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Abstract. The dual attacks on the Learning With Errors (LWE) problem are currently a
subject of controversy. In particular, the results of [MAT22], which claim to significantly
lower the security level of Kyber [SAB+20], a lattice-based cryptosystem currently being
standardized by NIST, are not widely accepted. The analysis behind their attack depends on
a series of assumptions that, in certain scenarios, have been shown to contradict established
theorems or well-tested heuristics [DP23b].
In this paper, we introduce a new dual lattice attack on LWE, drawing from ideas in coding
theory. Our approach revisits the dual attack proposed by [MAT22], replacing modulus
switching with an efficient decoding algorithm. This decoding is achieved by generalizing
polar codes over Zq, and we confirm their strong distortion properties through benchmarks.
This modification enables a reduction from small-LWE to plain-LWE, with a notable decrease
in the secret dimension. Additionally, we replace the enumeration step in the attack by
assuming the secret is zero for the portion being enumerated, iterating this assumption over
various choices for the enumeration part.
We make an analysis of our attack without using the flawed independence assumptions used
in [MAT22] and we fully back up our analysis with experimental evidences.
Lastly, we assess the complexity of our attack on Kyber; showing that the security levels
for Kyber-512/768/1024 are 3.5/11.9/12.3 bits below the NIST requirements (143/207/272
bits) in the same nearest-neighbor cost model as in [SAB+20,MAT22]. All in all the cost of
our attack matches and even slightly beat in some cases the complexities originally claimed
by the attack of [MAT22].

Keywords: Post-Quantum Cryptography · Learning With Errors · Dual Attack · Fast
Fourier Transform · Polar Code

1 Introduction

1.1 Background

The LWE Problem. In this paper, we address the Learning With Errors (LWE) problem originally
introduced by Regev in [Reg05]. It revolves around the task of finding s ∈ Zn

q given (A,b) ∈
Zm×n
q ×Zm

q with b = As+e where e is of small Euclidean norm. This problem can be seen as the

decoding problem for the code C(A) generated by the columns of A (i.e. C(A)
△
= {Ax, x ∈ Zn

q })
and the Euclidean distance, where we are asked to find the codeword (i.e. the element of C) which
is close in Euclidean distance to b. We are particularly interested in the case where s is short too
which is called the small LWE problem. This problem has emerged as a fundamental challenge in
cryptography. Notably, it underpins the construction of various cryptographic primitives and is
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JCJC DECODE (ANR-22-CE39-0004-01) for KC and ANR-22-PETQ-0008 PQ-TLS for JPT. The work
of CMH was funded by the French Agence de l’innovation de défense and by Inria. The work of YS
was funded by EPSRC grant EP/W02778X/2 and the France 2030 program managed by the French
National Research Agency under grant agreement ANR-22-PETQ-0008 PQ-TLS.



conjectured to withstand attacks from quantum computers [LPR10]. Our motivation for exploring
this problem stems particularly from the need to gauge the security level of Kyber, a lattice-based
cryptosystem that is being standardized by the NIST4.

Dual Attacks. The most efficient cryptanalysis techniques against LWE(-like) problems are “pri-
mal” and “dual” lattice attacks. The primal attack corresponds to lattice reduction being performed
on the “primal” lattice Λq(A) which is Construction A of the q-ary lattice obtained from C(A),
namely

Λq(A) = {y ∈ Zm : ∃c ∈ C(A) such that y = c mod q}
= {y ∈ Zm : ∃s ∈ Zn

q such that y = As mod q}.

Dual attacks mean that lattice reduction is performed over the dual lattice Λq(A)∨, which in
this case, up to a q-multiplicative factor, is nothing but Construction A applied to the dual code
C(A)⊥

△
= {x ∈ Zm

q : A⊤x = 0}:

Λq(A)∨
△
= {x ∈ Rm : ⟨x,y⟩ ∈ Z, ∀y ∈ Λq(A)}
= 1

q{x ∈ Zm : A⊤x = 0 mod q}.

The lattice {x ∈ Zm : A⊤x = 0 mod q} is known under the name of the orthogonal lattice of
A, i.e. Λ⊥

q (A)
△
= {x ∈ Zm : A⊤x = 0 mod q}.

Dual attacks were introduced in [MR09]. In its simplest form, a dual attack is a distinguisher
attack which is given either (A,A · s + e) or (A,u) where (A,u) are uniform and e is short,
and answers if we are in the first or the second case. It starts by computing many short xj ’s in
the dual lattice Λq(A)∨ and the associated ⟨xj ,b⟩’s. Those short vectors are obtained by lattice
reduction of Λq(A)∨ or what is basically equivalent Λ⊥

q (A). In the second case, we expect that
these scalar products are uniformly distributed in Zq. On the other hand in the first case since
⟨xj ,b⟩ = ⟨xj ,As+ e⟩ = ⟨A⊤xj , s⟩ + ⟨xj , e⟩ = ⟨xj , e⟩ mod q, we get scalar products of small
vectors which are tilted towards small entries.

