓ′

(∑
u∈Bκ

βu ⊗Aw,u

)
·
(
1⊗ ẽq(w0, . . . , wℓ′−1, r

′
0, . . . , r

′
ℓ′−1)

)
(again by definition of the Aw,u.)

=
∑
u∈Bκ

βu ⊗

 ∑
w∈Bℓ′

Aw,u · ẽq(w0, . . . , wℓ′−1, r
′
0, . . . , r

′
ℓ′−1)

. (multiplying in A and rearranging.)

To achieve the second equality above, we note that the multilinears ẽq(X0, . . . , Xℓ′−1, Y0, . . . , Yℓ′−1) and∑
w∈Bℓ′

ẽq(X0, . . . , Xℓ′−1, w0, . . . , wℓ′−1) · ẽq(w0, . . . , wℓ′−1, Y0, . . . , Yℓ′−1) are necessarily identical, since they
agree identically on the cube B2·ℓ′ .

We see that the verifier’s row-decomposition e =
∑

u∈Bκ
βu ⊗ eu will satisfy eu =

∑
w∈Bℓ′

Aw,u ·
ẽq(w0, . . . , wℓ′−1, r

′
0, . . . , r

′
ℓ′−1) for each u ∈ Bκ. We conclude finally V will have∑

u∈Bκ

ẽq(r′′, u) · eu =
∑
u∈Bκ

ẽq(u0, . . . , uκ−1, r
′′
0 , . . . , r

′′
κ−1) ·

∑
w∈Bℓ′

Aw,u · ẽq(w0, . . . , wℓ′−1, r
′
0, . . . , r

′
ℓ′−1)

=
∑

w∈Bℓ′

(∑
u∈Bκ

ẽq(u0, . . . , uκ−1, r
′′
0 , . . . , r

′′
κ−1) ·Aw,u

)
· ẽq(w0, . . . , wℓ′−1, r

′
0, . . . , r

′
ℓ′−1)

=
∑

w∈Bℓ′

A(w0, . . . , wℓ′−1) · ẽq(w0, . . . , wℓ′−1, r
′
0, . . . , r

′
ℓ′−1)

= A(r′0, . . . , r
′
ℓ′−1),

which is exactly what we needed to show. This completes the proof of completeness.
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Remark 3.3. We explain in slightly more rigorous terms the “information loss” which would result if the
parties merely evaluated t′(rκ, . . . , rℓ−1), as opposed to using the tensor algebra. During Theorem 3.2’s
proof, we show that ŝv = t(v0, . . . , vκ−1, rκ, . . . , rℓ−1) holds for each v ∈ Bκ. On the other hand,

t′(rκ, . . . , rℓ−1) =
∑

w∈Bℓ′

ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) · t′(w)

=
∑

w∈Bℓ′

ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) ·
∑
v∈Bκ

t(v0, . . . , vκ−1, w0, . . . , wℓ′−1) · βv

=
∑
v∈Bκ

 ∑
w∈Bℓ′

ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) · t(v0, . . . , vκ−1, w0, . . . , wℓ′−1)

 · βv

=
∑
v∈Bκ

t(v0, . . . , vκ−1, rκ, . . . , rℓ−1) · βv

=
∑
v∈Bκ

ŝv · βv.

We see that, while the information contained in ŝ =
∑

v∈Bκ
ŝv ⊗ βv suffices to recover t(r0, . . . , rℓ−1) (as

the proof of Theorem 3.2 above shows), the datum t(rκ, . . . , rℓ−1) would yield, rather, the basis-combination∑
v∈Bκ

ŝv · βv of ŝ’s columns. Since the K-basis (βv)v∈Bκ
is certainly not linearly independent over L,

this latter combination reflects ŝ only “lossfully”. We note that, interestingly,
∑

v∈Bκ
ŝ · βv = h(ŝ) holds;

here, h : L ⊗K L → L is the canonical K-linear map defined on simple tensors by multiplication (we recall
Subsection 2.5 above). That is, t(rκ, . . . , rℓ−1) relates to φ1(t

′)(φ0(rκ), . . . , φ0(rℓ−1)) exactly by the map h,
which is of course not injective. We would like to thank Raju Krishnamoorthy for explaining this fact to us.

Remark 3.4. We discuss the verifier’s computation of e := ẽq
(
φ0(rκ), . . . , φ0(rℓ−1), φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
.

Clearly, this computation amounts to O(ℓ′) arithmetic operations in the algebra A, and so can be carried out
in polylogarithmic time for the verifier in the worst case (we defer our full efficiency analysis to Subsection
5.2 below). Here, we discuss a concretely efficient procedure by whose aid the verifier may compute e, at
least in the characteristic 2 case. Indeed, we note first the following identity, valid only in characteristic 2:

ẽq(X0, . . . , Xℓ′−1, Y0, . . . , Yℓ′−1) :=

ℓ′−1∏
i=0

(1−Xi) · (1− Yi) +Xi · Yi =

ℓ′−1∏
i=0

1−Xi − Yi.

This identity suggests the correctness of the following algorithm:

1: initialize the A-element e := 1.
2: for i ∈ {0, . . . , ℓ′ − 1} do update e −= e · φ0(rκ+i) + e · φ1(r

′
i).

3: return e.

This algorithm computes e using just 2 · ℓ′ “scaling operations”, ℓ′ vertical and ℓ′ horizontal. Here, we
mean by the term “scaling operation” the multiplication of an A-element by an L-element, itself embedded
into A either by φ0 or φ1 (as the case may be). As is made clear in Subsection 2.5, multiplications of
these latter sorts are easier to carry out than general A-by-A multiplications are, and in fact amount to 2κ

L-multiplications a piece (i.e., either of each column of A or of each row of A by the fixed L-multiplicand).

We now prove the security of ring-switching.

Theorem 3.5. If Π′ =
(
Setup′,Commit′,P ′,V ′

)
is secure, then Π = (Setup,Commit,P,V) also is.

Proof. We write E ′ for the emulator for Π′. We define an emulator E for Π as follows.

1. On input A’s record of interactions with the vector oracle, E internally runs t′(X0, . . . , Xℓ′−1)← E ′.

2. If t′(X0, . . . , Xℓ′−1) = ⊥, then E outputs ⊥ and aborts.

3. By reversing Definition 2.1, E obtains t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]
⪯1, which it outputs.
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We argue that the emulator E defined in this way is secure. If V ′ rejects, then V also does. The probability
with which E ′ outputs ⊥ and V ′ accepts is negligible, by the security of Π′. So too, therefore, is the probability
with which E outputs ⊥ and V accepts. We thus fix our attention on those executions of the experiment for
which t′(X0, . . . , Xℓ′−1) ̸= ⊥; in particular, we assume that t(X0, . . . , Xℓ−1) ̸= ⊥. Similarly, the probability
with which t′(X0, . . . , Xℓ′−1) ̸= ⊥, t′(r′) ̸= s′, and b′ = 1 all hold is negligible, by the security of Π′. We
thus focus our attention on those executions for which t′(r′) = s′. We must show that the probability with
which t(r) ̸= s and V accepts is negligible. We assume now that t(r) ̸= s.

We may further restrict our considerations to the set of executions within which P computes its first
message ŝ ̸= φ1(t

′)(φ0(rκ), . . . , φ0(rℓ−1)) incorrectly. Indeed, it is shown directly in the course of our proof of
Theorem 3.2 above that, if ŝ = φ1(t

′)(φ0(rκ), . . . , φ0(rℓ−1)) holds, then
∑

v∈Bκ
ẽq(v0, . . . , vκ−1, r0, . . . , rκ−1)·

ŝv = t(r0, . . . , rℓ−1) also will. In this latter setting,

s ̸= t(r0, . . . , rℓ−1) (by our initial assumption above whereby P’s claim is false.)

=
∑
v∈Bκ

ẽq(v0, . . . , vκ−1, r0, . . . , rκ−1) · ŝv (a consequence of ŝ = φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)).)

will hold, so that V will reject and we’re done. We thus assume that ŝ ̸= φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)).

For the sake of notation, we abbreviate s := φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)) for this latter quantity, and write

s =:
∑

u∈Bκ
βu ⊗ su for its row-decomposition.

Our hypothesis whereby ŝ ̸= s entails that the κ-variate polynomial over L

S(X0, . . . , Xκ−1) :=
∑
u∈Bκ

(ŝu − su) · ẽq(u0, . . . , uκ−1, X0, . . . , Xκ−1)

is not identically zero. Applying Schwartz–Zippel to S(X0, . . . , Xκ−1), we conclude that the probability, over
V’s choice of (r′′0 , . . . , r

′′
κ−1)← Lκ, that S(r′′0 , . . . , r

′′
κ−1) = 0 will hold is at most κ

|L| , which is negligible. We

thus assume that S(r′′0 , . . . , r
′′
κ−1) ̸= 0, which itself immediately entails that:

s0 :=
∑
u∈Bκ

ŝu · ẽq(u0, . . . , uκ−1, r
′′
0 , . . . , r

′′
κ−1) ̸=

∑
u∈Bκ

su · ẽq(u0, . . . , uκ−1, r
′′
0 , . . . , r

′′
κ−1)

will hold. On the other hand, by an argument identical to one already given during the proof of Theorem
3.2 above, we have that: ∑

w∈Bℓ′

h(w) =
∑
u∈Bκ

ẽq(u0, . . . , uκ−1, r
′′
0 , . . . , r

′′
κ−1) · su;

we again write h(X0, . . . , Xℓ′−1) := A(X0, . . . , Xℓ′−1) · t′(X0, . . . , Xℓ′−1) (as usual, t(X0, . . . , Xℓ−1) here
refers to what E extracted). Combining the above two equations, we conclude—again under our hypothesis
whereby S(r′′0 , . . . , r

′′
κ−1) ̸= 0—that s0 ̸=

∑
w∈Bℓ′

h(w). By the soundness of the sumcheck, we conclude that

the probability with which V accepts throughout that protocol and sℓ′ = h
(
r′0, . . . , r

′
ℓ′−1

)
holds is at most

2·ℓ′
|L| , which is negligible. We thus assume that sℓ′ ̸= h

(
r′0, . . . , r

′
ℓ′−1

)
, or in other words that:

sℓ′ ̸= A(r′0, . . . , r
′
ℓ′−1) · t(r′0, . . . , r′ℓ′−1).

The proof of Theorem 3.2 already shows that A(r′0, . . . , r
′
ℓ′−1) =

∑
u∈Bκ

ẽq(u0, . . . , uκ−1, r
′′
0 , . . . , r

′′
κ−1) · eu.

On the other hand, we’ve already justified our consideration just of those executions within which s′ =
t′(r′0, . . . , r

′
ℓ′−1) holds. Under exactly this latter condition, therefore, the verifier will obtain:

sℓ′ ̸= A(r′0, . . . , r
′
ℓ′−1) · t(r′0, . . . , r′ℓ′−1) =

(∑
u∈Bκ

ẽq(u0, . . . , uκ−1, r
′′
0 , . . . , r

′′
κ−1) · eu

)
· s′,

and so will once again reject. This completes the proof.
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3.2 Efficiency

We examine the efficiency of Protocol 3.1. Throughout, we count K-operations. We view the ground field
K as constant in both λ and ℓ. We must first clarify how L relates to K. The soundness error of Protocol
3.1 is 2·ℓ′+κ

|L| . In order for this quantity to be negligible, it’s enough that |L| ≥ 2ω(log λ) hold (we note that

ℓ = O(log λ) must hold, lest the prover’s input length 2ℓ fail to be polynomial in the security parameter).
For simplicity, we assume that deg(L / K) = λ. In this case, |L| = |K|λ ≥ 2λ, so that Protocol 3.1 in fact

becomes exponentially secure. We moreover obtain 2κ = λ and 2ℓ
′
= 2ℓ

λ .
We refer to von zur Gathen and Gerhard for [GG13] for complexity-theoretic background. For the pur-

poses of this subsection, we understand L as a univariate extension of K (see [GG13, § 25.4]). Following
[GG13, Def. 8.26], we write M(λ) for the complexity—measured in K-operations—of multiplying two poly-

nomials in K[X] of degree at most λ. It is known [GG13, Thm. 8.23] that we may take M(λ) = Õ(λ). It can

be shown that multiplication in L can be carried out in at most 6 ·M(λ)+O(λ) = Õ(λ) K-operations [GG13,

Cor. 11.11]. We write Q(λ) = O(M(λ)) = Õ(λ) for the cost, in K-operations, of L-multiplication. We note
that K-by-L multiplication takes exactly λ K-multiplications; each L-addition costs exactly λ K-additions.

