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Abstract

Recent works on interactive zero-knowledge (ZK) protocols provide a new paradigm with high effi-
ciency and scalability. However, these protocols suffer from high communication overhead, often linear
to the circuit size. In this paper, we proposed two new ZK protocols with communication sublinear to
the circuit size, while maintaining a similar level of computational efficiency.

1. We designed a ZK protocol that can prove B executions of any circuit C in communication O(B +
|C|) field elements (with free addition gates), while the best prior work requires a communication
of O(B|C|) field elements. Our protocol is enabled by a new tool called as information-theoretic
polynomial authentication code, which may be of independent interest.

2. We developed an optimized implementation of this protocol which shows high practicality. For ex-
ample, with B = 2048, |C| = 220, and under 50 Mbps bandwidth and 16 threads, QuickSilver, a
state-of-the-art ZK protocol based on vector oblivious linear evaluation (VOLE), can only prove 0.78
million MULT gates per second (mgps) and send one field element per gate; our protocol can prove
14 mgps (18× improvement) and send 0.0064 field elements per gate (156× improvement) under the
same hardware configuration.

3. Extending the above idea, we constructed a ZK protocol that can prove a single execution of any
circuit C in communication O(|C|3/4). This is the first ZK protocol with sublinear communication
for an arbitrary circuit in the VOLE-based ZK family.

1 Introduction

Zero-knowledge (ZK) proofs allow a prover to convince a verifier that a circuit C is satisfiable in such a
way that the verifier learns nothing beyond the satisfiability of circuit C. This work focuses on interactive
(and thus designated-verifier) zero-knowledge proofs of knowledge that often feature high computational
efficiency and scalability. ZKGC [JKO13] is an early result of such-type ZK proofs, and requires λ bits
of communication per AND gate for a computational security parameter λ. More recently, ZK protocols
based on vector oblivious linear evaluation (VOLE) [WYKW21, DIO21, BMRS21, YSWW21, WYX+21,
BBMH+21, DILO22] have emerged with comparable or even better computational efficiency while reduc-
ing the communication to one field element per multiplication gate (thus 1 bit per AND gate for Boolean
circuits). State-of-the-art implementations [YSWW21, BBMH+21, DILO22] can prove tens of millions
of gates per second and easily scale to prove trillions of gates. Although huge concrete improvement in
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practicality, VOLE-based ZK protocols often require communication linear to the circuit size, something
undesirable when the circuit is large.

There have been some attempts to address the communication complexity in VOLE-based ZK proto-
cols, and prior works can reduce the communication for selected types of circuits. For example, protocol
Mac′N′Cheese [BMRS21] incorporates the “stacking” [HK20] approach so that when proving a branch
statement, the communication is only linear to the largest branch. QuickSilver [YSWW21] proposes a ZK
protocol to prove the computation of multiple polynomials with communication only linear to the highest
degree of all polynomials. We are also aware of a very recent work LPZKv2 [DILO22] that has up to 2×
improvement when the circuit structure is arbitrary, and the improvement can be higher when the circuit is
more structured. Despite a fair amount of progress in reducing the communication, there are two central
open questions:

1. Sublinear communication for loops/SIMD circuits. Loops appear in almost all common statements.
In the context of ZK, they are closely related to another concept called as single instruction multiple data
(SIMD) circuits, because the prover can provide an extended witness for the inputs and outputs of all
iterations of a loop (and thus all iterations can be verified in parallel rather than sequential). A protocol
that can take advantage of this structure would be very useful. For interactive ZK protocols, the closest
is QuickSilver [YSWW21], which can only handle polylogarithmic-depth SIMD circuits: their protocol
models circuits as polynomials, so a depth-d circuit could lead to a degree-2d polynomial.

2. Sublinear communication for arbitrary circuits. When it comes to a single execution of an arbitrary
circuit, no prior work can even break the communication barrier of one field element per gate, let alone
sublinear communication. The most related result is LPZKv2 [DILO22], which needs 0.5 to 1 field
elements per MULT gate and thus can achieve 2× improvement at best.

Note that both of them are achievable in NIZKs, e.g., Ligero [AHIV17] and GKR-style proofs [GKR08,
ZLW+21], but their performance and scalability are far less than interactive ZK proofs.

1.1 Our Contributions

In this paper, we make huge progress in designing scalable and computationally efficient interactive zero-
knowledge protocols. Our new ZK protocols achieve sublinear communication complexity and maintain a
similar level of computational efficiency compared to prior VOLE-based ZK proofs.

Sublinear ZK proof for SIMD circuits. We designed an interactive ZK protocol with sublinear commu-
nication for proving SIMD circuits. Our protocol only needs to communicate O(B + |C|) field elements to
prove B executions of any circuit C (which we will refer to as a (B, |C|)-SIMD circuit). The computational
complexity is O(B|C| logB). This protocol is free for addition gates, and can be seamlessly integrated with
existing VOLE-based ZK protocols so that one can use our new protocol to prove SIMD sub-circuits and use
other protocols to prove non-SIMD parts. This new protocol crucially relies on a new commitment scheme
called as information-theoretic polynomial authentication code (IT-PAC)1 that can commit to a high-degree
polynomial with constant communication cost. The main ZK protocol uses IT-PACs to commit to the wire
values across all executions of the circuit and prove the correctness of the committed values gate-by-gate.

We implemented this protocol, and it shows great concrete performance. For example, under a 50
Mbps bandwidth and 16 threads, our implementation on (211, 220)-SIMD circuits (231 multiplication gates)
can prove 14 million multiplication gates per second, and communicates 0.0064 field elements per gate.
Compared to a state-of-the-art VOLE-based ZK protocol QuickSilver, we achieve 18× improvement in
throughput and 156× improvement in communication under the same network bandwidth and configuration.

1It is a generalization of the closely related information-theoretic MAC.
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SIMD circuits in the context of ZK appear widely in many statements and thus our protocol is widely
applicable.

1. RAM-based computation. In the state-of-the-art RAM-based computation [FKL+21], each RAM ac-
cess requires proving a small statement about the data consistency. In this case, B is linear to the number
of RAM operations, and |C| is linear to the bit-length of the index and the payload.

2. Deep neural network inference. Many neural networks require repetitive non-linear operations, e.g.,
activation functions like ReLU and Sigmoid, at many layers on each model parameter. In this case, B is
linear to the neural-network model size, and |C| is linear to the size of each non-linear operation.

3. Hash/encrypt long messages. Almost all cryptographic hash functions and encryption schemes involve
repetitive structures of a compression function or a block cipher. This is true for ZK-friendly schemes as
well. In this case, B is linear to the message size; C is the circuit of a compression function or a block
cipher.

What’s more interesting, many applications above require a largeB ≥ |C|, in which case the communication
complexity can be further reduced to O(

√
B|C|) by tuning the parameters.

Sublinear ZK proof for generic circuits. Further developing our ideas, we designed an interactive ZK
protocol that achieves sublinear communication for proving a single execution of an arbitrary circuit. For
any circuit C, this protocol only needs to send O(|C|3/4) field elements with computational complexity of
O(|C| log |C|) This is the first ZK protocol that achieves sublinear communication for proving an arbitrary
circuit in the VOLE-based ZK family. The main idea is to break down the circuits into individual gates and
prove them as SIMD circuits. Then we design a mechanism to check the consistency of wire values between
different gates. Although IT-PACs can be used to check element-wise equality almost for free, the wiring
of an arbitrary circuit can be highly complicated. This is addressed by a new cross-polynomial consistency
check. We provide an in-depth technical overview of this protocol in Section 2.4.

Our improvements in communication come with heavier computation, i.e., the computational complex-
ity is no longer linear to the circuit size compared to prior works [YSWW21, BBMH+21, DILO22]. How-
ever, we show that for SIMD circuits, our protocol achieves a very similar level of concrete computational
efficiency, and we believe further improvement to our generic-circuit protocol can make it practical as well.

2 Technical Overview

2.1 VOLE-based ZK Proofs

We provide the relevant background of prior work on interactive zero-knowledge proofs [BMRS21, YSWW21,
DIO21], which serves as a building block and also a starting point of our protocol. These ZK protocols
work by using VOLE as an interactive commitment scheme and constructing a “commit-and-prove” proto-
col. Such a commitment is also referred to as information-theoretic message authentication code (IT-MAC)
and we will use both names interchangeably. Briefly, to commit a value x ∈ F held by a prover P , we let
P obtain an MAC M ∈ F, and let a verifier V obtain a local key K ∈ F and a uniform global key ∆ ∈ F,
such that M = K + x · ∆. Prover P can later open the value by sending (x,M) to V , who can check that
the above equation holds; a cheating prover trying to open to a different value (e.g., x′) would need to find
a value M′ such that M′ = K + x′ ·∆, which is as hard as guessing ∆. A detailed description of IT-MACs
can be found in Section 3.1.

A VOLE-based ZK protocol works in two phases. First, two parties obtain IT-MACs of all wire values
in the circuit; since IT-MACs are additively homomorphic, P just needs to commit to all input wire values
and the output wire values of all multiplication gates (where the commitments to the output wire values of
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addition gates can be computed locally). Second, two parties run a sub-protocol to check that all multipli-
cation gates are correctly computed, i.e., the committed output wire values are equal to the multiplication of
the committed input wire values. The design of such checking is the core of prior works and state-of-the-
art protocols only require communication sublinear to the circuit size. Overall, the communication mainly
comes from the first step where committing one wire value requires P to send one field element. When
proving a circuit with |C| multiplication gates, this step already requires communication of |C| field ele-
ments. As mentioned in the introduction, for circuits with certain structures (e.g., low-degree polynomials
and branches), it is possible to obtain asymptotically better concrete communication, but no prior work can
be applied to prove a single or multiple executions of an arbitrary circuit, for which the best-known result is
still linear to the circuit size.

2.2 A New Commitment for Sublinear ZK

The main goal of this paper is to significantly reduce the communication of VOLE-based ZK protocols
without giving up its merits: high concrete computational efficiency and memory scalability. To this end,
our first step is to design a polynomial commitment scheme where the communication is sublinear to the
polynomial degree. With computational tools, this is often easy: one could simply use a random oracle or,
if additive homomorphism is needed, apply Reed-Solomon encoding first as in Ligero [AHIV17]. Here, the
main challenge is to design a commitment scheme that is additively homomorphic, information-theoretic
and has the extra properties that enable our sublinear ZK protocol.

Our idea is to extend VOLE-based commitments beyond linear relationships. However, the exact way of
combining polynomials and IT-MACs is crucial. Suppose P wants to commit to a polynomial f(·) ∈ F[X]
of degree at most k. We let V sample a uniform key Λ ∈ F and make V obtain f(Λ) in some way to
be detailed later. By having V hold Λ and f(Λ), the polynomial f(·) is statistically binding as long as P
does not know Λ. This is similar to how VOLE-based commitment works. Furthermore, it is additively
homomorphic: if V uses the same key Λ across different polynomials f(·) and g(·), then V can compute the
binding of polynomial h(·) = f(·) + g(·) via h(Λ) = f(Λ) + g(Λ). However, it is not hiding as V knows
the polynomial value evaluated at the point Λ.

Adding the hiding property. Before we get into how we enable hiding, one crucial observation is that f(Λ)
should be hidden from the proverP as well, in addition to the verifier V: ifP sees the evaluation on manyP-
known polynomials, it can solve Λ locally. One attempt is to mask the value f(Λ) and then raise the degree.
For example, we can let P and V obtain M ∈ F and K ∈ F, respectively, such that M = K+f(Λ) ·Λ. This is
a strict generalization of IT-MACs (when f(·) is a constant) and would work as a polynomial commitment.
However, as it will be clear soon, our protocol requires V to open Λ to P at some point, and then P proves
statements about f(Λ) in zero-knowledge. This is challenging given this design: once Λ is revealed to P ,
binding is not guaranteed.

Our idea is to compose an IT-MAC on top of a polynomial: we use VOLE (which has an independent
global key ∆) to authenticate the value f(Λ). For P to commit to a polynomial f(·), we let P hold M ∈ F
and V hold K ∈ F such that

M = K + f(Λ) ·∆,
where ∆ is a uniform global key of IT-MACs held by V and no party knows f(Λ). The commitment
is now hiding and is still binding: a prover opening to (M, f(·)) 6= (M′, f ′(·)) means that M − M′ =
(f(Λ) − f ′(Λ)) · ∆. Except for probability O(1/|F|), a cheating prover would need to guess at least Λ
or ∆ to find such two tuples. Because this commitment scheme shares a lot of similarities with IT-MACs,
we refer to this commitment scheme as information-theoretic polynomial authentication code (IT-PAC). It
is information-theoretic because, after distributing the values (M and K) to the two parties, IT-PAC is both
perfectly hiding and statistically binding. However, one can easily see that the distribution of IT-PACs
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requires a computational assumption; this is similar to IT-MACs: it requires a computational assumption
to generate IT-MACs but the format itself is information-theoretic. In the following, we will describe how
to use IT-PACs to design sublinear ZK proofs, and then discuss how to distribute an IT-PAC with O(1)
amortized communication for each polynomial.

2.3 Sublinear ZK Proof for SIMD Circuits

We briefly talk about our ZK protocol that can prove B evaluations of any circuit C in communication
O(B + |C|) rather than O(B|C|), required by state-of-the-art VOLE-based protocols. Our main idea is to
encode the values over all B evaluations on a wire in circuit C into one polynomial and commit to it using
an IT-PAC. Fixing any set of B coordinates, we can always encode a vector x ∈ FB to a degree-(B − 1)
polynomial f(·) ∈ F[X] using polynomial interpolation. Then prover P just needs to prove that all gates are
computed correctly. Due to the additively homomorphic property of IT-PACs, the computation of addition
gates is trivial to be correct. The biggest challenge is to prove the correct computation of multiplication
gates in sublinear communication cost, which are all committed compactly under IT-PACs; we detail our
approach below.