There have been a sequence of developments in dual attacks, for instance by combining these

attacks with a guessing stage [Alb17] consisting in splitting the support of s in two parts
(
senu
slat

)
and guessing one part of this support. A is split accordingly A = [Aenu Alat]. This allows to only

perform lattice reduction on Construction A of the code generated by
[
Idm

A⊤
lat

]
. That means we only

look for short vectors
(

x
ylat

)
such that Alat

⊤x = ylat mod q. Define yenu by yenu = A⊤
enux. The

point is that looking for such vectors is faster because of the dimension reduction. We then guess
senu and check whether the ⟨x,b⟩−⟨yenu, senu⟩’s are tilted towards small values or not. This comes
from the fact that

⟨x,b⟩ = ⟨x,Aenusenu +Alatslat + e⟩ = ⟨A⊤
enux, senu⟩+ ⟨A⊤

latx, slat⟩+ ⟨x, e⟩
= ⟨yenu, senu⟩+ ⟨ylat, slat⟩+ ⟨x, e⟩ mod q (1.1)

In [EJK20] this was generalized to broader secret distributions paired with additional improve-
ments on the exhaustive search. [GJ21] applied a Fast Fourier Transform-style algorithm to the
search over senu and the search space is significantly reduced by roughly considering only the most
significant bits of senu. [MAT22] replaced this step with “modulus switching” [BV11,AFFP14],
yielding significant performance gains. The algorithm can be described as follows.

4 https://csrc.nist.gov/projects/post-quantum-cryptography
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The MATZOV template. Let nenu, nfft, nlat be some positive integers such that nenu+nfft+nlat =
n. The matrix A and the secret s are divided accordingly:

A
△
=
[
Aenu Afft Alat

]
∈ Zm×nenu

q × Zm×nfft
q × Zm×nlat

q , (1.2)

s
△
=

senu
sfft
slat

 ∈ Znenu
q × Znfft

q × Znlat
q . (1.3)

The objective is to guess the part senu of the secret vector but to do that, we need to be
able to distinguish between a right and a wrong guess. By performing lattice reduction on the

lattice generated by
[
Idm 0
A⊤

lat qIdnlat

]
, we obtain a set S of vectors

(
x
y

)
such that x and y are of

small Euclidean norm in Zm
q and Znlat

q respectively and are such that y = A⊤
latx. Similarly to

Equation (1.1), we have

⟨x,b−Aenusenu⟩ −
〈
A⊤

fftx, sfft
〉
= ⟨x, e⟩+ ⟨y, slat⟩ . (1.4)

Since (x,y) and (e, slat) are short, Equation (1.4) is biased towards zero, raising the issue of finding
efficiently senu and sfft such that the left-hand term in (1.4) is small.

One can notice that (1.4) actually gives us many small-LWE sample5 (a′, b′) ∈ Znfft
q × Zq with

secret s′ ∈ Znfft
q and error e′ ∈ Zq where

a′
△
= A⊤

fftx, (1.5)

b′
△
= ⟨x,b−Aenusenu⟩ , (1.6)

s′
△
= sfft, (1.7)

e′
△
= ⟨x, e⟩+ ⟨y, slat⟩ . (1.8)

Thus, we can distinguish a correct and an incorrect guess for senu and recover sfft by solving
this small-LWE instance. Since nenu is small enough, senu can be exhaustively searched. Once senu
is identified, sfft is recovered by solving the above small-LWE instance. Specifically, this involves
exhaustively searching for a z ∈ Znfft

q such that the vector
(
⟨x,b−Aenusenu⟩ −

〈
A⊤

fftx, z
〉)

(x,y)∈S

has a small Euclidean norm. One approach to speed up the search is to use a Fourier transform. The
method introduces an evaluation function E, which assigns a real value to each guess s̃enu ∈ Znenu

q :

E(s̃enu)
△
= max

z∈Znfft
q

Fs̃enu(z) (1.9)

where
Fs̃enu(z)

△
=

∑
(x,y)∈S

cos
(

2π
q

(
⟨x,b−Aenus̃enu⟩ −

〈
A⊤

fftx, z
〉))

. (1.10)

MATZOV’s algorithm essentially consists in finding s̃enu ∈ Znenu
q such that E(s̃enu) ≥ T , where

T ∈ N is a threshold chosen around the expected value of E when evaluated on the correct guess,
namely T ≈ E(senu). The key idea is that we expect E(senu) to be significantly larger than E(s̃enu)
when s̃enu is incorrect, i.e. when s̃enu ̸= senu. Indeed, for the correct guess, Equation (1.4) shows
that ⟨x,b−Aenusenu⟩ −

〈
A⊤

fftx, sfft
〉
mod q is biased toward zero. Consequently, each term in the

sum in Equation (1.10) will be biased toward 1, resulting in a large total value for E (Fsenu(sfft)).
On the other hand, if s̃enu ̸= senu, then for all z ∈ Znfft

q , ⟨x,b−Aenus̃enu⟩ −
〈
A⊤

fftx, z
〉
mod q is

uniformly distributed over Zq, meaning that E (Fs̃enu(z)) = 0.