Prover cost. The prover’s main cost is that of computing the tensor-expansion

[ ℓ−1⊗
i=κ

(1− ri, ri)
]

︸ ︷︷ ︸
2ℓ

′
elements

. (34)

In view of the standard algorithm for it (see Subsection 2.1), this task takes 2ℓ
′
L-multiplications and 2ℓ

′

L-additions. We see that the total number of K-operations associated with this task is

O
(
2ℓ

′
)
· Q(λ) = O

(
2ℓ

λ

)
· Q(λ) = O(2ℓ) · Q(λ)

λ
= O(2ℓ) · Õ(1),

which is linear in the input length and polylogarithmic in λ.
Having computed (34), the prover must use it in two places. First, to compute the partial evaluations

(t(v0, . . . , vκ−1, rκ, . . . , rℓ−1))v∈Bκ
in step 1 above, the prover must perform all 2κ dot-products of the form

ŝv :=

〈[ ℓ−1⊗
i=κ

(1− ri, ri)
]
,
[

t(v0, . . . , vκ−1, w0, . . . , wℓ′−1)
]

︸ ︷︷ ︸
w∈Bℓ′ varying

〉
, (35)

for v ∈ Bκ varying. Each dot-product (35) takes 2ℓ
′
L-by-K multiplications and 2ℓ

′
L-additions. The total

cost associated with the dot-products (35) is thus

2κ ·O(2ℓ
′
) · λ = O(2ℓ) · λ

K-operations.
Finally, to prepare its sumcheck in step 4, the prover must first tensor-expand

⊗κ−1
i=0 (1− r′′i , r

′′
i )—a task

whose cost is polynomial in λ alone, and which we ignore—and then compute the L-by-K matrix product:

[ κ−1⊗
i=0

(1− r′′i , r
′′
i )

]
·


A(0,...,0),u · · · A(1,...,1),u





u
∈
B

κ
v
a
ry

in
g

. (36)

The product (36) yields exactly the table of values of A(X0, . . . , Xℓ′−1) on the cube Bℓ′ .
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To obtain the 2κ×2ℓ
′
matrix in the right-hand side of (36), the prover must use (34) again; specifically, it

must simply basis-decompose each component of that tensor. This task is simply a rewiring operation, and
is free (recall also (28)). To compute the matrix product (36), the prover must again perform 2κ · 2ℓ′ = 2ℓ

L-by-K multiplications and 2ℓ L-additions; the total cost of (36) is thus again O(2ℓ) · λ K-operations.
The sumcheck 6 is ℓ′-dimensional over L. In view of standard algorithms for this task (we recall the

treatment of Thaler [Tha22, § 4.1]), the prover can carry it out in O(2ℓ
′
) total L-operations. Just as in (34)

above, the prover’s total cost during the sumcheck is therefore again O(2ℓ) · Õ(1) total K-operations.
In sum, we see that our prover’s cost is O(2ℓ) · λ K-operations. Our prover is thus linear (in both the

statement size and the security parameter). Interestingly, our prover is dominated by the respective costs of
K-by-L multiplication and L-addition. These tasks are, in practice, cheaper than L-multiplication is. Upon
ignoring these former costs—and considering only the cost of L-multiplication—we would in fact obtain a
prover costing just O(2ℓ) · Õ(1) K-multiplications (that is, with just a polylogarithmic, and not a linear,
multiplicative dependence on the security parameter λ).

Verifier cost. To receive ŝ, the verifier must receive 2κ L-elements, whose total size is that of 22·κ = λ2

K-elements. In its step 2 above, the verifier must compute the tensor-expansion
⊗κ−1

i=0 (1− ri, ri), as well as
dot the resulting tensor with (ŝv)v∈Bκ

. These tasks, together, amount to O(2κ) L-operations, and so cost in
total

O(2κ) · Q(λ) = O(λ) · Q(λ) = Õ(λ2)

K-operations. The verifier’s respective combination tasks in 5 and 9 are structurally identical to that of 2,
and have identical costs; we skip our analyses of them.

During the sumcheck 6, the verifier must expend O(ℓ′) L-operations; these cost in total O(ℓ′) · Q(λ) ≤
O(ℓ) · Q(λ) K-operations. To compute e in step 8, the verifier must perform 2 · 2κ · ℓ′ L-operations (recall
Remark 3.4). These in total cost

O(ℓ′) · 2κ · Q(λ) ≤ O(ℓ) · Õ(λ2)

K-operations. Our verifier is thus logarithmic in the statement size and quadratic in λ (up to a polyloga-
rithmic multiplicative factor).

Other costs. Protocol 3.1’s prover must invoke Π′’s commitment procedure exactly once. During Protocol
3.1’s evaluation phase, the prover and the verifier must jointly invoke the underlying large-field commitment
scheme Π′’s evaluation procedure exactly once. We ignore all of these costs in this subsection, and only
measure the efficiency of Protocol 3.1 over and above them.

Comparison to Hashcaster. To prepare the sumcheck (21) naively, Hashcaster [Sou24]’s prover would
need to compute the matrix product

[ κ−1⊗
i=0

(1− r′′i , r
′′
i )

]
·



⊗ℓ−1
i=κ

(
1− σ0(ri), σ

0(ri)
)

...

⊗ℓ−1
i=κ

(
1− σ2κ−1(ri), σ

2κ−1(ri)
)





v
∈
B

κ
v
a
ry

in
g

. (37)

To compute that matrix product, Hashcaster’s prover would need to expend Θ(2ℓ) L-multiplications, thereby
incurring Θ(2ℓ) ·Q(λ) K-operations. That prover’s cost would thus be worse than ours by a polylogarithmic
factor in λ, at least. As it turns out, by nontrivially using the Galois transformation (22), Hashcaster is able
to bring its prover cost closer to ours, albeit with various additive polylogarithmic penalties in λ. Its prover,
on the other hand, is much more complicated, and runs the sumcheck using a non-blackbox algorithm.

To compute the Galois transformation (18), Hashcaster’s verifier must expend 22·κ L-multiplications, for
a total cost of

22·κ · Q(λ) = λ2 · Q(λ) = Õ(λ3)

K-operations. We thus see that Hashcaster’s verifier’s dependence on λ is cubic, as opposed to quadratic.
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4 Binary BaseFold

In this section, we present our large-field PCS. We have already sketched the main problem in Subsection
1.4 above; here, we record a few further details.

The additive NTT. The number-theoretic transform entails evaluating a polynomial P (X) =
∑2ℓ−1

j=0 aj ·
Xj of degree less than 2ℓ on some 2ℓ-sized subset of its coefficient field. In fields containing a 2ℓ-sized
multiplicative coset, the Cooley–Tukey algorithm computes the number-theoretic transform in O(ℓ ·2ℓ) time.
Binary fields, on the other hand, have no 2-adicity at all—their multiplicative groups of units are odd.

In a classic and farsighted work, Cantor [Can89] developed an “additive” variant of the FFT: an algorithm
that evaluates P (X) not on a multiplicative coset of its coefficient field, but on an additive subgroup of it.
Indeed, each binary field F2r can be viewed as a vector space over its own subfield F2. Here, by an additive
subgroup of F2r , we mean an F2-vector subspace S ⊂ F2r . Cantor’s algorithm evaluates P (X) on any such
2ℓ-sized domain S ⊂ F2r in O(ℓlog2(3) · 2ℓ) time.

For some time, it was not known whether the Cooley–Tukey algorithm’s characteristic O(ℓ · 2ℓ) time
complexity could be recovered in the additive, binary case. In a key and important work, Lin, Chung and Han
[LCH14] attain exactly this feat, with a caveat: they interpret their input vector (a0, . . . , a2ℓ−1) as P (X)’s
coefficients not in the standard monomial basis, but in a novel polynomial basis that those authors introduce.

That is, the polynomial which their algorithm evaluates over S is not
∑2ℓ−1

j=0 aj ·Xj , but
∑2ℓ−1

j=0 aj ·Xj(X);

here, for each j ∈ {0, . . . , 2ℓ − 1}, Xj(X) is an alternate basis polynomial of degree j that those authors

describe. Lin, Chung and Han [LCH14] build their basis polynomials (Xj(X))
2ℓ−1
j=0 out of subspace vanishing

polynomials. These are polynomials Ŵi(X), for i ∈ {0, . . . , ℓ}, which respectively vanish identically on an
ascending chain of F2-subspaces U0 ⊂ · · · ⊂ Uℓ of F2r .

Our binary adaptation of BaseFold PCS ties together two disparate threads: Lin, Chung and Han
[LCH14]’s additive NTT and FRI [BBHR18a]. We recall that binary-field FRI works with the aid of a
sequence of F2-subspaces S

(0), . . . , S(ℓ) of F2r , themselves connected by linear subspace polynomials:

S(0) q(0)−−→ S(1) q(1)−−→ S(2) q(2)−−→ · · · q(ℓ−1)

−−−−→ S(ℓ).

Here, the maps q(0), . . . , q(ℓ−1) are linear subspace polynomials of degree 2.

Choosing the folding maps. To use BaseFold PCS in characteristic 2, we must use the additive NTT
instead of the standard one, and use binary-field FRI instead of prime-field FRI. Simple enough, but which
domains S(0), . . . , S(ℓ) and which maps q(0), . . . , q(ℓ−1) should we use in the latter protocol? FRI [BBHR18a]
does not suggest a canonical choice; each choice there works as well as any other. But BaseFold’s FRI subpro-
tocol is not just a proximity test; it’s also a built-in multilinear evaluator (see Subsection 1.2). BaseFold PCS
relies on the fact whereby a FRI execution which begins on the Reed–Solomon encoding of (a0, . . . , a2ℓ−1)
will end on the constant polynomial whose value on S(ℓ) is identically

a0 + a1 · r′0 + a2 · r′1 + a3 · r′0 · r′1 + · · ·+ a2ℓ−1 · r′0 · · · · r′ℓ−1, (38)

where (r′0, . . . , r
′
ℓ−1) are the verifier’s FRI challenges. For maps q(0), . . . , q(ℓ−1) generically chosen, this fact

will simply cease to hold. We discuss this problem further in the introduction of Section 4 below.
We recover BaseFold PCS in characteristic 2 by introducing a specialization of binary FRI that works

compatibly with [LCH14]. That is, we introduce a particular choice of the maps q(0), . . . , q(ℓ−1) which causes
the equality (38) to re-emerge. Interestingly, the right choice of q(0), . . . , q(ℓ−1) turns out to be that for
which, for each i ∈ {0, . . . , ℓ}, the composition identity

Ŵi = q(i−1) ◦ · · · ◦ q(0)

holds. That is, we choose our FRI folding maps q(0), . . . , q(ℓ−1) so that they “factor” Lin, Chung and Han
[LCH14]’s subspace polynomials. Our binary BaseFold variant is independently important, and has already
figured in key subsequent works, including Brehm et al.’s Blaze [Bre+25] and Frigo and shelat [Fs24].
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More remarks on FRI. We opt moreover to modify FRI itself, so as to induce a Lagrange-style, as
opposed to a monomial-style, 2-to-1 folding pattern in the coefficient domain. In our FRI variant, the value
of the prover’s final oracle becomes rather

a0 · (1− r0) · · · · · (1− rℓ−1) + · · ·+ a2ℓ−1 · r0 · · · · rℓ−1,

the evaluation at (r0, . . . , rℓ−1) of the polynomial whose coefficients in the multilinear Lagrange basis—as
opposed to in the multilinear monomial basis—are (a0, . . . , a2ℓ−1). (We explain this further in Remark 4.7.)

Separately, standard FRI [BBHR18a, § 3.2] supports arbitrary-arity folding, controlled by a folding arity
parameter η ≥ 1. The parameter η mediates a tradeoff between the number of oracles committed (which
grows like ℓ

η ) and the size of each Merkle leaf (which grows like 2η). The “sweet spot” tends to be around
η = 4, in practical deployments. The effect on proof size at stake—i.e., which one stands to induce, upon
changing η from 1 to something better—is significant (amounting to a halving at least, if not better). In
rough terms, FRI stipulates that, to fold a given oracle using the parameter η, the prover interpolate a
univariate polynomial of degree less than 2η on each coset of the relevant oracle, and finally evaluate the
resulting univariate polynomials collectively at the verifier’s challenge point.

BaseFold, as written, does not support the use of higher-arity folding, for straightforward reasons. Upon
using a parameter η > 1, one would cause (38) to fail in essentially two ways. For one, the number of
challenges r′i available would become too few (something like ℓ

η , as opposed to ℓ). Moreover, the relationship

between the list (a0, . . . , a2ℓ−1) of initial coefficients and the value of the final constant FRI oracle would
become that of a multivariate evaluation—of individual degree at most 2η − 1—over the challenges r′i, as
opposed to of a multilinear one. For this reason, BaseFold as written remains unable to draw on the proof-size
gains available at the hands of higher-arity folding (which are significant).

We introduce a new, multilinear style of many-to-one FRI folding, which contrasts with FRI’s univariate
approach [BBHR18a, § 3.2]. We describe our FRI folding variant in Subsection 4.2 below (see in particular
Definitions 4.6 and 4.8). We parameterize our method by a constant ϑ, which plays a role analogous to
η’s. Informally, we stipulate that the verifier send ϑ folding challenges, and that the prover fold its oracle,
again coset-wise, using a length-2ϑ tensor combination of the verifier’s challenges over each coset. Our
folding technique is equivalent to that in which the prover repeatedly performs standard, 2-to-1 folding ϑ
times in succession—consuming ϑ challenges in the process, as opposed to 1—and commits only to the final
result. (For this reason, we informally call it “oracle-skipping”.) Interestingly, our FRI-folding variant makes
necessary a sort of proximity gap different from that invoked by the original FRI protocol. Indeed, while
the soundness proof [Ben+23, § 8.2] of FRI uses the proximity gap result [Ben+23, Thm. 1.5] for low-degree
parameterized curves, our security treatment below instead uses a tensor-folding proximity gap of the sort
recently established by Diamond and Posen [DP24, Thm. 2] (in fact, we use a sharpening of that result due
to Diamond and Gruen [DG25, Cor. 1]).

