
Constant Latency in Sleepy Consensus
Atsuki Momose

Intelligent Systems Laboratory, SECOM CO., LTD.

Mitaka, Tokyo, Japan

a-momose@secom.co.jp

Ling Ren

University of Illinois at Urbana-Champaign

Urbana, IL, USA

renling@illinois.edu

ABSTRACT
Dynamic participation support is an important feature of Bitcoin’s

longest-chain protocol and its variants. But these protocols suffer

from long latency as a fundamental trade-off. Specifically, the la-

tency depends at least on the following two factors: 1) the desired

security level of the protocol, and 2) the actual participation level of

the network. Classic BFT protocols, on the other hand, can achieve

constant latency but cannot make progress under dynamic partic-

ipation. In this work, we present a protocol that simultaneously

supports dynamic participation and achieves constant latency. Our

core technique is to extend the classic BFT approach from static

quorum size to dynamic quorum size, i.e., according to the current

participation level, while preserving important properties of static

quorum. We also present a recovery mechanism for rejoining nodes

that is efficient in terms of both communication and storage. Our ex-

perimental evaluation shows our protocol has much lower latency

than a longest-chain protocol, especially when there is a sudden

decrease of participation.

CCS CONCEPTS
• Security and privacy → Distributed systems security;

KEYWORDS
BFT Protocols; Blockchain; Dynamic Participation; Sleepy Model

1 INTRODUCTION
Byzantine fault-tolerant (BFT) consensus [24], the underlying tech-

nology of blockchains [28], allows parties to reach consensus in the

presence of malicious parties who behave arbitrarily. Classic BFT

consensus protocols [10, 24, 32] assume a static and known partici-

pation model, i.e., all participants know each other in advance and

all participants stay active in the protocol all the time. A central

innovation of Nakamoto’s Bitcoin protocol [28] is the support for

dynamic participation, i.e., participants are not known beforehand

and they can leave or join the system at will at any time.

The Bitcoin protocol invented an elegant “longest-chain” para-

digm, where winners of random proof-of-work lotteries extend the

longest chain of blocks in their views. Subsequent works extend

the Bitcoin’s longest-chain paradigm to proof-of-stake to avoid the

expensive proof-of-work [4, 13, 14, 31]. Naturally, these protocols

inherit the Bitcoin’s support for dynamic participation, but also

its fundamental drawback of long latency. More specifically, their

latency is at least Ω(𝜅Δ𝛾) where 𝜅 is a security parameter, Δ is the

network delay bound, and𝛾 ≤ 1 is the fraction of actual participants

(compared to the anticipated level of participation). The dependence

on the security parameter is due to the 𝑘-confirmation rule. A block

is decided only after 𝑘 subsequent blocks are generated, where 𝑘

depends linearly on the desired security level. The block interval of

longest-chain protocols must be noticeably larger than Δ [14, 30].

The block interval further increases if the actual participation level

suddenly drops, reducing the total hash rate or active stakeholders

(which is why the latency is inverse proportional to 𝛾).

On the other hand, classic BFT protocols can achieve (expected

or amortized) latency of 𝑂 (Δ) [1, 19]. This motivates the following

natural question:

Can we design BFT consensus protocols that simultaneously support
dynamic participation and achieve 𝑂 (Δ) latency?

In order to answer this question, we must formalize the consen-

sus problem and the model of dynamic participation. We will focus

on the BFT atomic broadcast problem [8, 12], where parties agree

on a ledger (a linearlizable log). As for the model, our starting point

will be the sleepy model of Pass and Shi [31] (and we will further

relax the model later). The sleepy model assumes that the number

of honest participants can fluctuate at the adversary’s control, with

the constraint that there are more honest parties than Byzantine

parties at any time.

The above question has recently been studied and partly ad-

dressed from two different angles. Goyal et al. [20] achieves𝑂 (𝜅Δ)
latency by building on Algorand [11, 19]; In other words, the la-

tency of their protocol no longer depends on the participation

level but still depends on the security parameter. From another

angle, Prism [5], Parallel Chains [18], and TaiJi [25] remove the

dependence on the security parameter 𝜅 but the dependence on

participation level remains, i.e., Ω(Δ𝛾) latency.
In this work, we answer the above question in the affirmative

by resolving both of these trade-offs. Specifically we show the

following result:

Theorem 1.1 (Informal). Assuming a verifiable random func-
tion (VRF) and public-key infrastructure (PKI), there exists a BFT
atomic broadcast protocol in the sleepy model that tolerates minority
faults and has an expected 𝑂 (Δ) latency during periods of stable
participation.

We proceed to elaborate more on our result and key technical

challenges below.

Adopting classic BFT approach. Our protocol follows the classic
BFT approach. We first design a quorum-based graded agreement

(GA) protocol [1, 17, 22, 27], and build an atomic broadcast protocol

usingGA. Adapting the quorum-based approach to the sleepymodel

brings several challenges. First, the quorum threshold in a classic

protocol is set based on the total number of parties, which is fixed

and known in advance. Obviously, such a static quorum threshold

does not work in the sleepy model since the participation level is

unknown and can fluctuate over the execution. This problem was

also pointed out by Pass and Shi [31]: “... the problem then becomes
how to set the (quorum) threshold, as the protocol is not aware of

1

how many players are actually awake.” Partly due to this technical

difficulty, they andmost prior works had to follow the longest-chain

paradigm and inherit its long latency.

This is also the technical difficulty this paper sets out to address:

we would like to adapt classic quorum-based approach to the sleepy

model. Our first natural idea is to use a dynamic quorum where the

quorum size is defined based on each party’s “perceived” participa-

tion level. To elaborate, participants announce that they are active.

If a party perceives that𝑚 parties are currently participating in the

protocol, then it locally considers the quorum size to be ⌊𝑚/2⌋ + 1,

i.e., majority of its perceived participants.

However, this brings another challenge. In classic BFT proto-

cols, a quorum of votes (with digital signatures) on a value, often

called a quorum certificate, is transferable. In other words, a quorum

certificate recognized by one party is also recognized as a quorum

certificate by all other parties at all times. This trivial fact for static

quorum does not hold for dynamic quorums, because the perceived

participation level may differ across parties. This can happen be-

cause malicious parties may announce themselves to some honest

parties but not others. To make the matters worse, even if all par-

ticipants currently recognize a quorum certificate, they may stop

recognizing it if more malicious parties announce themselves later

to raise the perceived participation level and hence the required

quorum size. In particular, newly joined parties cannot tell whether

or not the quorum certificate was ever valid in the past. The main

technical contribution of this paper is to restore this transferablility

property with dynamic quorums.

Efficient recovery. The original sleepy model assumes that a party,

upon rejoining the protocol, immediately receives all messages sent

to it during its sleep. While simple in theory, this is an unrealis-

tic assumption because it essentially requires each party to keep

track of and re-transmit every single message it has ever sent or

received. To avoid this issue, we design an efficient recovery mech-

anism for rejoining nodes where only ledger contents and recent

protocol messages (independent of the length of its sleep) need

to be re-transmitted. More specifically, our protocol periodically

identifies points in the execution where parties can “forget” older

messages. This also avoids the impractical storage requirement for

past messages in the original sleepy model.

Experimental evaluation. To demonstrate the improvement of

our protocol, we implement and evaluate our basic protocol and

compare with the longest-chain protocol in [31]. Our experiments

show the expected results. Specifically, the longest-chain protocol

suffers from long latency even when all parties are active, due to

the dependence on the security parameter 𝜅. Its latency further

deteriorates when the participation level suddenly drops due to the

dependence on 𝛾 . In contrast, our protocol has low latency, except

during periods of wild fluctuation.

Additional advantage and assumption.We remark on one more

advantage and one (reasonable) extra assumption of our protocol.

Our protocol tolerates minority faults, which in the sleepy model

means that the number of malicious parties 𝑓 is at most 𝑛/2 where

𝑛 is the minimum number of active participants over the course of

the protocol execution. This 𝑓 < 𝑛/2 condition has been shown to

be necessary in the sleepy model [31]. This is another advantage of

our protocol over existing dynamic participation protocols, all of

which tolerate only 𝑓 ≤ (1/2 − 𝜖)𝑛 where 𝜖 is a positive constant.

Our protocol makes progress only in periods of “stable partici-

pation”, i.e., periods during which the participants do not change

too wildly (formalized in Section 3). We believe this is a reasonable

assumption in practice since it seems highly unlikely that the par-

ticipation level fluctuates wildly all the time. Note that our protocol

maintains safety even during arbitrarily wildly fluctuating periods

and will start making progress again whenever the participation

stabilize.

Summary of results. In summary, we have the following results

in this work:

(1) We present a BFT atomic broadcast protocol in the sleepymodel

with expected 𝑂 (Δ) latency (Section 5). Our protocol is built

from a graded agreement (GA) protocol (Section 4) using a

quorum-based design.

(2) We relax the sleepy model and present an efficient recovery

mechanism for our protocol (Section 6).

(3) We experimentally evaluated our protocol and compared with

the longest-chain protocol (Section 7).

2 RELATEDWORKS
Classic BFT protocols assume static participation where all parties

always participate. Nakamoto’s longest-chain proof-of-work par-

adigm is the first BFT protocol to support dynamic participation.

Recent works extend the longest-chain paradigm to proof-of-stake

and inherit the long latency drawback [4, 13, 14, 31].

Multi-chain protocols. Multi-chain approach [5, 18, 25] has been

studied for removing the dependence on the security parameter

𝜅. They speed up the confirmation of blocks (or transaction) by

running multiple longest-chains in parallel. Since the block interval

of each longest-chain is subject to the total hash rate (or active

stakeholders) their latency still depend on the active participation

level𝛾 . Prism and TaiJi still use the energy-inefficient proof-of-work

approach.

Goyal et al. Goyal et al. [20] also takes the classic quorum-based

approach to achieve 𝑂 (𝜅Δ) latency in the sleepy model. It adopts

Algorand’s approach of sampling a committee of size Ω(𝜅) at every
step [11, 19]. Since the committee size is fixed in advance, their

protocol requires there to be at least 𝑛 = Ω(𝜅) participants at
any time. On the other hand, our protocol works with any 𝑛 > 0

participants. For the concrete latency, their protocol costs 18𝜅Δ,
which is much worse (even for low security level, e.g., 𝜅 = 10),

compared to 37Δ of our protocol.

Unknownparticipationmodel.Another recent work [23] studies
Byzantine agreement in the unknown participationmodel where the

number of participants𝑛 is unknown to the parties but remains fixed

over time. They considers an unauthenticated setting and tolerate

only 𝑓 < 𝑛/3 faults. They also present protocols with dynamic

participation support. However, their model is still stronger than

the sleepy model. In their model, an honest party, when it goes

offline, can announce its absence to the network. On the other hand,

in the sleepy model, honest parties go offline without giving any

advance notice.

2

Crash fault tolerance. If there are only crash faults and no Byzan-

tine faults, supporting dynamic participation becomes much easier.

In this case, parties will announce themselves honestly to the net-

work, so a protocol can correctly observe the current participation

level and does not run into the transferability problem. There exist

prior works on crash fault tolerant dynamic atomic broadcast [6, 7].

These protocols also take the quorum-based approach.

Asynchronous fallback. Synchronous communication is neces-

sary in the sleepy model [31]. To resolve this problem, ebb-and-

flow [29] and checkpointed longest-chain [33] study ways to bal-

ance dynamic participation and partition tolerance. Their protocols

output two ledgers: a longest-chain ledger and a BFT ledger. The

longest-chain ledger supports dynamic participation while the BFT

ledger tolerates asynchrony but does not support dynamic par-

ticipation. Our protocol can replace the longest-chain ledger to

improve the latency of their protocols.