5 By using N samples {(a′
i, b

′
i)}i∈J1,NK, we can rewrite the LWE instance with a matrix A′ △

=
[
a′
1 · · · a′

N

]
and a vector b′ △

= (b′1 · · · b′N )⊤.
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Modulus switching. The point of using the evaluation function E is that Fs̃enu can be computed
efficiently with a Fast Fourier Transform (FFT). However, the large input space Znfft

q makes the
FFTcostly. This size can be reduced, though at the cost of slightly weakening the bias of Fsenu(sfft).

To do that, MATZOV proposes to reduce the size of the field Zq by using a modulus switching
technique: instead of considering Fs̃enu , they consider

F
(ms)
s̃enu

: Znfft
p −→ R
z 7−→

∑
(x,y)∈S

cos
(

2π
p

(
p
q ⟨x,b−Aenus̃enu⟩ −

〈⌊
p
qA

⊤
fftx
⌉
, z
〉))

where p ≤ q is a smaller modulus and ⌊·⌉ stands for the integer rounding operation. Thus, for the
wrong guess s̃enu ̸= senu and for all z ∈ Znfft

p , F (ms)
s̃enu

(z) is still expected to be 0 whereas for the good
guess senu we have, from Equation (1.4),

F (ms)
senu (sfft mod p) =

∑
(x,y)∈S

cos
(

2π
p

(
p
q ⟨x, e⟩+

p
q ⟨y, slat⟩+

〈
p
qA

⊤
fftx−

⌊
p
qA

⊤
fftx
⌉
, sfft

〉))
=

∑
(x,y)∈S

cos
(

2π
q

(
⟨x, e⟩+ ⟨y, slat⟩+

〈
A⊤

fftx− q
p

⌊
p
qA

⊤
fftx
⌉
, sfft

〉))
.

Even if it means reducing the threshold a little, we can still expect F (ms)
senu (sfft mod p) ≥ T since

the additional term
〈
A⊤

fftx− q
p

⌊
p
qA

⊤
fftx
⌉
, sfft

〉
is also biased toward zero. Indeed, it is the scalar

product of two short vectors; in particular:

dms
△
= E

(∥∥∥A⊤
fftx− q

p

⌊
p
qA

⊤
fftx
⌉∥∥∥) ≈ q

p

√
nfft

12 (1.11)

since we can make the approximation that each of the coordinates of p
qA

⊤
fftx−

⌊
p
qA

⊤
fftx
⌉

are drawn
uniformly at random in ]− 0.5, 0.5].

Finally, [MAT22] claims that the security level of NIST candidates like Kyber could be signif-
icantly lowered. However, this result is not widely accepted, as the analysis relies on assumptions
which turn out to be false according to [DP23b].

Dual Attacks in Code-Based Cryptography and Analyzing Dual Attacks. Dual attacks
in lattice based cryptography can be viewed as the lattice based analogue of statistical decoding in
code-based cryptography which dates back to Al Jabri [Jab01]. In this case, short codewords h in
the dual code are computed, where short is with respect to the Hamming distance. The goal is to
solve the decoding problem b = As+e where b and A are given whereas s and e are unknown and
e is of small Hamming weight (rather than of small Euclidean norm for the LWE problem). The
issue is to recover s. Here too, the inner product ⟨h,b⟩ is biased towards zero. This is used to solve
the decoding problem very much in the same way as it is used to solve the LWE problem. Similarly
to what happened in lattice based cryptography, dual attacks became much more effective through
a splitting strategy which allowed to look for short codewords in a smaller code [CDMT22]. In an
analogous way to what was done in lattice based cryptography, these attacks were analyzed by
making assumptions and in particular independence assumptions [CDMT22, Ass. 3.7] which are
close to the independence assumptions made for analyzing MATZOV’s attack [MAT22, Ass. 4.4,
Ass. 5.8]. In the lattice based case, these assumptions were shown to contradict some theorems in
certain regimes or well-tested heuristics in some other regimes [DP23b].