Practical matters. We examine in various further aspects of binary-field FRI. For example, even in the
abstract IOP model, we must fix F2-bases of the respective Reed–Solomon domains S(i), in order to interpret
our committed functions f (i) : S(i) → L as L-valued strings. That is, we must implicitly lexicographically
flatten each domain S(i), using some ordered F2-basis of it, known to both the prover and the verifier. The
choice of these bases matters. Indeed, for F2-bases of S(i) and S(i+1) chosen arbitrarily, the fundamental

operation which associates to each y ∈ S(i+1) its fiber q(i)
−1

({y}) ⊂ S(i)—which both the prover and the

verifier must perform repeatedly—could come to assume complexity on the order of dim
(
S(i)

)2
bit-operations,

even after a linear-algebraic preprocessing phase.
We suggest a family of bases for the respective domains S(i) with respect to which the maps q(i) come

to act simply by projecting away their first coordinate. In particular, the application of each map q(i)—in

coordinates—becomes free; the preimage operation q(i)
−1

({y}) comes to amount simply to that of prepending
an arbitrary boolean coordinate to y’s coordinate representation. While bases with these properties can of
course be constructed in FRI even for maps q(i) chosen arbitrarily, our procedure moreover yields a basis
of the initial domain S(0) which coincides with that expected by the additive NTT [LCH14]. In particular,
our prover may use as is the output of the additive NTT as its 0th FRI oracle, without first subjecting that
output to the permutation induced by an appropriate change-of-basis transformation on S(0). We believe
that these observations stand to aid all implementers of binary-field FRI.
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4.1 Using FRI in Novel Polynomial Basis

We begin by proposing a specific construction of those subspace polynomials q(0), . . . , q(ℓ−1) invoked internally
by FRI. Throughout this section, we fix a binary field L, with F2-basis (β0, . . . , βr−1). Throughout the
remainder of this subsection—and in fact, the entire paper—we impose the simplifying assumption whereby
β0 = 1. We fix moreover a size parameter ℓ ∈ {0, . . . , r − 1} and a rate parameter R ∈ {1, . . . , r − ℓ}. We

finally recall the subspace vanishing polynomials Ŵi(X) ∈ L[X], for i ∈ {0, . . . , ℓ}, which we now view as

F2-linear maps Ŵi : L→ L, as well as their non-normalized counterparts Wi : L→ L (see Subsection 2.3).
We begin by defining our FRI domains and folding maps.

Definition 4.1. For each i ∈ {0, . . . , ℓ}, we define the domain

S(i) := Ŵi(⟨β0, . . . , βℓ+R−1⟩).

Moreover, for each i ∈ {0, . . . , ℓ− 1}, we define

q(i)(X) :=
Wi(βi)

2

Wi+1(βi+1)
·X · (X + 1).

For each i ∈ {0, . . . , ℓ − 1}, the map q(i)(X) is a linear subspace polynomial of degree 2. A priori, this
map’s kernel could relate arbitrarily to the domain S(i) ⊂ L; moreover, the image of its restriction to S(i)

could relate arbitrarily to S(i+1). In the following sequence of results, we prove that in fact q(i)
(
S(i)

)
= S(i+1)

holds for each i ∈ {0, . . . , ℓ−1}. In particular, the chain of maps q(0), . . . , q(ℓ−1) and the spaces S(0), . . . , S(ℓ)

yield a valid global parameterization of the FRI protocol (in the sense of Subsection 2.4).

Lemma 4.2. For each i ∈ {0, . . . , ℓ− 1}, we have the equality q(i) ◦ Ŵi = Ŵi+1 of polynomials.

Proof. We invoke the following direct calculation:(
q(i) ◦ Ŵi

)
(X) =

Wi(βi)
2

Wi+1(βi+1)
· Ŵi(X) ·

(
Ŵi(X) + 1

)
(by definition of q(i).)

=
Wi(βi)

2

Wi+1(βi+1)
· Wi(X)

Wi(βi)
· Wi(X) +Wi(βi)

Wi(βi)
(by definition of Ŵi.)

=
Wi(X) · (Wi(X) +Wi(βi))

Wi+1(βi+1)
(cancellation of Wi(βi)

2.)

=
Wi+1(X)

Wi+1(βi+1)
(recursive characterization of Wi+1(X).)

= Ŵi+1(X). (by definition of Ŵi+1(X).)

In the second-to-last step, we exploit the recursive identity Wi+1(X) = Wi(X) · (Wi(X) +Wi(βi)), itself a
basic consequence of the definitions of Wi+1 and Wi and of the linearity of Wi.

Theorem 4.3. For each i ∈ {0, . . . , ℓ− 1}, q(i)
(
S(i)

)
= S(i+1).

Proof. Using Lemma 4.2, we obtain:

q(i)
(
S(i)

)
= q(i)

(
Ŵi(⟨β0, . . . , βℓ+R−1⟩)

)
(by definition of S(i).)

= Ŵi+1(⟨β0, . . . , βℓ+R−1⟩) (by Lemma 4.2.)

= S(i+1). (again by definition of S(i+1).)

This completes the proof of the theorem.

In the following further corollary of Lemma 4.2, we argue that the polynomials q(0), . . . , q(ℓ−1) collectively
“factor” the normalized subspace polynomials Ŵ0, . . . , Ŵℓ, at least provided we assume β0 = 1.
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Corollary 4.4. For each i ∈ {0, . . . , ℓ}, Ŵi = q(i−1) ◦ · · · ◦ q(0) holds.

Proof. In the base case i = 0, we must show that Ŵ0 equals the empty composition (namely X itself). To
show this, we recall first that W0(X) = X. Moreover:

Ŵ0(X) =
X

W0(β0)
=

X

β0
= X;

in the last step, we use our global simplifying assumption β0 = 1.
For i ∈ {0, . . . , ℓ− 1} arbitrary, Lemma 4.2 shows that Ŵi+1 = q(i) ◦ Ŵi. Applying induction to Ŵi, we

conclude that this latter map in turn equals q(i) ◦ · · · ◦ q(0).

We note finally the following result.

Corollary 4.5. For each i ∈ {0, . . . , ℓ}, the set
(
Ŵi(βi), . . . , Ŵi(βℓ+R−1)

)
is an F2-basis of the space S(i).

Proof. Indeed, the subspace Vi := ⟨βi, . . . , βℓ+R−1⟩ is clearly a subspace of ⟨β0, . . . , βℓ+R−1⟩, so that in

turn Ŵi(Vi) ⊂ Ŵi(⟨β0, . . . , βℓ+R−1⟩), which itself equals S(i) (by Definition 4.1). On the other hand, the

restriction of Ŵi to Vi is necessarily injective, since Ŵi’s kernel ⟨β0, . . . , βi−1⟩ intersects Vi trivially. Since S
(i)

is ℓ+R− i-dimensional, we conclude by a dimension count that
(
Ŵi(βi), . . . , Ŵi(βℓ+R−1)

)
spans S(i).

The bases
〈
Ŵi(βi), . . . , Ŵi(βℓ+R−1)

〉
= S(i), for i ∈ {0, . . . , ℓ}, serve to simplify various aspects of

our protocol’s implementation. For example, expressed in coordinates with respect to these bases, each
map q(i) : S(i) → S(i+1) acts simply by projecting away its 0th-indexed component (indeed, for each i ∈
{0, . . . , ℓ − 1}, q(i) maps (Ŵi(βi), . . . , Ŵi(βℓ+R−1)) to (0, Ŵi+1(βi+1), . . . , Ŵi+1(βℓ+R−1))). Similarly, for
each i ∈ {0, . . . , ℓ − 1} and each y ∈ S(i+1), the two L-elements x ∈ S(i) for which q(i)(x) = y differ
precisely at their 0th components, and elsewhere agree with y’s coordinate representation. Below, we often
identify S(i) ∼= Bℓ+R−i as sets, using these bases; moreover, where possible, we eliminate altogether the maps
q(0), . . . , q(ℓ−1) from our descriptions. These measures make our protocol’s description and implementation
more transparent.

4.2 FRI Folding, Revisited

We now introduce a new FRI-like folding mechanism. Below, we again write L for a binary field.

Definition 4.6. We fix an index i ∈ {0, . . . , ℓ− 1} and a map f (i) : S(i) → L. For each r ∈ L, we define the
map fold

(
f (i), r

)
: S(i+1) → L by setting, for each y ∈ S(i+1):

fold
(
f (i), r

)
: y 7→

[
1− r r

]
·

x1 −x0

−1 1

 ·
f (i)(x0)

f (i)(x1)

,
where we write (x0, x1) := q(i)

−1
({y}) for the fiber of q(i) over y ∈ S(i+1).

Remark 4.7. Definition 4.6’s quantity fold
(
f (i), r

)
(y) is closely related—and yet not equivalent—to FRI’s

expression interpolant
(
f (i)
∣∣
q(i)−1({y})

)
(r). (FRI’s variant, however, admits a similar matrix expression.) The

essential point is that FRI’s variant induces a monomial fold, as opposed to a Lagrange fold; that is, if we
were to use FRI’s variant instead of our own, then our Lemma 4.13 below would remain true, albeit with

the alternate conclusion P (i+1)(X) =
∑2ℓ−i−1−1

j=0 (a2j + r′i · a2j+1) · X(i+1)
j (X). Our entire theory admits a

parallel variant in this latter setting, though that variant introduces further complications.

We finally record the following iterated extension of Definition 4.6.

Definition 4.8. We fix a positive folding factor ϑ, an index i ∈ {0, . . . , ℓ − ϑ}, and a map f (i) : S(i) → L.
For each tuple (r0, . . . , rϑ−1) ∈ Lϑ, we abbreviate fold

(
f (i), r0, . . . , rϑ−1

)
:= fold

(
· · · fold

(
f (i), r0

)
, · · · , rϑ−1

)
.
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We have the following mathematical characterization of this iterated folding operation:

Lemma 4.9. For each positive folding factor ϑ, each index i ∈ {0, . . . , ℓ− ϑ}, and each y ∈ S(i+ϑ), there is
a 2ϑ×2ϑ invertible matrix My,which depends only on y ∈ S(i+ϑ), such that, for each function f (i) : S(i) → L
and each tuple (r0 . . . , rϑ−1) ∈ Lϑ of folding challenges, we have the matrix identity:

fold
(
f (i), r0, . . . , rϑ−1

)
(y) =

[ ⊗ϑ−1
j=0 (1− rj , rj)

]
·

 My

 ·


f (i)(x0)
...

f (i)(x2ϑ−1)

,

where the right-hand vector’s values (x0, . . . , x2ϑ−1) represent the fiber
(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({y}) ⊂ S(i).

Proof. We prove the result by induction on ϑ. In the base case ϑ = 1, the claim is a tautology, in view of

Definition 4.6. We note that that definition’s matrix

x1 −x0

−1 1

 is invertible, since its determinant x1−x0

is nonzero (and in fact equals 1, a fact we shall use below).
We thus fix a folding factor ϑ > 1, and suppose that the claim holds for ϑ − 1. We write (z0, z1) :=

q(i+ϑ−1)−1({y}), as well as (x0, . . . , x2ϑ−1) :=
(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({y}). Unwinding Definition 4.8, we

recursively express the relevant quantity fold
(
f (i), r0, . . . , rϑ−1

)
(y)—which, for typographical reasons, we call

f—in the following way:

f =
[
1− rϑ−1 rϑ−1

]
·

[
z1 −z0

−1 1

]
·

[
fold

(
f (i), r0, . . . , rϑ−2

)
(z0)

fold
(
f (i), r0, . . . , rϑ−2

)
(z1)

]

=
[
1− rϑ−1 rϑ−1

]
·
 z1 −z0

−1 1

 ·

 ⊗ϑ−2
j=0 (1− rj , rj) ⊗ϑ−2

j=0 (1− rj , rj)


︸ ︷︷ ︸

these matrices may be interchanged.

·


Mz0

Mz1

 ·


f (i)(x0)

...

f (i)(x2ϑ−1)

.
In the second step above, we apply the inductive hypothesis on both z0 and z1. That hypothesis fur-
nishes the nonsingular, 2ϑ−1 × 2ϑ−1 matrices Mz0 and Mz1 ; we note moreover that the union of the fibers(
q(i+ϑ−2) ◦ · · · ◦ q(i)

)−1
({z0}) and

(
q(i+ϑ−2) ◦ · · · ◦ q(i)

)−1
({z1}) is precisely

(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({y}). In-

terchanging the two matrices bracketed above, we further reexpress this quantity as:

=
[
1− rϑ−1 rϑ−1

]
·

[ ⊗ϑ−2
j=0 (1− rj , rj) ⊗ϑ−2

j=0 (1− rj , rj)

]
·


diag(z1) diag(−z0)

diag(−1) diag(1)

 ·


Mz0

Mz1

 ·


f (i)(x0)

...

f (i)(x2ϑ−1)

.
By the standard recursive substructure of the tensor product, the product of the left-hand two matrices
equals exactly

⊗ϑ−1
j=0 (1 − rj , rj). On the other hand, the product of the two 2ϑ × 2ϑ nonsingular matrices

above is itself nonsingular, and supplies the required 2ϑ × 2ϑ matrix My.

