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Abstract. This paper presents a Generalized BFV (GBFV) fully homo-
morphic encryption scheme that encrypts plaintext spaces of the form
Z[x]/(Φm(x), t(x)) with Φm(x) the m-th cyclotomic polynomial and t(x)
an arbitrary polynomial. GBFV encompasses both BFV where t(x) = p
is a constant, and the CLPX scheme (CT-RSA 2018) where m = 2k and
t(x) = x− b is a linear polynomial. The latter can encrypt a single huge
integer modulo Φm(b), has much lower noise growth than BFV, but it is
not known to be efficiently bootstrappable.
We show that by a clever choice of m and higher degree polynomial t(x),
our scheme combines the SIMD capabilities of BFV with the low noise
growth of CLPX, whilst still being efficiently bootstrappable. Moreover,
we present parameter families that natively accommodate packed plain-
text spaces defined by a large cyclotomic prime, such as the Fermat prime
Φ2(2

16) = 216+1 and the Goldilocks prime Φ6(2
32) = 264−232+1. These

primes are often used in homomorphic encryption applications and zero-
knowledge proof systems.
Due to the lower noise growth, GBFV can evaluate much deeper circuits
compared to native BFV in the same ring dimension. As a result, we can
evaluate either larger circuits or work with smaller ring dimensions. In
particular, we can natively bootstrap GBFV at 128-bit security already
at ring dimension n = 214, which was impossible before. We implemented
the GBFV scheme on top of the SEAL library and achieve a latency of
only 2 seconds to bootstrap a ciphertext encrypting up to 8192 elements
modulo 216 + 1.

Keywords: Fully homomorphic encryption · Bootstrapping · GBFV ·
BFV · CLPX · Cyclotomic prime · Fermat prime · Goldilocks prime.

1 Introduction

Homomorphic encryption (HE) schemes are commonly divided into two cate-
gories: on the one hand, there exist schemes that can evaluate “single instruc-
tion, multiple data” operations on a batch encryption of multiple elements (a.k.a.
SIMD schemes). Examples of this first category are BGV [12], BFV [11,23] and
CKKS [17]. On the other hand, some schemes do not have the SIMD option, but
have faster execution times, an easier programming model and smaller parame-
ters. This second category includes FHEW [22] and TFHE [18].
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All previously mentioned homomorphic encryption schemes are noise-based.
Encryption adds a small “noise” or “error” to the ciphertext, and this noise is
removed during decryption. This approach is necessary for security, but it also
comes with a major limitation: homomorphic evaluation of a circuit causes the
noise to grow. As such, the noise must stay below a given threshold for the
ciphertext to remain decryptable.

For current SIMD schemes, the noise-based methodology imposes one more
restriction: let p be the “precision” of the encoding (i.e. the plaintext modulus
in BGV/BFV), then the noise growth of multiplication obeys

nout ∝ p · (n1 + n2),

where n1 and n2 are upper bounds on the input noise, and nout is an upper bound
on the output noise. Observe that nout is directly proportional to p. This linear
relation is an unfavorable property that results in more noise for larger p. As
such, current SIMD schemes are rather impractical for high-precision arithmetic,
which is required in many useful HE applications (see Section 1.2).

A less well-studied scheme, which does not belong to either of the categories
discussed above, is the CLPX scheme due to Chen et al. [15]. The idea is to
define the plaintext ring modulo a linear polynomial t(x) = x− b, instead of an
integer p as in BGV and BFV. As such, it can encode a single integer defined
modulo Φm(b) (which typically supports thousands of bits), but has relatively
slow execution time and large parameters. Unfortunately, this scheme is still
rather impractical as it supports only one number per ciphertext and is only a
leveled scheme because no efficient bootstrapping method is known.1 However,
on the positive side, the noise growth under multiplication is only sublinear in the
desired precision: it depends on b rather than Φm(b). Whereas BGV and BFV are
very limited in multiplicative capacity, the CLPX scheme creates a true “gap”
between precision and noise growth. Consequently, the CLPX scheme is currently
the best choice for implementing extremely high-precision exact arithmetic in
homomorphic encryption.

1.1 Contributions

It is an open problem to design an HE scheme that supports both high-precision
arithmetic and SIMD capabilities. We solve this problem by generalizing and
simplifying BFV and CLPX to arbitrary cyclotomic polynomials Φm(x) and
arbitrary plaintext polynomials t(x). We also give a detailed noise analysis of
the various homomorphic operations.

We then instantiate the scheme by a clever choice of m and t(x), allowing
us to compute with vectors of elements in finite fields defined by a cyclotomic
prime, i.e. a prime obtained as the evaluation of a cyclotomic polynomial in an
integer. We also show how to deal with extensions of such finite fields. We give

1 The scheme may be bootstrapped via reduction to binary circuits, but we conjecture
this to be rather inefficient.
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several parameter families including the Fermat prime Φ2(2
16) = 216 + 1 and

the Goldilocks prime Φ6(2
32) = 264 − 232 + 1 (both of which are examples of

so-called generalized Mersenne primes).
Our construction is a trade-off between standard BFV and CLPX: similar to

BFV, our scheme offers packing capabilities, though with somewhat fewer slots;
and similar to CLPX, our scheme encrypts large (but not huge) integers with
sublinear noise growth. We call the new scheme Generalized BFV (GBFV).

Finally, we show for the first time how an encryption scheme with polynomial
(i.e. non-scalar) plaintext modulus can be bootstrapped for appropriate param-
eters. This is based on novel GBFV-to-BFV conversion and packing algorithms,
which may be of independent interest. We implement our bootstrapping on top
of Microsoft SEAL [58] and compare it to regular BFV bootstrapping.2

1.2 Motivation

Various FHE applications require high-precision plaintext spaces. For example,
state-of-the-art private set intersection protocols [19] use a plaintext modulus of
16 up to 26 bits, which is already significant in terms of noise growth for standard
BFV. Privacy preserving machine learning [33] uses even larger moduli of up
to 80 bits. Other applications of high-precision FHE include rational number
encoding [20,15] and p-adic encoding [37,5].

Outside the FHE domain, many zero-knowledge proof systems also use large
values of p [39,6]. For example, the FRI-based systems known as Plonky2 [55],
Miden-VM [54], Era-Boojum [51] and Risc Zero [57] use the popular Goldilocks
prime p = 264 − 232 + 1.3 A follow-up work shows how GBFV instantiated with
the Goldilocks prime can securely and efficiently delegate proof generation of a
zkSNARK to an untrusted server [24].

Another reason to use large values of p is packing density. It is well known that
BFV’s packing density (i.e. the number of slots divided by the ring dimension)
is equal to 1/d, where d is the multiplicative order of p modulo the cyclotomic
index m. As such, we need p > m for full packing. And in the specific case of
power-of-two cyclotomics, the number of slots is upper bounded by (p+1)/2 [25].
This is one of the motivations to use the popular prime p = 216 + 1 [10], which
achieves full packing density up to index m = 216. The large-p restriction is
even more apparent during bootstrapping, where p2 is used as an intermediate
modulus. This results in a precision of 32 bits for the 16-bit Fermat prime.

1.3 Related Work

The idea behind the CLPX scheme originates from the NTRU scheme. Hoffstein
and Silverman [38] noticed that the integer modulus in NTRU encoding can be
replaced with a small polynomial modulus. The CLPX scheme uses this trick in

2 See https://github.com/KULeuven-COSIC/Bootstrapping BGV BFV/tree/traces.
3 Note that the name “Goldilocks prime” is a slight abuse of terminology here, because
the original prime was of the shape φ2 − φ− 1 rather than φ2 − φ+ 1 [36,7].

https://github.com/KULeuven-COSIC/Bootstrapping_BGV_BFV/tree/traces


4 R. Geelen and F. Vercauteren

combination with the BFV scheme to construct leveled homomorphic encryption
for large integers [15]. Later research has shown how the same trick can be used
to encode complex numbers more efficiently [8,14]. To some extent, these works
on complex number encoding already generalize CLPX to moduli of the shape
xk− b, but this is still not general enough for our use case. Moreover, these prior
works are tailored to complex numbers, do not have a mechanism to permute the
encoded plaintext slots, and are not known to be bootstrappable. Another work
constructs an alternative way to reduce the modulus consumption in complex
number encoding by making the individual FHE operations more expensive [16].
However, this strategy seems inapplicable to exact schemes.