Note that it was already noticed in [CDMT22, §3.4] that the i.i.d. Bernoulli model used for
analyzing dual attacks in code-based cryptography is not always accurate. However, it was con-
jectured there that the difference between this ideal model and experiments has no impact on the
asymptotic analysis of the decoding based on this model. This was proved to be wrong in [MT23].
However, this paper gave at the same time an approach for analyzing rigorously dual attacks in
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coding theory by bringing in a duality equation [MT23, Prop. 1.3] shedding some light on the fun-
damental quantities manipulated by the decoder. This allowed to obtain a proof of the correctness
of a slightly modified version of the dual attack proposed in [CDMT22]. Dual attacks for solving
the decoding problem have been further improved in [CDMT24] and the approach of [MT23] has
been carried over to this improved dual attack. [CDMT24] can be viewed as a somewhat improved
version of the MATZOV attack in the context of codes, where the modulus switching part is re-
placed by an optimal lossy source encoder. It is worthwhile to note that [CDMT24, Section 8]
shows that the fundamental duality equation [MT23, Prop. 1.3] used to analyze dual attacks for
codes also carries over to the lattice setting and could serve as a tool to analyze dual attacks
for lattices. Moreover, at the same time, a series of papers [DP23a,PS24] provide some new ideas
to properly analyze dual attacks in lattices. In particular, concurrently to [CDMT24, Section 8],
[DP23a] provided, in a more in-depth work and using comparable but not identical reasoning,
similar heuristics to predict the behavior of these attacks.

1.2 Our Contribution

Our purpose here is to come up with a variation of the MATZOV algorithm, that improves it and
which also helps analyzing it. This is obtained by a lattice based analogue of [CDMT24], replacing
the modulus switching by lossy source encoding/using the relevant quantizer based on polar coding.
We use the duality approach [MT23,CDMT24,DP23a] to analyze our new dual attack to avoid
relying on independence assumptions. This duality approach allows us to derive a new simple
heuristic that is backed up by experimental evidence and which is essentially a generalization of
the heuristics made in [CDMT24,DP23a]. All in all, it turns out that the complexities claimed
in [MAT22] can be achieved and even slightly surpassed with our algorithm, which dents the
parameters of Kyber by a few bits, as predicted in [MAT22].

A Lossy Source Coding/Quantizer Approach. Similarly to [CDMT24] we observe that the
FFT approach factorizing the common computations for computing all the Fs̃enu(z) for z ∈ Znfft

q is
probably suboptimal, since the z such that Fs̃enu(z) is maximum is likely to be attained for z = sfft
which is of rather small norm. The problem is that the fast FFT algorithm doesn’t leverage the
fact that we only need to compute it for small z’s which have the same Euclidean norm as sfft. In
a sense, the modulus switching approach of [MAT22] is a way to alleviate this phenomenon since
sfft mod p is more uniformly distributed in Znfft

p than s is in Znfft
q . A further refinement of this

method, in the spirit of [GJS15, Section 5.5], involves approximating the relevant z ∈ Znfft
q ’s by

close enough codewords. This also allows to reduce the size qnfft of the space over which the fast
Fourier transform is applied.

Basically the lossy source/quantizing approach can be explained as follows. We choose a linear
code Clsc generated by the matrix G ∈ Znfft×kfft

q , i.e. Clsc
△
= {Gulsc : ulsc ∈ Zkfft

q } so that we can
find efficiently, for any yfft ∈ Znfft

q , a ulsc ∈ Zkfft
q such that Gulsc is close to yfft. Gulsc can be viewed

as a “quantization” of yfft and Clsc as a lossy source code or code used for quantization. We apply
this quantization to all pairs of short dual vectors (x,y) in S and compute for all such x’s a
corresponding ulsc ∈ Zkfft

q such that ∥∥A⊤
fftx−Gulsc

∥∥ ≈ dlsc (1.12)

where dlsc is the decoding distance of the lossy source code. The point is that the left hand term
in (1.4) can be rewritten as

⟨x,b−Aenusenu⟩ −
〈
A⊤

fftx, sfft
〉
= ⟨x,b−Aenusenu⟩ − ⟨Gulsc, sfft⟩ − ⟨elsc, sfft⟩ (1.13)

= ⟨x,b−Aenusenu⟩ −
〈
ulsc,G

⊤sfft
〉
− ⟨elsc, sfft⟩ (1.14)

where elsc
△
= A⊤

fftx−Gulsc. If we use (1.4) we see that

⟨x,b−Aenusenu⟩ −
〈
ulsc,G

⊤sfft
〉
= ⟨x, e⟩+ ⟨y, slat⟩+ ⟨elsc, sfft⟩ . (1.15)
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So we expect that the left-hand term ⟨x,b−Aenusenu⟩ −
〈
ulsc,G

⊤sfft
〉

is still small. In other
words, we once again performed a reduction to an LWE problem. Indeed, Equation (1.15) can be
interpreted as an LWE sample (a′, b′) ∈ Zkfft

q × Zq, with secret s′ ∈ Zkfft
q and error term e′ ∈ Zq,

where

a′
△
= ulsc, (1.16)

b′
△
= ⟨x,b−Aenusenu⟩ , (1.17)

s′
△
= G⊤sfft, (1.18)

e′
△
= ⟨x, e⟩+ ⟨y, slat⟩+ ⟨elsc, sfft⟩ . (1.19)

The advantage of this reduction is that it drastically reduces the dimension of the problem.
However, it is important to note that the secret s′ is no longer small, but uniformly distributed
over Zkfft

q ; thus, this new problem becomes a plain-LWE problem. We can now solve it using a
technique similar to the one previously described. This motivates to replace Fs̃enu by