We emphasize that, in Lemma 4.9, the matrix My depends only on y ∈ S(i+ϑ)—and of course on ϑ and
i ∈ {0, . . . , ℓ− ϑ}—and not on the map f (i) or the folding challenges (r0, . . . , rϑ−1) ∈ Lϑ.

Remark 4.10. Interestingly, the matrix My of Lemma 4.9 is nothing other than that of the inverse additive
NTT [LCH14, § III. C.] on the coset (x0, . . . , x2ϑ−1); i.e., it’s the matrix which, on input the evaluations of
some polynomial of degree less than 2ϑ on the set of elements (x0, . . . , x2ϑ−1), returns the coefficients—with
respect to the ith-order novel basis (see Remark 4.15 below)—of that polynomial.
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4.3 Our Large-Field IOPCS

We now present our binary adaptation of BaseFold’s IOPCS [ZCF24, § 5], itself based on the material of our
Subsections 4.1 and 4.2 above. In order to present a notationally simpler variant of our protocol, we assume
below that ϑ | ℓ; this requirement is not necessary.

CONSTRUCTION 4.11 (Binary BaseFold IOPCS).
We define Π = (Setup,Commit,P,V) as follows.

1. params ← Π.Setup(1λ, ℓ). On input 1λ and ℓ, choose a constant, positive rate parameter R ∈ N
and a binary field L/F2 whose degree r (say) over F2 satisfies r = ω(log λ) and r ≥ ℓ+R. Initialize
the vector oracle FL

Vec. Fix a folding factor ϑ | ℓ and a repetition parameter γ = ω(log λ). Fix
an arbitrary F2-basis (β0, . . . , βr−1) of L. Write (X0(X), . . . , X2ℓ−1(X)) for the resulting novel

L-basis of L[X]≺2
ℓ

, and fix the domains S(0), . . . , S(ℓ) and the polynomials q(0), . . . , q(ℓ−1) as in

Subsection 4.1. Write C(0) ⊂ L2ℓ+R
for the Reed–Solomon code RSL,S(0) [2ℓ+R, 2ℓ].

2. [f ] ← Π.Commit(params, t). On input t(X0, . . . , Xℓ−1) ∈ L[X0, . . . , Xℓ−1]
⪯1, use t’s Lagrange

coefficients (t(w))w∈Bℓ
as the coefficients, in the novel polynomial basis, of a univariate polynomial

P (X) :=
∑

w∈Bℓ
t(w) ·X{w}(X), say. Using Algorithm 2, compute the Reed–Solomon codeword

f : S(0) → L defined by f : x 7→ P (x). Submit (submit, ℓ+R, f) to the vector oracle FL
Vec. Upon

receiving (receipt, ℓ+R, [f ]) from FL
Vec, output the handle [f ].

We define (P,V) as the following IOP, in which both parties have the common input [f ], s ∈ L, and
(r0, . . . , rℓ−1) ∈ Lℓ, and P has the further input t(X0, . . . , Xℓ−1) ∈ L[X0, . . . , Xℓ−1]

⪯1.

1. P writes h(X0, . . . , Xℓ−1) := ẽq(r0, . . . , rℓ−1, X0, . . . , Xℓ−1) · t(X0, . . . , Xℓ−1).

2. P and V both abbreviate f (0) := f and s0 := s, and execute the following loop:

1: for i ∈ {0, . . . , ℓ− 1} do
2: P sends V the polynomial hi(X) :=

∑
w∈Bℓ−i−1

h(r′0, . . . , r
′
i−1, X,w0, . . . , wℓ−i−2).

3: V requires si
?
= hi(0) + hi(1). V samples r′i ← L, sets si+1 := hi(r

′
i), and sends P r′i.

4: P defines f (i+1) : S(i+1) → L as the function fold
(
f (i), r′i

)
of Definition 4.6.

5: if i+ 1 = ℓ then P sends c := f (ℓ)(0, . . . , 0) to V.
6: else if ϑ | i+ 1 then P submits (submit, ℓ+R− i− 1, f (i+1)) to the oracle FL

Vec.

3. V requires sℓ
?
= ẽq(r0, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−1) · c.

4. V executes the following querying procedure:

1: for γ repetitions do
2: V samples v ← Bℓ+R randomly.
3: for i ∈ {0, ϑ, . . . , ℓ− ϑ} (i.e., taking ϑ-sized steps) do
4: for each u ∈ Bϑ, V sends

(
query, [f (i)], (u0, . . . , uϑ−1, vi+ϑ, . . . , vℓ+R−1)

)
to the oracle.

5: if i > 0 then V requires ci
?
= f (i)(vi, . . . , vℓ+R−1).

6: V defines ci+ϑ := fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(vi+ϑ, . . . , vℓ+R−1).

7: V requires cℓ
?
= c.

In our commitment procedure above, we give meaning to the commitment of f by implicitly identifying
S(0) ∼= Bℓ+R as sets (as discussed above); similarly, in the prover’s line 6 above, we identify Bℓ+R−i−1 ∼=
S(i+1). Conversely, in its lines 4 and 6 above, the verifier must implicitly identify the Bℓ+R−i-elements
(u0, . . . , uϑ−1, vi+ϑ, . . . , vℓ+R−1)u∈Bϑ

with S(i)-elements—and the Bℓ+R−i−ϑ-element (vi+ϑ, . . . , vℓ+R−1)

with an S(i+ϑ)-element—in order to appropriately apply Definition 4.8. We note that, in line 6, V has
precisely the information it needs to compute fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(vi+ϑ, . . . , vℓ+R−1) (namely, the values

of f (i) on the fiber (u0, . . . , uϑ−1, vi+ϑ, . . . , vℓ+R−1)u∈Bϑ

∼=
(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({(vi+ϑ, . . . , vℓ+R−1)})).
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The completness of Construction 4.11’s evaluation IOP is not straightforward. For instance, it is simply
not obvious what the folding operation of line 4 does to the coefficients of the low-degree polynomial P (i)(X)
underlying f (i). (Though our folding operation departs slightly from FRI’s—we refer to Remark 4.7 for a
discussion of this fact—the conceptual obstacle is essentially the same.) Indeed, the completeness proof of
generic FRI [BBHR18a, § 4.1.1] tells us that the folded function f (i+1) represents the evaluations of some
polynomial P (i+1)(X) of appropriate degree on the domain S(i+1). But which one? The proof of [BBHR18a,
§ 4.1.1] fails to constructively answer this question, in that it invokes the generic characteristics of the
multivariate reduction—called Q(i)(X,Y )—of P (i)(X) by Y − q(i)(X). (We refer to e.g. von zur Gathen and
Gerhard [GG13, Alg. 21.11] for a thorough treatment of multivariate division.) It seems simply infeasible to
analyze by hand the execution of the multivariate division algorithm with sufficient fidelity as to determine
with any precision the result P (i+1)(Y ) = Q(i)(r′i, Y ) (though we don’t rule out the prospect whereby a proof
could in principle be achieved in this way).

Instead, we introduce certain, carefully-selected L-bases of the spaces L[X]≺2
ℓ−i

, for i ∈ {0, . . . , ℓ} (so-
called “higher-order” novel polynomial bases). As it turns out, the respective coefficients of P (i)(X) and
P (i+1)(X) with respect to these bases are tractably related; their relationship amounts to an even–odd tensor-
fold by the FRI challenge r′i. Proceeding by induction, we obtain the desired characterization of c.

Theorem 4.12. The IOPCS Π = (Setup,Commit,P,V) of Construction 4.11 is complete.

Proof. Provided that P is honest, s = t(r0, . . . , rℓ−1) will hold. Since t(r0 . . . , rℓ−1) =
∑

w∈Bℓ
h(w), this

guarantee implies that s = s0 =
∑

w∈Bℓ
h(w) will hold, so that, by the completeness of the sumcheck, V’s

checks si
?
= hi(0)+hi(1) will pass. Finally, sℓ = h(r′0, . . . , r

′
ℓ−1) = ẽq(r0, . . . , rℓ−1, r

′
0, . . . , r

′
l−1)·t(r′0, . . . , r′ℓ−1)

too will hold. To argue the completeness of V’s check sℓ
?
= ẽq(r0, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−1) · c above, it thus

suffices to argue that, for P honest, c = t(r′0, . . . , r
′
ℓ−1) will hold.

We introduce a family of further polynomial bases. For each i ∈ {0, . . . , ℓ − 1}, we define the ith-order

subspace vanishing polynomials Ŵ
(i)
0 , . . . , Ŵ

(i)
ℓ−i−1 as the polynomials X, q(i), q(i+1) ◦q(i), . . . , q(ℓ−2) ◦ · · · ◦q(i),

respectively (that is, Ŵ
(i)
k := q(i+k−1) ◦ · · · ◦ q(i), for each k ∈ {0, . . . , ℓ − i − 1}). Finally, we define the

ith-order novel polynomial basis by setting X
(i)
j :=

∏ℓ−i−1
k=0 Ŵ

(i)
k

jk
, for each j ∈ {0, . . . , 2ℓ−i−1} (here, again,

we write (j0, . . . , jℓ−i−1) for the bits of j). We adopt the notational convention whereby the ℓth-order basis

consists simply of the constant polynomial X
(ℓ)
0 (X) = 1. Below, we use a certain inductive relationship

between the bases
(
X

(i)
j (X)

)2ℓ−i−1

j=0
and

(
X

(i+1)
j (X)

)2ℓ−i−1−1

j=0
; that is, for each j ∈ {0, . . . , 2ℓ−i−1 − 1}, the

polynomials X
(i)
2j (X) and X

(i)
2j+1(X) respectively equal X

(i+1)
j

(
q(i)(X)

)
and X ·X(i+1)

j

(
q(i)(X)

)
.

Lemma 4.13. Fix an index i ∈ {0, . . . , ℓ − 1}. If f (i) : S(i) → L is exactly the evaluation over S(i) of the

polynomial P (i)(X) =
∑2ℓ−i−1

j=0 aj ·X(i)
j (X), then, under honest prover behavior, f (i+1) : S(i+1) → L is exactly

the evaluation over S(i+1) of the polynomial P (i+1)(X) =
∑2ℓ−i−1−1

j=0 ((1− r′i) · a2j + r′i · a2j+1) ·X(i+1)
j (X).

Proof. Given P (i)(X) as in the hypothesis of the lemma, we introduce the even and odd refinements

P
(i+1)
0 (X) :=

∑2ℓ−i−1−1
j=0 a2j · X(i+1)

j (X) and P
(i+1)
1 (X) :=

∑2ℓ−i−1−1
j=0 a2j+1 · X(i+1)

j (X) of P (i)(X). We
note the following key polynomial identity:

P (i)(X) = P
(i+1)
0 (q(i)(X)) +X · P (i+1)

1 (q(i)(X)); (39)

This identity is a direct consequence of the definitions of the higher-order novel polynomial bases.
We turn to the proof of the lemma. We claim that f (i+1)(y) = P (i+1)(y) holds for each y ∈ S(i+1), where

P (i+1)(X) is as in the lemma’s hypothesis. To this end, we let y ∈ S(i+1) be arbitrary; we moreover write

(x0, x1) := q(i)
−1

({y}) for the fiber of q(i) over y. We begin by examining the values P (i)(x0) and P (i)(x1).
For each b ∈ {0, 1} we have:

P (i)(xb) = P
(i+1)
0

(
q(i)(xb)

)
+ xb · P (i+1)

1

(
q(i)(xb)

)
(by the identity (39).)

= P
(i+1)
0 (y) + xb · P (i+1)

1 (y). (using q(i)(xb) = y.)
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Using now our assumption whereby f (i)(xb) = P (i)(xb) for each b ∈ {0, 1}, and unwinding the prescription
of Definition 4.6, we obtain:

f (i+1)(y) =
[
1− r′i r′i

]
·

x1 −x0

−1 1

 ·
P (i)(x0)

P (i)(x1)

 (by our hypothesis on f (i), and by Definition 4.6.)

=
[
1− r′i r′i

]
·

x1 −x0

−1 1

 ·
1 x0

1 x1

 ·
P (i+1)

0 (y)

P
(i+1)
1 (y)

 (by the calculation just performed above.)

=
[
1− r′i r′i

]
·

P (i+1)
0 (y)

P
(i+1)
1 (y)

 (cancellation of inverse matrices.)

= P (i+1)(y). (by the definitions of P
(i+1)
0 (X), P

(i+1)
1 (X), and P (i+1)(X).)

To achieve the third equality above, we note that the matrices

x1 −x0

−1 1

 and

1 x0

1 x1

 are inverses; there,

we use the guarantee x1 − x0 = 1, a basic consequence of Definition 4.1 (or rather of ker
(
q(i)
)
= {0, 1}).