3 MODEL AND DEFINITIONS
This paper considers a Byzantine fault-tolerant (BFT) atomic broad-

cast problem in the sleepy model [31]. We consider a system of

𝑁 total parties communicating over a synchronous network. Note

that network synchrony is necessary [31] for the sleepy model. For

simplicity, we use Δ to denote both bounds on communication delay

and clock skew. An adversary is adaptive and can corrupt parties

anytime during the protocol execution. Faulty parties are Byzantine

and behave arbitrarily. A party that is not faulty throughout the

execution is said to be honest and faithfully executes the protocol.

Loosely synchronized clocks. We assume all parties have access

to their own local clocks that differ by at most Δ and start from 0 at

the beginning of the protocol execution. Without loss of generality,

we can use the local time of the first party to start as a reference

time, also called the global time. This way, when the global time is

𝑡 , each party 𝑝’s local time is 𝜏𝑝 = 𝑡 − 𝛿𝑝 where 0 ≤ 𝛿𝑝 ≤ Δ.

The sleepy model. Our protocols in Section 4 and 5 assumes the

sleepy model introduced in [31]. A party is either awake or asleep.
An awake party actively participates in the execution, while an

asleep party does not execute any code or send/receive anymessage.

The status of each party can change at the adversary’s control, at

any time, without any advance notice. In the real world, this means

parties are allowed to leave the execution at will without notifying

other parties. The number of awake parties at each global time 𝑡 is

denoted 0 < 𝑛𝑡 ≤ 𝑁 ; out of these at most 𝑓 < 𝑛𝑡/2 can be faulty.

All faulty parties are awake all the time. The message delivery

assumption is that if an honest party 𝑝 is awake at global time 𝑡 ,

then 𝑝 has received all messages that were sent to it by honest

parties by global time 𝑡 − Δ.

Atomic broadcast. Atomic broadcast allows parties to agree on a

growing sequence of values [𝑥0, 𝑥1, 𝑥2, . . .] called a log. It provides
the following guarantees:

(1) Safety. If two honest parties decide logs [𝑥0, 𝑥1, .., 𝑥 𝑗] and
[𝑥 ′

0
, 𝑥 ′

1
, .., 𝑥 ′

𝑗 ′], then 𝑥𝑖 = 𝑥 ′
𝑖
for all 𝑖 ≤ min(𝑗, 𝑗 ′).

(2) Liveness. If an honest party inputs a value 𝑥 , then there exists

a global time 𝑡 such that all honest parties awake at any global

time 𝑡 ′ ≥ 𝑡 decide a log containing 𝑥 .

The above safety condition is also called total order and the

liveness condition is also called censorship resistance or fairness [9,
26]. Some previous works [9, 26] define another property called

agreement that says "if an honest party decides a value 𝑥 , all honest

parties also decide 𝑥". This is implied by our safety and liveness,

and is hence redundant.

Eventually stable participation.Asmentioned, when the number

of awake honest parties fluctuate wildly, our protocol maintains

safety but cannot make progress. To ensure liveness, we need an

additional assumption called eventually stable participation (inspired
by the well-known eventual synchrony model [16]). We say a party

is insomniac during [𝑡, 𝑡 ′] if it stays awake at all time during [𝑡, 𝑡 ′].

Definition 3.1 (𝑇 -eventually stable participation). There exists a
global time𝑇𝑠 ≥ 0 (unknown to the parties) such that for all 𝑡 ≥ 𝑇𝑠 ,
more than 𝛼/2 honest parties are insomniac during [𝑡, 𝑡 +𝑇] where
𝛼 is the number of parties ever awake at some time during [𝑡, 𝑡 +𝑇].

Our protocol assumes 7Δ-eventually stable participation. Intu-

itively, this means after the stabilization time 𝑇𝑠 , awake parties

are replaced slowly such that any time window of length at least

𝑇 = 7Δ has sufficiently many parties that stay awake throughout.

We remark that requiring stable participation at all time after 𝑇𝑠 is

for theoretical convenience, just like the well established eventual

synchrony model [16]. In practice, the protocol will make progress

in any sufficiently long period of stable participation. Also note

that, since𝑇𝑠 is unknown, a protocol’s safety cannot depend on this

assumption.

Cryptographic assumptions. We make use of of digital signa-

tures and a public-key infrastructure (PKI). We use ⟨𝑥⟩𝑝 to denote

a message 𝑥 signed by a party 𝑝 . We also assume verifiable ran-

dom function (VRF). Each party 𝑝 with its secret key can evaluate

(𝜌, 𝜋) ← VRF𝑝 (𝜇) on any input 𝜇. The output is a deterministic

pseudorandom value 𝜌 along with a proof 𝜋 . Using 𝜋 and the public

key of party 𝑝 , anyone can verify whether 𝜌 is a correct evaluation

of VRF𝑝 on input 𝜇.

3.1 Sleepy Model with Recovery
The original sleepy model assumes that an asleep party, upon wak-

ing up (i.e., rejoining the network), immediately receives all past
messages that were sent to it during its sleep (subject to communi-

cation delay). While simplifying the model, this is an impractical

assumption as discussed in Section 1.

In Section 6, we remove this unrealistic assumption from the

sleepy model and replace it with a concrete and practical recovering

mechanism. In our model, a party is in one of three statuses: awake,

asleep, and recovering. When an asleep party rejoins the network,

it becomes recovering and has a grace period of Γ (discussed later)

before it becomes awake. If an honest party 𝑝 , awake or recovering,

sends a message 𝑥 at global time 𝑡 to a party 𝑞 who is awake

or recovering at all time during [𝑡, 𝑡 + Δ], then 𝑞 receives 𝑥 by

global time 𝑡 + Δ. In particular, our relaxed model does not assume

reliable transmission of messages sent to an asleep party. Any

subset of these messages can be lost. In other words, we show that

a recovering node does not have to receive all missed messages.

Instead, we will give an explicit mechanism for a recovering party

and show that retrieving recent missed messages is sufficient.

3

Bound on recovery delay. In theory, a grace period of Γ = 2Δ is

sufficient for recovering: upon rejoining the execution, the recover-

ing party 𝑝 multi-casts a recovery request, which is received within

Δ by all awake honest parties, who respond with messages and data

𝑝 missed, which takes another Δ. In practice, the recovery process

may take longer if a lot of data needs to be transmitted. Therefore,

in this paper, we treat Γ ≫ 2Δ as an independent parameter. Each

party can independently choose its own Γ based on how much data

it needs to catch up.

Relation to crash-recovery. Once we provide an explicit recovery

mechanism, the sleepy/recovering process can be thought of as the

crash/recovery process in the distributed computing literature [8].

And our protocol can be thought of as one that tolerates any number

of crash-recovery faults plusminority Byzantine faults. In this paper,

however, we will use the awake/asleep terminology following [31].

3.2 Additional Remark on the Sleepy Model
Here, we emphasize again the real-world scenario we hope to cap-

ture with the sleepy model: we think of an asleep party as a party

who temporarily leaves the system (i.e., knowingly shut down their

computers), rather than a party who experiences sporadic delay of

the network. This leads to an important difference in the model.

A model that captures sporadic delays may assume that a party

experiencing long network delays is unaware of it and keeps partic-

ipating in the protocol [21]. These protocols still assume a majority

of parties are honest and have good networks at any time, so they

do not attempt the dynamic participation problem.

In contrast, to support dynamic participation, it is necessary for

us to assume that an asleep party knowingly went to sleep and does

not take any actions during its sleep. We briefly prove the necessity

of this assumption below.

Proof sketch. Suppose parties do not know whether they are

awake or asleep. Consider a network of two groups of parties 𝑃

and 𝑄 . Parties in 𝑃 are asleep and parties in 𝑄 are awake. No party

is malicious. The adversary delays all messages between 𝑃 and 𝑄

(this is possible because 𝑃 is asleep). Because the protocol works

under any level of participation, and asleep parties do not know

they are asleep, both 𝑃 and 𝑄 need to eventually decide. With no

communication between them, they will decide differently. There-

fore, without the knowledge of awake/asleep, any protocol in the

sleepy model will lose safety.

4 GRADED AGREEMENT
This section presents a graded agreement subroutine, which will

be an important building block of our atomic broadcast protocol

discussed later.

GradedAgreement (GA). In our graded agreement, each party has

an input value (possibly empty ⊥) and outputs (possibly multiple
1
)

pairs of (𝑏,𝑔) of value 𝑏 and grade bit 𝑔 ∈ {0, 1} providing the

following guarantees for a certain time 𝑇 .

(1) Consistency. If an honest party outputs (𝑏, 1), then every

honest party awake at time 𝑡 ≥ 𝑇 outputs (𝑏, ∗).
(2) Integrity. If no honest party inputs a value 𝑏, no honest party

outputs (𝑏, ∗).
1
Our GA is weaker than classic graded agreement because we allow multiple outputs.

(3) Validity. If all honest parties awake at the beginning (time 0)

has the same input value 𝑏, then all honest parties that stay

awake all the time outputs (𝑏, 1).
The validity property our protocol achieves will be a little more

complex than the one above, but for ease of exposition, let us use

the above simple version for the time being.

In the classic model. In the classic static participation model,

one can easily come up with a quorum-based protocol with honest

majority, i.e., 𝑁 = 𝑛 = 2𝑓 + 1, as follows: In round 1 (time 0), each

party multi-casts a vote for its own input. 𝑓 + 1 votes for the same

value is often called a quorum certificate (or certificate for short)
for that value. If a party receives a certificate for 𝑏 at the end of

round 1 (time Δ), it outputs the value 𝑏 with grade 1, and forward

the certificate to all other parties. If it receives the certificate in

round 2 or later (time 𝑡 > Δ), it outputs the value 𝑏 with grade 0.

Note that certificate transferrability is crucial for consistency. An

honest party who outputs (𝑏, 1) will forward the certificate, and all

honest parties will also recognize the certificate and output (𝑏, 0).

4.1 Warmup: A Lockstep GA
To aid understanding, let us first construct a GA in the lockstep

round model where parties have access to a common clock, i,e.,

every party’s local time equals the global time. The lockstep proto-

col is given in Figure 1 and we explain the key challenges and our

techniques below.

Each party 𝑝 runs the following four-round algorithm.

(1) Round 1 (time 𝑡 = 0). Multi-cast ⟨awake, 1⟩𝑝 . If it has non-
empty input 𝑏𝑝 ≠ ⊥, multi-cast ⟨echo, 𝑏𝑝 ⟩.

(2) Round 2 (time 𝑡 = Δ). Set E(𝑏) for any 𝑏 to be the number

of parties from whom 𝑝 received ⟨echo, 𝑏⟩.
(3) Round 3 (time 𝑡 = 2Δ). Multi-cast ⟨awake, 3⟩𝑝 . Set E(𝑏) to

be the number of parties from whom 𝑝 received ⟨echo, 𝑏⟩,
andM1 to be the number of parties from whom 𝑝 received

⟨awake, 1⟩. For all 𝑏, if E(𝑏) >M1/2, multi-cast ⟨vote, 𝑏⟩𝑝 .
(4) After Round 3 (time 𝑡 ≥ 3Δ). UpdateM1, the number of par-

ties from whom 𝑝 received ⟨awake, 1⟩. SetM3 to be the num-

ber of parties from whom 𝑝 received ⟨awake, 3⟩. Let V(𝑏)
be the number of parties from whom 𝑝 received ⟨vote, 𝑏⟩. If
𝑝 was awake in round 2 and E(𝑏) >M1/2, output (𝑏, 1). If
V(𝑏) >M3/2, output (𝑏, 0).