For B evaluations of a multiplication gate in circuit C, the prover P holds the vectors of wire values
x,y, z ∈ FB such that xi · yi = zi for all i ∈ [1, B], and encodes x,y, z into three degree-(B − 1)
polynomials f(·), g(·), h(·) ∈ F[X]. Two parties P and V hold the IT-PACs of polynomials f(·), g(·), h(·),
i.e., P has Mf ,Mg,Mh and V has Kf ,Kg,Kh such that

Mu = Ku + u(Λ) ·∆, for all u ∈ {f, g, h}.

Our observation is that P could prove this relationship in two steps without knowing the polynomial values.
The prover P computes the fourth degree-(2B − 2) polynomial h̃(·) = f(·) · g(·) ∈ F[X], and then
commits to it using an IT-PAC. Now P can prove that among all four IT-PACed polynomials: 1) the newly
committed polynomial h̃(·) is indeed the correct multiplication of input polynomials f(·), g(·); and 2) the
degree-(B − 1) polynomial h(·) and the degree-(2B − 2) polynomial h̃(·) share the same values in the first
B evaluations, i.e., h(αi) = h̃(αi) for all i ∈ [1, B] given the fixed points α1, . . . , αB ∈ F. Each of two
properties is efficiently provable with little to no communication cost and we will discuss each step below.

Proving polynomial multiplication. To prove the correctness of polynomial multiplication, we simply
need to prove that h̃(Λ) = f(Λ) ·g(Λ) because of the Schwartz–Zippel lemma and that Λ is uniform and not
known to the prover. One would naturally want to extend the idea of QuickSilver [YSWW21] (which in turn
is inspired by Line-Point ZK [DIO21]), but the setup is not exactly the same. Prover P and verifier V hold
the IT-MACs of the above three values f(Λ), g(Λ), h̃(Λ), but P does not know the values being MACed;
what’s more, P knowing multiple such polynomial values can break binding of the commitment scheme by
solving the key Λ.

This prompts us to rethink the role of Λ in our protocol. As mentioned above, the randomness in Λ pro-
vides binding to IT-PACs and a prover knowing Λ is able to open a commitment to other values. However,
there is no harm in revealing Λ to P if there is no more opening (or equivalently, if all opening messages
from P are committed before seeing Λ). Therefore, we can check the correctness of the polynomial multi-
plication by: 1) letting P commit to all opening messages using IT-PACs; 2) V reveals Λ to P (if V sends
an incorrect Λ, it will be caught easily when this check is incorporated with other parts of the protocol); 3)
two parties check the aforementioned relationship using QuickSilver for all polynomial multiplications with
O(1) communication overhead.

Proving degree reduction. In this check, the prover P has polynomials h(·) and h̃(·); two parties P and
V hold the IT-PACs on these two polynomials, and want to prove that h(αi) = h̃(αi) for all i ∈ [1, B].
We observe that this property is “sacrificable” [DPSZ12]: any two pairs of polynomials (h1(·), h̃1(·)) and
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(h2(·), h̃2(·)) satisfy the property, if and only if their random linear combination also satisfies the same
property except for probability O(1/|F|). Therefore, this property can be checked in a batch: two parties
first generate two IT-PACed uniform polynomials (r(·), s(·)) that are supposed to satisfy the desired property
when the prover is honest. Then two parties compute a random linear combination of IT-PACs between input
polynomials to be checked and the newly generated random polynomials; random linear combination can be
computed locally since the coefficients are public and IT-PACs are additively homomorphic. Now the prover
P can open the resulting random-looking polynomials and the verifier can check the property locally. The
protocol can check any number of pairs of polynomials with the same communication cost, so the overall
communication cost to check any polynomial number of such relationships on degree-(B − 1, 2B − 2)
polynomials is O(B).

Analysis of communication cost. Both checks can be done in a communication cost at most O(B) assum-
ing a random oracle; before the check we need to commit to 2|C| polynomials each of degree either (B− 1)
or (2B− 2). We will show later how to construct such IT-PACs that can distribute all IT-PACs in communi-
cation costO(B+ |C|). Therefore the total communication complexity isO(B+ |C|). Note that one can fur-
ther tune the parameters of the protocol: we can group k circuits into one bigger circuit and view the SIMD
circuit as B′ = B/k subcircuits each of size C ′ = k|C|, which needs O(B′ + C ′) = O(B/k + k|C|) com-
munication. When B ≥ |C|, we can let k =

√
B/|C|, which leads to a total communication of O(

√
B|C|)

field elements.

2.4 Sublinear ZK Proof for Generic Circuits

Now we generalize the above idea from SIMD circuits to prove a single evaluation of an arbitrary circuit.
We break down the circuit into gates and thus we can perform the SIMD idea on all gates. However, we still
need to ensure the consistency between gates: the output wire of one gate may be the input wire of another
gate. This is a more challenging task because the wiring of the circuit can be arbitrary.

Assuming a circuit with CA addition gates and CM multiplication gates, we can represent the circuit
as {(ai, bi, ci)}i∈[1,CA], representing all addition gates, and {(a′i, b′i, c′i)}i∈[1,CM ], representing all multi-
plication gates. We first commit all wire values in all gates: {wai}i∈[1,CA], {wbi}i∈[1,CA], {wci}i∈[1,CA],
{wa′i}i∈[1,CM ], {wb′i}i∈[1,CM ], and {wc′i}i∈[1,CM ]. Since IT-PACs commit to values in a batch, we com-
mit to wire values in each set in batches of size B. Now, two parties P and V can easily prove that
{wai + wbi = wci}i∈[1,CA] and {wa′i · wb′i = wc′i}i∈[1,CM ] by using the SIMD technique above. Note
that given a circuit, we commit to 3(CA + CM ) wires values but there are only CA + CM + I different
wires so many wire values appear more than once in different IT-PACs at different slots. Now we just need
to prove the consistency between different IT-PAC committed values.

To be more specific, prover P has (Mf , f(·)), (Mg, g(·)); verifier V has Kf ,Kg such that for Mu =
Ku +u(Λ) ·∆ for u ∈ {f, g}. P wants to prove that f(αi) = g(αj) for some i, j ∈ [1, B]. One observation
is that such a check is also “sacrificable” just as discussed before. Thus, we can have P first commit to two
random polynomials r(·) and s(·) using IT-PACs under the constraint that r(αi) = s(αj). Then, two parties
can check the consistency of the committed polynomials f(·), g(·) by opening the IT-PAC commitments of
χ · f(·) + r(·) and χ · g(·) + s(·), where χ ∈ F is a public coefficient. Now V can locally check if the
i-th and the j-th locations have the same value. This check has a communication of O(B) mostly to open
polynomials of degree B.

For a fixed pair of indices (i, j), the above check can be easily extended to check for a list of pairs
of polynomials without increasing the communication. Although there are at most 2(|C|/B) consistency
checks in the circuit, each of them belongs to one of the B2 consistency checks each with different (i, j).
Therefore the total communication of the wire-value consistency check is O(B3). In summary, we need
O(|C|/B + B) communication to commit and prove all gates and then O(B3) to check the consistency
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between output wire values and input wire values. Here, we have the freedom to pick the parameter B, and
can set B = O(|C|1/4) obtaining a total communication of O(|C|3/4).

2.5 Efficiently Generating IT-PACs

Finally, we introduce an efficient protocol for distributing IT-PACs with the amortized communication cost
independent of the polynomial degree. We note that with this constraint, preprocessing IT-PACs does not
appear as useful: even given an IT-PAC on a random polynomial, we still need communication linear to the
polynomial degree to obtain an IT-PAC on a chosen polynomial. We found that the greatest challenge is to
make the commitment extractable, something extremely difficult given that IT-PAC is information-theoretic.
Our key observation is that, we do not need the commitment to be extractable except for circuit-input wires;
for wires in the circuits, a stand-alone definition is already sufficient to achieve proof of knowledge in the
underlying ZK protocol. This enables us to design a more efficient IT-PAC generation protocol, and below
we sketch out our idea.

Suppose that P wants to commit to a polynomial f of degree at most k. First, V picks a uniform
Λ ∈ F, and computes encryption of Λi denoted by 〈Λi〉 for each i ∈ [1, k] using an additively homomorphic
encryption (AHE) scheme. V sends all the ciphertexts 〈Λ〉, . . . , 〈Λk〉 to P . Two parties also get a random
IT-MAC where P holds r,M∗ ∈ F, and V gets K∗ ∈ F and a uniform global key ∆ ∈ F such that
M∗ = K∗+ r ·∆. Now the P can locally compute the encryption of f(Λ)− r (with encryption of all powers
of Λ, computing the encryption of f(Λ) only involves linear operations) and send it to V , who can decrypt
to get this value s = f(Λ)− r. Finally, P outputs M = M∗ and V outputs K = K∗ − s ·∆. The correctness
holds because M− K = M∗ − K∗ + (f(Λ)− r) ·∆ = f(Λ) ·∆.

The cost of generating random IT-MACs is negligible small in both communication and computation
costs using the recent LPN-based VOLE protocols. After V sends the encryption of all powers of Λ (reusable
across many commitments), P only needs to send the encryption of one field element per polynomial. Using
a modern AHE scheme based on learning with errors (LWE), e.g., BGV [BGV12], the ciphertext overhead of
encryption can be easily reduced to a small constant. Therefore, the communication complexity to commit to
` polynomials with each of degree k isO(`+k) field elements. The use of an LWE-based AHE also ensures
that the computation is light as we do not need any heavy operations like homomorphic multiplication. Note
that this protocol is only secure against semi-honest adversaries but we will show how this protocol could
be sufficient for our ZK protocol.

Using a weaker IT-PAC generation protocol. Recall that in our main ZK protocol, V needs to reveal Λ
to P , at which point the verifier only has ∆ as the secret value. The protocol flow of establishing some
secret value for soundness and revealing it later on has appeared in prior work: in the ZK proof from garbled
circuits (GCs) [JKO13] the verifier sends a garbled circuit to the prover; after the prover evaluates it and
commits to the output wire key, the verifier opens all secrets in the garbled circuit so that the prover can
check the correctness before opening the output wire key. In our case, the encryption of all powers of Λ
plays the role of GC and thus we can use the same “delayed open and check” technique. We let the verifier
commit to a seed at first, which will be used to derive Λ and the randomness to encrypt its powers. All
provers’ messages are committed and are opened only after the V opens the seed, from which the prover
gets Λ as well. If the ciphertexts that V sent are not computed correctly, P will abort and will not open
the protocol messages. This means that we get security against malicious verifier V essentially for free.
The above idea can essentially elevate any IT-PAC generation protocol that is secure against a semi-honest
verifier to the malicious security. Regarding to the malicious prover P , we note that the protocol is 2-round
when ignoring the opening of commitments and thus the only thing that malicious P can do is to send a
wrong ciphertext to the verifier who would decrypt to a different value. However, when this happens, it is
equivalent to that the prover uses a different polynomial, and thus does not affect the soundness.
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Functionality FBZK

Upon receiving (prove, C,w1, . . . ,wB) from a prover P and (verify, C) from a verifier V where the same circuit
C is input, if C(wi) = 0 for all i ∈ [1, B], then output (true) to V , else output (false) to V .

Figure 1: The zero-knowledge functionality.

Adding extractability. As mentioned above, an IT-PAC on a polynomial f(·) is very close to an IT-MAC
on f(Λ), where Λ is known to the verifier. Given the unique structure of IT-PAC, it can be made extractable
easily but with additional cost. In particular, we can commit to all coefficients of the polynomial via IT-
MACs (that is extractable), and then just need to prove consistency between the values committed in these
two representations. Suppose two parties have an IT-PAC on polynomial f(·) =

∑
i∈[0,k] fi · Xi ∈ F[X]

(i.e., M and K) as well as IT-MACs of all its coefficients (i.e., Mi and Ki for i ∈ [0, k]), such that

M = K + f(Λ) ·∆ and Mi = Ki + fi ·∆ for all i ∈ [0, k].

Observe that f(Λ) is a linear combination of fi where the coefficients are just powers of Λ. Therefore, if P
knew Λ, then two parties could compute the IT-MAC of value f(Λ) −∑i∈[0,k] fi · Λi, which is supposed
to be zero and can be checked essentially for free. However, P who knows Λ can easily break the binding
property of IT-PACs. To address this issue, we require P to commit to all messages related to committing
and opening of IT-PACs before V sends Λ to P . Essentially, by using distinct keys Λ (for polynomials) and
∆ (for IT-MACs), we provide the prover some partial advantage that does not damage the overall security
of the protocol. Although enabling extractability requires communication cost linear to the degree of the
polynomial, in our ZK protocol, we only need it at the input layer of a circuit, and still use non-extractable
IT-PACs for other wires.

3 Preliminaries

Notation. We use λ and ρ to denote the computational and statistical security parameters, respectively. We
use a ← S to denote that sampling a uniformly at random from a finite set S. We will use bold lower-case
letters like x for column vectors, and denote by xi the i-th component of x with x1 the first entry. For
a, b ∈ N, we write [a, b] = {a, . . . , b}. For an algorithm A, we use y ← A(x) to denote the operation
of running A on input x and setting y as the output. If A is probabilistic and adopts a randomness r, we
explicitly write y ← A(x; r). We denote by f(·) a degree-k polynomial over a field F. For simplifying
the description, we say that f(·) is a degree-k polynomial, meaning that f(·) has a degree at most k unless
otherwise specified. We will use negl(·) to denote a negligible function such that negl(λ) = o(λ−c) for every
positive constant c. A circuit C over a field F consists of input, output, addition and multiplication gates,
where input gates use circuit-input wires as their output wires and output gates use circuit-output wires as
their input wires. We use |C| to denote the number of all gates in the circuit C, and always assume that C
is evaluated B times with different inputs. If B > 1, then B copies of C constitute a single-instruction-
multiple-data (SIMD) circuit, which is also referred to as a (B, |C|)-SIMD circuit. Otherwise, C is a single
generic circuit.