2 Preliminaries

2.1 Cyclotomic Fields and Rings

We will use the R-LWE problem, so we first introduce definitions and properties
of cyclotomic polynomials. For an integer m ⩾ 1, we take a primitive m-th root
of unity ωm ∈ C. This means that ωk

m = 1 if and only if m divides k. We call

Φm(x) =
∏

j∈Z×
m

(x− ωj
m)

the m-th cyclotomic polynomial. Here we used Z×
m for the unit group of integers

modulo m. The degree of the above polynomial is n = φ(m), where φ(·) is Eu-
ler’s totient function. A standard result states that all cyclotomic polynomials are
monic, irreducible over Q and have integer coefficients [1]. For the R-LWE prob-
lem, we define the m-th cyclotomic number field K = Q(ωm) = Q[x]/(Φm(x))
and its ring of integers R = Z[ωm] = Z[x]/(Φm(x)). The Galois group of K/Q is
written as Gal(K/Q). It consists of the automorphisms σj : x 7→ xj for j ∈ Z×

m.
As such, it is a trivial result that this Galois group is isomorphic to Z×

m. The
multiplicative subgroup generated by g1, . . . , gs ∈ Z×

m is denoted by ⟨g1, . . . , gs⟩.
An ideal in a ring is written with round parentheses, that is (r1, . . . , rs).

Embeddings and norms. For the purpose of noise analysis, we need to embed
the cyclotomic number field into a real or complex vector space. Two common
methods are the coefficient embedding and the canonical embedding. In our
definition, the coefficient embedding uses the powerful basis of K [47].

Definition 1. Let m = m1 · . . . ·ms be the prime-power factorization of m. Let

a =
∑

(i1,...,is)∈I

ai1,...,is · x
i1
1 · . . . · xis

s ,

where xj = xm/mj and I is the set of s-tuples with the j-th entry ranging from 0
to φ(mj)− 1. Then the coefficient embedding is defined by the map

ι : K ↪→ Rn : a 7→ {ai1,...,is}(i1,...,is)∈I .
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Definition 2. The canonical embedding is defined by the map

τ : K ↪→ Cn : a = a(x) 7→
{
a(ωj

m)
}
j∈Z×

m
.

This map is well-defined because ωj
m is a root of Φm(x) for each j ∈ Z×

m.

The coefficient embedding preserves addition, and is therefore an additive group
embedding. The canonical embeddings preserves addition and multiplication,
and is therefore a ring embedding. Note that multiplication is defined component-
wise in the embedding space Cn.

To analyze the noise in a ciphertext, we will study its norm through the
coefficient or canonical embedding. The notations

||a||p = ||ι(a)||p and ||a||canp = ||τ(a)||p

denote the ℓp-norm on the coefficient embedding and the canonical embedding
respectively. Since noise estimates are simpler for the canonical embedding, but
decryption is done on the coefficient embedding, it can be useful to upper bound
the coefficient norm in terms of the canonical norm. Fortunately, this is possible
because any two norms on a finite-dimensional vector space are known to be
equivalent. We refer to HElib for more information on how this can be done [34].

The norms satisfy the following lemma.

Lemma 1. Let a, b ∈ K, then

– ||a+ b||can∞ ≤ ||a||can∞ + ||b||can∞
– ||a · b||can∞ ≤ ||a||can∞ · ||b||can∞
– ||a||can∞ ≤ ||a||1.

The first property is the triangle inequality. The second and third property are
given for example by Gentry et al. [32].

2.2 Additional Notations for R-LWE

Throughout this paper, we consider t = t(x), which is either a polynomial in Z[x]
or a non-zero element of R, depending on the context. We write the quotient
ring of R modulo t as Rt = R/tR. All ring and field elements (except for the
modulus t) are shown in bold lower case letters or explicitly as polynomials. For
a ∈ K (which can have non-integral coefficients) and a positive integer N , we
denote the coefficient-wise centered reduction of a modulo N by [a]N . In other
words, this gives the element in NR+ a which has coefficients in [−N/2, N/2).
We employ the standard notations ⌊a⌋, ⌈a⌉ and ⌊a⌉ for coefficient-wise flooring,
ceiling and rounding to the nearest integer, respectively. The result of rounding
goes upwards if the input coefficient is in Z+ 1/2.

We will regularly use vectors and matrices over R. Row vectors are written
as a ∈ R1×ℓ, column vectors as −→a ∈ Rℓ×1 and matrices as −→a ∈ Rℓ1×ℓ2 . For the
inner product between vectors of the same type, we use ⟨·, ·⟩. Finally, we note
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that the above notations for modular reduction, flooring, ceiling and rounding
carry over component-wise to vectors and matrices.

We will require probability distributions to define the R-LWE problem and
related homomorphic encryption schemes. The distribution Uq denotes the uni-
form distribution on Rq. We also consider two distributions on R, namely χkey

and χerr for key and error generation respectively.

2.3 The Ideal Norm and the Resultant

To count the number of elements in a quotient ring, we can use the ideal norm.

Definition 3. Let I be an ideal in R, then the absolute norm of I is

N(I) = [R : I].

Lemma 2. Let t ∈ R be non-zero, then N(tR) = |NK/Q(t)| where NK/Q(·) is
the standard field norm.

This lemma shows that the absolute norm and the field norm are compatible for
principal ideals. For the proof, we refer to Marcus [50]. A direct corollary is that
the ring Rt is finite for non-zero t.

Definition 4. Let Pk ⊆ Z[x] be the set of polynomials of degree at most k.
Consider f(x), g(x) ∈ Z[x] of degree i and j respectively. The Sylvester map of
f(x) and g(x) is the linear transformation

Pj−1 ⊕ Pi−1 → Pi+j−1 : (r(x), s(x)) 7→ r(x) · f(x) + s(x) · g(x).

If we use the power basis of x to express the Sylvester map as a matrix, then the
determinant of this matrix is called the resultant Res(f(x), g(x)).

Observe that the image of the Sylvester map is a subset of the ideal (f(x), g(x))
in Z[x]. The next lemma gives an alternative way to count the number of elements
in the ring Rt based on the relation between norms and resultants [52].

Lemma 3. Let t(x) ∈ Z[x], then NK/Q(t(x)) = Res(Φm(x), t(x)).

The following lemma is a standard result (we refer to Knapp [42] for a proof).

Lemma 4. For f(x), g(x) ∈ Z[x], it holds that

– Res(f(x), g(x)) is in the image of the Sylvester map.
– Res(f(x), g(x)) = 0 if and only if f(x) and g(x) have a common factor of

degree at least one.

The former statement generalizes Bézout’s identity. Although the resultant is in
the image of the Sylvester map, it is not necessarily the smallest positive integer
with this property. As such, we use a definition of i Ventosa and Wiese [60,45].

Definition 5. Let f(x), g(x) ∈ Z[x] have non-zero resultant. Then the reduced
resultant or congruence number Con(f(x), g(x)) is the smallest positive integer
in the image of the Sylvester map of f(x) and g(x).
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2.4 Ring Learning With Errors

The ring learning with errors problem [46] is an algebraic variant of the learning
with errors problem [56]. Both are commonly used to construct homomorphic
encryption schemes, but we will only need the variant over rings. The R-LWE
problem is based on the R-LWE distribution for an integer q ≥ 2 and a secret s
sampled from χkey.

Definition 6. Fix a secret s ∈ Rq. The R-LWE distribution Aq
s is defined by

first sampling a← Uq, e← χerr and then returning (a, [a · s+ e]q).

Definition 7. Given access to polynomially many samples from R2
q, the deci-

sion R-LWE problem is to distinguish between the distributions Aq
s and U2

q .

Definition 8. Given access to polynomially many samples from Aq
s, the search

R-LWE problem is to find the underlying s.

Both variants of the R-LWE problem are conjectured to be hard for appropriately
chosen parameters [46].

2.5 Basics of BFV and CLPX

This section introduces the secret key variants of BFV and CLPX. In fact, we
describe the improved version of BFV encryption due to Kim et al. [40] where
ring rounding is applied after multiplication by ∆. Details of the BGV scheme
are omitted for conciseness, and because it is roughly equivalent to BFV.

BFV encryption. We fix a plaintext modulus t = p, a ciphertext modulus q
and a scaling factor ∆ = q/t. Encryption of m ∈ Rt is done via R-LWE:

ct = ([⌊∆ ·m⌉+ a · s+ e]q,−a) .

Decryption requires a ciphertext ct = (c0, c1) ∈ R2
q and the secret key s ∈ R:

m = ⌊(c0 + c1 · s)/∆⌉.

One can homomorphically compute three types of operations over the plaintext
space Rt: addition, multiplication and automorphism [23]. The scheme can be
made fully homomorphic by bootstrapping.

CLPX encryption. We fix a plaintext modulus t = t(x) = x− b, a ciphertext
modulus q and a scaling factor ∆ = ⌊q/t⌉. The plaintext space corresponds to

Rt = Z[x]/(Φm(x), x− b) = Z[x]/(x− b, p) ∼= Zp,

where p = Φm(b). Encryption of a single element µ ∈ Zp is done via R-LWE as
follows. First, we compute a “hat encoding” m̂ = µ (mod tR) such that m̂ has
small coefficients. Then the ciphertext is computed as

ct = ([∆ · m̂+ a · s+ e]q,−a) .
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Decryption requires a ciphertext ct = (c0, c1) ∈ R2
q and the secret key s ∈ R:

m̂ = ⌊(t/q) · (c0 + c1 · s)⌉.