At any time, forward any echo and awake message received.

Figure 1: Warmup: Lockstep GA in the sleepy model

Dynamic quorum. Our first natural idea is to make the quorum

threshold based on the “perceived” participation level, i.e., the num-

ber of parties that have announced themselves to the network. This

ensures that the number of honest parties awake in the voting

round can meet the quorum threshold. Specifically, in our protocol,

each party multi-casts ⟨awake, 3⟩ in round 3 (i.e., the voting round),

and the quorum threshold is based on the number of ⟨awake, 3⟩
received so far, denoted asM3.

4

However, as mentioned, dynamic quorums do not automatically

provide certificate transferability; in other words, a certificate rec-

ognized by one party may not be recognized as a certificate by other

parties. This is because, in the sleepy model, perceived participa-

tion level, and hence quorum threshold, can differ across parties,

if Byzantine parties announce themselves to some parties but not

others or withhold their announcements and release them later to

newly joined parties to change the quorum threshold.

Transferablility of dynamic quorum certificates. To restore

transferability of certificates, we need parties to collect votes from a

majority of the actual participation level (i.e., the number of awake

parties in the voting round) instead of the perceived participation

level. Since the perceived participation level of any party does not

exceed the actual participation level, a certificate consisting of votes

from a majority of the actual participation level will be recognized

by all parties at all times, even those who joined later. Therefore,

our idea is to make sure all honest and awake parties (which is a

majority of actual participation) vote, using the following technique.

Time-shifted quorum.We introduce a new technique called time-
shifted quorum. In round 1, each party sends an echo message for

its input value along with an awake message for round 1. Each

party tracks the number of echo for any value 𝑏, denoted E(𝑏), and
the perceived participation level of round 1, denotedM1. Note that

these two variables may change over time. In round 3, if a party

observes a majority of echo for a value 𝑏, i.e., E(𝑏) > M1/2, it
votes for 𝑏. Finally, after round 3, if the number of echo received
by time Δ still meets the majority, i.e., E(𝑏) >M1/2, a party can

be assured that all honest parties awake in round 3 voted for 𝑏 (we

will prove this next), and it can output (𝑏, 1).
Suppose an honest party 𝑝 outputs (𝑏, 1) after round 3 (say round

𝑖). Then, 𝑝 must have been awake in round 2 and fixed 𝑒𝑝 := E(𝑏)
to be the number of parties from whom it has received ⟨echo, 𝑏⟩ by
then. Let 𝑞 be any honest party that is awake in round 3, and 𝑒𝑞 :=

E(𝑏) be the number of parties from whom it has received ⟨echo, 𝑏⟩
by then. Since 𝑝 forwards all messages and 𝑞 (awake in round 3)

receives them, 𝑒𝑝 ≤ 𝑒𝑞 . Let𝑚𝑞 be the number of parties from whom

𝑞 has received ⟨awake, 1⟩ by round 3, and 𝑚𝑝 be the number of

parties from whom 𝑝 has received ⟨awake, 1⟩ by round 𝑖 . Since

𝑞 forwards all messages and 𝑝 (awake in round 𝑖) receives them,

𝑚𝑞 ≤ 𝑚𝑝 . Since 𝑝 outputs (𝑏, 1), we have 𝑒𝑝 > 𝑚𝑝/2. Since 𝑒𝑝 ≤ 𝑒𝑞
and𝑚𝑞 ≤ 𝑚𝑝 , we have 𝑒𝑞 > 𝑚𝑞/2. Therefore, all honest parties
awake in round 3 multi-cast ⟨vote, 2⟩ along with ⟨awake, 3⟩. Since
there are always more awake honest parties than faulty parties, all

honest parties awake after round 3 observeV(𝑏) >M3/2 (i.e., the

certificate is transferable) and output (𝑏, ∗) (ensuring consistency).

4.2 Our GA Protocol under Loosely
Synchronized Clocks

We now present the non-lockstep version of our GA protocol in

Algorithm 1, where parties have loosely synchronized clocks that

can differ by up to Δ.
The basic idea is to reserve 2Δ time for each round. Then, even

when two parties’ local clocks differ by Δ, a message sent in round

𝑟 always arrives at the recipient by the end of round 𝑟 from the

recipient’s perspective. This simple trick would be sufficient to

transform a lockstep protocol to loosely synchronized clocks in the

classic model.

However, the sleepy model brings a new challenge. Note that

our protocol instructs a party to send a message at a particular

(local) time 𝑡 . If a party is asleep at its local time 𝑡 , it would not send

this message. In particular, this may cause a party to skip sending

its vote even when it observes a majority echo. Our time-shifted

quorum argument would then break down.

We solve this problem with the following simple modification:

we give a party a Δ time window to send a message. Suppose the

lockstep protocol instructs a party to send a message at its local

time 𝑡 . Then, in the modified protocol, the party sends the message

anytime during [𝑡, 𝑡 +Δ]. In other words, if a party is asleep at local

time 𝑡 but wakes up before 𝑡 +Δ, the party sends the message when

it wakes up. This way, all honest parties awake at global time 𝑡 + Δ
will send the message, because their local clocks must be within

[𝑡, 𝑡 + Δ] at that time.

Line 1 and 8 are applying the above trick. For example, in the

voting step, a party votes during its local time [4Δ, 5Δ]. Thus, all
honest parties awake at global time 5Δ will vote (if the condition is

met), which is enough to form a transferable certificate.

Potential for a generic transformation.We remark that Pass and

Shi [31] mentioned very briefly (without proof) a generic transfor-

mation from lockstep to loosely synchronized clocks in the sleepy

model. But they did not describe how to handle the issue described

above, so it is unclear how to apply their transformation to our

protocol. Moreover, even if there were a way to apply their transfor-

mation, our solution is more efficient; their transformation makes

every single round 3Δ. It is of independent interest whether our
technique constitutes a generic transformation. As of now, we only

prove it works for our specific protocol.

Conflict of messages. In Figure 1, we let each party forward all

echomessages. This can incur unbounded communication, because

a faulty party can send echo for infinitely many different values. To

avoid this problem, we define conflict between messages. Specifi-

cally, ⟨echo, 𝑏⟩𝑝 conflicts with ⟨echo, 𝑏 ′⟩𝑝 for any 𝑏 ′ ≠ 𝑏. Similarly,

⟨vote, 𝑏⟩𝑝 conflicts with ⟨vote, 𝑏 ′⟩𝑝 . Our protocol only forwards a

message if no other message conflicts with it (line 24). Also note

that a party counts ⟨echo, 𝑏⟩𝑞 into E(𝑏) only if no other message

conflicts with it (line 7). This makes sure every counted echo is

always forwarded to all other parties, which is important for the

time-shifted quorum argument.

4.3 Correctness of the Protocol
We prove consistency, integrity and validity of Algorithm 1. Since

our GA protocol runs during the execution of our atomic broad-

cast protocol, when we refer to global/local time, it is the relative

time from the beginning of the GA protocol. More specifically,

suppose a GA protocol is supposed to start at time 𝑇 ; when we

say “global/local time 𝑡”, we mean global/local time 𝑇 + 𝑡 (in this

Section 4.3). Note that 𝑡 can be negative.

Lemma 4.1 (Consistency). If an honest party outputs a pair (𝑏, 1),
all honest parties awake at their local time 𝜏 ≥ 7Δ output (𝑏, ∗).

Proof. Suppose an honest party 𝑝 outputs a pair (𝑏, 1) at a
global time 𝑡 , then 𝑡 ≥ 7Δ and 𝑝 must have been awake at its local

5

Algorithm 1 Graded agreement in the sleepy model.

At the beginning of the execution, initialize outputs = ∅.
Party 𝑝 executes the following algorithm at every local time 𝜏 ≥ 0.

// corresponds to round 1
1: if 0 ≤ 𝜏 ≤ Δ then do the following once

2: multi-cast ⟨awake, 1⟩𝑝
3: if 𝑝 has an input value 𝑏𝑝 ≠ ⊥ then
4: multi-cast ⟨echo, 𝑏𝑝 ⟩𝑝

// corresponds to round 2
5: if 𝜏 = 2Δ then
6: for all 𝑏 ≠ ⊥ such that 𝑝 has received ⟨echo, 𝑏 ⟩ do
7: E(𝑏) ← |{𝑞 | 𝑝 has received ⟨echo, 𝑏 ⟩𝑞 without conflict } |

// corresponds to round 3
8: if 4Δ ≤ 𝜏 ≤ 5Δ then do the following once

9: multi-cast ⟨awake, 3⟩𝑝
10: for all 𝑏 ≠ ⊥ such that 𝑝 has received ⟨echo, 𝑏 ⟩ do
11: E(𝑏) ← |{𝑞 | 𝑝 has received ⟨echo, 𝑏 ⟩𝑞 } |
12: M1 ← |{𝑞 | 𝑝 has received ⟨awake, 1⟩𝑞 } |
13: for all 𝑏 such that E(𝑏) >𝑚1/2 do
14: multi-cast ⟨vote, 𝑏 ⟩𝑟

// corresponds to after round 3
15: if 𝜏 ≥ 7Δ then
16: M1 ← |{𝑞 | 𝑝 has received ⟨awake, 1⟩𝑞 } |
17: if 𝑝 was awake at time 2Δ then
18: for all 𝑏 such that E(𝑏) > M1/2 do
19: outputs← outputs ∪ {(𝑏, 1) }
20: V(𝑏) ← |{𝑞 | 𝑝 has received ⟨vote, 𝑏 ⟩𝑞 } |
21: M3 ← |{𝑞 | 𝑝 has received ⟨awake, 3⟩𝑞 } |
22: for all 𝑏 such that V(𝑏) > M3/2 do
23: outputs← outputs ∪ {(𝑏, 0) }

24: multi-cast all messages (without conflict) received but not yet forwarded

time 2Δ. Let 𝐻 be the set of honest parties awake at global time 5Δ.
All parties in 𝐻 must execute lines 10–15, because their local time

must be [4Δ, 5Δ] at global time 5Δ. Suppose a party 𝑞 ∈ 𝐻 executes

lines 9–14 at global time 𝑡 ′ ∈ [4Δ, 5Δ].
Let𝑚𝑞 be the number of parties fromwhom𝑞 received ⟨awake, 1⟩

by global time 𝑡 ′, and𝑚𝑝 be the number of parties from whom 𝑝

received ⟨awake, 1⟩ by global time 𝑡 . Since 𝑞 forwards all awake
messages received from other parties and 𝑝 receives them by time

𝑡 > 𝑡 ′ + Δ, we have𝑚𝑞 ≤ 𝑚𝑝 .

Similarly, let 𝑒𝑝 be the number of parties from whom 𝑝 received

⟨echo, 𝑏⟩ by its local time 2Δ, and 𝑒𝑞 be the number of parties from

whom 𝑞 received ⟨echo, 𝑏⟩ by global time 𝑡 ′. Since 𝑝 forwards every

⟨echo, 𝑏⟩ message that is counted in E(𝑏) by its local time 2Δ and

𝑞 (awake at 𝑡 ′) receives these, we have 𝑒𝑞 ≤ 𝑒𝑝 .