Security model and functionalities. Our protocol UC-realizes the zero-knowledge functionality FBZK in
the universal composability (UC) framework [Can01], where FBZK is described in Figure 1. If B = 1, FBZK
is the standard ZK functionality. If B > 1, FBZK captures the case of proving satisfiability of (B, |C|)-
SIMD circuits. We refer to Appendix A for a brief description of the UC model as well as a review of the
commitment functionality.
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3.1 Information-Theoretic MAC

Information-theoretic message authentication code (IT-MAC) was originally proposed in the context of
secure multi-party computation [BDOZ11, NNOB12]. Following prior work (e.g., [WYKW21, BMRS21,
DIO21]), our ZK protocols will view IT-MACs as commitments.

• Commitments with IT-MACs. A commitment on a message x is denoted by [x], meaning that a party
P holds x ∈ F and an MAC M ∈ F, and a verifier V holds a local key K ∈ F and the fixed global key
∆ ∈ F, where K and ∆ are uniformly random.

• Opening. To open a commitment [x], P sends (x,M) to V , who checks that M = K + x · ∆ holds. If
the malicious P cheats to open a commitment [x] to a message x′ 6= x, then it has to forge an MAC
M′ = K + x′ ·∆, and thus learns the global key ∆ = (M−M′)/(x− x′), which occurs with probability
1/|F|. Here we require that F is a large field, meaning that |F| ≥ 2ρ.

• Linear combination. The IT-MACs are additively homomorphic, meaning that given public coeffi-
cients c0, c1, . . . , c` ∈ F and commitments [x1], . . . , [x`], two parties P and V can locally compute
[y] =

∑
i∈[1,`] ci · [xi] + c0.

For a public value c ∈ F, P and V can directly define the IT-MAC [c] without any communication by setting
M = 0 and K = −c ·∆ respectively. We refer the reader to Appendix A.2 for the generation of IT-MACs
from VOLE and the standard VOLE functionality.

The opening of commitments includes two procedures: one is the procedure that makesP send x1, . . . , xn
to V; the other is the CheckZero procedure that allows V to check that [yi] = [xi] − xi for all i ∈ [1, n]
are commitments of 0 using the keys of V . Specifically, CheckZero has the total communication of λ bits
and is non-interactive. Let H : {0, 1}∗ → {0, 1}λ be a random oracle. The CheckZero procedure works by
making P send M = H(M1, . . . ,Mn) it to V who checks whether M = H(K1, . . . ,Kn), where P holds Mi

and V holds Ki such that Mi = Ki for each commitment [yi]. Following the security analysis by Damgård et
al. [DNNR17], the probability that there exists some i ∈ [1, n] such that yi 6= 0 but the check passes is at
most 1/|F|+ 1/2λ.

3.2 VOLE-based Zero-Knowledge Proofs

Vector oblivious linear evaluation (VOLE) is a simple yet useful tool in the design of cryptographic proto-
cols. We provide a full summarization of its functionality and construction in Section 3.1. Recent advances
of VOLE protocols with sublinear communication have inspired a family of streamable designated-verifier
zero-knowledge (DVZK) proofs with fast prover time and a small memory footprint [WYKW21, DIO21,
BMRS21, YSWW21, WYX+21, BBMH+21, DILO22]. In particular, given a set of VOLE-based commit-
ments {([xi], [yi], [zi])}i∈[1,`] over F, these DVZK proofs can enable the prover P to convince the verifier V
that zi = xi · yi ∈ F for all i ∈ [1, `] hold, and only need a small communication (e.g., λ + 2|F| bits for
QuickSilver [YSWW21]). We use DVZK

{
([xi], [yi], [zi])i∈[1,`] | ∀i ∈ [1, `], zi = xi · yi

}
to denote such a

designated-verifier ZK proof. The proof on the correctness of a set of VOLE-based commitments needs two
rounds of communication. The round complexity can be reduced to only one round using the Fiat-Shamir
heuristic in the random-oracle model, where the size of F is at least 2λ for this case. The DVZK proof
securely realizes F1

ZK in the FVOLE-hybrid model. We use εdvzk to denote the soundness error of the DVZK
proof, where εdvzk = 3/|F| + q/2λ = 3/|F| + negl(λ) for the case of two-round communication, and q is
the number of queries to the random oracle that is used to generate the challenges from a random seed.
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3.3 Additively Homomorphic Encryption

We describe the definition of additively homomorphic encryption (AHE) schemes in the private-key setting,
which specifies the abstract properties that we need for our IT-PAC generation protocol. To simplify the
description of our protocol, we assume that the plaintexts lie in a field F. An AHE scheme consists of
the Setup algorithm that generates the set of public parameters par, a key generation algorithm KeyGen,
an encryption algorithm Enc and a decryption algorithm Dec. In our IT-PAC generation protocol, we will
use 〈m〉 = Enc(sk,m; r) denotes the ciphertext on a message m encrypted with a secret key sk and a
randomness r. We require that the AHE scheme satisfies the standard chosen plaintext attack (CPA) security,
and achieves the circuit privacy [IP07]. Furthermore, we need that the AHE scheme provides the degree-
restriction property: for some integer k ≥ 1, given the set of public parameters par and the ciphertexts
〈Λ〉, . . . , 〈Λk〉 for a uniform Λ ∈ F as input, it is hard to compute a ciphertext 〈f(Λ)〉 such that f(·) is
a polynomial of degree at least k + 1. The notion of linear targeted malleability defined by Bitansky et
al. [BCI+13], which eliminates the computation on ciphertexts other than affine linear maps, implies that
the above degree-restriction property holds. For the implementation, we instantiate the AHE scheme using
the BGV homomorphic encryption with a single level [BGV12]. Following the analysis [KPR18], the
BGV-AHE scheme is valid candidate for linear targeted malleability, and thus satisfies the degree-restriction
property. We provide the definition of AHE and a brief introduction of BGV-AHE in Appendix A.3.

4 Information-Theoretic Polynomial Authentication Codes

In this section, we present the notion of information-theoretic polynomial authentication codes (IT-PACs).
In our ZK protocol, IT-PACs are used as commitments on polynomials. We also describe a useful procedure
to check consistency of the evaluation of two sets of polynomials at multiple points. Then, we present a
concretely efficient protocol that generates a batch of IT-PACs.

4.1 Definition of IT-PACs

For the sake of simplicity, we define IT-PACs over a large field F. Nevertheless, one can extend the definition
of IT-PACs to a more general case in a straightforward manner, where the values are defined over a small
field F (e.g., F = F2) and authenticated over a large extension field K. Specifically, the definition of IT-PACs
over a large field F is described as follows:

• Commitments with IT-PACs. A verifier V holds a uniform global key ∆ ∈ F and another uniform
key Λ ∈ F referred to as a polynomial key. Both keys are reused across different IT-PACs. An IT-
PAC commitment on a degree-k polynomial f(·) =

∑k
i=0 ci · Xi ∈ F[X] is denoted by [f(·)], where

P holds a polynomial f(·) ∈ F[X] and an MAC M ∈ F, while V holds keys K,∆,Λ ∈ F, such that
M = K + f(Λ) · ∆. As in IT-MACs, the key K is also called as a local key. We could also consider an
IT-PAC on polynomial f(·) as an IT-MAC on value f(Λ).

• Opening. To open a commitment [f(·)], P sends (f(·),M) to V , who checks whether M = K+ f(Λ) ·∆.

If the malicious P cheats, it must either forge an MAC M′ = K + f ′(Λ) ·∆ on message f ′(Λ) 6= f(Λ)
with probability at most 1/|F|, or find a different polynomial f ′(·) 6= f(·) such that f ′(Λ) = f(Λ). If
the second case occurs, then f ′(·) − f(·) is a non-zero polynomial of degree at most k, and thus the
probability that it is equal to 0 at a random point Λ is at most k/|F|, according to the Schwartz–Zippel
lemma. Therefore, the probability that P succeeds to cheat is at most (k + 1)/|F|.

• Linear combination. Similar to IT-MACs, IT-PACs are also additively homomorphic. Specifically, given
the public coefficients c0, c1, . . . , c` ∈ F and IT-PACs [f1(·)], . . . , [f`(·)], P and V can locally compute
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Procedure BatchCheckk,m,t

Inputs. Two parties P and V hold the following inputs:

• Two sets of IT-PACs {[f1(·)], . . . , [f`(·)]} and {[g1(·)], . . . , [g`(·)]} where fi() is a degree-k polynomial and
gi() is a degree-m polynomial for i ∈ [1, `].

• Let {α1, . . . , αt} and {β1, . . . , βt} be two sets of public elements over F. Let H : {0, 1}λ → F` be a random
oracle.

Consistency check. P and V check fj(αi) = gj(βi) for all i ∈ [1, t], j ∈ [1, `] as follows.

LINEAR COMBINATION PHASE: Before the polynomial key Λ is opened, P and V execute as follows.

1. P samples two random polynomials r(·) and s(·) of respective degrees k and m in F[X] such that r(αi) =
s(βi) for i ∈ [1, t]. Then, P and V generate the corresponding IT-PACs [r(·)] and [s(·)].

2. V samples seed← {0, 1}λ and sends it to P . Then, two parties compute (χ1, . . . , χ`) := H(seed) ∈ F`.

3. P and V locally compute [f(·)] :=
∑`
j=1 χj · [fj(·)] + [r(·)] and [g(·)] :=

∑`
j=1 χj · [gj(·)] + [s(·)]. Then, P

sends the polynomial pair (f(·), g(·)) to V , who checks that f(·), g(·) have the degrees k and m respectively
and f(αi) = g(βi) for all i ∈ [1, t]. If the check fails, V aborts.

CHECK PHASE:

4. P and V locally compute [µ] := [f(Λ)] − f(Λ) and [ν] := [g(Λ)] − g(Λ). Then, two parties run
CheckZero([µ], [ν]) to check that µ = 0 and ν = 0. If the check fails, then V aborts, else V accepts.

Figure 2: Procedure for checking the consistency of polynomial evaluation for two sets of IT-PACs.

[g(·)] =
∑`

i=1 ci · [fi(·)] + c0, where g(·) =
∑`

i=1 ci · fi(·) + c0, Mg =
∑`

i=1 ci · Mfi and Kg =∑`
i=1 ci · Kfi − c0 ·∆.

For a public polynomial f(·) ∈ F[X], P and V can directly define the MAC and key in the IT-PAC [f(·)]
as 0 and −f(Λ) ·∆ respectively without any interaction. Given k + 1 distinct elements α1, . . . , αk+1 ∈ F,
an IT-PAC [f(·)] also commits to the values f(α1), . . . , f(αk+1), since k + 1 values uniquely determine a
degree-k polynomial and vice versa.

4.2 Batch Check of Polynomial Evaluation

We present an interactive procedure to check the consistency of polynomial evaluation of two sets of IT-
PACs at a single point or multiple points. The consistency check is done in a batch with communication
independent of the number of IT-PACs. Specifically, given two sets of public field elements {αi}i∈[1,t]

and {βi}i∈[1,t] and two sets of IT-PACs {[fj(·)]}j∈[1,`] and {[gj(·)]}j∈[1,`] as input, this procedure allows
to check that fj(αi) = gj(βi) for each i ∈ [1, t], j ∈ [1, `], where fj(·) is a degree-k polynomial and
gj(·) is a degree-m polynomial for j ∈ [1, `]. We require that the procedure does not reveal any secret
information on these polynomials except that the equalities hold. This is realized by first generating two
random IT-PAC commitments [r(·)] and [s(·)] such that r(αi) = s(βi) for i ∈ [1, t] if P is honest, and then
opening [f(·)] =

∑`
i=1 χi · [fi(·)] + [r(·)] and [g(·)] =

∑`
i=1 χi · [gi(·)] + [s(·)] where χ1, . . . , χ` are public

coefficients sampled at random by V . To achieve better communication efficiency, we can use a random
oracle to compress these public coefficients into a random seed. We denote the consistency-check procedure
by BatchCheck, which is described in Figure 2. We let P send two polynomials f(·) and g(·) to V , meaning
that P sends the coefficients of the two polynomials to V . The communication complexity of this procedure
is O(k +m).
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In the following, we give an important lemma, which will be used in the security proof of our ZK
protocol. The proof of this lemma can be found in Appendix B.

Lemma 1. Let P be a malicious party who interacts with an honest verifier V during the execution of
BatchCheck. Let H be a random oracle. If there exists some i ∈ [1, t], j ∈ [1, `] such that fj(αi) 6= gj(βi),
then the probability that V accepts at the end of BatchCheck is at most max{k,m}+2

|F| + negl(λ).

We can easily extend the BatchCheck procedure shown in Figure 2 to check the correctness of opening
` degree-k polynomials to the values of these polynomials at t different points. Specifically, P can send
(fj(α1), . . . , fj(αt)) for each j ∈ [1, `] to V . Both parties locally compute an IT-PAC [gj(·)] for each
j ∈ [1, `], where gj(·) is a public degree-(t−1) polynomial reconstructed from the values fj(α1), . . . , fj(αt)
using Lagrange interpolation. Then, P and V run the BatchCheckk,(t−1),t procedure to check fj(αi) =
gj(αi) for all i ∈ [1, t], j ∈ [1, `]. In the special case of t = k + 1, the above procedure is to check the
correctness of opening the whole polynomials. In this case, it is unnecessary to mask the linear combination
of input IT-PACs [f1(·)], . . . , [f`(·)] with a random IT-PAC. The extended procedure as described above may
be useful in other ZK protocols and applications.