F
(lsc)
s̃enu

: Zkfft
q −→ R
z 7−→

∑
(x,y)∈S

cos
(

2π
q (⟨x,b−Aenus̃enu⟩ − ⟨ulsc, z⟩)

)
. (1.20)

Again, for the wrong guess s̃enu ̸= senu and for all z ∈ Zkfft
p , F (lsc)

s̃enu
(z) is still expected to be 0

whereas for the good guess senu we have, from Equation (1.15), that

F (lsc)
senu

(
G⊤sfft

)
=

∑
(x,y)∈S

cos
(

2π
q (⟨x, e⟩+ ⟨y, slat⟩+ ⟨elsc, sfft⟩)

)
(1.21)

which is still expected to be large because the additional term ⟨elsc, sfft⟩ is biased towards zero.

The pro and cons of this approach is that on the positive side:
– It allows us to choose large values for nfft, since we are now not limited by the qnfft term in
the complexity coming from evaluating Fs̃enu but by a smaller qkfft term. This in turn allows us to
decrease the nlat term and therefore the cost of lattice reduction.
– It allows us to solve radically the problem that sfft is not uniformly distributed in Znfft

q . If kfft
is low enough, it can namely be verified that the likely argmax G⊤sfft of F (lsc)

senu (z) is uniformly
distributed in Zkfft

q . This solves one source of suboptimality of this approach.
On the negative side, it increases the noise term in the right-hand side of (1.15) expressing the
quantity ⟨x,b−Aenusenu⟩ −

〈
ulsc,G

⊤sfft
〉
. This is due to the additional term ⟨elsc, sfft⟩ which

appears there. We therefore expect F (lsc)
senu

(
G⊤sfft

)
to be smaller than Fsenu (sfft) and will need to

make S bigger to distinguish it from other values of F (lsc)
s̃enu

(z).
The last point above makes it clear that we want to make the additional noise term ⟨elsc, sfft⟩

as small as possible. But of course for a given kfft, there is a lower bound of what we can achieve.
It can namely be proven (see Equation (2.11) in Section 2) that the best we can do is to choose,
for a given kfft, the decoding distance dlsc such that

dlsc ≈ q
1− kfft

nfft ·
√
nfft
2πe

. (1.22)

This can be compared to the modulus switching approach. For a same FFT complexity, meaning
roughly that kfft is such that pnfft = qkfft , we have

dms ≈
q

p

√
nfft
12

≈ 0.28867
q
√
nfft
p

(1.23)

dlsc ≈
q

p

√
nfft
2πe

≈ 0.24197
q
√
nfft
p

(1.24)
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Equations (1.23) and (1.24) show that the lossy source coding approach yields a smaller value
for ∥⟨elsc, sfft⟩∥ than modulus switching, as dlsc < dms. However, unlike modulus switching, we
need to construct a code that can be decoded efficiently up to the optimal decoding distance
dlsc. A classical approach involves using a Cartesian product of small random codes. This solution
achieves asymptotically the optimal decoding distance dlsc but with a sub-exponential complexity
that is not so negligible (super-polynomial). In Section 3.3, we propose an alternative solution
using polar codes, which can achieve a decoding distance very close to dlsc in quasi-linear time.

It should be noted that the modulus switching strategy can really be viewed as a quantizing
approach. In the modulus switching technique, we approximate A⊤

fftx by q
p

⌊
p
qA

⊤
fftx
⌉
, i.e. we quan-

tize/approximate a point in Rnfft by a point in the lattice q
pZ

nfft . On the other hand, in the case of
the lossy source code approach we approximate a point in Znfft

q by a codeword in Clsc. If we express
this as a quantizer, this means that we quantize/approximate a point in Rnfft by a lattice point in
Construction A applied to Clsc. The second quantizer just turns out to be much better than the
first quantizer in terms of the distortion/quantizing distance which is achieved.

Getting Rid of Independence Assumptions in the Analysis and Results. In [MAT22], it
is argued that dual attacks can substantially lower the security level of certain NIST candidates,
such as Kyber. However, this claim remains contested, as their analysis relies on assumptions
that, according to [DP23b], have been proven to be incorrect. Specifically, [DP23b] highlights a
flawed independence assumption, which can be stated as follows:

Assumption 1.1 (Independence Assumption). Let Λ be a full-rank lattice of dimension n,
and let r be a random variable distributed according to Unif(Rn/Λ) or Bα

n, where the Bα are i.i.d.
centered binomial variables. Assume that

(
e2iπ⟨w,r⟩)

w∈Λ
are mutually independent.

In dual attacks, evaluation functions involve sums of terms like those described in the as-
sumption. Assuming independence when the terms are not independent can lead to significant
miscalculations in estimating false positives passing the evaluation function. This issue is high-
lighted in [DP23b], which shows that predictions of such scoring functions are inaccurate in certain
regimes.