Since 𝑝 outputs (𝑏, 1) at global time 𝑡 , we have 𝑒𝑝 > 𝑚𝑝/2. Since
𝑒𝑞 ≤ 𝑒𝑝 and𝑚𝑝 ≤ 𝑚𝑞 , we have 𝑒𝑞 > 𝑚𝑞/2. Thus, all parties in 𝐻

must have sent ⟨vote, 𝑏⟩ along with ⟨awake, 3⟩ by global time 5Δ.
Here, some honest parties may wake up after global time 5Δ and

send ⟨awake, 3⟩ until global time 6Δ due to clock offsets. But by the

same argument that we made for 𝐻 , they also send ⟨vote, 𝑏⟩. Since
there are less than |𝐻 | faulty parties (at all time), for any 𝑡 ′′ ≥ 7Δ,
any honest party 𝑟 awake at global time 𝑡 ′′ observesV(𝑏) >M3/2,
and hence 𝑟 outputs (𝑏, ∗) after its local time reaches 7Δ. □

Lemma 4.2 (Integrity). If no honest party inputs 𝑏, no honest
party outputs (𝑏, ∗).

Proof. Let 𝐻 be the set of honest parties awake at global time

Δ. Then, all parties in 𝐻 must multi-cast ⟨awake, 1⟩ by global time

Δ because their local time must be [0,Δ] at global time Δ. Since
no honest party sends ⟨echo, 𝑏⟩ and there are less than |𝐻 | faulty
parties (at all time), for any 𝑡 ≥ 4Δ, any honest party awake at

global time 𝑡 must observe E(𝑏) < M1/2. Therefore, no honest

party sends ⟨vote, 𝑏⟩. Let 𝐻 ′ be the set of honest parties awake

at global time 5Δ. All parties in 𝐻 ′ must multi-cast ⟨awake, 3⟩ by
time 5Δ because their local time must be [4Δ, 5Δ] at global time 5Δ.
Since no honest party sends ⟨vote, 𝑏⟩ and there are less than |𝐻 ′ |
faulty parties (at all time), for any 𝑡 ′ ≥ 6Δ, any honest party awake

at time 𝑡 ′ must observeV(𝑏) <M2/2. Therefore, no honest party

outputs (𝑏, ∗). □

Our protocol achieves the following validity property which

is a little more complex than what is defined at the beginning of

this section. Recall that 𝑇𝑠 is the stabilization time after which the

participation is always stable, and a party is said to be insomniac
during [𝑡, 𝑡 ′] if it stays awake at all time during [𝑡, 𝑡 ′] (as defined
in Section 3).

Lemma 4.3 (Validity). Suppose the protocol starts at global time
𝑇 ≥ 𝑇𝑠 + 5Δ. If every honest party insomniac during global time
[−5Δ, 2Δ] has the same input 𝑏, then every honest party insomniac
during global time [2Δ, 9Δ] outputs (𝑏, 1) and does not output (𝑏 ′, ∗)
for any 𝑏 ′ ≠ 𝑏.

Proof. Let 𝑃 be the set of insomniac honest parties during global

time [−5Δ, 2Δ] that have the same input 𝑏. All parties in 𝑃 must

multi-cast ⟨echo, 𝑏⟩ along with ⟨awake, 1⟩ by global time Δ. Let 𝑄
be the set of insomniac honest parties during [2Δ, 9Δ], and 𝛼 be

the number of parties that are ever awake sometime during [0, 2Δ].
Due to the 7Δ-eventual stable participation assumption, we have

|𝑃 | > 𝛼/2. Therefore, all parties in𝑄 must observe E(𝑏) >M1/2 at
their local time 7Δ. Hence, every party in𝑄 outputs (𝑏, 1). Moreover,

at their local time 4Δ, they must observe E(𝑏 ′) < M1/2 for any

𝑏 ′ ≠ 𝑏. Hence, no party in 𝑄 sends ⟨vote, 𝑏 ′⟩. Let 𝛼 ′ be the number

of parties ever awake sometime during global time [2Δ, 9Δ]. Due
to 7Δ-eventual stable participation, we have |𝑄 | > 𝛼 ′/2. Therefore,
every honest party awake at its local time 7Δ or later must observe

V(𝑏 ′) <M3/2, and will not output (𝑏 ′, ∗). □

5 ATOMIC BROADCAST IN SLEEPY MODEL
This section presents an atomic broadcast protocol (Algorithm 2)

building on the graded agreement protocol presented in the previ-

ous section.

View-based construction.Our protocol follows the standard view-
by-view paradigm. Each view lasts for 37Δ time. So view 𝑣 starts

at local time 37(𝑣 − 1)Δ and ends at local time 37𝑣Δ. (The first

view is view 1.) For ease of exposition, we will use relative time

with respect to a view, i.e., local time 𝜏 of view 𝑣 means local time

37(𝑣 −1)Δ+𝜏 . Each view consists of roughly two phases. In the first

phase (line 1–4), each party proposes a new block (e.g., a batch of

6

Algorithm 2 Atomic broadcast

At the beginning of the execution, initialize variables notarized =

{(⊥, 0) }, lock = 0, candidate = (⊥, 0) , 𝑣 = 0.

In each view 𝑣, party 𝑝 executes the following algorithm at every local

time 0 ≤ 𝜏 ≤ 37Δ w.r.t view 𝑣, and enter the next view 𝑣 + 1.

1: if 0 ≤ 𝜏 ≤ Δ then do the following once

2: ℎ ← candidate.value, 𝑏 ← new block

3: (𝜌, 𝜋) ← VRF𝑝 .eval(𝑣)
4: multi-cast ⟨propose, 𝑏, ℎ, 𝑣, 𝜌, 𝜋 ⟩𝑝

5: if 2Δ ≤ 𝜏 ≤ 3Δ then do the following once

6: Let 𝐿 be the party from whom 𝑝 received the largest valid VRF

7: Let ⟨propose, 𝑏, ℎ, 𝑣, 𝜌, 𝜋 ⟩𝐿 be the proposal from 𝐿

8: if ∃𝑢 ≥ lock such that (ℎ,𝑢) ∈ notarized then
9: multi-cast ⟨block, 𝑏, ℎ, 𝑣⟩𝑝
10: start GA𝑣,1 with input 𝐻 (ℎ | |𝑏)
11: else
12: start GA𝑣,1 with input ⊥

13: if 9Δ ≤ 𝜏 ≤ 10Δ then do the following once

14: if GA𝑣,1 outputs a pair (ℎ, 1) and no (ℎ′, ∗) for ℎ′ ≠ ℎ then
15: start GA𝑣,2 with input ℎ

16: else
17: start GA𝑣,2 with input ⊥

18: for 𝑖 ∈ {3, 4, 5} do
19: if (7𝑖 − 5)Δ ≤ 𝜏 ≤ (7𝑖 − 4)Δ then do the following once

20: if GA𝑣,𝑖−1 outputs a pair (ℎ, 1) then
21: start GA𝑣,𝑖 with input ℎ

22: else
23: start GA𝑣,𝑖 with input ⊥

// The following events may occur after view 𝑣 has ended
24: upon GA𝑣,2 outputs (ℎ, ∗) for 𝑣 ≥ 𝑣

25: notarized← notarized ∪ {(ℎ, 𝑣) }
26: upon GA𝑣,3 outputs (ℎ, ∗) for 𝑣 ≥ 𝑣

27: if 𝑣 > candidate.view then
28: candidate← (ℎ, 𝑣)
29: upon GA𝑣,4 outputs (ℎ, ∗) for 𝑣 ≥ 𝑣

30: lock← max(lock, 𝑣)
31: upon GA𝑣,5 outputs (ℎ, ∗) for 𝑣 ≥ 𝑣

32: decide a log Λ identified by the hash ℎ

33: 𝑣 ← 𝑣

transactions) along with a VRF lottery. In the second phase (line 5–

23), a proposal from an elected leader is decided through a series of

graded agreement (GA) instances.

Blocks and chaining. A set of values (parties’ inputs) are batched

into a block 𝑏 (with values inside a block totally ordered). A log is

then naturally represented by a list of blocks Λ = [𝑏1, 𝑏2, ..]. Each
log Λ is uniquely identified by a hash 𝐻 (Λ) defined as follows. An

empty log [] is defined to have hash value ⊥. The hash of a log

Λ′ = Λ| |𝑏 is defined recursively as 𝐻 (Λ′) = 𝐻 (𝐻 (Λ) | |𝑏).

Propose and leader election. A proposal (line 4) consists of a new

block𝑏 and a hashℎ of a logΛ (which has been already disseminated

in the previous views). This proposes the new logΛ| |𝑏. The proposal
also includes a VRF evaluation on the current view number, which

acts as a leader election lottery. At the beginning of the second

phase (line 6), each party considers the leader of this view to be

the party from whom it has received a proposal (of the current

view) with the largest VRF. Here, an adversary cannot guess the

VRF evaluations of honest parties before they send their proposals.

Therefore, an adversary cannot launch a targeted attack on the

elected leader (i.e., corrupt or make the leader asleep). Since there

are more awake honest parties than faulty parties, with probability

at least 1/2, all honest parties recognize the same honest party as

the leader.

Deciding phase. However, with constant probability, the leader

election can be unsuccessful, i.e., honest parties elect different lead-

ers and proposals. The second phase (line 5–23) therefore deter-

mines whether the locally elected leader’s proposal can be decided

or not. A proposal of an elected leader 𝐿 is processed through a

series of five graded agreements denoted GA𝑣,𝑖 for 1 ≤ 𝑖 ≤ 5.

The proposed log, represented by a pair (𝑏, ℎ), has a hash 𝐻 (ℎ | |𝑏),
which is input to first GA (i.e., GA𝑣,1 on line 10). After that, output

of GA𝑣,𝑖 (for 1 ≤ 𝑖 ≤ 4) with grade 1 is passed into GA𝑣,𝑖+1 as input

(line 14–15, 20–21). Intuitively, the deciding phase is further sepa-

rated into four sub-phases “notary-candidate-lock-decide”, which

helps maintain safety and liveness of our protocol. This construc-

tion is inspired by the the three phases of HotStuff [34] (sometimes

called “key-lock-commit” [2, 3]). The latter three phases have essen-

tially the same role as the three phases of HotStuff.We have another

phase called “notary” that is straightforward in classic protocols

but becomes non-trivial in the sleepy model. We elaborate on each

phase below.

Notary. A log (or its hash ℎ) is first notarized in its proposed view

𝑣 when GA𝑣,2 outputs its hash (with either grade 0 or 1). This is

maintained by a set notarized of pairs of notarized value ℎ and its

view 𝑣 (line 24–25). Intuitively, the notary of a log confirms the

uniqueness of the log in the view, i.e., there is no other log notarized

in the view, which ensures safety within a view. To this end, an

output ℎ of the first GA𝑣,1 is passed to the second GA𝑣,2 only if

there is no other output ℎ′ ≠ ℎ with either grade 0 or 1 (line 14).

Recall that our GA definition allows multiple outputs. However,

consistency of GA𝑣,1 allows honest parties to detect inconsistent

outputs and prevent multiple notaries generated in the same view.

Candidate. Each party keeps track of the highest view 𝑣 such

that GA𝑣,3 outputs a hash ℎ, and maintains in a pair candidate of
the hash ℎ and the view 𝑣 (line 26–28). The hash and view can be

accessed by candidate.value and candidate.view, respectively.

Lock. Each party always lock on the highest view 𝑣 such thatGA𝑣,4

outputs a hash ℎ and its corresponding notary for ℎ (line 29–30).

Moreover, a proposal (𝑏, ℎ) of a leader is input to GA𝑣,1 only if the

party observes a notary (ℎ,𝑢) ∈ notarized of view 𝑢 < 𝑣 higher

than the locking view (the safety guard condition on line 8). If

an honest party decides a log of hash ℎ in a view 𝑣 , all honest

parties will lock on the view 𝑣 and ℎ is only a notarized value in the

view (due to consistency and integrity of GA). By the safety guard

condition above, in the next view 𝑣 + 1, only proposals extending ℎ

can be decided, which ensures safety across views. Looking back,

candidate always pass the safety guard condition. This is because

if an honest party lock on a view 𝑣 , all honest parties will update

candidate in the view (due to consistency and integrity of GA).