Finally, the original message is retrieved via m̂ = m̂(x) and µ = m̂(b). One can
homomorphically compute two types of operations over the plaintext space Zp:
addition and multiplication [15]. Since only a single element is encrypted, no
SIMD operations are possible; and since the size of p is exponential in m, it is
not known how to bootstrap efficiently for cryptographically secure parameters.

Observe that the hat encoder is redundant if we replace ∆ · m̂ by ⌊(q/t) ·µ⌉.
This is done in our definition of the Generalized BFV scheme in Section 3, in
accordance with the implementation of the BFV scheme due to Kim et al. [40].
However, the hat encoder is still required (generalized and renamed to Flatten)
for plaintext-ciphertext multiplication.

SIMD operations. It was shown by Smart and Vercauteren [59] that one FHE
plaintext can encode several independent numbers. Their idea is based on the
Chinese remainder theorem (CRT). Specifically, let t = p be a prime that does
not divide m. Then it is a well-known fact that the m-th cyclotomic polynomial
factors modulo p into ℓ = n/d distinct irreducible factors of degree d, where d is
the order of p in Z×

m. In other words, we have the CRT isomorphism

Rp = Z[x]/(Φm(x), p)→ Z[x]/(F1(x), p)× . . .× Z[x]/(Fℓ(x), p)

µ(x) 7→ (µ(x) mod F1(x), . . . , µ(x) mod Fℓ(x)),
(1)

where Fi(x) are the factors of Φm(x) modulo p. Consequently, the plaintext space
is isomorphic to a direct product of ℓ copies of the finite field Fpd . In the case
where t = pe is a prime power, one can apply Hensel lifting so that the plaintext
space is given by ℓ copies of a Galois ring of characteristic pe.

Gentry et al. [31] showed that the plaintext slots can be arbitrarily permuted
based on the group action of Gal(K/Q). This automorphism group contains
the subgroup ⟨σp⟩ generated by the Frobenius automorphism σp. The Frobenius
automorphism itself acts on each slot independently as an automorphism on
the underlying Galois ring. It becomes even more interesting when considering
automorphisms outside of ⟨σp⟩. These automorphisms can be shown to induce
inter-slot permutations of the plaintext data.4

3 Generalized BFV Scheme

This section describes our generalization of BGV/BFV and CLPX to arbitrary
cyclotomic rings and non-linear polynomial plaintext moduli. Although we de-
scribe the secret key variant of the scheme, it can easily be turned into a public
key encryption scheme using standard techniques [23].

4 In some situations, two automorphisms are needed to implement one properly defined
permutation. However, this detail is outside the scope of this exposition.
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3.1 Choosing Small Representatives

Our generalization captures plaintext spaces modulo arbitrary non-zero principal
ideals generated by t = t(x). In some procedures, we require a representative
with small coefficients in R from an element in Rt. To achieve this, we define
the function

Flattent : Rt → R : m 7→ t ·
[m
t

]
1
.

Note that Flatten generalizes both the hat encoder from Chen et al. [15] and the
notation [·]N (since Flattent(m) = [m]t for an integer t). Moreover, it filters out
a unique canonical representative in R: it satisfies Flattent(m) = m (mod tR),
and the output does not depend on the input representative. Also note the
similarity to Babai rounding [3] for approximating the closest vector problem.

3.2 Gadget Decomposition

Two additional functions are required for decomposition and recombination of
ring elements. These functions are defined with respect to integers ω, q ≥ 2 and
ℓω,q = ⌈logω(q)⌉, and they will be used to control the noise growth during key
switching (see later). Let a′ = [a]q for a ∈ R, then we define

Dω,q(a) =

(
[a′]ω,

⌊[
a′

ω

]
ω

⌉
, . . . ,

⌊[
a′

ωℓω,q−1

]
ω

⌉)⊤

and

Pω,q(a) =
(
[a′]q, [a

′ · ω]q, . . . ,
[
a′ · ωℓω,q−1

]
q

)⊤
.

The following essential lemma is proven by Brakerski et al. [12].

Lemma 5. For all a, b ∈ R, it holds that

⟨Dω,q(a),Pω,q(b)⟩ = a · b (mod qR).

We note that alternative methods have been proposed to define D and P, which
are more convenient for the actual implementation of HE schemes. We refer to
Genise et al. [28] for an overview of the state-of-the-art techniques.

3.3 Scheme Definition

The FHE scheme has plaintext spaceRt and ciphertext spaceR2
q for an integer q.

For correctness, we will require that ||t(x)||can∞ ≪ q (similarly to BGV and BFV,
where we assume that t≪ q). We also define the “scaling factor” as∆ = q/t ∈ K.
We do not round the scaling factor to R, which results in a conceptually simpler
scheme definition than the original BFV and CLPX. The scheme then consists
of the following algorithms for key generation, encryption and decryption:

– SecretKeyGen: sample s← χkey and return s.
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– EvalKeyGen(s, s′): given secret keys s, s′ ∈ R, sample −→a ← Uℓω,q
q and −→e ←

χ
ℓω,q
err , and compute

−→
evk =

(
[Pω,q(s

′) +−→a · s+−→e ]q,−−→a
)
.

Return
−→
evk.

– Encrypt(m, s): given message m ∈ Rt and secret key s ∈ R, sample a← Uq
and e← χerr, and compute

ct = ([⌊∆ ·m⌉+ a · s+ e]q,−a) .

Return ct. Observe that the computed ciphertext is independent of the cho-
sen plaintext representative m due to the scaling by ∆.

– Decrypt(ct, s): given ciphertext ct = (c0, c1) ∈ R2
q and secret key s ∈ R,

compute
m = ⌊(c0 + c1 · s)/∆⌉.

Return m.

In a similar way as BFV, the IND-CPA security of the GBFV homomorphic
encryption scheme (without any evaluation keys) can be reduced to the hardness
of the decision R-LWE problem using a simple indistinguishability argument.
The procedure EvalKeyGen, where s′ depends on s, requires a circular security
assumption on top of R-LWE.

The following algorithms are necessary to compute homomorphic operations
on ciphertexts of the GBFV scheme:

– Add(ct, ct′): given ciphertexts ct, ct′ ∈ R2
q, let ct = (c0, c1) and ct′ = (c′0, c

′
1).

Now compute
ctadd = ([c0 + c′0]q, [c1 + c′1]q)

and return ctadd.

– Add(ct,m): given ciphertext ct ∈ R2
q and message m ∈ Rt, compute

ct′ = ([⌊∆ ·m⌉]q, 0)

and return Add(ct, ct′).

– KeySwitch(c,
−→
evk): given partial ciphertext c ∈ Rq and evaluation key

−→
evk =

(−→r0,−→r1) ∈ R
ℓω,q×2
q , compute

−→c = Dω,q(c), ctswitch =
([〈−→c ,−→r0

〉]
q
,
[〈−→c ,−→r1

〉]
q

)
.

Return ctswitch.
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– Multiply(ct, ct′,
−→
evk): given ciphertexts ct, ct′ ∈ R2

q and evaluation key
−→
evk ∈

Rℓω,q×2
q for s′ = s2, let ct = (c0, c1) and ct′ = (c′0, c

′
1). Now compute

ct′′ = ([⌊(c0 · c′0)/∆⌉]q, [⌊(c0 · c′1 + c1 · c′0)/∆⌉]q) , c′′2 = [⌊(c1 · c′1)/∆⌉]q.

Compute ct′′′ = KeySwitch(c′′2 ,
−→
evk) and return Add(ct′′, ct′′′).

– Multiply(ct,m): given ciphertext ct = (c0, c1) ∈ R2
q and message m ∈ Rt,

let m̂ = Flattent(m). Now compute

ctmult = ([m̂ · c0]q, [m̂ · c1]q)

and return ctmult. Note that Flatten is computed over K, which may be more
expensive than computations over R. However, in many applications such
as bootstrapping, this can be preprocessed if m is known in advance.

– Automorphism(ct, σ,
−→
evk): given ciphertext ct = (c0, c1) ∈ R2

q, automorphism
σ ∈ G where

G = {σ ∈ Gal(K/Q) | σ(t) ∈ tR}

and evaluation key
−→
evk ∈ Rℓω,q×2

q for s′ = σ(s), compute

ct′ = ([(σ(t)/t) · σ(c0)]q, 0) , c′1 = [(σ(t)/t) · σ(c1)]q.

Compute ct′′ = KeySwitch(c′1,
−→
evk) and return Add(ct′, ct′′). Multiplication

by σ(t)/t is not required in the regular BFV scheme because it is equal to 1.

In the BGV and BFV schemes, all automorphisms of Gal(K/Q) induce valid
automorphisms onRt. This is different in the generalized scheme: for correctness,
we impose that σ(t) ∈ tR (which is equivalent to σ(tR) = tR) such that σ is
well-defined over Rt.

Remark 1. Observe that the groups Gal(K/Q(t)) ⊆ G ⊆ Gal(K/Q) are not equal
in general. For example, let m = 8 and t(x) = x2 + 3x+ 1, then

– Gal(K/Q(t)) contains only x 7→ x.