4.3 Efficient Protocol to Generate IT-PACs

Below, we present a concretely efficient protocol of generating IT-PACs. This protocol works in the (FVOLE,
FCom)-hybrid model, and adopts AHE to generate the additive shares of the polynomial-evaluation values
at the secret point Λ. Using the additive shares, a VOLE correlation can be locally transformed to a batch of
IT-PACs.

For the AHE ciphertexts sent by a verifier V , one can adopt a ZK proof to prove the validity of these
ciphertexts. However, the usage of ZK proofs introduces significantly communication overhead (particu-
larly, the size of ciphertexts need to be significantly larger to cover the so-called slack brought about by the
ZK proofs). To reduce the communication overhead, we replace the ZK proof with the “commit-then-open”
approach. In particular, the correctness of the ciphertexts produced by a verifier V is guaranteed by com-
mitting the randomness to generate the ciphertexts and then opening the randomness at some later point.
The randomness can be generated with a random seed and a pseudorandom generator (PRG) to reduce the
communication cost. When the ciphertexts sent by V may be incorrect before the randomness is opened,
we let the party P first commit to its homomorphically computed ciphertexts and then open these cipher-
texts after checking the correctness of the ciphertexts received from V . This allows to remove the possible
leakage of secret polynomials, which is incurred by homomorphically performing polynomial evaluation
upon incorrect ciphertexts. The “commit-then-open” approach is sufficient, as the polynomial key Λ will be
always opened.

Based on the “commit-then-open” approach, the concretely efficient protocol for generating IT-PACs
is described in Figure 3. While the initialization phase to generate a global key ∆ needs to be run only
once, other phases can be executed multiple times where every execution creates a fresh polynomial key
Λ and a batch of IT-PACs under the key Λ. For generating ` IT-PACs on degree-k polynomials, the total
communication complexity is O(k + `), where the communication for generating VOLE correlations is
sublinear.

5 Zero-Knowledge Proofs with Sublinear Communication

5.1 Sublinear ZK Proof for SIMD Circuits

In Figure 4, we describe the details of our ZK protocol ΠSIMD
ZK on proving satisfiability of SIMD circuits in

the FVOLE-hybrid model. This protocol also invokes Π
(2B−2)
PAC as a sub-protocol, and thus needs to call a
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Protocol Πk
IT-PAC

Let AHE = (Setup,KeyGen,Enc,Dec) be an additively homomorphic encryption scheme. Suppose that two
parties P and V have already agreed a set of public parameters par = Setup(1λ). Let G be a PRG. Let ` be the
number of IT-PACs to be generated in one execution and k be the maximum degree of the polynomials committed
in each IT-PAC.

Initialize. Two parties P and V send (init) to FVOLE, which returns a uniform ∆ ∈ F to V .

Create and encrypt polynomial keys.

1. V samples seed ← {0, 1}λ, and then V and P call the (Commit) command of FCom with input seed, which
returns a handle τ1 to P .

2. V samples Λ ← F and runs 〈Λi〉 ← Enc(sk,Λi; ri) for all i ∈ [1, k] where (r0, r1, . . . , rk) = G(seed) and
sk← KeyGen(par; r0). Then, V sends the AHE ciphertexts 〈Λ1〉, . . . , 〈Λk〉 to P .

Pre-generation of IT-PACs.

3. P and V sends (extend, `) to FVOLE, which returns u,w ∈ F` to P and v ∈ F` to V , such that w = v+u ·∆.

4. For each j ∈ [1, `], on input the j-th polynomial fj(·) =
∑k
i=0 fj,i ·Xi ∈ F[X], P computes a ciphertext 〈bj〉

with uj + bj = fj(Λ) via 〈bj〉 =
∑k
i=1 fj,i · 〈Λi〉+ fj,0 − uj .

5. P and V call the (Commit) command of FCom with inputs 〈b1〉, . . . , 〈b`〉, which returns a handle τ2 to V .

Generation of IT-PACs and opening polynomial keys.

6. V and P call the (Open) command of FCom on input τ1, which returns (seed, τ1) to P . In parallel, V sends
Λ to P . Then, P computes (r0, r1, . . . , rk) := G(seed) and runs sk ← KeyGen(par; r0). P checks that
〈Λi〉 = Enc(sk,Λi; ri) for all i ∈ [1, k], and aborts if the check fails. For each j ∈ [1, `], P sets Mj := wj .

7. P and V call the (Open) command of FCom on input τ2, which returns (〈b1〉, . . . , 〈b`〉, τ2) to V . Then, for
each j ∈ [1, `], V runs bj ← Dec(sk, 〈bj〉), and then computes Kj := vj − bj ·∆ ∈ F.

8. For each j ∈ [1, `], two parties obtain an IT-PAC [fj(·)], where P holds (fj(·),Mj) and V holds Kj .

Figure 3: Protocol for generating IT-PACs without ZK proofs in the (FVOLE,FCom)-hybrid model.

commitment functionality FCom as well. When executing sub-protocol Π
(2B−2)
PAC to generate IT-PACs, the

generation of the local keys held by the verifier V are delayed to the time point after the polynomial key Λ
is opened. Thus, the computation of the local keys on the output IT-PACs of addition gates also has to be
postponed. While prover P can execute the check phase of the underlying BatchCheck procedure before
Λ is opened, the values from P could be checked by verifier Vafter Λ is opened and the local keys on the
IT-PACs are computed.

When FVOLE is instantiated by the recent LPN-based VOLE protocol with sublinear communication,
protocol ΠSIMD

ZK has the communication complexity of O(B + |C|) for proving (B, |C|)-SIMD circuits,
where note that addition gates are free for our protocol. If the underlying DVZK proof has at most two
rounds (e.g., DVZK is instantiated by [DIO21, YSWW21, DILO22]), the protocol ΠSIMD

ZK has 6 rounds in
the FVOLE-hybrid model. Note that all invocations of sub-protocol Π

(2B−2)
PAC can be made in parallel and all

CheckZero executions can be combined into one execution. Since the LPN-based VOLE protocol realizing
FVOLE has constant rounds, our ZK protocol has also constant rounds.

For the security of protocol ΠSIMD
ZK , we prove the following theorem. In this theorem, we assume that

the soundness error εdvzk of the underlying ZK proof DVZK is at most 3/|F|+negl(λ), e.g., it is instantiated
by QuickSilver [YSWW21]. The formal proof of the theorem is postponed to Appendix C.
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Protocol ΠSIMD
ZK

Inputs. The prover P and verifier V hold a generic circuit C over a large field F, where C contains n = |C|
multiplication gates and m input gates. P holds B witnesses w1, . . . ,wB ∈ Fm such that C(wi) = 0 for all
i ∈ [1, B]. Let α1, . . . , αB ∈ F be B distinct elements that are fixed for the whole protocol execution. Let
δi(X) =

∏
j∈[1,B],j 6=i(X − αj)/(αi − αj) ∈ F[X] be a degree-(B − 1) polynomial for each i ∈ [1, B], which

is referred to as a Lagrange polynomial.
Initialization. P and V send (init) to FVOLE, which returns a uniform ∆ ∈ F to V .
Circuit evaluation. For B executions of circuit C, P and V pack B same-type gates into a group in a straightfor-
ward way. In particular, for an index i, the parties pack the i-th input/output/multiplication/addition gates from
all B executions of circuit C into a group.
1. P and V run sub-protocol Π

(2B−2)
PAC shown in Figure 3 to create a uniform key Λ ∈ F.

2. The parties execute the following steps to process the inputs:
(a) P and V send (extend,mB) to FVOLE, which returns IT-MACs {[ai,j ]}i∈[1,B],j∈[1,m] to the parties.

(b) For i ∈ [1, B], j ∈ [1,m] (i.e., corresponding to the j-th circuit-input wire of the i-th execution of circuit
C), P sends bi,j := wi,j − ai,j to V , and then both parties locally compute [wi,j ] := [ai,j ] + bi,j .

(c) For j ∈ [1,m], for the j-th group of B input gates with input vector (w1,j , . . . , wB,j), P defines a
degree-(B − 1) polynomial uj(·) such that uj(αi) = wi,j for i ∈ [1, B].

(d) P and V run sub-protocol Π
(2B−2)
PAC to generate IT-PACs [u1(·)], . . . , [um(·)].

3. Following a predetermined topological order for circuit C, P and V execute as follows:
(a) For each group of addition gates with input IT-PACs [f(·)] and [g(·)], both parties locally compute an

output IT-PAC [h(·)] := [f(·)] + [g(·)].
(b) For the j-th group of multiplication gates with input IT-PACs [fj(·)] and [gj(·)] where j ∈ [1, n], P

computes a degree-(2B − 2) polynomial h̃j(·) := fj(·) · gj(·) ∈ F[X] and a degree-(B − 1) polynomial
hj(·) such that hj(αi) = h̃j(αi) for all i ∈ [1, B]. Then, P and V run sub-protocol Π

(2B−2)
PAC to generate

two IT-PACs [hj(·)] and [h̃j(·)].
Correctness check of multiplication gates. Prover P convinces the verifier V that the multiplication gates are
evaluated correctly.
4. P and V execute the linear-combination phase of the BatchCheck(B−1),(2B−2),B procedure on inputs
{[h1(·)], . . . , [hn(·)]} and {[h̃1(·)], . . . , [h̃n(·)]} to check that hj(αi) = h̃j(αi) for all i ∈ [1, B], j ∈ [1, n].

5. P and V run sub-protocol Π
(2B−2)
PAC to open Λ to P , and then V can compute the local keys on all IT-PACs.

6. Then, P and V execute the check phase of BatchCheck(B−1),(2B−2),B to complete the above check. If the
check fails, V aborts.

7. P and V run a VOLE-based zero-knowledge proof
DVZK

{
([fj(Λ)], [gj(Λ)], [h̃j(Λ)])j∈[1,n] | ∀j ∈ [1, n], h̃j(Λ) = fj(Λ) · gj(Λ)

}
.

Consistency check of input gates and output gates. P convinces the verifier V that [uj(·)] is consistent to
([w1,j ], . . . , [wB,j ]) for j ∈ [1,m], and the values on all output gates are 0.
8. For each j ∈ [1,m], P and V locally compute an IT-MAC [zj ] :=

∑
i∈[1,B] δi(Λ) · [wi,j ], and then run

CheckZero([uj(Λ)]− [zj ]) to check uj(Λ) = zj . If the check fails, V aborts.

9. Let [v(·)] be the IT-PAC associated with the output values of B executions of circuit C. The parties P and V
run CheckZero([v(Λ)]) to check v(Λ) = 0, and V aborts if the check fails.

10. If V will abort in some step, then V outputs false and aborts, else it outputs true.

Figure 4: Sublinear zero-knowledge protocol for SIMD circuits in the (FVOLE,FCom)-hybrid model.
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Theorem 1. If the AHE scheme satisfies the CPA security, degree-restriction and circuit privacy along
with G is a pseudorandom generator, protocol ΠSIMD

ZK shown in Figure 4 UC-realizes functionality FBZK on
(B, |C|)-SIMD circuits in the (FVOLE,FCom)-hybrid model and the random oracle model with soundness
error at most 2B+3

|F| + negl(λ).

Streaming ZK proofs. For a very large circuit, we need to prove it batch-by-batch, i.e., a batch of gates are
proved each time. For every execution of ΠSIMD

ZK , the key Λ is opened, and thus the IT-PAC commitments,
which are generated after Λ was opened, are not binding any more. Thus, for the next execution, the verifier
has to sample a fresh key Λ′ by running the sub-protocol Π

(2B−2)
PAC . Then, two parties P and V need to

convert the IT-PACs [v1(·)]Λ, . . . , [v`(·)]Λ that commit to the output values in the current batch into the
IT-PACs [v1(·)]Λ′ , . . . , [v`(·)]Λ′ on the same polynomials, which are used as the input IT-PACs for the next
batch. To realize the conversion of IT-PACs [v1(·)]Λ, . . . , [v`(·)]Λ from the key Λ to a new key Λ′, both
parties generate the IT-PACs [v1(·)]Λ′ , . . . , [v`(·)]Λ′ by running sub-protocol Π

(2B−2)
PAC before the polynomial

keys Λ and Λ′ are opened, and then check the consistency of polynomials between two sets of IT-PACs
{[vi(·)]Λ}i∈[1,`] and {[vi(·)]Λ′}i∈[1,`]. Specifically, the consistency check of polynomial-key conversion of
IT-PACs is done as follows:

• LINEAR COMBINATION PHASE: Before both polynomial keys Λ and Λ′ are opened, two parties P and V
do the following:

1. P and V generate two random IT-PACs [r(·)]Λ and [r(·)]Λ′ under different polynomial keys by running
sub-protocol Π

(2B−2)
PAC , where r(·) is a random polynomial and has the same degree as vi(·) for i ∈ [1, `].

2. V samples seed ← {0, 1}λ and sends it to P . Then, both parties compute (χ1, . . . , χ`) := H(seed) ∈
F`.

3. P and V locally compute [v(·)]Λ :=
∑`

i=1 χi · [vi(·)]Λ + [r(·)]Λ and [v(·)]Λ′ :=
∑`

i=1 χi · [vi(·)]Λ′ +

[r(·)]Λ′ . Then, P sends the polynomial v(·) =
∑`

i=1 χi · vi(·) + r(·) to V .

• CHECK PHASE:

4. P and V locally compute [ε] := [v(Λ)] − v(Λ) and [σ] := [v(Λ′)] − v(Λ′). Then, both parties run
CheckZero([ε], [σ]) to check that ε = 0 and σ = 0. If the check fails, V aborts.