7

Therefore, a proposal from an honest leader will always be decided,

which ensures liveness.

Decide. Finally, if GA𝑣,5 outputs a hash, the party decides a log

identified by the hash (line 31–32). Here, parties can always obtain

the corresponding log because all blocks in the decided log are

forwarded in their views (line 9).

These variables may be updated after the corresponding view

(i.e., view 𝑣 where GA𝑣,∗ trigger updates) has ended. Here, these
variables are not useful for lower views than a decided view because

these are always updated at the end of the decided view. Therefore,

our protocol keeps track of the highest decided view 𝑣 (line 33), and

update variables only for view 𝑣 ≥ 𝑣 (line 24,26,29,31).

5.1 Correctness of the protocol.
We prove safety and liveness of Algorithm 2.

Lemma 5.1. For all 𝑖 ∈ {2, 3, 4, 5} and 𝑣 , if GA𝑣,𝑖 of an honest
party outputs (𝑏, ∗), then for all honest party awake at its local time
𝜏 ≥ (7𝑖 − 5)Δ of view 𝑣 , its GA𝑣,𝑖−1 outputs (𝑏, ∗).

Proof. If GA𝑣,𝑖 of an honest party outputs (𝑏, ∗), then by the

integrity of GA, at least an honest party (say 𝑝) must have input

𝑏 to GA𝑣,𝑖 . This implies GA𝑣,𝑖−1 of the party 𝑝 must have output

(𝑏, 1). By the consistency of GA, for all honest party awake at its

local time 𝜏 ≥ (7𝑖 − 5)Δ of view 𝑣 (i.e., at least 7Δ after GA𝑣,𝑖−1

starts), its GA𝑣,𝑖−1 outputs (𝑏, ∗). □

Based on the above lemma, we prove the following lemma that

shows (i) every decided log (its hash) is notarized, and (ii) once a

log is decided, no conflicting log can be notarized ever after. Here,

we say two logs Λ and Λ′ conflict with each other if neither is a

prefix of the other.

Lemma 5.2. If an honest party 𝑝 decides a log Λ in view 𝑣 , then
(i) 𝑝 observes (𝐻 (Λ), 𝑣) ∈ notarized at that time, and (ii) for any
𝑢 ≥ 𝑣 and log Λ′ that conflicts with Λ, no honest party observes
(𝐻 (Λ′), 𝑢) ∈ notarized at any time.

Proof. If an honest party 𝑝 decides a log Λ of view 𝑣 at global

time 𝑡 , then GA𝑣,5 must have output (ℎ, ∗) where ℎ := 𝐻 (Λ), and
𝑡 ≥ 37Δ of view 𝑣 . By Lemma 5.1, for all honest parties awake at

their local time 𝜏 ≥ 30Δ of view 𝑣 , and hence for all honest parties

awake at global time 𝑡 , GA𝑣,4 must have output (ℎ, ∗). Applying the
same logic inductively, for all honest parties awake at global time

𝑡 (which must include 𝑝), GA𝑣,2 must have output (ℎ, ∗). Hence 𝑝
must have observed (ℎ, 𝑣) ∈ notarized at global time 𝑡 ; (i) is proven.

Next we prove (ii) by induction. We first prove the base case of

𝑢 = 𝑣 . Applying Lemma 5.1 one more time, for all honest parties

awake at their local time 𝜏 ≥ 9Δ of view 𝑣 , GA𝑣,1 must have output

(ℎ, ∗), and hence no honest party could have input ℎ′ ≠ ℎ to GA𝑣,2.

Due to the integrity of GA, no honest party outputs (ℎ′, ∗) from
GA𝑣,2 and hence no honest party observes (ℎ′, 𝑣) ∈ notarized.

We have shown in the proof of (i) that for all honest parties

awake at their local time 𝜏 ′ ≥ 30Δ of view 𝑣 , GA𝑣,4 must have

output (ℎ, ∗). Hence, they must have set lock ≥ 𝑣 . Therefore, none

of them could have observed (ℎ′,𝑤) ∈ notarized with 𝑤 ≥ lock
and ℎ′ ≠ ℎ. Then, no honest party could have input ℎ′′ := 𝐻 (Λ′)
for any log conflicting log Λ′ to GA𝑣+1,1. By the integrity of GA, no

honest party outputs (ℎ′′, ∗) from GA𝑣+1,1. By the same logic, no

honest party outputs (ℎ′′, ∗) from GA𝑣+1,2. Therefore, no honest

party could have observed (ℎ′′, 𝑣 + 1) ∈ notarized at any time. This

completes the inductive step, and proves that for all 𝑢 ≥ 𝑣 , no

honest party observes (𝐻 (Λ′), 𝑢) ∈ notarized at any time. □

We can then show the safety of our protocol.

Lemma 5.3 (Safety). Honest parties do not decide two different
values at the same log height.

Proof. Honest parties decide two different values at the same

log height implies they decide two conflicting logs. Suppose for

the sake of contradiction that honest parties 𝑝 and 𝑞 decide two

conflicting logs Λ and Λ′ in view 𝑣 and𝑢, respectively. Without loss

of generality, we assume 𝑣 ≤ 𝑢. By (i) of Lemma 5.2, (𝐻 (Λ), 𝑣) ∈
notarized for the party 𝑝 and (𝐻 (Λ′), 𝑢) ∈ notarized for the party

𝑞. However, this contradicts the (ii) of Lemma 5.2. □

Before proving the liveness, we first show the following lemma

that honest party can always obtain a log that corresponds to a

decided hash (i.e., output of the fifth GA).

Lemma 5.4. If GA𝑣,5 of an honest party outputs (ℎ, ∗), then all
honest parties awake at their local time 𝜏 ≥ 37Δ of view 𝑣 observe a
log Λ such that 𝐻 (Λ) = ℎ.

Proof. If GA𝑣,5 of an honest party outputs (ℎ, ∗), then at least

an honest party 𝑝 must have input ℎ to GA𝑣,1. Then 𝑝 must have

multi-cast ⟨block, 𝑏𝑘 , ℎ𝑘−1
, 𝑣⟩ where ℎ = 𝐻 (ℎ𝑘−1

| |𝑏𝑘), which im-

plies 𝑝 must have observed (ℎ𝑘−1
, 𝑢) ∈ notarized for a view 𝑢 < 𝑣

during local time [2Δ, 3Δ] of view 𝑣 . Then, at least an honest party

𝑞 must have input ℎ𝑘−1
to GA𝑢,1. Then 𝑞 must have multi-cast

⟨block, 𝑏𝑘−1
, ℎ𝑘−2

, 𝑢⟩ where 𝐻 (ℎ𝑘−2
| |𝑏𝑘−1

) = ℎ𝑘−1
, which implies

𝑞 must have observed (ℎ𝑘−2
,𝑤) ∈ notarized during local time

[2Δ, 3Δ] of view 𝑢. Applying this logic repeatedly, there is a log

Λ := [𝑏1, 𝑏2, .., 𝑏𝑘] such that for all 𝑖 ∈ [1, 𝑘], at least an hon-

est party must have multi-cast ⟨block, 𝑏𝑖 , ℎ𝑖−1, ∗⟩ where ℎ𝑖−1 =

𝐻 ([𝑏1, 𝑏2, ..𝑏𝑖−1]). Therefore, all honest parties awake at their local
time 𝜏 ≥ 37Δ of view 𝑣 observe a log Λ identified by the hash ℎ. □

Next we show the following lemma which intuitively says that

every honest party’s proposal passes the safety check on line 8.

Lemma 5.5. Let ℎ be the candidate.value of an honest party 𝑝

awake at some global time 𝑡 ∈ [0,Δ] of view 𝑣 . Then, any honest
party 𝑞 awake at any global time 𝑡 ′ ∈ [2Δ, 3Δ] of view 𝑣 observes
(ℎ,𝑢) ∈ notarized for some 𝑢 ≥ lock.

Proof. We consider two cases: ℎ is ⊥ or not. If ℎ = ⊥, it is
clear that the party 𝑞 observes lock = 0 (and (⊥, 0) ∈ notarized
from initialization); Otherwise, for some view 𝑤 < 𝑣 , GA𝑤,4 of 𝑞

must have output some value by global time 𝑡 ′ of view 𝑣 . Then, by

Lemma 5.1,GA𝑤,3 of 𝑝 must have output some value by global time

𝑡 of view 𝑣 , and ℎ could not have been ⊥.
If ℎ ≠ ⊥, there exists a view 𝑢 < 𝑣 such that GA𝑢,3 of 𝑝 must

have output (ℎ, ∗) by global time 𝑡 of view 𝑣 . Then, by Lemma 5.1,

GA𝑢,2 of 𝑞 must have output (ℎ, ∗) by global time 𝑡 ′ of view 𝑣 .

Therefore, the party 𝑞 must have observed (ℎ,𝑢) ∈ notarized at

global time 𝑡 ′. Let 𝑤 > 0 be the value of lock that 𝑞 observes at

global time 𝑡 ′ (if 𝑤 = 0, the lemma is obvious), then GA𝑤,4 of 𝑞

8

must have output (ℎ′, ∗) for a value ℎ′ by time 𝑡 ′ of view 𝑣 . Then,

by Lemma 5.1, GA𝑤,3 of 𝑝 must have output (ℎ′, ∗) by time 𝑡 of

view 𝑣 . Since 𝑝 always updates candidate based on the output of

GA∗,3 of the highest view, 𝑢 ≥ 𝑤 . □

Now we show the liveness of our protocol.

Lemma 5.6 (Liveness). If an honest party inputs a value 𝑥 , then
there exists a time 𝑡 such that all honest parties awake at global time
𝑡 decides a log that contains 𝑥 .

Proof. Let 𝑣 be a view after the stabilization time𝑇𝑠 . Let 𝑃 be the

set of insomniac honest parties during [0, 2Δ] of view 𝑣 . Then, all

parties in 𝑃 multi-cast their own proposals by global time Δ of view

𝑣 . Let 𝛼 be the number of parties awake at some time during [0, 2Δ].
Due to 7Δ-eventual stable participation, |𝑃 | > 𝛼/2. Therefore, with
probability more than 1/2, all honest parties awake at their local
time 2Δ of view 𝑣 observe the same honest leader 𝐿 of view 𝑣 and

its proposal.

Suppose the above good event happens, i.e., an honest leader 𝐿

is elected at view 𝑣 . Let ⟨propose, 𝑏, ¯ℎ, 𝑣, 𝜌, 𝜋⟩𝐿 be the proposal of

the leader 𝐿. Let 𝑄 be the set of insomniac honest parties during

[2Δ, 4Δ] of view 𝑣 . Then, all parties in𝑄 input ℎ = 𝐻 (¯ℎ | |𝑏) toGA𝑣,1

at their local time 2Δ of view 𝑣 by Lemma 5.5. Let 𝑆 be the set of

insomniac honest parties during [4Δ, 11Δ] of view 𝑣 . By the validity

of GA, all parties in 𝑆 output (ℎ, 1) at their local time 9Δ of view 𝑣

and do not output (ℎ′, ∗) for any ℎ′ ≠ ℎ. Then, all parties in 𝑆 input

ℎ to GA𝑣,2 at their local time 9Δ of view 𝑣 . Let 𝛼 ′ be the number

of parties awake at some time during [9, 11Δ] of view 𝑣 . Due to

7Δ-eventual stable participation, |𝑆 | > 𝛼 ′/2. Applying the validity

of GA inductively, for some honest parties, GA𝑣,5 outputs (ℎ, 1). By
the consistency of GA, for all honest parties awake at their local

time 𝜏 ≤ 37Δ of view 𝑣 , GA𝑣,5 must output (ℎ, ∗). By Lemma 5.4,

they all obtain and decide a log Λ such that 𝐻 (Λ) = ℎ.