Applying Corollary 4.4, we note finally that
(
Ŵ

(0)
k

)ℓ−1
k=0

and
(
X

(0)
j

)2ℓ−1
j=0

themselves equal precisely the

standard subspace vanishing and novel basis polynomials, respectively. It follows that in the base case
i = 0 of Lemma 4.13—and again assuming honest behavior by the prover—we have that f (0) will equal

the evaluation over S(0) of P (0)(X) := P (X) =
∑

w∈Bℓ
t(w) · X(0)

{w}(X). Applying Lemma 4.13 repeat-

edly, we conclude by induction that f (ℓ) will equal the evaluation over S(ℓ) of the constant polynomial∑
w∈Bℓ

ẽq(w0, . . . , wℓ−1, r
′
0, . . . , r

′
ℓ−1) · t(w) = t(r′0, . . . , r

′
ℓ−1), so that c = t(r′0, . . . , r

′
ℓ−1) will hold, as desired.

The completeness of the verifier’s query phase is self-evident (and is just as in [BBHR18a, § 4.1.1]); we
note that V applies to each oracle f (i) the same folding procedure that P does. This completes the proof of
completeness.

Remark 4.14. Using the techniques of Subsection 4.1 and of Theorem 4.12 above, we are able to suggest a
new explanation of the additive NTT algorithm of Lin, Chung and Han [LCH14, § III.], and of its correctness;
we note also our Algorithm 2 above. (Li et al. [Li+18, Alg. 2] present yet a further—and very interesting—
perspective, which differs both from ours and from Lin–Chung–Han’s.) We fix an index i ∈ {0, . . . , ℓ−1} and
a polynomial P (i)(X) :=

∑2ℓ−i−1
j=0 aj ·X(i)

j (X) expressed with respect to the ith-order novel basis. The key

idea is that the values of P (i)(X) on the domain S(i) can be derived—using only O
(
2ℓ+R−i

)
K-operations—

given the values of P (i)(X)’s even and odd refinements P
(i+1)
0 (X) and P

(i+1)
1 (X) (as in the proof of Lemma

4.13) over the domain S(i+1). This is a direct consequence of the identity (39) above. Indeed, applying that

identity, we see that, for y ∈ S(i+1) arbitrary, with fiber (x0, x1) := q(i)
−1

({y}), say, we have the equalities

P (i)(x0) := P
(i+1)
0 (y) + x0 · P (i+1)

1 (y) and P (i)(x1) := P
(i+1)
0 (y) + x1 · P (i+1)

1 (y). Since x0 and x1 in fact
differ by exactly 1, we see that P (i)(x1) can be computed from P (i)(x0) using a single further K-addition.
We recover the key butterfly diagram of [LCH14, Fig. 1. (a)] (see also Algorithm 2 above) upon carrying
out this procedure recursively, with the convention whereby we flatten (using the space’s canonical basis)
and interleave the two copies of S(i+1) at each instance. The base case of the recursion consists of the
2ℓ-fold interleaving of the domain S(ℓ), into which P (0)’s coefficients are tiled 2R times. The final stage of
the butterfly diagram yields the desired evaluation of P (0)(X) on S(0). Algorithm 2’s twiddle factors in its
ith stage, then, are nothing other than the respective first lifts x0 of y, as the image y = q(i)(x0) varies

throughout S(i+1). These latter elements x0, in turn, take precisely the form
∑ℓ+R−i−2

k=0 uk · Ŵi(βi+1+k), for

u ∈ Bℓ+R−i−1 ∼= S(i+1) arbitrary; indeed, we suppress throughout the 0th canonical basis element Ŵi(βi) = 1
of S(i), since that element is subsumed into each butterfly. We find it interesting that the same polynomial
identity underlies both the correctness of [LCH14, § III.] and our above analysis of FRI’s folding.
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Remark 4.15. Though it seems inessential to the proof of Theorem 4.12, it is interesting to note that, for

each i ∈ {0, . . . , ℓ − 1}, the ith-order basis
(
X

(i)
j

)2ℓ−i−1

j=0
is itself a novel polynomial basis in its own right,

namely that attached to the set of vectors
(
Ŵi(βi), . . . , Ŵi(βℓ−1)

)
. Equivalently, the ith-order subspace

vanishing polynomials
(
Ŵ

(i)
k

)ℓ−i−1
k=0

are simply the subspace vanishing polynomials attached to this latter

set of vectors. Indeed, for each k ∈ {0, . . . , ℓ − i − 1},
〈
Ŵi(βi), . . . , Ŵi(βi+k−1)

〉
⊂ ker

(
Ŵ

(i)
k

)
certainly

holds, since Ŵ
(i)
k ◦ Ŵi = q(i+k−1) ◦ · · · ◦ q(i) ◦ Ŵi = Ŵi+k, which annihilates ⟨β0, . . . , βi+k−1⟩ (here, we use

the definition of Ŵ
(i)
k and Lemma 4.2). On the other hand, Ŵ

(i)
k = q(i+k−1) ◦ · · · ◦ q(i)’s kernel can be of

dimension at most k (say by degree considerations), while the vectors Ŵi(βi), . . . , Ŵi(βi+k−1) are linearly
independent (a consequence of Corollary 4.5). We conclude that the above containment is an equality.

Finally, the subspace polynomials
(
Ŵ

(i)
k

)ℓ−i−1
k=0

are normalized. Indeed, using Lemma 4.2 again, we see that,

for each k ∈ {0, . . . , ℓ− i−1}, Ŵ (i)
k

(
Ŵi(βi+k)

)
=
(
q(i+k−1) ◦ · · · ◦ q(i) ◦ Ŵi

)
(βi+k) = Ŵi+k(βi+k) = 1 holds.

We now prove the security of Construction 4.11. Our key technical results below (see Propositions 4.20
and 4.23), essentially, jointly constitute a variant of FRI’s soundness statement [BBHR18a, § 4.2.2]. Our
proofs of these results incorporate—albeit in an attenuated way—various ideas present in [BBHR18a, § 4.2.2]
and [Ben+23, § 8.2]. We also introduce a number of new ideas, which, by and large, pertain to our new
folding technique (see Subsection 4.2).

We note that our protocol seems not to admit a security proof which invokes that of FRI in a strictly
blackbox manner. Rather, our security argument—and, it would seem, any conceivable analysis of Construc-
tion 4.11—must inevitably concern itself not merely with the distance from the code of A’s initial committed
word, but moreover with the consistency of its oracles, and in particular with whether its final oracle value
c relates as it should to its initial oracle.

Theorem 4.16. The IOPCS Π = (Setup,Commit,P,V) of Construction 4.11 is secure.

Proof. We define a straight-line emulator E as follows.

1. By inspecting A’s messages to the vector oracle, E immediately recovers the function f : S(0) → L
underlying the handle [f ] output by A.

2. E runs the Berlekamp–Welch decoder (i.e., Algorithm 1) on the word f : S(0) → L. If that algorithm
outputs P (X) = ⊥ or if deg(P (X)) ≥ 2ℓ, then E outputs ⊥ and aborts.

3. Otherwise, E re-expresses the Berlekamp–Welch output polymomial P (X) =
∑

w∈Bℓ
tw · X{w}(X) in

coordinates with respect to the novel polynomial basis. E writes t(X0, . . . , Xℓ−1) ∈ L[X0, . . . , Xℓ−1]
⪯1

for the multilinear whose Lagrange coordinates are (tw)w∈Bℓ
. E outputs t(X0, . . . , Xℓ−1) and halts.

We begin by defining various notions, adapting [BBHR18a, § 4.2.1]. For each i ∈ {0, ϑ, . . . , ℓ} (i.e.,

ascending in ϑ-sized steps), we write C(i) ⊂ L2ℓ+R−i

for the Reed–Solomon code RSL,S(i) [2ℓ+R−i, 2ℓ−i]. We

recall that C(i) is of distance di := 2ℓ+R−i−2ℓ−i+1. We write f (0), f (ϑ), . . . , f (ℓ−ϑ) for the oracles committed
by A; we moreover write f (ℓ) : S(ℓ) → L for the identically-c function (here, c ∈ L is A’s final FRI message).
For each i ∈ {0, ϑ, . . . , ℓ − ϑ}, we write ∆

(
f (i+ϑ), g(i+ϑ)

)
⊂ S(i+ϑ) for the disagreement set between the

elements f (i+ϑ) and g(i+ϑ) of L2ℓ+R−i−ϑ

; that is, ∆
(
f (i+ϑ), g(i+ϑ)

)
is the set of elements y ∈ S(i+ϑ) for which

f (i+ϑ)(y) ̸= g(i+ϑ)(y). We moreover write ∆(i)
(
f (i), g(i)

)
⊂ S(i+ϑ) for the fiber-wise disagreement set of the

elements f (i) and g(i) of L2ℓ+R−i

. That is, ∆(i)
(
f (i), g(i)

)
⊂ S(i+ϑ) denotes the set of elements y ∈ S(i+ϑ)

for which the respective restrictions of f (i) and g(i) to the fiber
(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({y}) ⊂ S(i) are not

identically equal. We define d(i)
(
f (i), C(i)

)
:= ming(i)∈C(i)

∣∣∆(i)
(
f (i), g(i)

)∣∣. We note that, if d(i)
(
f (i), C(i)

)
<

di+ϑ

2 , then d
(
f (i), C(i)

)
< di

2 a fortiori holds. (Each offending fiber contributes at most 2ϑ errors; on the other

hand, 2ϑ ·
⌊
di+ϑ−1

2

⌋
≤
⌊
di−1
2

⌋
.) In any case, in case the oracle f (i) : S(i) → L is such that d

(
f (i), L(i)

)
< di

2

happens to hold, we write f (i) ∈ L(i) for the unique codeword for which d
(
f (i), f (i)

)
< di

2 .
We record the following key compliance condition:
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Definition 4.17. For each index i ∈ {0, ϑ, . . . , ℓ − ϑ}, we say that A’s ith oracle f (i) is compliant if the

conditions d(i)
(
f (i), C(i)

)
< di

2 , d
(
f (i+ϑ), C(i+ϑ)

)
< di+ϑ

2 , and f (i+ϑ) = fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
all hold.

We first argue that if any among A’s oracles i ∈ {0, ϑ, . . . , ℓ − ϑ} is not compliant, then V will accept
with negligible probability at most. This is exactly Proposition 4.23 below. In order to prepare for that
proposition, we record a sequence of lemmas. We begin with the following elementary fact.

Lemma 4.18. For each i ∈ {0, ϑ, . . . , ℓ− ϑ}, if d
(
f (i), C(i)

)
< di

2 , then, for each tuple of folding challenges

(r′i, . . . , r
′
i+ϑ−1) ∈ Lϑ, we have that ∆

(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

))
⊂ ∆(i)

(
f (i), f (i)

)
.

Proof. We proceed by contraposition; we fix an element y ̸∈ ∆(i)
(
f (i), f (i)

)
. By definition of that latter set,

we conclude immediately that the restrictions f (i)
∣∣
(q(i+ϑ−1)◦···◦q(i))

−1
({y}) = f (i)

∣∣
(q(i+ϑ−1)◦···◦q(i))

−1
({y}) are

identically equal. Applying Definition 4.8, we see under this guarantee that, regardless of the challenges
(r′i, . . . , r

′
i+ϑ−1), fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(y) = fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(y) necessarily also holds.

We now define a sequence of bad folding events. Our definition of Ei is case-based, and depends on the
status of f (i). If f (i) is within the (fiber-wise) unique decoding radius, then Ei captures the event whereby the
generic inclusion of Lemma 4.18 becomes strict. Otherwise, Ei captures the “bad batching” event whereby
fold(f (i), r′i, . . . , r

′
i+ϑ−1) becomes close to C(i+ϑ).

Definition 4.19. For each i ∈ {0, ϑ, . . . , ℓ − ϑ}, we define the bad subset Ei ⊂ Lϑ as the set of tuples
(r′i, . . . , r

′
i+ϑ−1) ∈ Lϑ for which, as the case may be:

in case d(i)
(
f (i),C(i)

)
<

di+ϑ

2
: ∆(i)

(
f (i), f (i)

)
̸⊂ ∆

(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

))
.

in case d(i)
(
f (i),C(i)

)
≥ di+ϑ

2
: d
(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, C(i+ϑ)

)
< di+ϑ

2 .

We now bound the bad subsets Ei of Definition 4.19. We recall that µ(Ei) :=
|Ei|
|L|ϑ denotes the probability

mass of the set Ei ⊂ Lϑ.

Proposition 4.20. For each i ∈ {0, ϑ, . . . , ℓ− ϑ}, µ(Ei) ≤ ϑ · |S
(i+ϑ)|
|L| holds.

Proof. We treat separately the two cases of Definition 4.19.
We begin with the first case. We fix an element y ∈ ∆(i)

(
f (i), f (i)

)
, we moreover write Ey

i ⊂ Lϑ for

the set of tuples (r′i, . . . , r
′
i+ϑ−1) ∈ Lϑ for which y ̸∈ ∆

(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

))
.