– G contains x 7→ xi for i = 1, 7. Note that σ7(t) = −x2t over R which shows
that indeed σ7 ∈ G.

– Gal(K/Q) contains x 7→ xi for i = 1, 3, 5, 7.

Remark 2. Note that the scheme described in this section is totally general, i.e.
it works for any non-zero plaintext modulus polynomial t(x), and we have not
imposed any restriction except that ||t(x)||can∞ ≪ q. The above example already
illustrates that a “compatible” choice of Φm(x) and t(x) results in a non-trivial
set of valid automorphisms. Similarly, such choice is also required to achieve
non-trivial SIMD capabilities of the scheme.
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3.4 Noise Analysis

This section provides a conservative worst-case noise analysis on the canonical
embedding. As such, it demonstrates how the multiplication noise depends on
the norm of t, and not directly on the precision parameter p studied in the next
section. Heuristic average-case formulas are left as an open problem. We define
the invariant noise of a ciphertext in the same way as CLPX [15].

Definition 9. Let ct = (c0, c1) be a ciphertext that encrypts m ∈ Rt. Its invari-
ant noise is the field element v ∈ K with smallest infinity norm on the coefficient
embedding such that

(c0 + c1 · s)/∆ = m+ v (mod tR). (2)

Observe that we can rewrite the above definition as

c0 + c1 · s = ∆ · (m+ v) (mod qR). (3)

The following lemma gives a condition on the invariant noise for correctness
of decryption, again similar to CLPX.

Lemma 6. A ciphertext ct = (c0, c1) that encrypts m ∈ Rt decrypts correctly
if the invariant noise v satisfies ||v||∞ < 1/2.

Proof. Let
(c0 + c1 · s)/∆ = m+ v + t · a

for a ∈ R. Decryption computes

⌊(c0 + c1 · s)/∆⌉ = ⌊m+ v + t · a⌉ = m+ t · a = m (mod tR),

where the middle equality holds if ||v||∞ < 1/2. ⊓⊔

Additional symbols. We need to bound the ciphertext noise after encryption
and all homomorphic operations. For this purpose, we assume that the key and
error distributions, which were used earlier, are upper bounded. More specifically,
we define three extra symbols:

– Bkey is an upper bound on ||s||can∞ for s← χkey.
– Berr is an upper bound on ||e||can∞ for e← χerr.
– Bt is defined as ||t(x)||can∞ .

The next lemma bounds the “ring rounding” error that occurs when rounding
an element from K to R.

Lemma 7. Let a ∈ K and b = ⌊a⌉ ∈ R, then ||b− a||can∞ ≤ n/2.

Proof. Let ϵ = b− a. According to the third property of Lemma 1, we have

||ϵ||can∞ ≤ ||ϵ||1 ≤ n/2.

The second inequality is obtained by bounding the coefficients of ϵ by 1/2. ⊓⊔
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Initial noise. Let ct = (c0, c1) be a freshly encrypted ciphertext. It satisfies

c0 + c1 · s = ⌊∆ ·m⌉+ e = ∆ ·m+ ϵ+ e (mod qR),

where e is sampled from χerr and ϵ is the ring rounding error. The invariant
noise is given by v = (ϵ+ e)/∆. It can be bounded as

||v||can∞ ≤ (n/2 +Berr) ·Bt/q.

Ciphertext-ciphertext addition. The added ciphertext satisfies

[c0 + c′0]q + [c1 + c′1]q · s = (c0 + c1 · s) + (c′0 + c′1 · s)
= ∆ · (madd + vadd) (mod qR),

where madd = m+m′ and vadd = v + v′ are the added message and invariant
noise respectively. The noise can be bounded as

||vadd||can∞ ≤ ||v||can∞ + ||v′||can∞ .

Plaintext-ciphertext addition. We replace the second term by a ring round-
ing error. Then the formula changes to ||vadd||can∞ ≤ ||v||can∞ + (n/2) ·Bt/q.

Key switching. Suppose that we have c ·s′ = ∆ · (m+v) (mod qR). The key
switched ciphertext satisfies[〈−→c ,−→r0

〉]
q
+
[〈−→c ,−→r1

〉]
q
· s =

[〈
Dω,q(c),Pω,q(s

′) +−→a · s+−→e
〉]

q
+[〈

Dω,q(c),−−→a
〉]

q
· s

= ⟨Dω,q(c),Pω,q(s
′)⟩+

〈
Dω,q(c),

−→a · s
〉
+〈

Dω,q(c),
−→e

〉
+

〈
Dω,q(c),−−→a

〉
· s

= c · s′ +
〈
Dω,q(c),

−→e
〉

= ∆ · (m+ vswitch) (mod qR),

where the third equality follows from Lemma 5 and

vswitch = v +
〈
Dω,q(c),

−→e
〉
/∆.

Recall that −→e is sampled from χ
ℓω,q
err . The noise can be bounded as

||vswitch||can∞ ≤ ||v||can∞ +Bswitch,

where Bswitch = ℓω,q · (ω ·n/2) ·Berr ·Bt/q. The factor ω ·n/2 represents decom-
position of c in base ω, which uses a similar observation as in Lemma 7.
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Ciphertext-ciphertext multiplication. Before key switching, the multiplied
ciphertext satisfies

c′′0 + c′′1 · s+ c′′2 · s2 = [⌊(c0 · c′0)/∆⌉]q + [⌊(c0 · c′1 + c1 · c′0)/∆⌉]q · s+

[⌊(c1 · c′1)/∆⌉]q · s2

= (c0 · c′0)/∆+ (c0 · c′1 + c1 · c′0)/∆ · s+

(c1 · c′1)/∆ · s2 + (ϵ0 + ϵ1 · s+ ϵ2 · s2)
= (c0 + c1 · s) · (c′0 + c′1 · s)/∆+ (ϵ0 + ϵ1 · s+ ϵ2 · s2)
= ∆ · (m ·m′ +m · v′ + v ·m′ + v · v′) +

(ϵ0 + ϵ1 · s+ ϵ2 · s2) (mod qR).

Note that at this point, we have to fix two particular representatives m,m′ ∈ R
rather than m,m′ ∈ Rt. This is so that we can define the decryption formula
from Equation (2) without reduction modulo tR. The elements ϵi are again ring
rounding errors. Clearly, the intermediate noise is given by

vint = m · v′ + v ·m′ + v · v′ +
ϵ0 + ϵ1 · s+ ϵ2 · s2

∆

= v′ · (m+ v) + v · (m′ + v′)− v · v′ +
ϵ0 + ϵ1 · s+ ϵ2 · s2

∆

= v′ · c0 + c1 · s
∆

+ v · c
′
0 + c′1 · s

∆
− v · v′ +

ϵ0 + ϵ1 · s+ ϵ2 · s2

∆
.

The noise can be bounded as

||vint||can∞ ≤ (n/2) · (Bkey + 1) ·Bt · (||v||can∞ + ||v′||can∞ ) +

(||v||can∞ · ||v′||can∞ ) + (n/2) · (1 +Bkey +B2
key) ·Bt/q.

The final noise (after key switching) can be bounded as

||vmult||can∞ ≤ ||vint||can∞ +Bswitch.

Plaintext-ciphertext multiplication. Different from addition, the equations
for plaintext-ciphertext multiplication deviate much from ciphertext-ciphertext
multiplication. That is, the multiplied ciphertext satisfies

[m̂ · c0]q + [m̂ · c1]q · s = m̂ · (c0 + c1 · s)
= ∆ · (mmult + vmult) (mod qR),

where mmult = m ·m′ and vmult = m̂ · v. Note that m′ indicates the plaintext
encrypted by the ciphertext (c0, c1). Here we used the important property that
Flattent(m) = m (mod tR). The invariant noise can then be bounded as

||vmult||can∞ ≤ (n/2) ·Bt · ||v||can∞ .
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Automorphism. Before key switching, the computed ciphertext satisfies

[(σ(t)/t) · σ(c0)]q + [(σ(t)/t) · σ(c1)]q · σ(s) = (σ(t)/t) · σ(c0 + c1 · s)
= ∆ · (σ(m) + σ(v)) (mod qR),

where we used the fact that (σ(t)/t) · σ(∆) = ∆. Clearly, the intermediate noise
is given by

vint = σ(v), so ||vint||can∞ = ||v||can∞ .

The final noise (after key switching) can be bounded as

||vauto||can∞ ≤ ||vint||can∞ +Bswitch.

4 Algebraic Structure of the Plaintext Space

This section studies the algebraic structure of the plaintext space. We start with
the special case of binomial moduli (plus some additional assumptions on the
exact shape of the binomial) and then we treat more general moduli.

4.1 Plaintext Space for a Binomial Modulus

We will use the following standard property of cyclotomic polynomials. We refer
to the literature [1] for a proof of the lemma and for a more detailed discussion
about the properties of cyclotomics.

Lemma 8. Let r = rad(m) denote the radical of a positive integer m, i.e. the
product of its distinct prime factors. Then the following relation holds:

Φm(x) = Φr(x
m/r).