V is able to execute the above check phase after both keys Λ and Λ′ were opened in which the local keys
are obtained by V . The linear combination of v1(·), . . . , v`(·) is masked by a random polynomial r(·),
which assures the zero-knowledge property. Following the proof of Lemma 1, the soundness error is at most
2B
|F| + negl(λ), as all IT-PACs are generated before the public coefficients χ1, . . . , χ` are determined and
both polynomial keys are opened, and a single polynomial v(·) is opened for guaranteeing consistency.

Integrating AntMan with VOLE-based ZK proofs. While the recent VOLE-based ZK proofs [WYKW21,
DIO21, BMRS21, YSWW21, WYX+21, BBMH+21, DILO22] have a communication linear to the circuit
size for proving a single generic circuit, our ZK protocol ΠSIMD

ZK shown in Figure 4 achieves the sublinear
communication for proving SIMD circuits. We can seamlessly integrate ΠSIMD

ZK into a VOLE-based ZK
protocol to obtain better communication efficiency for proving a single generic circuit. In particular, ΠSIMD

ZK

is used to prove the sub-circuits that have the SIMD structure, and the VOLE-based ZK protocol is used
to prove the remaining parts of the circuit. While protocol ΠSIMD

ZK evaluates the circuit using IT-PACs, the
VOLE-based ZK protocol adopts IT-MACs to perform the circuit evaluation. Therefore, we need to give
efficient procedures that allow to convert between IT-PACs and IT-MACs. Protocol ΠSIMD

ZK shown in Figure 4
has implied the conversion procedure from IT-MACs to IT-PACs. We only need to present the conversion
procedure from IT-PACs to IT-MACs, which is totally similar. Specifically, let [v1(·)], . . . , [v`(·)] be the
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IT-PACs generated by protocol ΠSIMD
ZK , and yj,i = vj(αi) for i ∈ [1, B], j ∈ [1, `] be the output values that

need to be committed by IT-MACs. For each i ∈ [1, B], j ∈ [1, `], P and V can generate an IT-MAC [yj,i]
before the polynomial key Λ is opened. In particular, for i ∈ [1, B], j ∈ [1, `], the parties call functionality
FVOLE to generate a random IT-MAC [rj,i], and then P sends dj,i = yj,i − rj,i to V and both parties
compute [yj,i] := [rj,i] + dj,i. After Λ was opened, P and V execute the verification procedure described
in Figure 4 to check the consistency between IT-PAC [vj(·)] and IT-MACs ([yj,1], . . . , [yj,B]) for j ∈ [1, `].
That is, for each j ∈ [1, `], P and V locally compute an IT-MAC [yj ] :=

∑
i∈[1,B] δi(Λ) · [yj,i], and then run

CheckZero([vj(Λ)]− [yj ]) to check vj(Λ) = yj .

5.2 Sublinear ZK Proof for Generic Circuits

Below, we show how to extend the ZK protocol on SIMD circuits (as shown in Figure 4) into a ZK protocol
that proves satisfiability of a single generic circuit with sublinear communication. To do this, we first
compile a generic circuit C into another equivalent circuit C′ with |C′| = |C|+O(B), whereB is the number
of wire values committed by a single IT-PAC. The new circuit C′ needs to satisfy the following properties:

1. For each input w, C(w) = C′(w).

2. The number of input gates, addition gates and multiplication gates is the multiple of B. There are at least
B output gates.

3. Every B same-type gates are divided into a group, where the B related wire values in a group will be
committed by an IT-PAC.

This is easy to be realized by adding “dummy” wires and gates following the approach [YW22], where
the values on the “dummy” wires are set as 0. For completeness, we describe the circuit-transformation
procedure PrepCircuit in Appendix D.

Then, we need to deal with the case that the input wires of B gates in a group are not corresponding
to the output wires of B gates in any group of previous layers. In this case, the values on these input
wires have not been committed by existing IT-PACs. Thus, we let the prover and verifier generate such
an IT-PAC by running sub-protocol Π

(2B−2)
PAC . However, for a malicious prover, the values committed by

the IT-PAC may be inconsistent with the values on the output wires of B gates from different groups in
previous layers. Therefore, we give an efficient consistency check to detect such malicious behavior based
on the BatchCheck procedure shown in Figure 2. Specifically, for each input IT-PAC [ĝ(·)], if the j-th wire
value ĝ(αj) comes from the i-th wire value f̂(αi) committed by an output IT-PAC [f̂(·)], we need to check
f̂(αi) = ĝ(αj). This corresponds to the wire that carries the value ĝ(αj) = f̂(αi) in the circuit. Following
the previous work [GPS21, YW22], we refer to a tuple ([f̂(·)], [ĝ(·)], i, j) as a wire tuple. In Section 2.4, we
present the approach how to check the consistency of wire tuples in a batch. In the following, we directly
give the concrete construction.

In detail, the sublinear ZK protocol Πgeneric
ZK for proving a single generic circuit can be constructed by

extending the protocol ΠSIMD
ZK on SIMD circuits (as described in Figure 4) in the following way.

• Preprocess circuit. P and V execute the PrepCircuit shown in Figure 8 of Appendix D to preprocess a
generic circuit C, and obtain an equivalent circuit C′ with the same output. Let w ∈ FmB be the input of
circuit C′ that consists of an actual witness and “dummy” zero values.

• Circuit evaluation. The input preprocessing is the same as that of protocol ΠSIMD
ZK , except for the follow-

ing differences:

– w is written as (w1, . . . ,wB) where w1,j , . . . , wB,j for each j ∈ [1,m] are packed in a group and
will be committed by an IT-PAC. Meanwhile, w will also be committed by mB IT-MACs. Note that
(w1,j , . . . , wB,j) for j ∈ [1,m] corresponds to B input gates in the j-th group.
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– If wi,j for i ∈ [1, B], j ∈ [1,m] corresponds to a “dummy” zero value, the IT-MAC [wi,j ] = [0] can
be generated locally by P and V . If (w1,j , . . . , wB,j) for j ∈ [1,m] corresponds to B “dummy” zero
values, the IT-PAC [uj(·)] with uj(αi) = wi,j = 0 for i ∈ [1, B] can also be generated locally by both
parties.

Following a predetermined topological order, P and V can evaluate the addition and multiplication gates
as in protocol ΠSIMD

ZK , except for the following differences:

– If the input wires of B gates in a group are not corresponding to the output wires of B gates in any
group of previous layers, then P computes a degree-(B − 1) polynomial ĝ(·) such that ĝ(αi) = zi for
all i ∈ [1, B], where {zi}i∈[1,B] are the values on these input wires.

– Then, P and V run sub-protocol Π
(2B−2)
PAC shown in Figure 3 to generate an IT-PAC [ĝ(·)].

• Consistency check of wire tuples. Let L(i, j) be a set of all wire tuples {([f̂h(·)], [ĝh(·)], i, j)} such that
f̂h(αi) = ĝh(αj). For each i, j ∈ [1, B], P and V check the consistency of the wire tuples in L(i, j) as
follows:

1. Let ` be the size of L(i, j), and ([f̂1(·)], [ĝ1(·)], i, j), . . . , ([f̂`(·)], [ĝ`(·)], i, j) be the wire tuples in
L(i, j).

2. The parties P and V execute the linear-combination phase of the BatchCheck(B−1),(B−1),1 procedure
(as shown in Figure 2) on inputs {[f̂1(·)], . . . , [f̂`(·)]} and {[ĝ1(·)], . . . , [ĝ`(·)]} to check that f̂h(αi) =
ĝh(αj) for all h ∈ [1, `] before the polynomial key Λ is opened.

3. P and V execute the check phase of BatchCheck(B−1),(B−1),1 to complete the above check, where V
can perform the check after the key Λ was opened and local keys on the IT-PACs were computed. If
the check fails, V aborts.

A direct optimization for the consistency check as describe above is that V sends only one random seed
to P for all B2 executions of BatchCheck, and then both parties can use the seed and a random oracle to
generate the public coefficients for all BatchCheck executions. Note that all B2 executions of BatchCheck
can be run in parallel. The above consistency check can be executed in parallel with the correctness check of
multiplication gates. Therefore, the ZK protocol Πgeneric

ZK has the same rounds as protocol ΠSIMD
ZK , and thus

is constant-round. The communication complexity of protocol Πgeneric
ZK is O(|C|/B + B3), and becomes

O(|C|3/4) sublinear to the circuit size if B = |C|1/4. The communication for addition gates is only from
the possible IT-PAC generation when the values on the input wires of these gates are not committed by any
existing IT-PAC, and thus depends on the circuit structure.

The security proof of protocol Πgeneric
ZK is similar to that of protocol ΠSIMD

ZK , where the simulation of sub-
protocol Π

(2B−2)
PAC for generating IT-PACs {[ĝ(·)]} is the same as that of Π

(2B−2)
PAC for generating IT-PACs

{([hj(·)], [h̃j(·)])}. Furthermore, the consistency-check procedure for wire tuples is easy to be simulated by
invoking the simulator for the BatchCheck procedure involved in the proof of Theorem 1. Therefore, for the
security proof of protocol Πgeneric

ZK , we only need to analyze the soundness error of the consistency-check
procedure on wire tuples, and the other part of the proof just follows the proof of Theorem 1. In particular,
we have the following lemma.

Lemma 2. For a malicious prover P and an honest verifier V , if there exists an inconsistent wire tuple, V
aborts in the execution of protocol Πgeneric

ZK except with probability at most 2B
|F| + negl(λ).

Based on Lemma 1 and Lemma 4 of Appendix C, the proof of the above lemma is straightforward. Par-
ticularly, if there exists some h ∈ [1, `] such that f̂h(αi) 6= ĝh(αj) for some i, j ∈ [1, B], the BatchCheck
procedure will abort except with probability 2B

|F| + negl(λ). Combining the proof of Theorem 1 with
Lemma 2, we can obtain the following corollary.
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Corollary 1. Protocol Πgeneric
ZK UC-realizes functionalityF1

ZK on a single generic circuit in the (FVOLE,FCom)-
hybrid model with soundness error at most 4B+3

|F| + negl(λ).

6 Implementation and Benchmarking

6.1 Practical Optimizations

Faster polynomial interpolation and multiplication. For every multiplication gate, we have the input
polynomials f(·), g(·) ∈ F[X] of degree (B − 1), and need to compute the polynomial h̃(·) = f(·) · g(·)
and a degree-B polynomial h(·) such that h(αi) = h̃(αi) for i ∈ [1, B]. To maximize the performance, we
represent every degree-(B − 1) polynomial by the polynomial values evaluated at all B-th roots of unity in
F. This representation brings a lot of benefits: 1) we can directly use number theoretic transformation (NTT)
to switch between the representation of polynomial values and the representation of polynomial coefficients;
2) the set of polynomial values representing h̃(·) evaluated at all (2B − 1)-th roots of unity contains the set
of polynomial values representing h(·) evaluated at allB-th roots of unity. In this way, the polynomial-value
representation of h(·) can be directly computed by B field multiplications. The computation of polynomial
h̃(·) only requires additionally applying inverse NTT and NTT to switch between different representations
of the polynomials f(·) and g(·), followed by B field multiplications.

Better utilization of plaintext slots in AHE. The AHE schemes based on ring-LWE such as [BGV12,
Bra12, FV12] support the efficient computation over multiple independent slots, and allow to manipulate
multiple plaintexts at once using SIMD operations. Taking advantage of multiple plaintext slots is the key
to obtain high efficiency in the AHE schemes. In our IT-PAC generation protocol with simplified notation,
the verifier has a vector a ∈ Fk (where k = 2B − 2 when applying this protocol into our ZK protocol), and
the prover has a matrix M ∈ F`×k and is desired to get a vector M · a ∈ F`. Let S be the number of slots
(which is 8192 in our implementation). One way to accomplish this task is to have the prover obtaining the
ciphertexts on plaintext vectors âi = (ai, . . . , ai) ∈ FS for all i ∈ [1, k]. However, the communication cost
in this case isO(BS). To reduce the communication, we adopt the “diagonal method” in prior work [HS14].
In particular, the verifier fills S slots with copies of a and sends a rotation key to the prover. Then, the prover
uses the key to rotate the ciphertexts on vector a and obtains the encryption of a cyclic matrix A defined by
a. The rest of the computation remains the same except for homomorphically operating on the ciphertext of
matrix A.

6.2 Parameters and Testbed Configuration

We implemented our ZK protocol AntMan for proving SIMD circuits and demonstrate its performance by
a series of experiments. We use two Amazon EC2 m5.8xlarge instances located in the same region
to act as the prover and verifier. We use 4 threads and throttle the bandwidth to 1 Gbps unless otherwise
specified. Our protocol AntMan adopts the BGV homomorphic encryption with a single level [BGV12] to
instantiate the AHE scheme, and uses the LPN-based VOLE protocol [WYKW21] to realize functionality
FVOLE. In our ZK protocol, addition gates are free and the performance is dominated by evaluating and
checking multiplication gates.

We use a finite field F defined by a prime p = 259 − 228 + 1, which guarantees that 2N -th roots of
unity exist for any N = 2k and k < 28. We set the computational security parameter λ = 128 and
statistical security parameter ρ = log |F| − log(2B + 3) > 40, where B is the number of executions of a
circuit and chosen from 16 to 2048. We often refer to B as a batch size as well. In our implementation,
we consider a setup phase to generate the AHE ciphertexts on the powers of a polynomial key Λ and rotate
these ciphertexts as described in Section 6.1. The setup cost is independent of the circuit size and only
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Figure 5: The throughput of our ZK protocol with respect to the circuit size. The performance is
measured as million MULT gates per second (mgps), and is shown for proving (B, |C|)-SIMD circuits where
B ∈ {64, 256} and |C| ∈ {215, . . . , 223}.

depends on the parameter B. Our experimental results involve the running time to execute the setup phase.
For performance evaluation, we compare AntMan with the state-of-the-art VOLE-based ZK implementation
QuickSilver [YSWW21].