Recent papers [DP23a,MT23,CDMT24] present new approaches to analyze dual attacks accu-
rately, without relying on the independence assumption. Specifically, let

F (x)
△
=

∑
w∈Λ∩B

e2iπ⟨w,r(x)⟩ (1.25)

define a scoring function, where Λ is a full-rank lattice of dimension n, B ⊆ Rn a set of small
vectors, and r(x) ∈ Rn, all depending on the specific dual attack method under consideration. It
can be observed that F (x) remains invariant when any vector from the dual lattice of Λ is added
to r(x). Indeed, for any w∨ ∈ Λ∨, we have

⟨w, r(x) +w∨⟩ = ⟨w, r(x)⟩+ ⟨w,w∨⟩ = ⟨w, r(x)⟩ . (1.26)

Thus, it is reasonable to conclude that ⟨w, r(x)⟩ depends on the structure of the coset Λ∨ + r(x),
and in particular, on its shortest vector. One way to see this is by invoking the Poisson summation
formula:

F (x) =
1

Vol (Λ)
·

∑
w∨∈Λ∨+r(x)

1̂B (w∨) . (1.27)

In [DP23a,CDMT24], it was observed that the Fourier transform of the indicator function can
be expressed in terms of Bessel functions, depending only on the input’s length. Consequently,
F (x) is essentially related to the length enumerator of the vectors in Λ∨ + r(x), particularly the
shortest. We distinguish between correct and incorrect candidates by noting that r(x) is notably
small when x is the desired vector, and random otherwise. Therefore, for the correct guess, the
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shortest vector in Λ∨ + r(x) is r(x), while for incorrect guesses, it corresponds to the typical
shortest vector in a random coset of a random lattice.

This approach allowed us to analyze our evaluation functions thoroughly (see Section 4). How-
ever, to simplify calculations, we make approximations that we validate through simulations.
Finally, we control the number of false positives in our attack, ensuring they remain negligible. By
doing so, we achieve results close to those of MATZOV (see Section 5). Furthermore, as they did
previously, we apply our attack to the parameters of Kyber and confirm the claim in [MAT22],
which asserts that Kyber’s security does not meet the NIST’s requirements.

2 Notation and Preliminaries

Basic Notation. We denote vectors by bold lowercase letters and matrices by bold uppercase
letters, e.g. v and M. We consider the vectors as column vectors and therefore row vectors are
denoted v⊤. The concatenation of vectors x and y is denoted as (x,y). The components of the
vector x ∈ Rn are denoted by xi for i ∈ J1, nK where Ja, bK are the integers between a and b.

For any x ∈ Zq, denote by x̂ ∈ x+ qZ the unique integer such that |x̂| ≤ q−1
2 . We extend this

notion to vectors x ∈ Zn
q componentwise. In other words, x̂ is the lift from Zq to Z centered on 0.

We define ∥x∥ for x ∈ Zn
q as

∥x∥ △
= ∥x̂∥ △

=

√√√√ n∑
i=1

x̂i
2 △

=

√√√√ n∑
i=1

argmin
j∈Z

((xi + jq)2) (2.1)

The Learning With Error Problem. Let us define more formally the LWE problem here. It
starts by defining an LWE oracle that produces samples according to the following distribution:

Definition 2.1 (LWE oracle). Let q, n,m ∈ N, and let χs, χe be distributions over Zq. We first
draw s ∈ Zn

q with coordinates drawn independently from each other according to the distribution
χs and then draw m LWE samples (ai, bi) ∈ Zn

q ×Zq where the ai’s are drawn uniformly at random
in Zn

q and bi = ⟨ai, s⟩ + ei where the ei’s are drawn independently according to the distribution
χe. We let A ∈ Zm×n

q be the matrix where the i-th row is ai. The pair (A,b) is the output of the

oracle and satisfies b
△
= As+ e.

We then define the Search-LWE problem as follows:

Problem 2.2 (Search-LWE). Given a sample (A,b) drawn from an LWE (q, n,m, χs, χe)-oracle,
the goal is to recover the secret vector s.

In the literature, the LWE oracle is sometimes defined by replacing the matrix A ∈ Zm×n
q by a

vector a ∈ Zn
q . Then the LWE problems are stated for an arbitrary number of calls to the oracle.

If the LWE oracle is called m times, then the situation is actually the same as above.

The Centered Binomial Distribution. In the LWE oracle, the distributions χs and χe depend
on the context. Historically, the secret vector s was distributed uniformly in Zn

q and the noise
vector e was short. It is quite common today to consider the case where s is also short; we are
then talking about Small-LWE problem. In recent cryptosystems, particularly those involved in
the NIST Post-Quantum Standardization Process, the distributions for χs and χe are centered
binomial distributions. Note that in Kyber, the distribution for the secret vector and the error
vector is the same.