We will now derive properties of the plaintext space when the modulus is of the
special shape t(x) = xk − b, where both k and b are integers. We will assume
that 0 < k < n = φ(m) and k | (m/r), where r = rad(m) is the radical of m.

Our plaintext ring is Rt = Z[x]/I, using the ideal I = (Φm(x), t(x)) ⊆ Z[x].
In our special case, this can be simplified with Lemma 8 and Euclidean division
(i.e. by substituting Φm(x) with its reduction modulo t(x) = xk − b) to

I = (Φr(x
m/r), xk − b) = (t(x), p),

where p = Φr(b
m/(rk)). The next lemma shows that for some combinations, the

splitting behaviour of t(x) modulo p is extremely nice.

Lemma 9. Let m ≥ 3 be an integer and let r = rad(m) be its radical. Consider
0 < k < n = φ(m) such that k | (m/r). For an integer b, define t(x) = xk−b and
p = Φr(b

m/(rk)). If p is a prime number and does not divide m, then t(x) splits
over Fp into ℓ′ = k/d distinct irreducible factors of identical degree d, where d is
the multiplicative order of p modulo m. The subgroup G of valid automorphisms
equals G = Gal(K/Q(t)) and consists of the maps x 7→ xi for i = 1 (mod m/k).
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Proof. Observe that Φm(x) ∈ (t(x), p), and thus t(x) divides Φm(x) over Fp[x].
As such, the splitting behaviour of t(x) over Fp follows directly from the splitting
behaviour of Φm(x) over Fp, which is well known to split into φ(m)/d distinct
irreducible factors of degree d, with d the multiplicative order of p modulo m.
Since Φm(x) splits completely over Fpd , the same holds for t(x). Moreover, its
roots are primitive m-th roots of unity, so the order of b is exactly m/k.

We now analyze the subgroup of valid automorphisms. Recall that σi : x 7→ xi

is valid if and only if

σi(t) = xk·i − b ∈ tR ⇐⇒ bi − b ∈ tR.

This equivalence holds because xk·i = bi (mod tR). As such, we need p | bi − b,
or even p | bi−1−1 since p and b are coprime by definition. This is true if i−1 is
divisible by the order of b modulo p, which was established to be m/k. Moreover,
all these valid automorphisms satisfy σi(t) = t. ⊓⊔

SIMD operations. As a direct corollary of Lemma 9, we can pack multiple
elements in one plaintext based on the splitting behaviour of t(x) modulo p. In
fact, the degree d of the factors of t(x) is identical to the BFV scheme. We can
also compute arbitrary permutations of the plaintext slots in a similar way as
HElib [34]. That is, we first replace Equation (1) by the isomorphism

Rt = Z[x]/(t(x), p)→ Z[x]/(T1(x), p)× . . .× Z[x]/(Tℓ′(x), p)

µ(x) 7→ (µ(x) mod T1(x), . . . , µ(x) mod Tℓ′(x)).
(4)

Define the slot algebra Fpd = Fp(ζ), where ζ is a formal root of T1(x) over Fp.
Then ζ is also a root of Φm(x), so it is a primitive m-th root of unity. The roots
of t(x) over Fpd are simply obtained by twisting ζ with the k-th roots of unity.
We therefore obtain them as

ζ(m/k)·i+1 for 0 ≤ i < k.

In particular, the roots of T1(x) are the p-th power maps of ζ. Let S ⊆ Z be
a full system of representatives for H/⟨p⟩, where H ∼= G is the subgroup of Z×

m

whose elements are congruent to 1 modulo m/k. Equation (4) is updated to

µ(x) 7→
{
µ(ζh)

}
h∈S

.

This is possible because all ζh are roots of t(x) belonging to different Ti(x).
The so-called hypercube representatives are constructed as

S = { ge11 · . . . · gess | 0 ≤ ei < ℓ′i } ,

where the number of slots is ℓ′ = ℓ′1 · . . . ·ℓ′s and s is the number of dimensions. As
such, we can associate each slot with a tuple (e1, . . . , es) or with h = ge11 · . . . ·gess .
We use a procedure similar to the one in HElib [34] to compute gi and ℓ′i.

Rotations can be implemented by means of the automorphism group G, in a
similar way as for BFV [27]. Let α be the mask obtained by embedding 0 in the
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plaintext slots with indices (e1, . . . , ei, . . . , et) where ei < v, and embedding 1 in
the other slots. Then the rotation with 0 ≤ v < ℓ′i positions in dimension i for a
plaintext m can be computed as

m 7→ α · σj(m) + (1−α) · σk(m),

where j = g−v
i (mod m) and k = g

ℓ′i−v
i (mod m). If the order of gi in H is ℓ′i, the

equation collapses to m 7→ σj(m) and we only need one automorphism. Finally,
observe that the Frobenius automorphism σp acts on each slot separately as the
p-th power map.

4.2 Plaintext Space for a More General Modulus

We slightly generalize the analysis of the previous sections to plaintext moduli
where p = Con(Φm(x), t(x)) is prime and does not divide m (this means that p
is unramified in K). We remark that the scheme also works if p is not prime,
but it would require a more careful analysis of the splitting behaviour for the
different prime factors of p.

It is clear by definition that p ∈ I = (Φm(x), t(x)), so we may also write the
ideal as I = (Φm(x), t(x), p). Reducing to Fp[x], the ideal becomes principally
generated by t′(x) = gcd(Φm(x), t(x)) ∈ Fp[x] so we conclude that I = (t′(x), p).
A noteworthy difference with the binomial case is that when we consider I as
an ideal in Z[x] (rather than in R), it is not necessarily equal to (t(x), p).

Remark 3. In the case of binomial plaintext moduli, arbitrary permutations can
be computed as linear combinations of valid automorphisms. This is because the
GBFV slots form an orbit under the group action of G/⟨σp⟩ on the BFV slots.
This is not true in general as shown by a simple counterexample: take m = 8
and t(x) = x3 − 16x2 + 256x− 4096, then p = 216 + 1 and d = 1. Now we have
Res(Φm(x), t(x)) = p3, so there are 3 valid plaintext slots while |G| = 1. Note
that arbitrary permutations may still be computed via conversion to BFV, but
we do not elaborate this idea further.

Interpretation as a subspace of BFV. As already mentioned previously, the
extension degree d of the slot algebra is identical for GBFV and BFV, which is
no coincidence. In fact, the GBFV plaintext space is a subspace of Rp. To see
this, note that the definition of p implies that it is an element of (Φm(x), t(x)),
so we can write p = β · t in R. But we know that pR splits in distinct prime
ideals, so the Chinese remainder theorem implies that Rp

∼= Rβ × Rt. In this
equation, GBFV only uses the slots corresponding to Rt.

4.3 Hensel Lifting to Prime Powers

Some applications (bootstrapping in particular) require a plaintext space defined
modulo a prime power pe rather than a prime p. The following analysis shows
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that this can be achieved by changing the plaintext modulus from t to te. Again,
we assume that p = Con(Φm(x), t(x)) is prime and does not divide m.

Our starting point is the observation that Φm(x) is in the ideal (t′(x), p),
where t′(x) = gcd(Φm(x), t(x)) over Fp[x]. It follows immediately that

Φm(x) = β′(x) · t′(x) (mod p)

for some β′(x) ∈ Z[x]. Through the process of Hensel lifting, this equation may
also be defined modulo pe, so we can write

Φm(x) = β′(x) · t′(x) (mod pe). (5)

We claim that (Φm(x), te(x)) = (t′(x), pe) as ideals in Z[x]. To see this, observe
that Φm(x) ∈ (t′(x), pe) due to Equation (5). We also know that t(x) ∈ (t′(x), p)
because t′(x) divides t(x) over Fp by construction. A simple binomial expansion
of t(x) = γ(x) · t′(x) + δ(x) · p shows that te(x) ∈ (t′(x), pe), so it follows that

(Φm(x), te(x)) ⊆ (t′(x), pe).

In the opposite direction, note that both ideals have an index equal to (N(tR))e
when seen as additive subgroups of Z[x], so they are identical. The interpretation
as a subspace of BFV (now with plaintext modulus pe) also remains valid because
we have Rpe ∼= Rβe ×Rte by the Chinese remainder theorem.

4.4 Parameter Sets

In this section, we propose families of parameter sets for 16-bit, 32-bit, 64-bit
and 128-bit cyclotomic prime moduli. These families accommodate a range of
security levels, mainly determined by the degree of Φm(x). Tables illustrating
the packing capacity vs. noise growth are deferred to Appendix A. The following
list is non-exhaustive and was obtained via a simple script:

1. Let m = 2j and t(x) = xk− b, with k = 2i+j−5 and b = 22
i

for some integers
0 ≤ i ≤ 3 and 5 ≤ j ≤ 16 such that p = Φ2(2

16) = 216 + 1.

2. Let m = 2j and t(x) = xk − b, with k = 2i+j−3 and b = 2882
i

for some
integers 0 ≤ i ≤ 1 and 3 ≤ j ≤ 16 such that p = Φ2(288

4) = 2884 + 1.