We argue that µ(Ey
i ) ≤ ϑ

|L| . This latter claim suffices to complete the proof of the first case; indeed, since

Ei =
⋃

y∈∆(i)(f(i),f(i))E
y
i , assuming the claim, we conclude that µ(Ei) ≤

∣∣∆(i)
(
f (i), f (i)

)∣∣ · ϑ
|L| ≤ |S

(i+ϑ)| · ϑ
|L| .

For y ∈ ∆(i)
(
f (i), f (i)

)
chosen as above, we apply Lemma 4.9 to the words f (i) and f (i). Applying that

lemma, we see that (r′i, . . . , r
′
i+ϑ−1) ∈ Ey

i holds if and only if we have the following matrix identity:

0 =
[ ⊗ϑ−1

j=0 (1− r′i+j , r
′
i+j)

]
·

 My

 ·


f (i)(x0)− f (i)(x0)
...

f (i)(x2ϑ−1)− f (i)(x2ϑ−1)

, (40)

where we again write (x0, . . . , x2ϑ−1) :=
(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({y}). Our hypothesis y ∈ ∆(i)

(
f (i), f (i)

)
entails precisely that the right-hand vector of (40) is not identically zero. By Lemma 4.9, My is non-
singular; we conclude that the image of the right-hand vector of (40) under My is likewise not iden-
tically zero. Writing (a0, . . . , a2ϑ−1) for this latter vector—which, we repeat, is not zero—we conclude
that Ey

i ⊂ Lϑ is precisely the vanishing locus in Lϑ of the ϑ-variate polynomial s(X0, . . . , Xϑ−1) :=∑
v∈Bϑ

a{v} · ẽq(X0, . . . , Xϑ−1, v0, . . . , vϑ−1) over L. Since s(X0, . . . , Xϑ−1)’s values on the cube {0, 1}ϑ ⊂ Lϑ

are exactly (a0, . . . , a2ϑ−1), s(X0, . . . , Xϑ−1) is certainly not zero. Applying the Schwartz–Zippel lemma to
s(X0, . . . , Xϑ−1), we conclude that the relevant locus Ey

i ⊂ Lϑ is of mass at most µ(Ey
i ) ≤ ϑ

|L| , as required.
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We turn to the second case of Definition 4.19; in particular, we assume that d(i)
(
f (i), C(i)

)
≥ di+ϑ

2 . We

define an interleaved word
(
f
(i+ϑ)
j

)2ϑ−1
j=0

—i.e., a 2ϑ × 2ℓ+R−i−ϑ matrix, with entries in L—in the following

way. For each y ∈ S(i+ϑ), writing My for the matrix guaranteed to exist by Lemma 4.9, we define the
column: 

f
(i+ϑ)
0 (y)

...

f
(i+ϑ)

2ϑ−1 (y)

 :=

 My

 ·


f (i)(x0)
...

f (i)(x2ϑ−1)

. (41)

We note that the resulting 2ϑ × 2ℓ+R−i−ϑ matrix
(
f
(i+ϑ)
j

)2ϑ−1
j=0

—i.e., that whose columns are given by the

respective left-hand sides of (41), for y ∈ S(i+ϑ) varying—satisfies, for each (r′i, . . . , r
′
i+ϑ−1) ∈ Lϑ,

fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
=
[ ⊗i+ϑ−1

j=i (1− r′j , r
′
j)

]
·


f
(i+ϑ)
0

...

f
(i+ϑ)

2ϑ−1

. (42)

Indeed, this is essentially the content of Lemma 4.9, which we apply here jointly to all elements y ∈ S(i+ϑ).

We claim that the interleaved word
(
f
(i+ϑ)
j

)2ϑ−1
j=0

constructed in this way is far from the interleaved code

C(i+ϑ)2
ϑ

.

Lemma 4.21. Under our hypothesis d(i)
(
f (i), C(i)

)
≥ di+ϑ

2 , we have d2
ϑ

((
f
(i+ϑ)
j

)2ϑ−1
j=0

, C(i+ϑ)2
ϑ
)
≥ di+ϑ

2 .

Proof. We fix an arbitrary interleaved codeword
(
g
(i+ϑ)
j

)2ϑ−1
j=0

∈ C(i+ϑ)2
ϑ

. We define a “lift” g(i) ∈ C(i)

of
(
g
(i+ϑ)
j

)2ϑ−1
j=0

in the following way. Writing, for each j ∈ {0, . . . , 2ϑ − 1}, P (i+ϑ)
j (X) :=

∑2ℓ−i−ϑ−1
k=0 aj,k ·

X
(i+ϑ)
k (X) for the polynomial—expressed in coordinates with respect to the i+ ϑth-order novel polynomial

basis—for which g
(i+ϑ)
j = Enc(P

(i+ϑ)
j ) holds, we define

P (i)(X) :=

2ϑ−1∑
j=0

2ℓ−i−ϑ−1∑
k=0

aj,k ·X(i)

k·2ϑ+j
;

that is, P (i)’s list of ith-order coefficients is precisely the 2ϑ-fold interleaving of the polynomials

P
(i+ϑ)
0 (X), . . . , P

(i+ϑ)

2ϑ−1 (X)’s respective lists of i+ ϑth-order coefficients. Finally, we define g(i) := Enc(P (i)).

We argue that the codeword g(i) ∈ C(i) constructed in this way stands in relation to
(
g
(i+ϑ)
j

)2ϑ−1
j=0

just as

f (i) does to
(
f
(i+ϑ)
j

)2ϑ−1
j=0

(i.e., it also satisfies a matrix identity analogous to (41) for each y ∈ S(i+ϑ)). To

prove this, we fix an arbitrary element y ∈ S(i+ϑ); we moreover fix a row-index j ∈ {0, . . . , 2ϑ−1}. We write

(j0, . . . , jϑ−1) for the bits of j (i.e., so that j =
∑ϑ−1

k=0 2
k ·jk holds). We first note that the functions g

(i+ϑ)
j and

fold
(
g(i), j0, . . . , jϑ−1

)
agree identically over the domain S(i+ϑ). Indeed, this is a direct consequence of Lemma

4.13 and of the construction of g(i) (g
(i+ϑ)
j (y)’s underlying polynomial’s coefficients are the jth refinement

of g(i)’s underlying polynomial’s). On the other hand, applying Lemma 4.9 to y ∈ S(i+ϑ) and g(i), with the
folding tuple (j0, . . . , jϑ−1), we see that the dot product between My’s j

th row and
(
g(i)(x0), . . . , g

(i)(x2ϑ−1)
)

is exactly fold
(
g(i), j0, . . . , jϑ−1

)
(y) = g

(i+ϑ)
j (y), where the latter equality was just argued.
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Since g(i) ∈ C(i) is a codeword, our hypothesis d(i)
(
f (i), C(i)

)
≥ di+ϑ

2 applies to it. That hypothesis

entails precisely that, for at least di+ϑ

2 elements y ∈ S(i+ϑ), the restrictions f (i)
∣∣
(q(i+ϑ−1)◦···◦q(i))

−1
({y}) and

g(i)
∣∣
(q(i+ϑ−1)◦···◦q(i))

−1
({y}) are not identically equal. For each such y ∈ S(i+ϑ), since My is nonsingular (and

since both f (i) and g(i) satisfy (41)), we conclude that the columns
(
f
(i+ϑ)
j (y)

)2ϑ−1
j=0

and
(
g
(i+ϑ)
j (y)

)2ϑ−1
j=0

are in turn unequal. Since
(
g
(i+ϑ)
j

)2ϑ−1
j=0

was arbitrary, we conclude that d2
ϑ

((
f
(i+ϑ)
j

)2ϑ−1
j=0

, C(i+ϑ)2
ϑ
)
≥

di+ϑ

2 .

Applying Lemma 4.21, we conclude directly that the contraposition of Theorem 2.3 is fulfilled with

respect to the code C(i+ϑ) ⊂ L2ℓ+R−i−ϑ

, the proximity parameter e :=
⌊
di+ϑ−1

2

⌋
, and the interleaved word(

f
(i+ϑ)
j

)2ϑ−1
j=0

. That theorem’s contraposition immediately implies that the set Ei ⊂ Lϑ consisting of those

tuples (r′i, . . . , r
′
i+ϑ−1) ∈ Lϑ for which d

(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, C(i+ϑ)

)
< di+ϑ

2 holds—and here, we use

(42)—is of mass at most µ(Ei) ≤ ϑ · 2
ℓ+R−i−ϑ

|L| = ϑ · |S
(i+ϑ)|
|L| , as required. This completes the proof of the

proposition.

Proposition 4.22. The probability that any among the bad events E0, Eϑ, . . . , Eℓ−ϑ occurs is at most 2ℓ+R

|L| .

Proof. Applying Proposition 4.20, we upper-bound the quantity of interest as:

ϑ

|L|
· (|Sϑ|+ · · ·+ |Sℓ|) =

ϑ

|L|
·
(
2ℓ+R−ϑ + · · ·+ 2R

)
≤ ϑ

|L|
· 2ϑ

2ϑ − 1
· 2ℓ+R−ϑ ≤ 2ℓ+R

|L|
,

which completes the proof. In the last two steps, we use the geometric series formula and the inequality
ϑ

2ϑ−1 ≤ 1 (which holds for each ϑ ≥ 1), respectively.

In light of Proposition 4.22, we freely assume that none of the events E0, Eϑ, . . . , Eℓ−ϑ occurs. Under
this assumption, we finally turn to the following key proposition.

Proposition 4.23. If any of A’s oracles is not compliant, then V accepts with at most negligible probability.

Proof. We suppose that at least one of A’s oracles is not compliant; we write i∗ ∈ {0, ϑ, . . . , ℓ − ϑ} for the
index of A’s highest-indexed noncompliant oracle.

Lemma 4.24. For i∗ ∈ {0, ϑ, . . . , ℓ− ϑ} as above, we have d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, f (i∗+ϑ)

)
≥ di∗+ϑ

2 .

Proof. Assuming first that d(i
∗)
(
f (i∗), C(i∗)

)
<

di∗+ϑ

2 , we write f (i∗) ∈ C(i∗) for the codeword for which∣∣∆(i∗)
(
f (i∗), f (i∗)

)∣∣ < di∗+ϑ

2 . We note that d
(
f (i∗), f (i∗)

)
< di∗

2 a fortiori holds; by Definition 4.17 and our

choice of i∗, we thus must have in turn f (i∗+ϑ) ̸= fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
. On the other hand, by Lemma

4.18,
∣∣∆(i∗)

(
f (i∗), f (i∗)

)∣∣ < di∗+ϑ

2 implies that d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, fold

(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

))
<

di∗+ϑ

2 . Finally, by the reverse triangle inequality, d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, f (i∗+ϑ)

)
is at least:

d
(
f (i∗+ϑ), fold

(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

))
− d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, fold

(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

))
.

Since f (i∗+ϑ) and fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
are unequal codewords in C(i∗+ϑ), this quantity in turn is

greater than or equal to di∗+ϑ − di∗+ϑ

2 ≥ di∗+ϑ

2 , and the proof of the first case is complete.

In the case d(i
∗)
(
f (i∗), C(i∗)

)
≥ di∗+ϑ

2 , our assumption whereby Ei∗ didn’t occur implies, by def-

inition, that d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, C(i∗+ϑ)

)
≥ di∗+ϑ

2 . Since f (i∗+ϑ) ∈ C(i∗+ϑ) is a codeword,

d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, f (i∗+ϑ)

)
≥ di∗+ϑ

2 in particular holds, and the proof is again complete.

Lemma 4.25. Whenever its suffix (vi∗+ϑ, . . . , vℓ+R−1) ∈ ∆
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i+ϑ−1

)
, f (i∗+ϑ)

)
, V rejects.
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Proof. We fix an iteration of the query phase’s outer loop for which the lemma’s hypothesis holds. We fix
an arbitrary index i ∈ {i∗, i∗+ϑ, . . . , ℓ−ϑ}. If V rejects before finishing the inner loop 3’s ith iteration, then
there’s nothing to prove. We argue that, conditioned on V reaching the end of its ith iteration, we have the
inductive conclusion ci+ϑ ̸= f (i+ϑ)(vi+ϑ, . . . , vℓ+R−1) as of the end of that iteration.

In the base case i = i∗, V assigns ci∗+ϑ := fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
(vi∗+ϑ, . . . , vℓ+R−1) inline on line 6.

On the other hand, the hypothesis of the lemma is precisely fold
(
f (i∗), r′i∗ , . . . , r

′
i+ϑ−1

)
(vi∗+ϑ, . . . , vℓ+R−1) ̸=

f (i∗+ϑ)(vi∗+ϑ, . . . , vℓ+R−1); we conclude immediately that ci∗+ϑ ̸= f (i∗+ϑ)(vi∗+ϑ, . . . , vℓ+R−1) will hold as of
the end of the i∗th iteration, as desired.