Definition 2.3 (Centered Binomial Distribution). The centered binomial distribution Bα of
parameter α ∈

q
0, q−1

2

y
is defined as Bα ∼

∑α
i=1(Xi − Yi) where the Xi’s and Yi’s are i.i.d. as

uniform over {0, 1}. In particular, for all i ∈ J−α, αK, we have P (Bα = i) = 2−2α
(

2α
α+i

)
. Note that

Bα has mean 0 and standard deviation σ
△
=
√

α
2 .
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Coding Background. To simplify the discussion, we assume that q is a prime number implying
that Zq has the structure of a finite field. A linear code C of length n and dimension k is a subspace

of Zn
q of dimension k. We say that C is an [n, k]q-code and its rate is R △

= k
n . A generator matrix

G for C is a full rank matrix in Zn×k
q such that C =

{
Gu : u ∈ Zk

q

}
, and a parity-check matrix

H for C is a full rank matrix in Z(n−k)×n
q such that C =

{
c ∈ Zn

q : Hc = 0
}
.

Definition 2.4 (Dual Code). Let C be an [n, k]q-code. The dual code C⊥ of C is defined as the
following [n, n− k]q-code:

C⊥ △
=
{
h ∈ Zn

q : ∀c ∈ C, ⟨c,h⟩ = 0
}

(2.2)

Lattice Background. A lattice Λ is a discrete subgroup of Rd. In particular, for a matrix
B ∈ Rd×d, the lattice Λ(B) is defined as:

Λ(B)
△
=
{
Bx : x ∈ Zd

}
(2.3)

The matrix B is called a basis if it has full column rank.
The volume of a full-rank lattice Λ ⊂ Rd is the Euclidean volume of its fundamental Voronoï

region Vor(Λ)
△
= {v ∈ Rd : ∥v∥ ≤ ∥v − x∥ , ∀x ∈ Λ}. For a full-rank lattice Λ(B), it is the volume

of the fundamental d-dimensional parallelepiped defined by the column vectors of B (or any other
basis of Λ). It is also the determinant of the matrix B:

Vol (Λ(B))
△
= Vol (Vor (Λ(B))) = det (B) (2.4)

The dual Λ∨ of a lattice Λ is defined as

Definition 2.5 (Dual Lattice). The dual Λ∨ of a lattice Λ ⊂ Rd is

Λ∨ △
= {x ∈ span(Λ) : ∀y ∈ Λ, ⟨x,y⟩ ∈ Z} . (2.5)

We can construct a lattice from a linear code through Construction A:

Definition 2.6 (Construction A). Let C be an [n, k]q-code. The lattice Λ obtained by Construc-
tion A applied to C is given by

Λ(C) △
= {x ∈ Rn : x ≡ c mod q, c ∈ C} . (2.6)

Note that if C is defined by a systematic generator matrix G
△
=

[
Idk

A

]
∈ Zn×k

q , then the lattice

Λ(C) that is obtained through Construction A is also the lattice Λ(B) generated by

B
△
=

[
Idk 0
A qIdn−k

]
. (2.7)

Clearly finding the closest point in Euclidean distance to some y ∈ Zn
q in C also amounts to find

the closest lattice point in Λ(C) of y. The algorithm for performing this task when y belongs to
Rn is known as a mean-squared-error (MSE) quantizer for Λ(C). To analyze its performance, first
notice that the fundamental Voronoï region V of a lattice Λ(C) associated to code C of dimension
k over Zn

q has volume Vol (V )
△
= Vol (Λ(C)) = qn−k [CS88]. The average decoding distance ω

provided by the mean-square quantizer for Λ can be assessed by the normalized second moment
G

△
= G(Λ(C)), which is defined as

G
△
=

1

n · Vol (V )
2
n

∫
V

∥v∥2

Vol (V )
dv. (2.8)
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It is known that
G ≥ 1

2πe
(2.9)

and is achieved asymptotically for lattices generated by Construction A from q-ary random codes
when q gets big [ZF96]. The case where the equality is achieved in Equation (2.9) really corresponds
to the case when the equality

|C| · Vol (Ballnω) = qn (2.10)

is met, i.e. when the average decoding distance is

ω
△
=

√∫
V

∥v∥2

Vol (V )
dv =

√
n

2πe
· q1− k

n + o(1) . (2.11)

It corresponds therefore to the lattice analogue of the Gilbert-Varshamov distance.

Short Vector Sampler. Dual attacks heavily depend on lattice reduction algorithms, such as
BKZ, to find short vectors in a lattice or its dual. Our improvements in this paper do not address
these algorithms. Instead, we will use Algorithm 2.1 to obtain short vectors and refer the reader
to [GJ21,MAT22] for implementation details.

Algorithm 2.1 Short Vectors Sampling Procedure [GJ21]
Input: A basis B =

[
b0 . . . bd−1

]
for a lattice and 2 ≤ βbkz, βsieve ∈ Z ≤ d.