Since the above good event happens in each viewwith probability

> 1/2, it must happens eventually and repeatedly (except with

negligibly small probability). Therefore, the honest party’s input 𝑥

will eventually be included in a decided log. □

Finally, our protocol achieves an expected 𝑂 (Δ) latency under

stable participation as formalized below.

Theorem 5.7 (Latency). If an honest party inputs a value 𝑥 at
global time 𝑡 ≥ 𝑇𝑠 , then there exists a time 𝑡 ′ = 𝑡 +𝑂 (Δ) such that
all honest parties awake at global time 𝑡 ′ decide a log that contains 𝑥
in expectation.

Proof. The honest party’s input 𝑥 is disseminated to all honest

parties by Δ, and will be included in their proposals. At least in𝑂 (1)
views (in expectation) after that, an honest party’s proposal is de-

cided. Since each view takes𝑂 (Δ) time, the input 𝑥 is incorporated

into a decided log within 𝑂 (Δ). □

6 ATOMIC BROADCAST WITH PRACTICAL
RECOVERY

This section augments our atomic broadcast protocol from the pre-

vious section with an efficient recovery mechanism, where newly

joined parties recover only necessary information of past views.

The augmented protocol is described in Algorithm 3.

Algorithm 3 Atomic broadcast with efficient recovery

At the beginning of the execution, initialize variables notarized =

{(⊥, 0) }, lock = 0, candidate = (⊥, 0) , 𝑣 = 0, 𝑣 = 0.

In each view 𝑣, party 𝑝 executes the following algorithm at every local

time 0 ≤ 𝜏 ≤ 44Δ w.r.t view 𝑣, and enter the next view 𝑣 + 1.

1: // same as line 1–33 of Algorithm 2 except a sixth GA step is added to
keep track of the critical view 𝑣

.

.

.

18: for 𝑖 ∈ {3, 4, 5, 6} do
.
.
.

// update the critical view
34: upon GA𝑣,6 outputs (ℎ, ∗) for 𝑣 ≥ 𝑣

35: 𝑣 ← 𝑣

// respond to recovery request
36: upon receiving ⟨recover,𝑢 ⟩𝑞
37: Λ𝑞 ← the log of view 𝑢 that 𝑝 decided

38: Λ𝑝 ← the log of view 𝑣 that 𝑝 decided

39: for all 𝑏 ∈ Λ𝑝 \ Λ𝑞 do
40: send to 𝑞 the corresponding ⟨block, 𝑏, ∗, ∗⟩
41: for all 𝑤 ≥ 𝑣 do
42: send to 𝑞 all messages of view 𝑤 (without any conflict).

// for recovering party 𝑝
43: Upon joining the execution, 𝑝 multi-casts ⟨recover, 𝑣⟩𝑝 , wait for Γ, and

resume the execution of lines 1–42

Our basic protocol (Algorithm 2), described for the original sleepy

model, requires each party to send 𝑂 (𝑙 (𝑛𝐿 + 𝜅𝑛)) amount of infor-

mation to help a recovering party 𝑞 that slept for 𝑙 views where 𝐿 is

the size of a block and𝜅 is the digital signature size. The𝑂 (𝑛𝐿) term
is due to sending all proposals in each view, and the 𝑂 (𝜅𝑛) term is

due to GA messages. Our augmented protocol reduces the recovery

data size to (expected) 𝑂 (𝑙𝐿 + 𝑛𝐿 + 𝜅𝑛) under stable participation.
Intuitively, each party only needs to send messages of recent views

(of size 𝑂 (𝑛𝐿 + 𝜅𝑛)), plus the decided log contents (of size 𝑂 (𝑙𝐿))
during the recovering party’s sleep.

Similarly, the augmented protocol saves storage. In our basic

protocol, each party must store all past messages. In the augmented

protocol, parties only store messages of recent views (plus log

contents).

Identifying the critical view. Reducing the𝑂 (𝑙𝑛𝐿) term to𝑂 (𝑙𝐿)
is not hard because non-decided proposals in those views are not

useful. The recovering party 𝑞 sends a recovery request with its

latest decided view 𝑣 (line 43), and each party just needs to send

the decided log contents of view 𝑣 or higher (line 37–40).

Reducing from 𝑂 (𝜅𝑙𝑛) to 𝑂 (𝜅𝑛), on the other hand, is challeng-

ing since missing GA messages in these views can lead to incorrect

updates to state variables (i.e., notary, candidate, lock, and decide),

which is the key to the safety and liveness of our atomic broadcast.

To this end, each party 𝑝 needs to identify the oldest view 𝑣 of which

it needs to send GA messages to the recovering party 𝑞. Recall that,

in Algorithm 2, only GAs of the highest decided view 𝑣 or later

trigger variable updates. Therefore, 𝑞 only requires messages of

view 𝑣 ≥ 𝑣 where 𝑣 is the highest view of which 𝑞 will decide a

log immediately after the recovery is completed. However, 𝑝 does

9

not know the value of 𝑣 of 𝑞, which can be different from 𝑣 of 𝑝

if they receive different messages. To solve this problem, we add

another GA step, i.e., GA𝑣,6. If GA𝑣,6 outputs some value, parties

update 𝑣 with view 𝑣 (line 34–35). If an honest party outputs some

value from GA𝑣,6, then all honest parties must output the value

from GA𝑣,5 (by consistency and integrity of GA). Therefore, the

recovering party 𝑞 always sets 𝑣 to be at least 𝑣 that 𝑝 observes,

and 𝑝 needs to send only messages of view 𝑣 or higher (line 41–42).

Since 𝑣 is updated every constant views (in expectation), parties

send messages of only the recent few views (plus log contents) to

recovering parties.

Conflict of messages. Since faulty parties can send propose and
block messages for infinitely many different blocks in the same

view, we define conflict of these messages to avoid unbounded

communication in the recovery phase. Specifically, two different

propose (or block) messages of the same view 𝑣 signed by the same

party conflict with each other.

6.1 Correctness of the Protocol
We prove safety and liveness of Algorithm 3. We say a party is

up-to-date with respect to view 𝑣 at (global or local) time 𝑡 if the

party has received all messages of view 𝑣 (without conflict) sent (or

forward) by time 𝑡 − Δ by all honest parties.

Proof sketch. The proof has two main parts. First, Lemma 6.1

says, all honest parties awake in view 𝑣 or 𝑣 + 1 are up-to-date w.r.t.

view 𝑣 . Then, the time-shifted quorum argument and the security

of GA still hold just as in the basic protocol. Next, Lemma 6.3 says

that parties can recover all messages of view 𝑣 or higher. This

helps prove that parties can correctly update their states for safety

(Lemma 6.4) and for liveness (Lemma 6.6).

Lemma 6.1 (Recovery for current view). Any honest party
awake at a global time within a view 𝑣 or 𝑣 + 1 is up-to-date w.r.t
view 𝑣 at that time.

Proof. Suppose an honest party 𝑝1 is awake at global time 𝑡1
within a view 𝑣 or 𝑣 + 1. Let 𝑡 ′

1
be the last time when 𝑝1 became

awake. (If 𝑝1 was awake all the time, the lemma is obvious.) Then,

𝑝1 must have rejoined the execution at global time 𝑡 ′
1
− Γ, and its

recover message must have been received by an honest party 𝑝2

that is awake at global time 𝑡2 ≤ 𝑡 ′
1
− Γ +Δ. By the end of view 𝑣 + 1,

𝑝2 (in fact, any party) must have 𝑣 ≤ 𝑣 , so by time 𝑡2, 𝑝2 must have

sent 𝑝1 all messages of view 𝑣 . These messages will be received by

𝑝1 by global time 𝑡 ′
1
(since Γ ≫ 2Δ). Applying this logic repeatedly,

we can define a list of parties [𝑝1, 𝑝2, .., 𝑝𝑖] where the last party 𝑝𝑖
stays awake from the beginning of view 𝑣 to global time 𝑡𝑖 . Then,

𝑝𝑖 must be up-to-date w.r.t view 𝑣 at global time 𝑡𝑖 . Moreover, if

𝑝𝑘 is up-to-date at global time 𝑡𝑘 , then 𝑝𝑘−1
is also up-to-date at

global time 𝑡𝑘−1
(because 𝑝𝑘 sends to 𝑝𝑘−1

all messages of view 𝑣

received by global time 𝑡𝑘). Therefore, by induction, by global time

𝑡1, 𝑝1 must receive all messages of view 𝑣 and hence be up-to-date

w.r.t view 𝑣 . □

The consistency and integrity of GA𝑣,∗ just need minor modifi-

cations. They now apply to parties that are up-to-date w.r.t. view 𝑣 .

The statement of validity stays the same as in Lemma 4.3.

(1) Consistency. If an honest party 𝑝 up-to-date w.r.t view 𝑣 out-

puts (𝑏, 1), all honest parties awake and up-to-date w.r.t view
𝑣 at their local time 𝜏 ≥ 7Δ output (𝑏, ∗).

(2) Integrity. If no honest party inputs 𝑏, then no honest party

up-to-date w.r.t view 𝑣 outputs (𝑏, ∗).
The proofs are almost the same as Lemma 4.1, 4.2, and 4.3, once

we argue that parties involved in the proofs (e.g., parties 𝑝 and 𝑞 in

the time-shifted quorum argument) are up-to-date w.r.t view 𝑣 , due

to Lemma 6.1.

Lemma 6.2. For all 𝑖 ∈ {2, 3, 4, 5, 6} and 𝑣 , if GA𝑣,𝑖 outputs (𝑏, ∗)
for an honest party up-to-date w.r.t view 𝑣 at global time 𝑡 ≥ (7𝑖+2)Δ,
then for any honest party up-to-date w.r.t view 𝑣 at its local time
𝜏 ≥ (7𝑖 − 5)Δ of view 𝑣 , GA𝑣,𝑖−1 outputs (𝑏, ∗).

Proof. If GA𝑣,𝑖 of an honest party up-to-date w.r.t view 𝑣 at

global time 𝑡 ≥ (7𝑖 + 2)Δ outputs (𝑏, ∗), then by the integrity of GA,

at least an honest party (say 𝑝) must have input𝑏 toGA𝑣,𝑖 at a global

time 𝑡 ′ within view 𝑣 . This impliesGA𝑣,𝑖−1 of the party 𝑝 must have

output (𝑏, 1). Since 𝑝 has been awake at global time 𝑡 ′ within view

𝑣 , it must have been up-to-date w.r.t view 𝑣 by Lemma 6.1. By the

consistency of GA, for any honest party up-to-date w.r.t view 𝑣 at

its local time 𝜏 ≥ (7𝑖 − 5)Δ, its GA𝑣,𝑖−1 outputs (𝑏, ∗). □

Lemma 6.3 (Recovery across views). If an honest party 𝑝 is
awake and observes 𝑣 at global time 𝑡 , then 𝑝 is up-to-date w.r.t any
view 𝑣 ≥ 𝑣 at global time 𝑡 .

Proof. Let 𝑡 ′ ≤ 𝑡 be the last time the party 𝑝 became awake. (If

𝑝 is awake all the time, the lemma is obvious.) 𝑝 must have rejoined

the execution at global time 𝑡 ′ − Γ and multi-cast recover, which
must have been received by all honest parties awake at global time

𝑡 ′ − Γ + Δ and they must have sent all messages of 𝑣 and higher,

and all of these messages must have reached 𝑝 by global time 𝑡 ′

(since Γ ≫ 2Δ). Let 𝑞1 be an honest party awake at global time

𝑡1 = 𝑡 ′ − Γ + Δ, and let 𝑣
1
be the value of 𝑣 it observes. Again, let

𝑡 ′
1
≤ 𝑡1 be the last time 𝑞1 became awake. The party 𝑞1’s recover

message must have been received by some honest party 𝑞2 awake

at global time 𝑡2 = 𝑡 ′
1
− Γ + Δ, who observes 𝑣

2
as the value of 𝑣 .