We fix an index i ∈ {i∗+ϑ, . . . , ℓ−ϑ}. As of the beginning of the ith iteration, by induction, we have the hy-
pothesis ci ̸= f (i)(vi, . . . , vℓ+R−1). If f

(i)(vi, . . . , vℓ+R−1) = f (i)(vi, . . . , vℓ+R−1) moreover holds, then we see
immediately that V will reject on line 5; indeed, in this case ci ̸= f (i)(vi, . . . , vℓ+R−1) = f (i)(vi, . . . , vℓ+R−1)
will hold. We conclude that, conditioned on V reaching the end of its ith iteration, we necessarily have
f (i)(vi, . . . , vℓ+R−1) ̸= f (i)(vi, . . . , vℓ+R−1), or in other words (vi, . . . , vℓ+R−1) ∈ ∆

(
f (i), f (i)

)
. This guar-

antee implies a fortiori that (vi+ϑ, . . . , vℓ+R−1) ∈ ∆(i)
(
f (i), f (i)

)
, by definition of this latter set. Us-

ing our assumption whereby the event Ei didn’t occur, we conclude in turn that (vi+ϑ, . . . , vℓ−1) ∈
∆
(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

))
. Since f (i+ϑ) = fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(a conse-

quence of the maximality of i∗), this latter set itself equals ∆
(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, f (i+ϑ)

)
. We conclude

that fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(vi+ϑ, . . . , vℓ+R−1) ̸= f

(i+ϑ)
(vi+ϑ, . . . , vℓ+R−1), so that, after its assignment on

line 6, V will obtain ci+ϑ ̸= f (i+ϑ)(vi+ϑ, . . . , vℓ+R−1), thereby preserving the inductive hypothesis.
Carrying through the induction, we see finally that either V will abort before finishing its inner loop 3,

or else it will have cℓ ̸= f (ℓ)(vℓ, . . . , vℓ+R−1) as of its final check 7. Since c = f (ℓ)(vℓ, . . . , vℓ+R−1) holds

identically for each v ∈ BR (by definition of this latter oracle), we see that V will reject its check cℓ
?
= c.

We return to the proposition. Lemma 4.24 guarantees (i.e., assuming Ei∗ doesn’t occur) that ci∗+ϑ ∈
∆
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, f (i∗+ϑ)

)
will hold with probability at least 1

|S(i∗+ϑ)| ·
di∗+ϑ

2 ≥ 1
2 −

1
2·2R in each

of the verifier’s query iterations. By Lemma 4.25, the verifier will reject in each such iteration (i.e., assuming
none of the events Ei∗+ϑ, . . . , Eℓ−ϑ occurs). We see that V will accept with probability at most

(
1
2 + 1

2·2R
)γ
,

which is negligible (we recall that R is a positive constant). This completes the proof of the proposition.

In light of Proposition 4.23, we assume that all of A’s oracles are compliant. Under this assumption, we
note first that d

(
f (0), C(0)

)
< d0

2 will hold. We see that Algorithm 1 will terminate successfully in step 2
above. We write t(X0, . . . , Xℓ−1) ∈ L[X0, . . . , Xℓ−1]

⪯1 for the polynomial output by E in that step.
We now argue that c = t(r′0, . . . , r

′
ℓ−1) will hold. To this end, we apply Definition 4.17 repeatedly.

In the base case i = 0, we note that f (0) will be the encoding of P (0)(X) =
∑

w∈Bℓ
t(w) · X(0)

{w}(X),

precisely by E ’s construction of (t(w))w∈Bℓ
. On the other hand, for each i ∈ {0, ϑ, . . . , ℓ − ϑ}, writing

P (i)(X) ∈ L[X]≺2
ℓ−i

for the polynomial for which Enc(P (i)) = f (i) holds, and using our assumption f (i+ϑ) =
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, we conclude that f (i+ϑ) will be exactly the encoding of that polynomial P (i+ϑ)(X) ∈

L[X]≺2
ℓ−i−ϑ

which results from repeatedly applying to P (i)(X) the conclusion of Lemma 4.13 (with the
folding challenges r′i, . . . , r

′
i+ϑ−1). Carrying out the induction, we see that f (ℓ) will itself be identically equal

to
∑

w∈Bℓ
ẽq
(
w0, . . . , wℓ−1, r

′
0, . . . , r

′
ℓ−1
)
· t(w) = t(r′0, . . . , r

′
ℓ−1), so that c = t(r′0, . . . , r

′
ℓ−1) indeed will hold.

We write (r0, . . . , rℓ−1) ∈ Lℓ for the evaluation point output by V and s ∈ L for A’s response. To finish
the proof, we argue that the probability with which s ̸= t(r0, . . . , rℓ−1) and V accepts is negligible. We
assume that s ̸= t(r0, . . . , rℓ−1).

As in Construction 4.11, we write h(X0, . . . , Xℓ−1) := ẽq(r0, . . . , rℓ−1, X0, . . . , Xℓ−1) · t(X0, . . . , Xℓ−1)
(here, t(X0, . . . , Xℓ−1) refers to what E extracted). Since t(r0, . . . , rℓ−1) =

∑
w∈Bℓ

h(w), our assumption s ̸=
t(r0, . . . , rℓ−1) amounts to the condition s ̸=

∑
w∈Bℓ

h(w). The soundness analysis of the sumcheck (we refer
to Thaler [Tha22, § 4.1]) states that, under this very assumption, the probability that the verifier accepts its

checks si
?
= hi(0)+hi(1) and sℓ = h(r′0, . . . , r

′
ℓ−1) holds is at most 2·ℓ

|L| over V’s choice of its folding challenges

(r′0, . . . , r
′
ℓ−1). We thus assume that sℓ ̸= h(r′0, . . . , r

′
ℓ−κ−1) = ẽq(r0, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−1) · t(r′0, . . . , r′ℓ−1).

Our conclusion whereby c = t(r′0, . . . , r
′
ℓ−1), established above, thus implies that V will reject its check

sℓ
?
= ẽq(r0, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−1) · c. This completes the proof of the theorem.
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Remark 4.26. In our proof of Theorem 4.16 above, our emulator E runs the Berlekamp–Welch decoder
on the adversary-supplied word f : S(0) → L (see its step 2). Most analyses of that algorithm (see e.g.
[Gur06, Rem. 4]) assume inputs guaranteed to reside within the unique decoding radius, and implicitly leave
undefined the algorithm’s behavior on arbitrary words. The behavior of Algorithm 1 on a general word
f : S(0) → L is far from obvious. As far as our proof of Theorem 4.16 is concerned, we need merely the
guarantee whereby, regardless of its input, Algorithm 1—and hence also E—runs in strict polynomial time.
(That guarantee follows straightforwardly from Algorithm 1’s description.) Indeed, if A submits a word f
outside of the unique decoding radius, then—as our Propositions 4.22 and 4.23 above show—V will reject
with overwhelming probability in any case, so that E ’s output ultimately doesn’t matter. As it happens,
it’s possible to show that, on input f outside of the unique decoding radius, Algorithm 1 will either return
⊥ on line 5 or else will return a polynomial P (X) of degree greater than or equal to 2ℓ (and both of these

outcomes can actually happen). We conclude in particular that E ’s test deg(P (X))
?
< 2ℓ above is necessary.

4.4 Efficiency

We discuss the efficiency of Construction 4.11. We measure L-operations throughout. Though the choices
deg(L/F2) = ω(log λ) and γ = ω(log λ) suffice to make that construction’s soundness error negligible, we in
fact set deg(L / F2) = λ and γ = λ. These latter choices make Construction 4.11 exponentially secure, and
make its efficiency easier to analyze. As usual, we understand the positive integers R and ϑ as constants.

Prover cost. In its commitment phase 2, our prover must use Lin, Chung and Han’s additive NTT [LCH14]
to encode its length-2ℓ vector (t(w))w∈Bℓ

onto S(0) (see also Algorithm 2 above). For this task, ℓ · 2ℓ+R−1

L-multiplications and ℓ · 2ℓ+R L-additions suffice (see also Subsection 2.3).
To prepare its sumcheck 2, the prover must tensor-expand (ẽq(r0, . . . , rℓ−1, w0, . . . , wℓ−1))w∈Bℓ

; this task

takes 2ℓ L-additions and 2ℓ L-multiplications (recall Subsection 2.1). Our prover can carry out that sumcheck
itself also in O(2ℓ) time (we refer to Thaler [Tha22, § 4.1]). Our prover is thus linear-time.

Verifier cost. To carry out the sumcheck 2, Construction 4.11’s verifier must expend just O(ℓ) L-
operations. It can compute ẽq(r0, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−1) in step 3 in again O(ℓ) L-operations. During its

querying phase 4, the verifier must finally, for γ = λ repetitions, make 2ϑ · ℓϑ = O(ℓ) queries to the IOP oracle

and perform O
(
2ϑ · ℓ

ϑ

)
= O(ℓ) L-operations. Its total cost during that phase is thus O(λ · ℓ) L-operations.

The BCS transform. In practice, we must use Ben-Sasson, Chiesa and Spooner’s transformation [BCS16]
to turn Construction 4.11 into an interactive protocol in the random oracle model. The resulting compiled
protocol imposes further costs on both parties, as we now explain. First, its prover must moreover Merkle-
hash both f (0) during its commitment phase and the positive-indexed oracles f (ϑ), . . . , f (ℓ−ϑ) during its
evaluation phase; these commitments represent total work on the order ofO

(
2ℓ+R

)
= O

(
2ℓ
)
hash invocations.

During the querying phase, both parties must handle Merkle paths. During each query repetition, the
total length of all Merkle paths sent (measured in digests) is on the order of O((ℓ + R)2) = O(ℓ2). Since
there are γ = λ total repetitions, the total cost for both parties during the querying phase is thus O(λ · ℓ2)
hash operations.

5 Unrolled Small-Field IOPCS

In this section, we describe a “one-shot” small-field IOPCS construction. This construction inlines the large-
field IOPCS of Section 4 into the ring-switching reduction of Section 3. We moreover streamline the resulting
combination, by applying a few optimizations. That is, we unify Construction 4.11’s sumcheck with that
already required within Construction 3.1.

5.1 Combined Small-Field Protocol

We present our full combined protocol below. Our protocol directly instantiates the generic small-field
template of Definition 2.9.

44



CONSTRUCTION 5.1 (Combined Small-Field IOPCS).
We define Π = (Setup,Commit,P,V) as follows.

1. params ← Π.Setup(1λ, ℓ, ι). On input 1λ, ℓ, and ι, choose a constant, positive rate parameter
R ∈ N and a tower height τ ≥ log(ω(log λ)) for which τ ≥ ι and 2τ ≥ ℓ − τ + ι + R. Write
κ := τ − ι and ℓ′ := ℓ − κ. Initialize the vector oracle FTτVec. Fix a folding factor ϑ | ℓ′ and
a repetition parameter γ = ω(log(λ)). Write (X0(X), . . . , X2ℓ

′−1(X)) for the novel Tτ -basis of

Tτ [X]≺2
ℓ′

, and fix the domains S(0), . . . , S(ℓ′) and the polynomials q(0), . . . , q(ℓ
′−1) as in Subsection

4.1. Write C(0) ⊂ Tτ 2
ℓ′+R

for the Reed–Solomon code RSTτ ,S(0) [2ℓ
′+R, 2ℓ

′
].

2. [f ] ← Π.Commit(params, t). On input t(X0, . . . , Xℓ−1) ∈ Tι[X0, . . . , Xℓ−1]
⪯1, construct as in

Definition 2.1 the packed polynomial t′(X0, . . . , Xℓ′−1) ∈ Tτ [X0, . . . , Xℓ′−1]
⪯1. Write P (X) :=∑

v∈Bℓ′
t′(v)·X{v}(X) for its univariate flattening. Using Algorithm 2, compute the Reed–Solomon

codeword f : S(0) → Tτ defined by f : x 7→ P (x). Submit (submit, ℓ′ +R, f) to the vector oracle
FTτVec. Upon receiving (receipt, ℓ′ +R, [f ]) from the oracle, output the commitment [f ].

We define (P,V) as the following IOP, in which both parties have the common input [f ], s ∈ Tτ , and
(r0, . . . , rℓ−1) ∈ T ℓ

τ , and P has the further input t(X0, . . . , Xℓ−1) ∈ Tι[X0, . . . , Xℓ−1]
⪯1.

1. P computes ŝ := φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)) and sends V the A-element ŝ.

2. V decomposes ŝ =:
∑

v∈Bκ
ŝv ⊗ βv. V requires s

?
=
∑

v∈Bκ
ẽq(v0, . . . , vκ−1, r0, . . . , rκ−1) · ŝv.

3. V samples batching scalars (r′′0 , . . . , r
′′
κ−1)← T κ

τ and sends them to P.

4. For each w ∈ Bℓ′ , P decomposes ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) =:
∑

u∈Bκ
Aw,u ·βu. P defines the

function A : w 7→
∑

u∈Bκ
ẽq(u0, . . . , uκ−1, r

′′
0 , . . . , r

′′
κ−1) ·Aw,u on Bℓ′ and writes A(X0, . . . , Xℓ′−1)

for its multilinear extension. P defines h(X0, . . . , Xℓ′−1) := A(X0, . . . , Xℓ′−1) · t′(X0, . . . , Xℓ′−1).

5. V decomposes ŝ =:
∑

u∈Bκ
βu ⊗ ŝu, and sets s0 :=

∑
u∈Bκ

ẽq(u0, . . . , uκ−1, r
′′
0 , . . . , r

′′
κ−1) · ŝu.