6.3 Performance for Circuit Size and Batch Size

The performance of our ZK protocol AntMan does not depend on the circuit structure, and is only related
to the circuit size |C| and the batch size B. Therefore, we evaluate the performance using random circuits.

Performance vs. circuit size. In Figure 5, we analyze how the throughput of AntMan changes over different
circuit sizes. We study the performance on proving (B, |C|)-SIMD circuits with B ∈ {64, 256} and that |C|
is chosen from 215 to 223. From this figure, we observe that the overall performance of our ZK protocol
increases as the circuit size becomes larger. This is because the setup cost of O(B) is amortized over the
circuit, and thus a larger circuit leads to a smaller amortized cost. The highest throughput is reached when
the circuit size is larger than 220, after that the throughput is stable. Indeed, the throughput in this case is
roughly the throughput without counting the setup cost.

Performance vs. batch size. Now we fix the circuit size |C| to be 220 and study how different batch
sizes (i.e., B) impacts the performance of our ZK protocol. In Table 1, we report the running time and
communication cost of AntMan with batch sizes B changed from 16 to 2048.

Because our AHE parameters support up to 8192 slots, the communication cost for the setup phase is
5.1 MB for all choices of B. This consists of the ciphertexts encrypting the powers of a polynomial key (0.4
MB) as well as rotation keys (4.7 MB). When B is greater than 2048, more ciphertexts need to be sent but
it does not impact the overall setup communication by much. The setup computation cost is mostly brought
from rotation operations.

As for the performance without the setup cost, we observe that we are able to achieve better than one-
field-element per multiplication gate once B ≥ 16. The amortized running time per multiplication gate of
AntMan decreases as the number of circuit executions increases, and stays stable when the batch size is
greater than 128. However, it is still 30% slower than QuickSilver under the 1Gbps network bandwidth.
In terms of communication cost, the communication per multiplication gate for AntMan is reduced by
half every time B doubles. When B = 2048, the communication cost per multiplication gate of our ZK
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B
Running time Communication

Setup (ms) Per gate (µs) Per gate (field elements)

16 138 0.241 0.82
32 179 0.181 0.41
64 263 0.156 0.205
128 430 0.144 0.1
256 761 0.142 0.051
512 1430 0.142 0.0256

1024 2743 0.141 0.0127
2048 5445 0.141 0.0064

QuickSilver 0 0.107 1

Table 1: The communication and running time of our ZK protocol. The running time is benchmarked
with 4 threads and 1 Gbps bandwidth. The circuit size |C| = 220 for the whole table. The setup communi-
cation cost for all B in the table is 5.1 MB.

Protocol-thread
Network Bandwidth

10 Mbps 50 Mbps 100 Mbps 500 Mbps 1 Gbps

AntMan-1 1.79 2.00 2.05 2.08 2.09
AntMan-2 3.02 3.78 3.91 3.99 4.26
AntMan-4 4.86 6.88 6.69 6.99 7.01
AntMan-8 6.30 10.06 10.79 11.67 11.64
AntMan-16 7.56 14.07 15.86 17.51 17.74

QuickSilver-∞ 0.17 0.85 1.7 8.47 16.95

Table 2: The performance of our ZK protocol subject to the bandwidth and the number of threads.
The benchmark results are the number of million MULT gates per second (mgps). QuickSilver-∞ refers to
the theoretical performance of QuickSilver with infinity computational power and thus the running time is
solely determined by the communication.

protocol is about 0.0064 field elements, which improves the state-of-the-art ZK implementation QuickSilver
by a factor of more than 150×. This means that when the network bandwidth is low, our ZK protocol is
significantly better.

6.4 Performance for Threads and Bandwidthes

In Table 2, we show how multi-threading and different bandwidthes affect the performance of the ZK proto-
col AntMan. In particular, we fix the batch sizeB = 1024 and the circuit size |C| = 221. Our ZK protocol is
computationally heavy, and thus the multi-threading boosts the efficiency significantly. In a high bandwidth
setting (1 Gbps), the throughput of AntMan increases from 2.09 to 17.74 mgps when the number of threads
increases from 1 to 16. On the other hand, AntMan is highly communication-efficient, and thus performs
well in low bandwidth settings. The throughput of AntMan does not significantly benefit from the increase
of network bandwidthes when it is higher than 50 Mbps. It is due to the fact that the online communication
cost is reduced by a factor of B asymptotically, compared to the ZK protocol QuickSilver [YSWW21].
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Operations Running Time (ns)

BGV homomorphic evaluation 84.53
BGV decryption 1.5

Polynomial multiplication 24.84
Hashing (SHA-256) 0.98

Check of MULT gates 7.74
Others 22.47

Total 142.06

Table 3: The microbenchmark of our ZK protocol. The running time is the amortized time for proving
one multiplication gate. The communication time is involved in the “Others” part.

6.5 Microbenchmarking

To understand the slowest part of our ZK protocol, we conduct a microbenchmark of the protocol execution
in Table 3. In this experiment, we synthesize a random circuit with |C| = 222 multiplication gates, and
prove B = 256 executions of a circuit (and thus 230 multiplication gates in total). Other choices of B and
|C| have a similar proportion for microbenchmark. In this table, 5 major expensive operations are counted.
The computation cost mainly comes from the homomorphic operations of AHE and NTT operations. The
homomorphic evaluation of BGV ciphertexts dominates the whole computation cost, and takes around 60%
of the total running time. The polynomial multiplication (involving the operations of NTT and inverse
NTT) takes about 18% of the total running time. Note that the BGV encryption and rotation operations are
performed only once at the setup phase, and the setup cost can be amortized to negligible when proving a
large circuit.

7 Conclusion

This paper made the first step toward sublinear communication for VOLE-based ZK proofs, and achieved
high concrete efficiency for SIMD circuits. The result shows a new direction to design efficient ZK proofs,
and many open questions deserve further study: 1) design a protocol of generating IT-PACs with similar
efficiency to realize some weak functionality that can be used in ZK protocols, and make the design of ZK
protocols modular; 2) improve the asymptotic and concrete efficiencies of our ZK protocol with commu-
nication of O(|C|3/4) for proving a single execution of an arbitrary circuit; 3) improve the computational
complexity of the protocol to something linear to the circuit size. 4) develop automatic tools to adopt differ-
ent techniques for proving different parts of the statement in zero-knowledge.
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A More Preliminaries

A.1 Security Model and Functionalities

We use the universal composability (UC) framework [Can01] to prove security of our ZK protocol in the
presence of a malicious, static adversary. We say that a protocol Π UC-realizes an ideal functionality F
if for every probabilistic polynomial time (PPT) adversary A, there exists a PPT simulator S, such that for
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Functionality FCom

This functionality runs with two parties PA and PB as follows:

Commit: Upon receiving (Commit, x, τx) from PA, store (x, τx) and output τx to PB, where τx is a handle that
is used to identify the message x.

Open: Upon receiving (Open, τx) from PA, if a tuple (x, τx) was previously stored, output (x, τx) to PB.

Figure 6: Two-party commitment functionality.

Functionality FVOLE

This functionality works over a field F, and interacts with two parties P and V as well as an adversary as follows:

Initialize: Upon receiving (init) from P and V , if V is honest, then sample ∆← F, else receive ∆ ∈ F from the
adversary. Store ∆ and ignore all subsequent (init) commands.

Extend: Upon receiving (extend, n) from P and V , do the following:

• If V is honest, sample v ← Fn. Otherwise, receive v ∈ Fn from the adversary.

• If P is honest, sample u ← Fn and compute w := v + u ·∆ ∈ Fn. Otherwise, receive u ∈ Fn and w ∈ Fn
from the adversary, and then recompute v := w − u ·∆ ∈ Fn.

• Output (u,w) to P and v to V .

Figure 7: Functionality for VOLE correlations.

every PPT environmentZ , the output distribution of Z in the real-world execution where the parties interact
withA and execute Π is computationally indistinguishable from the one in the ideal-world execution where
the parties interact with S and F.

Our protocol will invoke a commitment functionality FCom that is reviewed in Figure 6 and can be
UC-realized by defining H(m, r) as a commitment on a message m, where H is a random oracle and r is a
randomness.

A.2 Generation of IT-MACs from VOLE

The IT-MAC commitments on random messages can be efficiently generated by the recent LPN-based
VOLE protocols with sublinear communication in the malicious setting [BCGI18, YWL+20, WYKW21].
We model random VOLE in the standard functionality shown in Figure 7. Two parties P and V can
transform the IT-MAC commitments on random messages into that on chosen messages in the standard
way by sending an additional element for each commitment (see our ZK protocols shown in Section 5
or [WYKW21, DIO21, BMRS21, YSWW21, WYX+21, BBMH+21] for details).

A.3 More Details for AHE Schemes

An additively homomorphic encryption (AHE) scheme AHE = (Setup,KeyGen,Enc,Dec) is defined as
follows:

• Setup(1λ): On input a security parameter λ, this algorithm outputs a set of public parameters par.

• KeyGen(par): On input the set of public parameters par, this algorithm outputs a secret key sk.

• Enc(sk,m): On input the secret key sk and a message m ∈ F where par is assumed to be an implicit
input, this algorithm outputs a ciphertext c.
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• Dec(sk, c): On input the secret key sk and a ciphertext c where par is an implicit input, this algorithm
outputs a message m.

• Additively homomorphic operations: Given the set of public parameters par and a ciphertext c = Enc(sk, x),
a party P can compute a ciphertext c′ = y ·c−b without knowing secret key sk, where y, b ∈ F are known
byP . The party V owning sk can decrypt c′ to obtain a = Dec(sk, c′) = x·y−b ∈ F. Here, we require that
the AHE scheme achieves circuit privacy, which guarantees that c′ does not leak any information about y
and b even to the owner of sk. We refer the reader to [IP07, BdMW16, dCJV21] for the formal definition
of circuit privacy. Furthermore, given par and two ciphertexts c1 = Enc(sk,m1) and c2 = Enc(sk,m2),
one can compute c1 + c2 = Enc(sk,m1 +m2) without knowing sk.

Informally, we say that the scheme AHE is correct, if the ciphertext c on a message m, which is obtained by
Enc(sk,m) or the additively homomorphic operations of some ciphertexts generated by Enc(sk, ·), can be
decrypted to m via Dec(sk, c) with probability 1− negl(λ).

Our implementation adopts the BGV homomorphic encryption with a single level [BGV12] to instantiate
the scheme AHE. In the BGV-AHE scheme, while the ciphertexts are defined over a ring Rq = R/qR, the
plaintexts are lied in a ring Rp = R/pR, where R = Z[X]/(XN + 1) is a polynomial ring with integer
coefficients modulo XN + 1, N is a power-of-two integer and p, q ∈ N are co-prime. Using the packing
technique, we can pack multiple values in a single ciphertext and support parallel computation in the single
instruction multiple data (SIMD) way. In particular, we can set F = Fp for a prime p = 1 (mod 2N) and
consider an element a ∈ Rp as a vector in FN . Although the BGV-AHE scheme supports N plaintext slots
(i.e., allowing to encrypt N messages from F in a single ciphertext), we still use the notation Enc(sk,m) to
denote the encryption of a single message m for the sake of simplicity. The circuit privacy of the BGV-AHE
scheme is achieved using the noise-flooding technique [Gen09]. We refer the reader to [BGV12, KPR18]
for details of the BGV-AHE scheme. Besides, we can also use the BFV homomorphic encryption with a
single level [Bra12, FV12] to instantiate the AHE scheme, where the circuit privacy can be guaranteed in
the more efficient way using the recent rounding technique [dCJV21].

B Proof of Lemma 1

In this section, we prove Lemma 1 that is restated as follows.

Lemma 3 (Lemma 1, restated). Let P be a malicious party who interacts with an honest verifier V during
the execution of BatchCheck. Let H be a random oracle. If there exists some i ∈ [1, t], j ∈ [1, `] such that
fj(αi) 6= gj(βi), then the probability that V accepts at the end of BatchCheck is at most max{k,m}+2

|F| +

negl(λ).

Proof. Let f(·) and g(·) be the polynomials committed in IT-PACs [f(·)] and [g(·)] respectively, where
[f(·)] =

∑
j∈[1,`] χj · [fj(·)] + [r(·)] and [g(·)] =

∑
j∈[1,`] χj · [gj(·)] + [s(·)]. This means that f(·) =∑

j∈[1,`] χj · fj(·) + r(·) ∈ F[X] and g(·) =
∑

j∈[1,`] χj · gj(·) + s(·) ∈ F[X]. Let f ′(·) and g′(·) be two
polynomials opened by the malicious P in the step 3 of the BatchCheck procedure.