This way, we can define a list of parties 𝑄 = [𝑞1, 𝑞2, ..] and their

corresponding views 𝑉 = [𝑣
1
, 𝑣

2
, ..]. Let 𝑢 be the highest view in

𝑉 . Then, any party 𝑞𝑖 ∈ 𝑄 must have been up-to-date w.r.t view

𝑢 at global time 𝑡𝑖 . Therefore, 𝑝 must be up-to-date w.r.t view 𝑢 at

global time 𝑡 . Let 𝑗 be the index such that 𝑣 𝑗 = 𝑢. Then, GA𝑢,6 of 𝑞 𝑗

must have output (ℎ, 1) for some ℎ by global time 𝑡 𝑗 . By Lemma 6.2,

GA𝑢,5 of 𝑝 must have output (ℎ, ∗) at global time 𝑡 , and hence 𝑝

must observe 𝑣 ≥ 𝑢 at global time 𝑡 . Therefore, 𝑝 is up-to-date w.r.t

any view 𝑣 ≥ 𝑣 at global time 𝑡 . □

Lemma 6.4. If an honest party 𝑝 decides a log Λ in view 𝑣 , then
(i) 𝑝 observes (𝐻 (Λ), 𝑣) ∈ notarized at that time, and (ii) For any
𝑢 ≥ 𝑣 and log Λ′ that conflicts with Λ, no honest party observes
(𝐻 (Λ′), 𝑢) ∈ notarized at any time.

Proof. If an honest party 𝑝 decides a log Λ in view 𝑣 at global

time 𝑡 , then GA𝑣,5 must have output (ℎ, ∗) where ℎ := 𝐻 (Λ), and
𝑡 ≥ 37Δ of view 𝑣 . Since honest parties decide in view 𝑣 or higher,

𝑝 must have been up-to-date w.r.t view 𝑣 at that time by Lemma 6.3.

By Lemma 6.2, for all honest parties awake at their local time 30Δ

10

of view 𝑣 (who must have been up-to-date w.r.t view 𝑣), GA𝑣,4 must

have output (ℎ, ∗). Applying Lemma 6.2 inductively, for all honest

parties up-to-date w.r.t view 𝑣 at global time 𝑡 (including 𝑝), GA𝑣,2

must have output (ℎ, ∗). Hence 𝑝 observes (ℎ, 𝑣) ∈ notarized at

global time 𝑡 . (i) is proven.

Next we prove (ii). We first prove for 𝑢 = 𝑣 . Applying Lemma 6.2

inductively, for all honest parties awake at global time [9Δ, 10Δ] of
view 𝑣 , GA𝑣,1 must have output (ℎ, ∗), and hence no honest party

could have input ℎ′ ≠ ℎ to GA𝑣,2. Due to the integrity of GA, for

any 𝑡 ′ ≥ 0, no honest party up-to-date w.r.t view 𝑣 at global time 𝑡 ′

could have output (ℎ′, ∗). Here, if an honest party adds some pair

(∗, 𝑣) to notarized, the party must be up-to-date w.r.t view 𝑣 (by

Lemma 6.3). Therefore, no honest party observes (ℎ′, 𝑣) ∈ notarized
at any time; (ii) is proven for 𝑢 = 𝑣 .

By Lemma 6.2, for all honest parties awake at global time [2Δ, 4Δ]
of view 𝑣 + 1, GA𝑣,4 must have output (ℎ, ∗), and hence they must

have observed lock ≥ 𝑣 . Therefore, none of them could have ob-

served (ℎ′,𝑤) ∈ notarized for 𝑤 ≥ lock and ℎ′ ≠ ℎ. Then, no

honest party could have input ℎ′′ := 𝐻 (Λ′) for any log Λ′ that
conflicts with Λ to GA𝑣+1,1. By the integrity of GA, no honest party
awake at global time [9Δ, 11Δ] could have output (ℎ′′, ∗) from
GA𝑣+1,1. By the same logic, no honest party up-to-date w.r.t view

𝑣 + 1 could have output (ℎ′′, ∗) from GA𝑣+1,2. Therefore, no honest

party observes (ℎ′′, 𝑣 + 1) ∈ notarized at any time. This completes

the inductive step, and proves that for all 𝑢 ≥ 𝑣 , no honest party

observes (𝐻 (Λ′), 𝑢) ∈ notarized at any time. □

We can prove safety using Lemma 6.4 similar to the proof of

Lemma 5.3 in Section 5.

Lemma 6.5. If an honest party 𝑝 observes candidate.view = 𝑣 (or
lock = 𝑣), then 𝑝 is up-to-date w.r.t any view 𝑢 ≥ 𝑣 .

Proof. Suppose for the sake of contradiction that 𝑝 is not up-to-

date w.r.t view 𝑣 or higher. Then, 𝑝 must observes 𝑣 > 𝑣 . Let𝑤 be

the view 𝑝 observes as 𝑣 . Then, 𝑝 must have output some value from

GA𝑤,5 by then. By Lemma 6.4, 𝑝 must have output the value from

GA𝑤,4 andGA𝑤,3, and updated candidate.view and lockwith𝑤 > 𝑣

by then. This contradicts that 𝑝 observes candidate.view = 𝑣 . □

Lemma 6.6. Let ℎ be the candidate.value of an honest party 𝑝

awake at global time 𝑡 ∈ [0,Δ] of view 𝑣 . Then, every honest party
𝑞 awake at global time 𝑡 ′ ∈ [2Δ, 3Δ] of view 𝑣 observes (ℎ,𝑢) ∈
notarized for some 𝑢 ≥ lock.

Proof. We consider two cases: ℎ is ⊥ or not.

Case 1:ℎ = ⊥.Wewill prove that party𝑞 observes lock = 0 at global

time 𝑡 ′ (we have (0, 0) ∈ notarized from initialization). Suppose for

the sake of contradiction that 𝑞 observes lock ≠ 0 at global time

𝑡 ′. Then, there exists a view 𝑢 < 𝑣 such that 𝑞 must have output

some value from GA𝑢,4 and updated lock based on the output. At

that time, 𝑞 must have been up-to-date w.r.t view 𝑢 by Lemma 6.5.

Also, by Lemma 6.5, 𝑝 must have been up-to-date w.r.t view 𝑢 at

global time 𝑡 , because 𝑝 observes candidate.view = 0 (because

ℎ = ⊥). By Lemma 6.2, 𝑝 must have output some value from GA𝑢,3
by global time 𝑡 , which must have triggered updating candidate.
This contradicts with ℎ = ⊥. Therefore, 𝑞 observes lock = 0 at

global time 𝑡 ′, and we complete the proof for the first case.

Case 2: ℎ ≠ ⊥. There exists a view 𝑢 < 𝑣 in which 𝑝 outputs

(ℎ, ∗) from GA𝑢,3 and updates candidate based on this output. By

Lemma 6.5, 𝑝 must have been up-to-date w.r.t view 𝑢 at that time.

Let 𝑢 be the highest such view.

We can prove that 𝑞 must have been up-to-date w.r.t view 𝑢 at

global time 𝑡 ′. Otherwise, 𝑞 must have observed 𝑣 > 𝑢 at global

time 𝑡 ′ (by Lemma 6.3). This implies 𝑞 must have output some value

from GA𝑤,5 for some 𝑤 > 𝑢 (when it is up-to-date w.r.t view 𝑤).

Since 𝑝 observes candidate.view = 𝑢, it must have been up-to-date

w.r.t view𝑤 > 𝑢 at global time 𝑡 (by Lemma 6.5). Therefore, 𝑝 must

have output some value from GA𝑤,3 (by Lemma 6.2), and updated

candidate based on the output. However, this contradicts with 𝑢

being the highest such view.

Now, we have that 𝑝 outputs (ℎ, ∗) from GA𝑢,3 when it is up-

to-date w.r.t view 𝑢, and 𝑞 is also up-to-date w.r.t view 𝑢 at global

time 𝑡 ′. By Lemma 6.2, 𝑞 must have output (ℎ, ∗) from GA𝑢,2 by

global time 𝑡 ′. Therefore, 𝑞 must have observed (ℎ,𝑢) ∈ notarized
at global time 𝑡 ′.

Finally, we show that 𝑞 observes 𝑢 ≥ lock at global time 𝑡 ′. Let
𝑠 be the value of lock that 𝑞 observes at global time 𝑡 ′ (if lock = 0,

the lemma is obvious), then 𝑞 must have output some value from

GA𝑠,4 (when it is up-to-date w.r.t. view 𝑠). By the same logic as

above, 𝑝 must have been up-to-date w.r.t view 𝑠 at global time 𝑡 . By

Lemma 6.2, 𝑝 must have output some value from GA𝑠,3 by global

time 𝑡 . Since 𝑝 always updates candidate based on the output of

GA∗,3 of the highest view, 𝑢 ≥ 𝑠 . □

Finally, we can prove liveness based on Lemma 6.6 as in the basic

protocol (Lemma 5.6).

7 EXPERIMENTAL EVALUATION
To demonstrate the low latency of our protocol, we implemented

and evaluated our basic protocol and the longest-chain protocol

in [31] under varying participation level. Our experiment was con-

ductedwith 100 parties with each party executed on anAmazon EC2

t2.large instance. We executed our protocol and the longest-chain

protocol under the same schedule of participation level (shown in

the bottom of Figure 2) generated as follows.

(1) Stable participation. At the beginning of the execution, 50

parties are awake, and until 1110 seconds (30 views for our

protocol), it randomly increases or decreases by one party every

second.

(2) Unstable participation. During the next 1110 seconds (until

2220 seconds), the participation level is selected independently

randomly from 1 to 100 parties every second.

(3) High participation level. The third period (next 1110 seconds)
starts with 66 parties (two thirds) and randomly increases or

decreases by one party every second, but never drops below 66

parties.

(4) Low participation level. Finally, the last period starts with 33

parties (1/3), and randomly increases or decreases by one party

every second, but never exceeds 33 parties.

We set the synchrony bound Δ = 1 second. For the longest-chain

protocol, we used the block generation rate for each party 𝜆 =

1/3700 per seconds so that a block is generated at about the same

interval as our protocol when all parties are awake. This provides

11

Figure 2: Experimental result. The bottom figure shows the
participation level over time, and the top and middle figures
show the latency and log length, respectively, of both our
protocol and the longest-chain protocol in [31].

the fault tolerance of 𝑓 /𝑛 ≈ 0.49 [31]. For the confirmation length,

we use 𝑘 = 10. This is quite low a security level; the probability of

safety violation is at least 0.001 if an adversary controls more than

20% stake and simply launches a private mining attack [28].

Figure 2 shows the latency and log length over time. The log

length at each time is the number of blocks decided so far. The

latency at each time is the time it takes for the next proposed

block to be decided. In other words, if 𝑏 is the first block proposed

after time 𝑡 and 𝑏 is decided at time 𝑡 ′, then we plot the latency

at time 𝑡 to be 𝑡 ′ − 𝑡 . The latency of the longest-chain protocol

after 3097 seconds is not reported because after 3097 seconds takes,

it takes too long to produce a block, and no block gets decided

when we terminate the experiment. We give some analysis on the

experimental results below.