6. P and V both abbreviate f (0) := f , and execute the following loop:

1: for i ∈ {0, . . . , ℓ′ − 1} do
2: P sends V the polynomial hi(X) :=

∑
w∈Bℓ′−i−1

h
(
r′0, . . . , r

′
i−1, X,w0, . . . , wℓ′−i−2

)
.

3: V requires si
?
= hi(0) + hi(1). V samples r′i ← Tτ , sets si+1 := hi(r

′
i), and sends P r′i.

4: P defines f (i+1) : S(i+1) → Tτ as the function fold
(
f (i), r′i

)
of Definition 4.6.

5: if i+ 1 = ℓ′ then P sends c := f (ℓ′)(0, . . . , 0) to V.
6: else if ϑ | i+ 1 then P submits (submit, ℓ′ +R− i− 1, f (i+1)) to the oracle.

7. V sets e := ẽq
(
φ0(rκ), . . . , φ0(rℓ−1), φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
and decomposes e =:

∑
u∈Bκ

βu ⊗ eu.

8. V requires sℓ′
?
=
(∑

u∈Bκ
ẽq(u0, . . . , uκ−1, r

′′
0 , . . . , r

′′
κ−1) · eu

)
· c.

9. V executes the following querying procedure:

1: for γ repetitions do
2: V samples v ← Bℓ′+R randomly.
3: for i ∈ {0, ϑ, . . . , ℓ′ − ϑ} (i.e., taking ϑ-sized steps) do
4: for each u ∈ Bϑ, V sends

(
query, [f (i)], (u0, . . . , uϑ−1, vi+ϑ, . . . , vℓ′+R−1)

)
to the oracle.

5: if i > 0 then V requires ci
?
= f (i)(vi, . . . , vℓ′+R−1).

6: V defines ci+ϑ := fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(vi+ϑ, . . . , vℓ′+R−1).

7: V requires cℓ′
?
= c.

The completeness and security of Construction 5.1 follow directly from the techniques developed in
Sections 3 and 4 above.
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5.2 Efficiency

For matters of asymptotic efficiency, we refer to Subsections 3.2 and 4.4 above. Here, we discuss the concrete
efficiency of Construction 5.1.

In our concrete proof size analyses below, we incorporate various optimizations. For example, for each
oracle i ∈ {0, ϑ, . . . , ℓ′ − ϑ}, we opt to send the entire jth layer of the Merkle tree—as opposed to just its
root—for some appropriately chosen constant j ≥ 0. Increasing j exponentially increases the fixed size of
each commitment, but also causes each among the γ subsequently sent paths to become shorter. The optimal
truncation height turns out to be j := ⌈log2(γ)⌉. Each path sent, of course, is of size ℓ′ +R− i− ϑ− j.

As soon as i ∈ {0, ϑ, . . . , ℓ′ − ϑ} becomes so large that j > ℓ′ +R− i− ϑ holds, this convention becomes
nonsensical; at this point, we instruct our prover rather to terminate FRI early and send its entire message
to the verifier in the clear. (Of course, this measure moreover allows us to drop our requirement ϑ | ℓ′,
which we instated only for notational convenience.) Interestingly, in certain parameter regimes, the parties
stand to benefit by terminating FRI even earlier (i.e., even when j ≤ ℓ′ +R− i − ϑ still holds). Since this
phenomenon doesn’t appear in the particular problem instances we benchmark below, we have refrained
from treating it more explicitly (say, by developing a criterion designed to predict when exactly FRI should
be terminated). We leave for future work the establishment of closed-form formulae which serve to predict
the optimal oracle-skipping parameter ϑ and the optimal early-termination threshold, given as input only
ℓ′, R, γ and j (as well as global parameters like τ , ι, and the hash digest width).

Concrete soundness. We record proof sizes for both this work and [DP25, Cons. 3.11]. In order to
appropriately select the query repetition parameter γ, we must examine the concrete security of our protocol
(we refer to [DP25, § 3.5] for an analogous analysis). It follows essentially from the proofs of Theorems 3.5
and 4.16 that Construction 5.1’s concrete soundness error is bounded from above by

κ+ 2 · ℓ′

|Tτ |
+

2ℓ
′+R

|Tτ |
+

(
1

2
+

1

2 · 2R

)γ

; (43)

above, the first summand comes from ring-switching and the sumcheck, whereas the latter two reflect Propo-
sitions 4.22 and 4.23, respectively. For each desired concrete security level Ξ, we thus set γ minimally so
that (43) becomes bounded from above by Ξ. (Clearly, this is possible only when τ is sufficiently large that

Ξ > κ+2·ℓ′
|Tτ | + 2ℓ

′+R

|Tτ | holds.) We say in this case that Construction 5.1 attains − log2(Ξ) bits of security.

Proof sizes. Our proof sizes appear in Table 1 below.

Total Data Size Num. Variables ℓ Coefficient Size ι [DP25, Cons. 3.11] Construction 5.1

32 MiB (228 bits) 22 6 0.768 MiB 0.227 MiB

25 3 1.018 MiB 0.227 MiB

28 0 2.863 MiB 0.229 MiB

512 MiB (232 bits) 26 6 4.546 MiB 0.334 MiB

29 3 5.697 MiB 0.334 MiB

32 0 11.314 MiB 0.336 MiB

8 GiB (236 bits) 30 6 11.343 MiB 0.465 MiB

33 3 22.586 MiB 0.465 MiB

36 0 61.079 MiB 0.467 MiB

Table 1: Proof sizes, including oracle-skipping, Merkle caps, and early FRI termination.
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In our proof size measurements above, we use a 128-bit field, and attain 96 bits of provable security. We
set R := 2 throughout, so that our code is of rate ρ = 1

4 . In Construction 5.1, we use between γ = 142 and
γ = 144 queries, as the case may be. We use the Merkle tree truncation height j := 8. We fix the folding
factor ϑ := 4, which happens to yield the smallest proofs throughout. The previous work [DP25, Cons. 3.11]
requires more queries—rather between γ = 231 and γ = 232, for the sizes we benchmark below—as [DP25,
Rem. 3.18] explains.

We see that our Construction 5.1 beats [DP25, Cons. 3.11] by as much as a hundredfold.

Concrete performance. We concretely benchmark this work’s Construction 5.1 above, as well as [DP25,
Cons. 3.11] and the univariate-FRI-based scheme Plonky3 . Our benchmarks of the first two schemes use
Binius, an open-source implementation of both [DP25] and this work.

In our benchmarks below, we again use a 128-bit field and attain 96 bits of provable security. We work
exclusively in the unique-decoding regime. We note that both [DP25, Cons. 3.11] and this work are proven
secure solely in that regime (as of yet). As for Plonky3, we note that it’s impossible to obtain 96 bits
of provable security in the list-decoding regime over a field of merely 128 bits. Indeed, the best-available
proximity gap in that regime—namely, [Ben+23, Thm. 5.1]—has a false witness probability [Ben+23, (5.3)]
which grows quadratically in the problem size. We see that each reasonably-large instance stands to over-
whelm that result’s 128-bit denominator (yielding a vacuous bound). Our benchmarks below thus reflect
the best-possible proof size attainable in Plonky3, conditioned on the 96-bit security level and the use of a
128-bit field.

In [DP25] and this work, we work over the 128-bit tower field T7. In Plonky3, we use the quartic extension
Fp[X]/

(
X4 − 11

)
of the Baby Bear prime field Fp, where p := 231 − 227 + 1. Throughout, we use the code

rate ρ = 1
4 . We benchmark [DP25] and Construction 5.1 on ℓ-variate multilinear polynomials, for ℓ equal to

20, 24, and 28. In each case, we consider polynomials over Tι, for ι equal in turn to 0, 3 and 5 (i.e., with
coefficients of 1 bit, 8 bits and 32 bits). As far as Plonky3, we benchmark size-16 batches of polynomials
comprising total data size 2ℓ equal to 220, 224 and 228. In that setting, we consider only polynomials over
the 31-bit Baby Bear field Fp; indeed, that scheme would not perform any better upon being given as input
a polynomial whose coefficients were “smaller” (albeit still Fp-elements).

In our concrete benchmarks both of this work and of Plonky3 below, we omit throughout the Merkle-
caps, oracle-skipping, and early-termination optimizations. (That is, in this work, we set ϑ := 1 and j := 0,
and moreover proceed analogously in Plonky3.) These omissions make our proofs become significantly larger
(and our prover and verifier slower to boot); we refer to Table 1 above for our protocol’s “true” proof sizes.
On the other hand, they make our comparison to Plonky3 below more direct, since that work also neglects
to include these optimizations, as currently written.

We explain our use of batching in our Plonky3 benchmarks. The most natural benchmark would have
compared our scheme’s performance on ℓ-variate multilinear polynomials to Plonky3’s on single, degree-2ℓ

univariate polynomials. We note, however, that Plonky3’s FRI-PCS implementation is heavily optimized
towards the case of batched polynomial commitments. In order to compare our works more fairly, we instead
run Plonky3 in the batched setting; that is, we benchmark it on batches of 24 univariate polynomials, each of
degree 2ℓ−4, for each problem size ℓ. Separately, in our own, non-batched scheme, we incorporate a straight-
forward optimization which serves to reduce by 4 the number of butterfly stages which our commitment
phase must compute. In sum, both our scheme (operating on single multilinear polynomials) and theirs
(operating on size-16 batches of univariate polynomials) must perform NTTs of essentially the same shape
and size. This fact makes our works naturally comparable.

In our CPU benchmarks below, we use throughout a Google Cloud machine of type c3-standard-22 with
an Intel Xeon Scalable (“Sapphire Rapids”) processor and 22 virtual cores. Both the Binius and Plonky3
implementations leverage AVX-512 accelerated instructions; Binius moreover uses the Intel GFNI instruction
set extension. We benchmark Plonky3 using both the Poseidon2 and Keccak-256 hashes (the former hash is
“recursion-friendly” in that work’s prime-field setting). We present singlethreaded and multithreaded results
in Tables 2 and 3 below, respectively.
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Commit. Scheme Prob. Size ℓ Coef. Bits Proof Size (MiB) Commit (s) Prove (s) Verify (s)

Plonky3 20 31 0.593 0.3624 0.3048 0.02462

Baby Bear 24 31 0.866 6.019 4.993 0.03576

Poseidon 28 31 1.200 100.7 82.35 0.04847

Plonky3 20 31 0.842 0.2620 0.2870 0.01273

Baby Bear 24 31 1.200 4.487 4.780 0.01811

Keccak-256 28 31 1.700 77.07 79.14 0.02420

[DP25, Cons. 3.11] 20 1 0.195 0.00372 0.00274 0.00587

8 0.217 0.02961 0.00420 0.00318

32 0.288 0.1161 0.01672 0.00432

24 1 0.750 0.04471 0.06061 0.01752

8 0.772 0.3971 0.08984 0.00954

32 1.213 1.600 0.4436 0.01287

28 1 2.927 0.7548 1.932 0.06346

8 4.324 6.281 2.452 0.03707

32 14.806 28.32 17.16 0.1088

Construction 5.1 20 1 0.510 0.003212 0.01278 0.004076

8 0.729 0.02835 0.1236 0.005783

32 0.898 0.1175 0.3479 0.007369

24 1 0.813 0.0551 0.1922 0.006882

8 1.085 0.5081 1.980 0.009196

32 1.288 2.223 5.613 0.01117

28 1 1.186 1.097 3.331 0.01052

8 1.509 9.874 31.80 0.01335

32 1.748 41.93 90.32 0.01696

Table 2: Singlethreaded benchmarks.

48



Commit. Scheme Prob. Size ℓ Coef. Bits Proof Size (MiB) Commit (s) Prove (s) Verify (s)

Plonky3 20 31 0.593 0.04214 0.05521 0.02475

Baby Bear 24 31 0.866 0.6071 0.7995 0.03566

Poseidon 28 31 1.200 10.26 15.17 0.04850

Plonky3 20 31 0.842 0.0385 0.05559 0.01306

Baby Bear 24 31 1.200 0.4633 0.8384 0.01862

Keccak-256 28 31 1.700 8.606 15.67 0.02481

[DP25, Cons. 3.11] 20 1 0.195 0.001763 0.0008533 0.004823

8 0.217 0.005349 0.001007 0.003085

32 0.288 0.01297 0.002191 0.003182

24 1 0.750 0.006406 0.005559 0.01278

8 0.772 0.07380 0.01205 0.006936

32 1.213 0.3092 0.04194 0.007944

28 1 2.927 0.1591 0.1750 0.04020

8 4.324 1.389 0.2881 0.02706

32 14.806 5.421 1.392 0.07108

Construction 5.1 20 1 0.510 0.001172 0.006706 0.004194

8 0.729 0.005159 0.02021 0.005891

32 0.898 0.01718 0.05467 0.007490

24 1 0.813 0.008364 0.02688 0.006973

8 1.085 0.07555 0.2201 0.009278

32 1.288 0.3341 0.6982 0.01123

28 1 1.186 0.1528 0.3303 0.01059

8 1.509 1.426 3.210 0.01353

32 1.748 6.029 10.29 0.01582

Table 3: Multithreaded benchmarks.
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