Let E1 be the event that f ′(Λ) 6= f(Λ) or g′(Λ) 6= g(Λ) but V accepts in the CheckZero procedure.
According to the security of CheckZero, we have that Pr[E1] ≤ 1

|F| + negl(λ).
Let E2 be the event that f ′(Λ) = f(Λ) and g′(Λ) = g(Λ) but f ′(·) 6= f(·) or g′(·) 6= g(·). Note that

the polynomials f ′(·) and g′(·) are opened by malicious P before the polynomial key Λ known by P . At
least one of two polynomials f ′(·) − f(·) and g′(·) − g(·) is non-zero, and the degrees of f ′(·) − f(·) and
g′(·) − g(·) are bounded by k and m respectively. Therefore, for a uniform Λ ∈ F, the probability that
f ′(Λ)− f(Λ) = 0 and g′(Λ)− g(Λ) = 0 is at most max{k,m}

|F| . In other words, Pr[E2] ≤ max{k,m}
|F| .
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Let E3 be the event that there exists some i ∈ [1, t], j ∈ [1, `] such that fj(αi) 6= gj(βi) but V accepts
at the end of BatchCheck. We assume that both E1 and E2 do not happen. Thus, we have that f ′(·) =∑

j∈[1,`] χj · fj(·) + r(·) or g′(·) = g(·) =
∑

j∈[1,`] χj · gj(·) + s(·). Since V accepts, we obtain that
f ′(αi) = g′(αi) for i ∈ [1, t]. Therefore,

∑
j∈[1,`] χj · (fj(αi) − gj(αi)) + (r(αi) − s(αi)) = 0 for each

i ∈ [1, t]. If the malicious P does not make a query seed to random oracle H before receiving seed, then
χ1, . . . , χ` are determined after the polynomials {fj(·), gj(·)}`j=1, r(·) and s(·) have already been defined,
and thus are independent of these polynomials. In this case we have that Pr[E3 | ¬(E1 ∪ E2)] ≤ 1

|F| . The
probability that P queried seed to random oracle H before V sends seed to P is at most q

2λ
, where q is

the number of queries to random oracle H. Together, we obtain that Pr[E3 | ¬(E1 ∪ E2)] ≤ 1
|F| + q

2λ
=

1
|F| + negl(λ).

Overall, we have the following:

Pr[E3] = Pr[E3 |E1 ∪ E2] · Pr[E1 ∪ E2] + Pr[E3 | ¬(E1 ∪ E2)] · Pr[¬(E1 ∪ E2)]

≤ Pr[E1 ∪ E2] + Pr[E3 | ¬(E1 ∪ E2)]

≤ Pr[E1] + Pr[E2] + Pr[E3 | ¬(E1 ∪ E2)]

≤ max{k,m}+ 2

|F| + negl(λ),

which completes the proof.

C Proof of Theorem 1

In this section, we give the formal proof of Theorem 1. First of all, we extend Lemma 1 from the information-
theoretic setting to the computational setting. While Lemma 1 assumes that the polynomial key Λ is
information-theoretically secure, we prove that the result claimed in the lemma still holds, even if the ma-
licious P is given the AHE ciphertexts Enc(Λ), . . . ,Enc(Λh) with h = max{k,m} and the input IT-PACs
of the BatchCheck procedure are generated by executing the protocol Πh

IT-PAC. In particular, we have the
following lemma:

Lemma 4. Let the IT-PACs used in the BatchCheck procedure be generated by two parties P and V by
running protocol Πh

IT-PAC shown in Figure 3 where h = max{k,m}. Let H be a random oracle and G be
a pseudorandom generator. If the AHE scheme is CPA secure and satisfies the degree-restriction property,
then the probability that there exists some i ∈ [1, t], j ∈ [1, `] such that fj(αi) 6= gj(βi) but an honest
verifier V accepts at the end of BatchCheck is bounded by max{k,m}+2

|F| + negl(λ).

Proof. We consider that P is corrupted by a PPT malicious adversary A and V is honest. In this proof,
we will reuse the notation used in the proof of Lemma 1. For example, the events E1, E2, E3 and the
polynomials f ′(·), g′(·) opened by P during the BatchCheck procedure. In the protocol Πh

IT-PAC, ifA sends
a ciphertext evaluated on a polynomial of degree h′ > h to the honest verifier V , then it is straightforward
to construct an algorithm who breaks the degree-restriction property of the AHE scheme. In particular, the
algorithm obtains the ciphertexts 〈Λ〉, . . . , 〈Λh〉 from the degree-restriction game, and then forwards them
to A. Then, the algorithm randomly chooses one from the ciphertexts sent by A to FCom as its ciphertext
sent to the degree-restriction game. Therefore, the probability that A sends a ciphertext evaluated on a
polynomial of degree h′ > h is bound by the advantage of the adversary to break the degree-restriction
property, and thus is negligible in λ. In the following proof, we always assume that the degree of the
polynomials committed in the IT-PACs generated by protocol Πh

IT-PAC is bounded by h = max{k,m}.
We consider a hybrid-check procedure denoted by HybridCheck, which is the same as BatchCheck

except that the verification of CheckZero([µ], [ν]) is modified as follows:
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• Let Mµ and Mν be the MACs involved in the IT-MACs [µ] and [ν] respectively, where [µ] = [f(Λ)]−f ′(Λ)
and [ν] = [g(Λ)]− g′(Λ). Use Mµ and Mν to check the correctness of the hash value sent by P .

• Check that z1 = f ′(Λ) and z2 = g′(Λ), where z1, z2 are the values committed in the IT-MACs [f(Λ)] and
[g(Λ)].

It is easy to see that the output of HybridCheck is identical to that of CheckZero, unless eventE1 occurs with
probability at most 1

|F| + negl(λ). Note that global key ∆ ∈ F is uniformly random in the FVOLE-hybrid
model. Below, we assume that E1 does not occur.

Based on the HybridCheck procedure, we construct the following hybrid protocol that is executed be-
tween adversary A and a PPT simulator Shybrid:

1. On behalf of an honest verifier, Shybrid simulates the phase to create and encrypt a uniform polynomial
key Λ following the protocol description, except that the secret key sk and randomness used in the AHE
ciphertexts are now sampled at random rather than being generated from a random seed. The resulting
ciphertexts 〈Λ〉, . . . , 〈Λh〉 are sent to A.

2. Shybrid emulates functionality FVOLE by recording the vectors u,w ∈ F2`+2 sent by A to FVOLE, where
there are 2`+ 2 IT-PACs that need to be generated. Then, Shybrid sets Mi = wi for i ∈ [1, 2`+ 2] as the
MACs in the IT-PACs {([fj(·)], [gj(·)])}j∈[1,`] and (r[·], s[·]).

3. Shybrid emulates functionalityFCom by receiving the ciphertexts 〈b1〉, . . . , 〈b2`+2〉 sent byA toFCom and
sending a handle τ2 to A. Then, Shybrid obtains bi by running Dec(sk, 〈bi〉) for i ∈ [1, 2`+ 2]. Simulator
Shybrid computes yi := bi + ui for all i ∈ [1, 2`+ 2] as the values {fj(Λ), gj(Λ)}j∈[1,`], r(Λ) and s(Λ),
where the underlying polynomials are unknown for Shybrid.

4. Using (yi,Mi) for all i ∈ [1, 2`+ 2], Shybrid runs the linear-combination phase of the HybridCheck pro-
cedure with A, and then obtains the values Mµ,Mν , z1, z2 ∈ F and the opened polynomials f ′(·), g′(·).
Then, Shybrid checks that f ′(αi) = g′(βi) for i ∈ [1, t] and aborts if the check fails.

5. Shybrid sends Λ to A, and emulates FCom by receiving a handle τ2 from A.

6. Using the key Λ, (Mµ,Mν , z1, z2) and (f ′(·), g′(·)), Shybrid runs the check phase of the HybridCheck
procedure with A.

For the case of a malicious prover P , we only need to consider the soundness. In this case, it is unnecessary
to commit and open a random seed that is used to generate the secret key and randomness, as the verifier is
always honest. Together with that the output of G is pseudorandom, the above hybrid protocol is computa-
tionally indistinguishable from the protocol Πh

IT-PAC combining with BatchCheck, when only considering
the soundness.

In the following, we assume that event E2 happens in the above hybrid protocol, meaning that z1 =
f ′(Λ) and z2 = g′(Λ) but f ′(·) 6= f(·) or g′(·) 6= g(·) always hold, where z1 and z2 are computed by
Shybrid as described above. Specifically, for a PPT adversary A who makes E2 happen, we construct a PPT
algorithm B who breaks the CPA security of the AHE scheme. Algorithm B interacts with A as follows:

1. B samples two random values Λ,Λ∗ ← F, and then sends h message pairs (Λi, (Λ∗)i) for i ∈ [1, h] to
the CPA game. Then, B obtains h challenge ciphertexts c1, . . . , ch from the CPA game, where ci is the
encryption of either Λi or (Λ∗)i for i ∈ [1, h]. Algorithm B sends c1, . . . , ch to A.

2. B emulates functionalityFVOLE by recording the vectors u,w sent byA toFVOLE, and then sets Mi = wi
for i ∈ [1, 2`+ 2].
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3. B emulates FCom by receiving the ciphertexts 〈b1〉, . . . , 〈b2`+2〉 sent by A to FCom and sending a handle
τ2 to A.

4. Using {Mi}i∈[1,2`+2], B runs the linear-combination phase of the HybridCheck procedure with A, and
then obtains the values Mµ,Mν ∈ F and the opened polynomials f ′(·), g′(·). Then, B checks that
f ′(αi) = g′(βi) for i ∈ [1, t] and aborts if the check fails.

5. Using Λ, (Mµ,Mν) and (f ′(·), g′(·)), B runs the check phase of the HybridCheck procedure with A. In
particular, B always uses Λ to check that z1 = f ′(Λ) and z2 = g′(Λ), ignoring which key (Λ or Λ∗)
is used to compute {ci}i∈[1,h]. Actually, this check is implicit and assumed to be passed as E2 occurs.
Additionally, B uses the MACs Mµ and Mν to check the correctness of the hash value sent by A in the
CheckZero procedure.

In the case that event E2 occurs, B behaves just like as Shybrid, except for the encryption of a polynomial
key. If the challenge ciphertexts c1, . . . , ch are the encryption of the powers of Λ, then the protocol execution
simulated by B is the same as the above hybrid protocol. Otherwise, the key Λ used in the HybridCheck
procedure is independent of the adversary’s view, and thus is information-theoretically secure. From the
proof of Lemma 1, we have that the event E2 occurs with probability at most max{k,m}

|F| in this case. There-

fore, the successful probability of adversary A in the above hybrid protocol is bounded by max{k,m}
|F| + εcpa,

where εcpa is the advantage of a PPT adversary to break the CPA security of the AHE scheme. Overall,
the probability, that event E2 occurs in the BatchCheck procedure for the IT-PACs generated by protocol
Πh

IT-PAC, is at most max{k,m}
|F| + negl(λ).

Given the probabilities that the events E1 and E2 happen, we can easily obtain the probability that event
E3 occurs following the proof of Lemma 1. In particular, we have that Pr[E3] ≤ max{k,m}+2

|F| + negl(λ),
which completes the proof.

Theorem 2 (Theorem 1, restated). If the AHE scheme satisfies the CPA security, degree-restriction and
circuit privacy along with G is a pseudorandom generator, protocol ΠSIMD

ZK shown in Figure 4 UC-realizes
functionality FBZK on (B, |C|)-SIMD circuits in the (FVOLE,FCom)-hybrid model and the random oracle
model with soundness error at most 2B+3

|F| + negl(λ).

Proof. We first consider the case of a malicious prover (i.e., soundness) and then consider the case of a
malicious verifier (i.e., zero knowledge). In each case, we construct a PPT simulator SZK given access to
functionality FBZK, and running a PPT adversary A as a subroutine while emulating FVOLE and FCom for
A. For each case, we show that no PPT environment Z can distinguish the real-world execution from the
ideal-world execution. We always implicitly assume that SZK passes all communication between adversary
A and environment Z . Let SDVZK be a PPT simulator for the underlying VOLE-based ZK proof DVZK.

Malicious prover. Firstly, we construct a PPT simulator SPAC to simulate the adversary’s view in the
execution of sub-protocol Π

(2B−2)
IT-PAC . Specifically, SPAC interacts with A as follows:

1. SPAC samples a random seed ∈ {0, 1}λ, and then emulates the (Commit) command of FCom by sending
a handle τ1 to A.

2. Following the protocol specification, SPAC samples Λ ← F, and simulates the encryption of polyno-
mial key Λ honestly where a secret key sk is derived from seed. Then, SPAC sends the ciphertexts
〈Λ〉, . . . , 〈Λ(2B−2)〉 to A.

3. SPAC emulates FVOLE by sampling uniform ∆ ∈ F and recording the vectors u,w ∈ F` sent by A to
FVOLE, where ` = 2n + m + 2 when applying sub-protocol Π

(2B−2)
IT-PAC into protocol ΠSIMD

ZK . Then, SPAC
computes v := w − u ·∆.
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4. By emulating the (Commit) command of FCom, SPAC receives the ciphertexts 〈b1〉, . . . , 〈b`〉 from A,
and sends a handle τ2 to A. For each j ∈ [1, `], SPAC computes bj by decrypting the ciphertext 〈bj〉 with
secret key sk, and then computes Kj := vj − bj ·∆ following the protocol description.

5. SPAC emulates the (Open) command of functionality FCom by sending (seed, τ1) toA, and also sends Λ
to A. In addition, SPAC emulates the (Open) command of FCom by receiving τ2 from adversary A.

By invoking SPAC and SDVZK, the simulator SZK simulates the view of adversary A for the protocol execu-
tion of ΠSIMD

ZK as follows:

1. SZK emulates FVOLE by invoking SPAC to generate a uniform global key ∆ ∈ F.

2. SZK invokes SPAC to generate a uniform polynomial key Λ ∈ F.

3. SZK emulates functionality FVOLE by recording the values and MACs on {[ai,j ]}i∈[1,B],j∈[1,m] received
from A, and then computes the corresponding local keys in the natural way.

4. After receiving bi,j ∈ F for i ∈ [1, B], j ∈ [1,m] from A, SZK computes wi,j := ai,j + bi,j ∈ F for each
i ∈ [1, B], j ∈ [1,m], and then defines wi = (wi,1, . . . , wi,m) ∈ Fm as a witness for each i ∈ [1,m].