Dependency on the security parameter. First, the latency of the

longest-chain protocol is always longer than that of our protocol

(labeled as Constant Sleepy), due to the dependence on the security

parameter 𝜅 in the longest-chain protocol: a block is decided only

after 𝑘 = Ω(𝜅) subsequent blocks are proposed. As a block is

proposed at most every 37 seconds in expectation, the latency is at

least a few hundred seconds (the best case is 239 seconds). This is

why it took 750 seconds for the longest-chain protocol to decide its

first block, compared to 74 seconds (2 views) in our protocol. The

confirmation length 𝑘 must be much larger to get a higher security

level, i.e., a smaller probability of safety violation, and the latency

of the longest-chain protocol will be much longer.

Dependency on the participation level. The log in our protocol

grows consistently in our protocol (except during the unstable par-

ticipation period). In sharp contrast, in the longest-chain protocol,

the growth speed of log length heavily depends on the participation

level (due to the 𝛾 term in the asymptotic latency). Remarkably,

the log of the longest-chain protocol grew by 25 blocks in the high

participation period (2220–3330 seconds) but by only 5 blocks in

the low participation period (3330–4440 seconds). The average par-

ticipation levels of these two periods are 87 and 27, respectively.

For the same reason, the latency of the longest-chain protocol is

at the minimum of 239 seconds around the beginning of the high

participation period and increases as it gets closer to the low par-

ticipation period. As mentioned, we could not report latency of the

longest-chain protocol after 3097 seconds because it is taking too

long to produce blocks during low participation, which is in itself a

demonstration of its poor latency.

Unstable participation period. As mentioned, our protocol does

not guarantee progress when the participation level fluctuates

wildly. We indeed observe that during the unstable participation

period (1110–2220 seconds), 17 out of 30 views failed to decide

blocks. Nonetheless, our protocol decided blocks in some of these

views. This is because the stability condition (Definition 3.1) is

sufficient but not necessary; it may be further relaxed to weaker

(but less clean, hence not adopted) forms. For example, our protocol

can decide a block in view 𝑣 if a majority of awake parties at the

beginning of GA𝑣,𝑖 are also awake at time 2Δ of GA𝑣,𝑖−1 for all

1 < 𝑖 ≤ 5. As we randomly generated the schedule of participation

level, our protocol decided blocks in some lucky views that satisfy

this condition. Our protocol would not make progress at all if an

adversary carefully controls the participation level. In comparison,

the longest-chain protocol grows its log length (16 blocks) almost

proportionally to the average participation level (49 parties).

8 DISCUSSION

Communication complexity. Our protocols costs (excluding re-

covery cost) 𝑂 ((𝜅𝑛2 + 𝐿𝑛)𝑁) bits of communication in total per

block, where 𝑛 = max𝑡 ≥0 (𝑛𝑡) is the maximum number of awake

parties throughout the execution, 𝜅 is the signature length, and 𝐿

is the size of a block. The 𝜅𝑛2𝑁 term is due to nodes forwarding

every echo that includes a hash of block, and the 𝐿𝑛𝑁 term is due

to each node sending a block once before the start of the first GA

(line 9 of Algorithm 2). On the other hand, the longest-chain proto-

col (also excluding recovery cost) in [31] costs 𝑂 ((𝜅𝑛 + 𝐿𝑛)𝑁) bits
of communication per block. Thus, our protocol’s communication

cost is higher than that of longest-chain protocol if the block size 𝐿

is small, but becomes comparable when the block size 𝐿 is big.

On the necessity of randomization. Our protocol uses random-

ized leader election. Randomization is necessary for low latency.

It is well known that Ω(𝑓) round is necessary for deterministic

12

protocols [15], which applies to the sleepy model (since sleepy is

strictly harder than the classic model).

Our protocol as well as all existing protocols in the sleepy model

only achieve almost-surely termination, i.e., the probability of ter-

mination approaches 1 as the protocol keeps running but never

becomes 1. This is inherent to leader-based protocols in the sleepy

model, because the adversary always has a (decreasing but positive)

chance to guess the leader and make the leader go to sleep. It is an

interesting open question whether this is inherent or avoidable by

leaderless protocols.

9 CONCLUSION AND FUTURE DIRECTIONS
We present a BFT atomic broadcast protocol that simultaneously

supports dynamic participation and achieves expected𝑂 (Δ) latency.
Our protocol follows the quorum-based design by extending the

classic static quorums to dynamic quorums. To restore the transfer-

ability of quorum certificate, we introduce a new technique called

time-shifted quorum. We also present an efficient recovery process

for rejoining nodes.

Our protocol makes progress only during periods of stable par-

ticipation. It is an interesting open question whether it is possible

to make progress even during wildly fluctuating periods while

achieving 𝑂 (Δ) latency. A possible solution may be to adopt the

multi-chain paradigm [5, 18, 25] without longest-chain protocols.

The multi-chain paradigm takes a different approach from ours

to remove the dependency on 𝜅. It is interesting to see if we can

further remove from it the dependence on 𝛾 . The remaining chal-

lenge is that existing multi-chain protocols either require proof-

of-work [5, 25] or still depend on 𝜅 to decide between conflicting

transactions [5, 18].

ACKNOWLEDGMENTS
We thank our shepherd Qiang Tang and the anonymous reviewers

at ACM CCS 2022 for their helpful feedback. We also thank Joachim

Neu, Ertem Nusret Tas, and David Tse, for valuable discussions. We

also thank Keisuke Hasegawa and Masashi Sato for helping us with

the experiment. This work is supported in part by an NSF CAREER

award.

REFERENCES
[1] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren.

2019. Synchronous Byzantine Agreement with Expected𝑂 (1) Rounds, Expected
𝑂 (𝑛2) Communication, and Optimal Resilience. In Financial Cryptography and
Data Security (FC). Springer, 320–334.

[2] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,

and Alin Tomescu. 2021. Reaching consensus for asynchronous distributed key

generation. arXiv preprint arXiv:2102.09041 (2021).
[3] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically

optimal validated asynchronous byzantine agreement. In ACM Symposium on
Principles of Distributed Computing (PODC). 337–346.

[4] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vas-

silis Zikas. 2018. Ouroboros genesis: Composable proof-of-stake blockchains

with dynamic availability. In ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS). 913–930.

[5] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath.

2019. Prism: Deconstructing the blockchain to approach physical limits. In ACM
SIGSAC Conference on Computer and Communications Security (CCS). 585–602.

[6] Ziv Bar-Joseph, Idit Keidar, and Nancy Lynch. 2002. Early-delivery dynamic

atomic broadcast. In International Symposium on Distributed Computing (DISC).
Springer, 1–16.

[7] Kenneth P Birman and Robbert Van Renesse. 1993. Reliable distributed computing
with the Isis toolkit. IEEE Computer Society Press.

[8] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. 2011. Introduction to
reliable and secure distributed programming. Springer Science & Business Media.

[9] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Se-

cure and efficient asynchronous broadcast protocols. In Annual International
Cryptology Conference (CRYPTO). Springer, 524–541.

[10] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance. In

3rd Symposium on Operating Systems Design and Implementation (OSDI). USENIX,
173–186.

[11] Jing Chen and Silvio Micali. 2016. Algorand. arXiv preprint arXiv:1607.01341
(2016).

[12] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. 1995. Atomic

broadcast: From simple message diffusion to Byzantine agreement. Information
and Computation 118, 1 (1995), 158–179.

[13] Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow white: Robustly reconfig-

urable consensus and applications to provably secure proof of stake. In Financial
Cryptography and Data Security (FC). Springer, 23–41.

[14] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. 2018.

Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake

blockchain. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT). Springer, 66–98.

[15] Danny Dolev and H. Raymond Strong. 1983. Authenticated algorithms for

Byzantine agreement. SIAM J. Comput. 12, 4 (1983), 656–666.
[16] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the

presence of partial synchrony. J. ACM 35, 2 (1988), 288–323.

[17] Paul Feldman and Silvio Micali. 1988. Optimal algorithms for Byzantine agree-

ment. In 20th Annual ACM Symposium on Theory of Computing (STOC). 148–161.
[18] Matthias Fitzi, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018. Parallel

Chains: Improving Throughput and Latency of Blockchain Protocols via Parallel

Composition. IACR Cryptology ePrint Archive, Report 2018/1119 (2018).
[19] Yossi Gilad, RotemHemo, SilvioMicali, Georgios Vlachos, andNickolai Zeldovich.

2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In 26th
Symposium on Operating Systems Principles (SOSP). 51–68.

[20] Vipul Goyal, Hanjun Li, and Justin Raizes. 2021. Instant Block Confirmation in

the Sleepy Model. In Financial Cryptography and Data Security (FC).
[21] Yue Guo, Rafael Pass, and Elaine Shi. 2019. Synchronous, with a chance of

partition tolerance. In Annual International Cryptology Conference (CRYPTO).
Springer, 499–529.

[22] Jonathan Katz and Chiu-Yuen Koo. 2009. On expected constant-round protocols

for byzantine agreement. J. Comput. System Sci. 75, 2 (2009), 91–112.
[23] Pankaj Khanchandani and Roger Wattenhofer. 2021. Byzantine Agreement with

Unknown Participants and Failures. arXiv preprint arXiv:2102.10442 (2021).
[24] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gen-

erals Problem. ACM Transactions on Programming Languages and Systems 4, 3
(1982), 382–401.

[25] Songze Li and David Tse. 2020. TaiJi: Longest Chain Availability with BFT Fast

Confirmation. arXiv preprint arXiv:2011.11097 (2020).

[26] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The

honey badger of BFT protocols. In ACM SIGSAC Conference on Computer and
Communications Security (CCS). 31–42.

[27] Atsuki Momose and Ling Ren. 2021. Optimal Communication Complexity of

Authenticated Byzantine Agreement. In International Symposium on Distributed
Computing (DISC).

[28] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

[29] Joachim Neu, Ertem Nusret Tas, and David Tse. 2021. Ebb-and-flow protocols: A

resolution of the availability-finality dilemma. In IEEE Symposium on Security
and Privacy (S&P). IEEE, 446–465.

[30] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the blockchain

protocol in asynchronous networks. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT). Springer,
643–673.

[31] Rafael Pass and Elaine Shi. 2017. The sleepy model of consensus. In Annual Inter-
national Conference on the Theory and Application of Cryptology and Information
Security (ASIACRYPT). Springer, 380–409.

[32] Marshall Pease, Robert Shostak, and Leslie Lamport. 1980. Reaching agreement

in the presence of faults. Journal of the ACM (JACM) 27, 2 (1980), 228–234.
[33] Suryanarayana Sankagiri, Xuechao Wang, Sreeram Kannan, and Pramod

Viswanath. 2020. The Checkpointed Longest Chain: User-dependent Adaptivity

and Finality. arXiv preprint arXiv:2010.13711 (2020).
[34] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-

ham. 2019. Hotstuff: Bft consensus with linearity and responsiveness. In ACM
Symposium on Principles of Distributed Computing (PODC). ACM, 347–356.

13

	Abstract
	1 Introduction
	2 Related Works
	3 Model and Definitions
	3.1 Sleepy Model with Recovery
	3.2 Additional Remark on the Sleepy Model

	4 Graded Agreement
	4.1 Warmup: A Lockstep GA
	4.2 Our GA Protocol under Loosely Synchronized Clocks
	4.3 Correctness of the Protocol

	5 Atomic Broadcast in Sleepy Model
	5.1 Correctness of the protocol.

	6 Atomic Broadcast with Practical Recovery
	6.1 Correctness of the Protocol

	7 Experimental Evaluation
	8 Discussion
	9 Conclusion and Future Directions
	Acknowledgments
	References