3. Let m = 3 · 2j and t(x) = xk − b, with k = 2i+j−6 and b = 22
i

for some
integers 0 ≤ i ≤ 5 and 6 ≤ j ≤ 16 such that p = Φ6(2

32) = 264 − 232 + 1.

4. Let m = 3 · 2j and t(x) = xk − b, with k = 2i+j−4 and b = 2362
i

for some
integers 0 ≤ i ≤ 3 and 4 ≤ j ≤ 16 such that p = Φ6(236

8) = 23616−2368+1.

The polynomial t(x) splits completely modulo p = 1 (mod m) for all parameter
families, and our plaintext space is thus isomorphic to Fk

p. The method is fully
parameterizable and inherently provides a flexible trade-off between number of
slots and noise growth: a larger value of i results in larger k and b. This gives
more slots but also more multiplication noise. In the extreme case where b = 2,
the multiplication noise is completely dominated by the contribution inherent
to the cyclotomic ring and (the Hamming weight of) the secret key distribution.
As such, reducing the number of slots too aggressively becomes almost useless
at a certain point. Finally, note that the group G is cyclic unless i = 5 in the
third family or i = 3 in the fourth family.
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Adjoining roots of unity. In zero-knowledge applications, one typically works
in a quadratic or cubic field extension for the Goldilocks prime (i.e. the third
parameter family) to achieve sufficient soundness. While it is possible to mimic
computations in such extension fields via Fp-arithmetic, we show that with a
small tweak, one can also support these extension fields natively. To achieve
this, we need to look for roots of unity that live in Fpd but not in a strict
subfield. That is, we look for small factors of pd − 1 that are not already factors
of pd

′ − 1 for some d′ < d. More specifically, it suffices to consider small prime
factors of Φd(p). We propose the following augmented parameter sets:

1. To obtain a quadratic extension, we can adjoin a primitive 7-th root of unity
to the cyclotomic ring (which is contained in Fp2 \ Fp). As such, we update
the parameters to m = 7 ·3 ·2j and k = 7 ·2i+j−6. This augmented parameter
set does not satisfy the restrictions from Section 4.1 because k ∤ (m/r). The
number of slots over Fp2 is therefore not k/2, but 3 · 2i+j−6.

2. To obtain a cubic extension, we can adjoin a primitive 9-th root of unity to
the cyclotomic ring (which is contained in Fp3 \Fp). As such, we update the
parameters to m = 9 · 2j and k = 3 · 2i+j−6. The number of slots over Fp3 is
given by 2i+j−6.

Eliminating roots of unity. Conversely, we can descend the third and fourth
parameter family to the standard R-LWE problem over power-of-two cyclotomic
rings by eliminating the primitive 3-th roots of unity. Let

NK/K′ : K → K′

be the standard field norm from the 3 · 2j-th to the 2j-th cyclotomic field. Then
the plaintext modulus t′ = NK/K′(t) produces the same prime p, while it lives in
a power-of-two cyclotomic ring. As a special case, we obtain native arithmetic
modulo the Goldilocks prime in power-of-two cyclotomic rings, but with slightly
more noise growth since Bt′ ≈ B2

t and using a smaller ring dimension.

Ring switching. In certain applications such as the delegated zkSNARK prover,
one wants to minimize the size of the ciphertext resulting from a computation. It
can happen that one is only interested in a ciphertext that encrypts a subset of
the plaintext vector. To select such a subset, note that the above families define
a tower of cyclotomic fields. That is, we have the natural embedding

ρ : R′ = Z[x]/(Φm(x))→ R = Z[y]/(Φ2a·m(y)) : x 7→ y2
a

whenever m is even. Furthermore, this embedding respects the definition of t(x)
for a fixed i when j is replaced by j + a in the parameter sets above. As such,
the families also define compatible plaintext spaces. This allows us to apply ring
switching, in order to transform a ciphertext defined over R to a corresponding
ciphertext over R′ that encrypts part of the original plaintext vector. We refer
to Gentry et al. [29] for more details, but in short, it suffices to perform key
switching to a secret key that lives in ρ(R′) ⊂ R, select the slots one is interested
in using a linear transformation, and finally map to R′ using the trace function.
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5 Bootstrapping

This section proposes a novel GBFV bootstrapping method inspired by regular
BFV bootstrapping. We first review BFV bootstrapping, and then propose novel
methods to bootstrap single GBFV ciphertexts and batches of ciphertexts.

5.1 Reviewing BFV Bootstrapping

Historically, the “native” BGV/BFV bootstrapping approach was first studied
theoretically [12,30,2] and then implemented in HElib [35]. Later research has
shown how it can be improved by optimizing the involved polynomials [13,26,48]
and linear transformations [25,49]. Below we describe the “thin” bootstrapping
workflow due to Chen and Han [13], because it will be used in later sections:

1. Evaluate a homomorphic linear transformation to map the slots of the input
ciphertext to the coefficients of a different ciphertext.

2. Evaluate a homomorphic inner product to convert a noisy encryption of m
to a low-noise encryption of p ·m+ e.

3. Evaluate a homomorphic linear transformation to map the coefficients of the
ciphertext to the slots of a different ciphertext.

4. Evaluate a homomorphic digit removal polynomial to cancel the terms ei.

These four steps are summarized in Figure 1, where Encp(m) denotes an encryp-
tion of m under plaintext modulus p. For simplicity, we assume that the used
plaintext moduli are a prime p and its square. This is sufficient for our large-p
use case, but it could also be generalized to higher powers of p.

Alternatives of the native approach. Recently, there were many alternative
BFV bootstrapping proposals. This includes a method to use the slots more
efficiently [53], functional bootstrapping [44,43], and even an algorithm that uses

Encp(m1, . . . ,mℓ)

Encp(m)

Encp2(p ·m+ e)

Encp2(p ·m1 + e1, . . . , p ·mℓ + eℓ)

Encp(m1, . . . ,mℓ)

Linear transformation

Inner product

Inverse linear transformation

Digit removal

Fig. 1. Thin bootstrapping workflow, adapted from [13,27]
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CKKS bootstrapping as a subroutine [41]. While finding the optimal method is
an interesting research question, this paper does not intend to answer it. Instead,
we use the native approach and improve it in Section 5.4 and Section 5.5.

5.2 A First Attempt at GBFV Bootstrapping

Our first (and failed) idea to bootstrap the GBFV scheme was to work with a
temporary plaintext modulus of t2 (instead of p2 in Figure 1). This approach
required us to switch the ciphertext modulus from q to t2 right before the inner
product step. This is technically possible if we introduce a ring rounding error:⌊

t2

q
· c0

⌉
+

⌊
t2

q
· c1

⌉
· s = t ·

(
m+ v +

ϵ0 + ϵ1 · s
t

)
(mod t2R). (6)

Note that this works correctly if the norm of 1/t is small enough (and other-
wise, we can switch to a higher power of t). Let the newly obtained ciphertext
from Equation (6) be denoted by (c′0, c

′
1). We can extract its regular (i.e. non-

invariant) noise e = t · v + ϵ0 + ϵ1 · s as

Flattent(c
′
0 + c′1 · s) = t ·

[
c′0 + c′1 · s

t

]
1

.

To finish the bootstrapping, we need to extract the noise homomorphically, so
we need to implement Flattent as an arithmetic circuit.

We note that Flattent has a period of t, and when translated to the isomorphic
space modulo p2, this period becomes p. As a result, there exists a polynomial
representation of the required functionality if p is prime [26]. However, since the
interpolation space is Zp2 for a possibly very large number p, the polynomial
may have a huge degree of up to 2p − 1. Moreover, the large-p bootstrapping
trick from Ma et al. [48] does not seem to help here, because multiple small error
coefficients are “spread” over one element of Zp2 .

5.3 Conversion and Packing of GBFV Ciphertexts

To overcome the previous obstacle, we use BFV bootstrapping as a subroutine.
For this purpose, we propose an almost noise-free conversion method between
GBFV and BFV, and a packing method that assembles multiple GBFV cipher-
texts in a BFV ciphertext. These methods can bootstrap GBFV via a black-box
call to BFV bootstrapping, but they may also be of independent interest.

GBFV-to-BFV conversion. Suppose we have a GBFV ciphertext as in Equa-
tion (3). We make the reduction modulo t explicit by introducing an extra term:

c0 + c1 · s = ∆ · (m+ t · a+ v).

If we multiply both sides by t/p and round, we get⌊
t

p
· c0

⌉
+

⌊
t

p
· c1

⌉
· s =

q

p
· (m+ t · a+ v + p · (ϵ0 + ϵ1 · s)/q).
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The result is a BFV encryption of m+ t ·a under plaintext modulus p, where a
is a random but irrelevant ring element.

In the other direction, suppose that we start from a BFV ciphertext

c0 + c1 · s =
q

p
· (m+ v) (mod qR).