5. Simulator SZK invokes SPAC to simulate the execution of sub-protocol Π
(2B−2)
IT-PAC for generating the IT-

PACs {[uj(·)]}j∈[1,m], {([hj(·)], [h̃j(·)])}j∈[1,n] and ([r(·)], [s(·)]). Following the topological order, SZK
computes the local key on the output wire of every addition gate. Now, SZK holds the local keys of the
IT-PAC on every wire and the local keys of the IT-MAC on every circuit-input wire.

6. Following the protocol specification, the simulator SZK executes the linear-combination phase of the
BatchCheck(B−1),(2B−2),B procedure with A. Then, SZK invokes SPAC to open the key Λ to A. Next,
SZK uses the ∆ and local keys to execute the check phase of BatchCheck(B−1),(2B−2),B with A.

7. SZK invokes SDVZK to perform the verification of the VOLE-based ZK proof DVZK using the global key
∆ and local keys.

8. Following the protocol description, SZK executes the CheckZero procedure with A for the consistency
check of input gates and output gates.

9. If SZK who acts as an honest verifier will abort in some check step, SZK sends wi = ⊥ for i ∈
[1, B] along with a circuit C to FBZK and then aborts. Otherwise, SZK sends the extracted witnesses
(w1, . . . ,wB) and C to FBZK.

It is easy to see that the simulation of SZK is perfect, where recall that the DVZK simulation of SDVZK
invoked by SZK is perfect. Whenever the honest verifier outputs false in the real-world execution, the
verifier also outputs false in the ideal-world execution, as SZK sends ⊥ to FBZK in this case. Therefore, it
only remains to bound the probability that the verifier in the real-world execution outputs true, but there
exists some i ∈ [1, B] such that C(wi) 6= 0 where wi is extracted by SZK. Below, we show if C(wi) 6= 0 for
some i ∈ [1, B], then the probability that the verifier outputs true in the real protocol execution is at most
2B+3
|F| + negl(λ).

By induction, we prove that all addition and multiplication gates in all B executions of circuit C are
evaluated correctly. It is trivial that all addition gates in the (B, |C|)-SIMD circuit are computed cor-
rectly from the additively homomorphic property of IT-PACs. Thus, we focus on analyzing the correct-
ness of computing multiplication gates. From the soundness of the DVZK proof, we obtain that h̃j(Λ) =
fj(Λ) · gj(Λ) for all j ∈ [1, n], except with probability at most εdvzk = 3

|F| + negl(λ). Thus, we can

replace the IT-PAC [h̃j(·)] with [fj(·) · gj(·)] for each j ∈ [1, n]. From Lemma 4 for the soundness of
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BatchCheck(B−1),(2B−2),B , we have that hj(αi) = fj(αi) · gj(αi) for all i ∈ [1, B], j ∈ [1, n] hold for the
IT-PACs {([hj(·)], [fj(·) · gj(·)])}j∈[1,n], except with probability at most 2B

|F| + negl(λ). Together, for each
j ∈ [1, n], we have that the j-th multiplication gate in all B executions of circuit C is evaluated correctly,
except with probability at most 2B+3

|F| + negl(λ).
In the following, we prove that the IT-PACs on the input gates and output gates in the (B, |C|)-SIMD

circuit are computed in the way consistent to the witnesses and 0 respectively. Specifically, for each j ∈
[1,m], we define a polynomial u∗j (·) such that u∗j (αi) = wi,j for all i ∈ [1, B], where wi,j = ai,j + bi,j for
i ∈ [1, B], j ∈ [1,m]. From the definition of [zj ] =

∑
i∈[1,B] δi(Λ) · [wi,j ], we have that [zj ] = [u∗j (Λ)].

The probability that there exists some j ∈ [1,m] such that uj(Λ) 6= u∗j (Λ) but the verifier accepts in the
CheckZero([uj(Λ)]− [u∗j (Λ)]) procedure is at most 1

|F|+negl(λ), where [uj(·)] is generated by running sub-

protocol Π
(2B−2)
IT-PAC . LetE4 be the event that there exists some j ∈ [1,m] such that uj(Λ) = u∗j (Λ) but uj(·) 6=

u∗j (·). According to the proof of Lemma 4, we know that Pr[E4] ≤ 2B−2
|F| +negl(λ). Therefore, the witnesses

are consistent to the IT-PACs on the input gates, except with probability at most 2B−1
|F| + negl(λ). Since

the verifier accepts in the CheckZero([v(Λ)]) procedure, we have that v(Λ) = 0 except with probability
at most 1

|F| + negl(λ), where [v(·)] be the IT-PAC committing to the values on the output gates. Let E5

be the event that v(Λ) = 0 but v(·) 6= 0. Again, according to the proof of Lemma 4, we obtain that
Pr[E5] ≤ 2B−2

|F| + negl(λ).
Overall, we conclude that if C(wi) 6= 0 for some i ∈ [1, B], then the probability that the verifier

outputs true in the real-world execution is bounded by 2B+3
|F| + negl(λ), where the repeated computation of

probabilities is merged.

Malicious verifier. As such, we first construct a PPT simulator SPAC to simulate the adversary’s view in the
execution of sub-protocol Π

(2B−2)
IT-PAC . In particular, SPAC interacts with A as follows:

1. SPAC emulates FVOLE by recording ∆ ∈ F and a vector v ∈ F` that are sent by A to FVOLE.

2. SPAC emulates the (Commit) command of FCom by receiving a seed from A and sending a handle τ1 to
A. Then SPAC computes the secret key sk and randomness r0, r1, . . . , r(2B−2) with seed following the
protocol specification.

3. On behalf of an honest verifier, SPAC receives the AHE ciphertexts c1, . . . , c(2B−2) from A.

4. For j ∈ [1, `], SPAC samples bj ← F and encrypts bj as 〈bj〉 using secret key sk. Then, SPAC emulates
the (Commit) command of FCom by sending a handle τ2 to A.

5. SPAC emulates the (Open) command of functionality FCom by receiving a handle τ1 from A. After
receiving Λ ∈ F from A, SPAC verifies the correctness of the ciphertexts sent by A by checking ci =
Enc(sk,Λi; ri) for i ∈ [1, 2B − 2]. If the check fails, SPAC aborts. Otherwise, SPAC computes Kj :=
vj − bj ·∆ for each j ∈ [1, `].

6. SPAC emulates the (Open) command of FCom by sending the ciphertexts 〈b1〉, . . . , 〈b`〉 as well as τ2 to
adversary A.

For the CheckZero procedure, the verifier checks that the hash value sent by the prover is identical to that
computed from the local keys. Therefore, the simulator can use the local keys held by the verifier to simulate
CheckZero by computing the hash value from the local keys. If SZK receives false from functionality FBZK,
then it simply aborts. Otherwise, by invoking SPAC and SDVZK, SZK interacts with A as follows:

1. SZK emulates FVOLE by invoking SPAC to receive a global key ∆ ∈ F from A, and stores ∆.

31



2. SZK invokes SPAC to simulate the execution about creating a polynomial key Λ.

3. SZK emulates FVOLE by recording the local keys on IT-MACs [ai,j ] for i ∈ [1, B], j ∈ [1,m] that are
sent by A to FVOLE.

4. For each i ∈ [1, B], j ∈ [1,m], SZK samples bi,j ← F and sends it toA, and then computes the local key
on the IT-MAC [wi,j ].

5. SZK invokes SPAC to simulate the execution of Π
(2B−2)
IT-PAC for generating the IT-PACs {[uj(·)]}j∈[1,m],

{([hj(·)], [h̃j(·)])}j∈[1,n] and ([r(·)], [s(·)]). SZK also computes the local key on the output wire of every
addition gate. Now, SZK holds the local keys on all IT-PACs and IT-MACs.

6. For the linear-combination phase of BatchCheck(B−1),(2B−2),B , SZK receives a seed from A, and then
samples two random polynomials f(·) and g(·) in F[X] such that f(αi) = g(αi) for all i ∈ [1, B], where
the degrees of f(·) and g(·) are B − 1 and 2B − 2 respectively. Then, SZK sends f(·) and g(·) to A.

7. SZK invokes SPAC to simulate the execution of receiving the key Λ from A. For the check phase of
BatchCheck(B−1),(2B−2),B , SZK computes the local keys on IT-MACs [f(Λ)]−f(Λ) and [g(Λ)]−g(Λ),
and then uses them to execute the CheckZero procedure with A, where note that f(Λ) and g(Λ) can be
computed by SZK.

8. Using ∆ and the local keys, simulator SZK invokes SDVZK to simulate the protocol execution of DVZK
without knowing the underlying witness.

9. Following the protocol specification, SZK computes the local keys on IT-MACs [uj(Λ)] − [zj ] for all
j ∈ [1,m], and then uses them to execute the CheckZero procedure with A.

10. SZK uses the local key on [v(·)] to run the CheckZero([v(Λ)]) procedure with A, where the local key in
IT-MAC [v(Λ)] is equal to that in IT-PAC [v(·)].

Clearly, the simulation of functionalities FVOLE and FCom is perfect. In the real execution of sub-protocol
Π

(2B−2)
IT-PAC , the ciphertexts 〈Λ〉, . . . , 〈Λ(2B−2)〉 sent by A are guaranteed to be computed correctly by the

opening and checking step. In the FVOLE-hybrid model, for each j ∈ [1, `], uj is uniform in F, and thus
bj = f(Λ) − uj is also uniform in F. For the j-th ciphertext 〈bj〉 with j ∈ [1, `] in the execution of sub-
protocol Π

(2B−2)
IT-PAC , while 〈bj〉 is computed as 〈bj〉 =

∑k
i=1 fj,i · 〈Λi〉+ fj,0−uj in the real-world execution,

〈bj〉 is computed as Enc(sk, bj) for a random bj ∈ F in the ideal-world execution. For each j ∈ [1, `],
the message bj has the identical distribution in both worlds, and the only difference between the real-world
execution and ideal-world execution is the computation method of ciphertext 〈bj〉. The difference is easy to
be bounded by a reduction to the circuit privacy of the underlying AHE scheme, and thus is negligible in λ.

For the input processing, for each i ∈ [1, B], j ∈ [1,m], while bi,j = wi,j − ai,j ∈ F in the real-world
execution, bi,j ∈ F is sampled uniformly at random in the ideal-world execution. Due to the uniformity of
ai,j for i ∈ [1, B], j ∈ [1,m], the distribution of {bi,j}i∈[1,B],j∈[1,m] is identical in both worlds. In the real
protocol execution, the random linear combination of polynomials hj(·), h̃j(·) for j ∈ [1, n] is masked by
two random polynomials r(·), s(·) with r(αi) = s(αi) for i ∈ [1, B]. Therefore, the resulting polynomials
f(·) =

∑`
j=1 χj ·hj(·)+r(·) and g(·) =

∑`
j=1 χj ·h̃j(·)+s(·) are uniform in F[X] such that f(αi) = g(αi)

for all i ∈ [1, B]. Therefore, the polynomials f(·) and g(·) simulated by SZK have the identical distribution
as that in the real protocol execution. Since SZK computes the local keys in the same way as that done
by verifier V , the simulation of CheckZero has the identical distribution as the CheckZero execution in the
real world. From the zero-knowledge property of DVZK, we have that the simulation of protocol DVZK is
indistinguishable from the real protocol execution.
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Procedure PrepCircuit

Inputs: A prover P and a verifier V hold a generic circuit C. Let CM (resp., CA) be the number of multiplication
(resp., addition) gates in the circuit. Let B be the number of wire values committed in a single IT-PAC.

Circuit compilation: P and V transform a generic circuit C into another equivalent circuit C′ as follows:

1. Insert dCM

B e · B − CM multiplication gates and dCA

B e · B − CA addition gates into the circuit. Specifically,
each of these inserted gates takes two new input wires as the inputs of the gate, and creates one new output
wire as its output. The values on these new wires are set as 0. The new input wires create two new input gates,
and the new output wire also creates a new output gate.

2. If the number CO of all output gates (including these new inserted output gates from the previous step) is less
thanB, insertB−CO new input wires that set 0 as the wire values, and then define these input wires as output
wires directly. As such, the new input and output wires create new input and output gates.

3. Let CI be the number of all input gates (including these new inserted input gates). Insert dCI

B e · B − CI new
input wires which set 0 as the wire values, and also define these input wires as output wires directly. The new
wires create new input and output gates.

Commit to wire values: Now, the number of same-type gates (except for the output gates) in the circuit are
multiple of B, and there are at least B output gates. Two parties P and V do the following:

• Divide every B input gates into a group, and the input values in a group will be committed by a single IT-PAC.

• Following a predetermined topological order, execute the following:

1. Collect B unused multiplication gates into a group. For the group of multiplication gates, the values on the
first input wires and the second input wires of these gates will be respectively committed by two IT-PACs,
and the values on the output wires of these gates will be committed by a single IT-PAC.

2. Collect B unused addition gates into a group. For the group, commit to the input and output values by
IT-PACs as above.

• Divide the single actual output gate along with B− 1 “dummy” output gates into a group. The values on the B
output gates will be committed by a single IT-PAC.

Figure 8: Procedure for preprocessing a circuit.

Overall, any PPT environment Z cannot distinguish between the real-world execution and ideal-world
execution, which completes the proof.

D Preprocess Circuits

In Figure 8, we show how to compile a circuit C into an equivalent circuit C′ with the same output by
adding “dummy” gates and wires, where the values on the new inserted wires are set as 0. Furthermore, we
describe how to divide every B same-type gates into a group and commit to the corresponding values using
an IT-PAC. In particular, by scanning the circuit, one can dynamically maintain a list, which adds the groups
of wires having IT-PACs and removes the groups of output wires that will not be used as the input wires
of subsequent gates. We note that the preprocessing of a circuit shown in Figure 8 does not introduce any
communication.
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