Then we simply multiply by p/t and get(p
t
· c0

)
+
(p
t
· c1

)
· s = ∆ · (m+ v) (mod qR).

Note that this only works correctly because p/t is an element of R.

GBFV-to-BFV packing. When multiple GBFV ciphertexts are bootstrapped
simultaneously, we can pack them together in one BFV ciphertext. To facilitate
the packing step, we additionally assume a binomial modulus as in Lemma 9.
Intuitively, the packing works because the group action of G/⟨σp⟩ partitions the
BFV slots into n/k orbits, one of which corresponds to the GBFV slots.

To ease the notation, let us write β = p/t ∈ R as before. We are given a set
of encryptions Enct(mi) for 0 ≤ i < n/k, where the subscript again denotes the
plaintext modulus. These ciphertexts are equal to

Enct(mi) = Encp(β ·mi).

This identity can be seen by expanding the ciphertexts using Equation (2) and
multiplying by β. Consider a subset of automorphisms {σ(0), . . . , σ(n/k−1)} which
forms a system of representatives for the quotient group Gal(K/Q)/G. Packing
homomorphically computes

ct =

n/k−1∑
i=0

σ(i)(β−1 · Enct(mi)) = Encp

n/k−1∑
i=0

σ(i)(β−1β ·mi)

 ,

where the inverse of β is defined modulo t. To unpack the j-th message, we apply

ctj = β · σ−(j)(ct) = Enct

n/k−1∑
i=0

σ−(j)(σ(i)(β−1β ·mi))

 , (7)

where σ−(j) denotes the inverse of σ(j). Packing costs n/k automorphisms and
one multiplicative BFV level. Unpacking costs n/k automorphisms and no levels
at all (multiplication by β implements the noiseless BFV-to-GBFV conversion
routine and is hence not considered a level in terms of the invariant noise).

To prove correctness, we need to show that ctj encrypts mj in Equation (7).
If i equals j, both automorphisms cancel and the remaining term β−1β ·mj is
congruent to mj modulo t. All other terms will disappear completely modulo t,
because σ(i) and σ(j) are in different cosets of Gal(K/Q)/G. More specifically, it
can be seen from the following lemma that σ−(j)(σ(i)(β)) is divisible by t.
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Lemma 10. Let σ /∈ G be an automorphism of the cyclotomic number field K,
then σ(β) is divisible by t in R under the conditions of Lemma 9.

Proof. The congruence number p is divisible by t and σ(t) (because the division
results are β and σ(β) respectively). So if we can show that the ideals generated
by t and σ(t) are coprime, then σ(β) = p/σ(t) is divisible by t and we are done.

Consider σ : x 7→ xi, then Lemma 9 implies that i ̸= 1 (mod m/k). Define
the ideal I = (t, σ(t)) ⊆ R and let t(x) = xk − b. Clearly p ∈ I and also bi − b
is in I because it is the reduction of σ(t) modulo t. We proved in Lemma 9 that
the multiplicative order of b modulo p is equal to m/k. In combination with the
fact that i ̸= 1 (mod m/k), we find that bi − b is not divisible by p in Z. But p
is prime, so it must be coprime to bi − b, thus 1 ∈ I by Bézout’s identity. ⊓⊔

5.4 Single Bootstrapping via Conversion

Further improvements can be obtained by opening the black box from the previ-
ous section. In particular, BFV bootstrapping with a large value of p is somehow
wasteful, because we do not fully use the available message space. Let us assume
from now on that p is prime and congruent to 1 modulo m, so that d = 1. We
propose an improved bootstrapping based on Section 5.1 as follows:

1. We start with an encryption Enct(m1, . . . ,mℓ′), where ℓ
′ denotes the number

of GBFV slots (to avoid confusion, we use a different symbol ℓ > ℓ′ to denote
the number of BFV slots). In the first step, we convert this ciphertext from
GBFV to BFV and get Encp(m1, . . . ,mℓ′ , . . . ,mℓ).

2. Evaluate the first three steps of thin bootstrapping in Section 5.1. We call
this a slot-wise noisy expansion of the plaintext space.

3. Convert the obtained ciphertext from BFV modulus p2 to GBFV modulus t2.
This step is a multiplication by β2, which can be folded in the inverse linear
transformation from the previous step, thereby saving a multiplicative level.

4. Evaluate an adapted digit removal polynomial. This is the polynomial from
Ma et al. [48] (also used in [25,49]), multiplied by β−1 (mod t). Division by t
is automatic and is a simple reinterpretation of the result.

These four steps are summarized in Figure 2. They only cover the full splitting
case, which suffices for many parameter sets. For d > 1, we need to include extra
unpacking and repacking operations before and after digit removal [35,25].

This section improves over the black-box approach in terms of noise growth
during digit extraction (which is typically the most depth-consuming step of
bootstrapping). Remark that we now work with plaintext modulus t2, which has
much smaller norm than p2 for typical parameter sets. Consequently, we get the
beneficial multiplication noise growth from Section 3.4. This crucial improvement
will allow us to use a smaller ring dimension of n = 214 than prior work.

5.5 Batch Bootstrapping via Packing

To exploit the unused part of the message space, we can pack multiple GBFV
ciphertexts together during the noisy expansion step. The packing limit is n/k
GBFV ciphertexts per BFV ciphertext.
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Enct(m1, . . . ,mℓ′)

Encp(m1, . . . ,mℓ′ , . . . ,mℓ)

Encp2(p ·m1 + e1, . . . , p ·mℓ′ + eℓ′ , . . . , p ·mℓ + eℓ)

Enct2(p ·m1 + e1, . . . , p ·mℓ′ + eℓ′)

Enct(m1, . . . ,mℓ′)

GBFV to BFV

Noisy expansion

BFV to GBFV

Digit removal

Fig. 2. GBFV single bootstrapping workflow

The steps for batch bootstrapping are displayed in Figure 3. The workflow is
very similar to Figure 2, except that the conversion steps are replaced by packing
and unpacking. Note that the packing multiplication by β−1 can be folded in the
digit removal polynomial. The choice of doing unpacking before digit extraction,
and not after digit extraction, is a design decision that reduces the noise growth.

6 Implementation and Results

We implemented the GBFV scheme on top of the Microsoft SEAL library [58].
Unfortunately, SEAL is restricted to power-of-two cyclotomic rings and moduli
of 60 bits or less, which makes it impossible to implement all recommended pa-
rameter sets. However, there are two good reasons why we opted for SEAL: first,
it supports the BFV scheme, which uses a GBFV-compatible “most significant
bit” encoding. As a result, the implementation can be conveniently generalized

Enct(miℓ′+1, . . . ,miℓ′+ℓ′) for 0 ≤ i < n/k

Encp(m1, . . . ,mℓ′ , . . . ,mℓ)

Encp2(p ·m1 + e1, . . . , p ·mℓ′ + eℓ′ , . . . , p ·mℓ + eℓ)

Enct2(p ·miℓ′+1 + eiℓ′+1, . . . , p ·miℓ′+ℓ′ + eiℓ′+ℓ′) for 0 ≤ i < n/k

Enct(miℓ′+1, . . . ,miℓ′+ℓ′) for 0 ≤ i < n/k

Packing

Noisy expansion

Unpacking

Digit removals

Fig. 3. GBFV batch bootstrapping workflow
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to GBFV. Moreover, it allows us to extend the bootstrapping implementation
due to Geelen [25] from BFV to GBFV. The recent work from Ma et al. [49] also
implements bootstrapping, but in HElib and only for the BGV scheme. Note that
these two works mark the state-of-the-art in native BGV/BFV bootstrapping.

In contrast to prior works about BGV/BFV, we are able to use a small ring
dimension of n = 214 at 128-bit security, while still being able to pack a relatively
large number of at least 1024 slots. This small ring dimension is enabled by the
reduced multiplication noise of digit removal: since there is less noise growth,
we can work with smaller q and n at constant security level. To the best of our
knowledge, the only other method that can use ring dimension n = 214 (apart
from the FHEW/TFHE branch) is BLEACH [21,4]. However, this scheme can
only pack bits (whereas we pack 16-bit numbers), has a more expensive addition
(i.e. XOR gate) and its bootstrapping has few remaining multiplicative levels.

We augmented the BFV bootstrapping implementation from Geelen [25] with
sparse secret encapsulation [9]. The benchmarks in this section use similar pa-
rameters as BLEACH bootstrapping [4]: we take n = 214, a modulus q ≈ 2420

and a ternary secret key distribution with Hamming weight h = 256. The sparse
key has Hamming weight h̃ = 32 and we set the noise cut-off parameter [48,25]
to B = 15 for failure rate less than 2−64. We use the prime p = 216 +1 from the
first recommended parameter family. Similarly to BFV bootstrapping [25], we
also subtracted 15 bits from the initial and remaining noise budget to enable sub-
domain interpolation of the noise over [−B,B]∩Z. The paragraphs below show
experiments for single and batch bootstrapping operations. All experiments were
conducted on a MacBook Pro (2021) equipped with an Apple M1 Max processor,
64 GB of RAM and running macOS Sonoma 14.7.1. The shown noise budget is
the one reported by SEAL and is always normalized to p. As such, it gives the
inherent noise rather than the invariant noise.

Experiments for single bootstrapping. Bootstrapping results for individual
ciphertexts are given in Table 1. We applied 2-stage decomposition of the linear
transformations in noisy expansion. We used the first recommended parameter
family, which has ℓ′ = k GBFV slots. The trade-off between number of slots
and noise growth is clear from the table: the number of slots increases gradually
from the left to the right column, while the remaining noise budget decreases.
Increasing the number of slots to 16384 (which would coincide with regular BFV)
is not possible for this parameter set, because the remaining noise budget would
be negative. The total bootstrapping execution time is the lowest number ever
demonstrated for BFV-like schemes at 128-bit security.

Experiments for batch bootstrapping. Similarly, we also generated results
for batch bootstrapping in Table 2. The displayed number of slots reflects an
individual ciphertext (the number of slots for a full batch is always 16384). The
latency of single bootstrapping is better than batch bootstrapping, since in the
latter multiple digit removal polynomials are evaluated. However, the through-
put (number of bootstrapped slots times remaining capacity divided by total
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Table 1. Results for GBFV single bootstrapping using m = 215 and p = 216 + 1

Number of slots ℓ′ 1024 2048 4096 8192

Bits per multiplicative level 11 12 14 18

Noise (bits)

Initial 317 317 317 317
Noisy expansion 111 111 114 118
Digit removal 82 91 113 161
Remaining 124 115 90 38

Execution
time (sec)

Noisy expansion 1.41 1.44 1.44 1.46
Digit removal 0.53 0.54 0.54 0.55
Total 1.94 1.98 1.98 2.01

Throughput
#slots · bits/sec 65 · 103 119 · 103 186 · 103 155 · 103
#slots ·#levels/sec 5.8 · 103 9.3 · 103 12 · 103 8.2 · 103

Table 2. Results for GBFV batch bootstrapping using m = 215 and p = 216 + 1

Number of slots ℓ′ 1024 2048 4096 8192

Bits per multiplicative level 11 12 14 18

Noise (bits)

Initial 317 317 317 317
Packing 2 2 1 1
Noisy expansion 126 125 126 126
Unpacking 30 29 24 16
Digit removals 82 91 113 161
Remaining 77 70 53 13

Execution
time (sec)

Packing 0.15 0.07 0.03 0.01
Noisy expansion 1.52 1.46 1.43 1.43
Unpacking 0.15 0.07 0.03 0.01
Digit removals 8.56 4.23 2.14 1.06
Total 10.38 5.83 3.63 2.51

Throughput
#slots · bits/sec 122 · 103 197 · 103 239 · 103 85 · 103
#slots ·#levels/sec 11 · 103 14 · 103 14 · 103 0

execution time) of Table 2 is generally much higher than the corresponding col-
umn in Table 1 since noisy expansion is only evaluated once for the entire batch.
The notable exception to this is the rightmost column, where the remaining noise
budget of batch bootstrapping is less than a multiplicative level.

6.1 Comparison to Regular BFV Bootstrapping

This section compares the performance of BFV and GBFV bootstrapping. First,
it should be noted that BFV bootstrapping is not possible with ring dimension
n = 214 at a security level of 128 bits. As such, the results from Table 3 were
generated using ring dimension n = 215 and ciphertext modulus q ≈ 2840. We
applied 3-stage decomposition of the linear transformations for all benchmarks.
The parameters in this section are optimized for throughput and hence result in
higher latency than the previous section. The last row of Table 3 shows that the
throughput of GBFV batch bootstrapping is roughly 1.3× faster than BFV.
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Table 3. Comparison to BFV bootstrapping using m = 216 and p = 216 + 1

Bootstrapping algorithm BFV Single GBFV Batch GBFV

Number of slots ℓ or ℓ′ 32768 16384 16384
Total slot count 32768 16384 32768
Bits per multiplicative level 26 18 18

Noise (bits)
Initial 735 735 735
Consumed 440 337 361
Remaining 295 398 374

Execution
time (sec)

Digit removal(s) 2.90 3.09 6.13
Other operations 6.66 6.70 7.11
Total 9.56 9.79 13.24

Throughput
#slots · bits/sec 1011 · 103 666 · 103 926 · 103
#slots ·#levels/sec 38 · 103 37 · 103 49 · 103

6.2 Limitations and Future Work

While the proposed algorithm is a significant improvement over well-known BFV
bootstrapping in terms of noise growth, we stress that it cannot bootstrap all
parameter sets. For example, CLPX uses a linear polynomial as the plaintext
modulus, so the congruence number p is exponential in the ring dimension n. As
a result, bootstrapping would require R-LWE with exponential modulus-to-noise
ratio, because we need to compute the linear transformations modulo p. It is an
open problem to achieve efficient bootstrapping for such parameters.

An important future work is implementing GBFV bootstrapping for the other
parameter families (e.g. instantiated with the Goldilocks prime). This is currently
not possible because SEAL only supports plaintext moduli of up to 60 bits. The
implementation can also be further improved through modulus switching.
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A Packing Capacity versus Noise Growth

The sections below illustrate the trade-off between packing capacity and multipli-
cation noise growth for our 16-bit, 32-bit, 64-bit and 128-bit parameter families.
The Hamming weight of the secret key was set to 128 for all tables. It is evident
from all experiments that the noise can be reduced significantly by choosing t(x)
with small norm. Eventually, the noise gets bottlenecked by other factors, which
are caused by the ring dimension and the secret key’s Hamming weight.

A.1 16-bit prime p = Φ2(2
16) = 216 + 1

We fix m = 215 and t(x) = xk − b with k = 2i+10 and b = 22
i

for 0 ≤ i ≤ 3.

i 0 1 2 3 BFV

Number of slots 1024 2048 4096 8192 16384
Noise PT × CT (bits) 6.4 7.3 9.1 13.2 21.1
Noise CT × CT (bits) 10.5 11.2 13.0 17.3 25.1

A.2 32-bit prime p = Φ2(288
4) = 2884 + 1

We fix m = 215 and t(x) = xk − b with k = 2i+12 and b = 2882
i

for 0 ≤ i ≤ 1.

i 0 1 BFV

Number of slots 4096 8192 16384
Noise PT × CT (bits) 13.2 21.7 38.0
Noise CT × CT (bits) 17.2 25.8 42.1

A.3 64-bit prime p = Φ6(2
32) = 264 − 232 + 1

Base field encoding. We fix m = 3 · 214 and t(x) = xk − b with k = 2i+8 and

b = 22
i

for 0 ≤ i ≤ 5. The slots are defined over Fp.

i 0 1 2 3 4 5 BFV

Number of slots 256 512 1024 2048 4096 8192 16384
Noise PT × CT (bits) 6.5 7.4 9.2 13.1 21.3 37.3 68.9
Noise CT × CT (bits) 10.3 11.3 13.1 17.2 25.2 41.3 73.0

Alternatively, we may also use power-of-two cyclotomics by fixing m′ = 214 and
t′ = NK/K′(t), where t = t(x) is the same as above and 0 ≤ i ≤ 4. The slots are
still defined over Fp.

i 0 1 2 3 4 BFV

Number of slots 256 512 1024 2048 4096 8192
Noise PT × CT (bits) 6.9 8.9 12.9 20.7 37.0 68.7
Noise CT × CT (bits) 11.4 12.9 16.7 24.9 40.7 72.8
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Quadratic extensions. We fix m = 7 ·3 ·211 and t(x) = xk−b with k = 7 ·2i+5

and b = 22
i

for 0 ≤ i ≤ 5. The slots are defined over Fp2 .

i 0 1 2 3 4 5 BFV

Number of slots 96 192 384 768 1536 3072 6144
Noise PT × CT (bits) 6.3 7.3 9.1 12.9 20.9 37.0 69.2
Noise CT × CT (bits) 10.2 11.1 13.0 16.9 24.7 41.0 73.0

Cubic extensions. We fix m = 9 · 212 and t(x) = xk − b with k = 3 · 2i+6 and

b = 22
i

for 0 ≤ i ≤ 5. The slots are defined over Fp3 .

i 0 1 2 3 4 5 BFV

Number of slots 64 128 256 512 1024 2048 4096
Noise PT × CT (bits) 6.2 6.9 9.0 12.9 21.1 36.6 68.8
Noise CT × CT (bits) 10.1 10.8 12.9 16.9 24.8 40.9 73.0

A.4 128-bit prime p = Φ6(236
8) = 23616 − 2368 + 1

We fix m = 3 · 214 and t(x) = xk − b with k = 2i+10 and b = 2362
i

for 0 ≤ i ≤ 3.

i 0 1 2 3 BFV

Number of slots 1024 2048 4096 8192 16384
Noise PT × CT (bits) 13.3 21.7 37.8 69.3 131.2
Noise CT × CT (bits) 17.2 25.4 41.7 73.2 135.4
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