Output: A list of Nsieve(βsieve)
△
=

(√
4
3

)βsieve

vectors from the lattice.

1: Randomize the basis B.
2: Run BKZ-βbkz to obtain a reduced basis b′

0, . . . ,b
′
d−1.

3: Run a sieve in dimension βsieve on the sublattice spanned by b′
0, . . . ,b

′
βsieve−1 to obtain a list L of

Nsieve(βsieve) vectors.
4: return L

The parameter βbkz controls the block size in the BKZ algorithm, with an exponential cost in
βbkz. The sieving algorithm outputs Nsieve(βsieve) short vectors in the lattice and its complexity also
scales exponentially with βsieve. The magnitude Nsieve(βsieve) also grows exponentially with βsieve
but slower than the cost of sieving. We will write TBKZ(d, βbkz) for the cost of running BKZ-βbkz in
dimension d and Tsieve(βsieve) for the cost of sieving in dimension βsieve. One possible instantiation
of the lattice sieve algorithm is [BDGL16] which has a cost of 20.292 βsieve+o(βsieve). Thus, according
to the best known algorithms we have TBKZ(d, βbkz) ∈ poly (d) ·2Θ(βbkz) and Tsieve(βsieve) ∈ 2Θ(βsieve).
More specifically, we take these complexities from [MAT22, Lemma 4.1, Assumption 7.3].

Lemma 2.7 (Short Vectors Sampling Complexity). Let B be a basis of a d-dimensional
lattice. Then, the running time Tsample of Algorithm 2.1 to output Nsieve(βsieve) short vectors is

Tsample (d, βbkz, βsieve) = TBKZ(d, βbkz) + Tsieve(βsieve) (2.12)

where

▷ TBKZ(d, βbkz) = C2
prog · (d− βbkz + 1) · TNNS(βbkzeff),

▷ Tsieve(βsieve) = Cprog · TNNS (βsieve),

▷ Nsieve(β) =
(√

4
3

)β
is the expected number of sieve results,

▷ TNNS (β) is the time complexity for finding all close pairs in dimension β (see [AGPS20a]
with improvement of MATZOV [MAT22, Section 6]),

▷ Cprog = 1/
(
1− 2−0.292

)
is the number of close pairs search to run,

▷ and βeff is the optimal sieve dimension to use for solving the Shortest Vector Problem (SVP)
for lattices in dimension β.

Note that in [Duc18], it is estimated that βeff = β − β log(4/3)
log(β/(2πe)) .
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The lengths of the short vectors produced by Algorithm 2.1. Assuming that the Gaussian Heuristic
(GH) and the Geometric Series Assumption6 (GSA) [Sch03] hold for a d-dimensional lattice,
applying BKZ-β to it produces vectors x of average length [Che13]:

∥x∥ ≈ δ(β)d · Vol (Λ)
1
d , (2.13)

where δ(β) =
(

β
2πe (πβ)

1
β

) 1
2(β−1)

is the root-Hermite factor7. With these assumptions, the expected
length of the returned short vectors is given by:

Lemma 2.8 (Length of the sampled short vectors [MAT22, Lemma 4.2]). Let Λ be a
d-dimensional lattice. Then, Algorithm 2.1 outputs at least N vectors of expected length ℓ given by

ℓ
△
= Vol (Λ)1/d ·

√
4

3
· δ(βsieve)βsieve−1 · δ(βbkz)d−βsieve . (2.14)

In our attack, we select βbkz and βsieve such that TBKZ(d, βbkz) = Tsieve(βsieve). Under the same
GH and GSA assumptions, we derive the following lemma:

Lemma 2.9. The short vectors produced by Algorithm 2.1 are in a sublattice Λ′ of dimension
βsieve and expected volume

Vol (Λ′) =
(
Vol (Λ)

1
d · δ(βbkz)d−βsieve

)βsieve

. (2.15)

Fast Fourier Transform. Dual lattice attacks widely use discrete Fourier transforms:

Definition 2.10 (Discrete Fourier Transform). The discrete Fourier transform f̂ of a func-
tion f : Zn

q −→ C is defined as

f̂ (x) =
∑
a∈Zn

q

f(a)e
− 2iπ

q ⟨x,a⟩
. (2.16)

The effectiveness of our dual attacks is heavily dependent on the speed at which we can compute
discrete Fourier transforms. In [MAT22, Ass. 7.4], it is estimated that a Fast Fourier Transform
(FFT) over Zn

q requires n ·qn+1 multiplications. Note that this is clearly suboptimal for large prime
q’s: while this is not a problem in [MAT22] as q is reduced thanks to modulus switching, here,
we drop modulus switching resulting in q being big and imposed by the original LWE instance
(i.e. q = 3329 for Kyber). This motivates us to give the following finer estimation for the cost of
an FFT over Zn

3329.

Proposition 2.11 (Complexity of the FFT). Let q = 3329. There exists an FFT over Zq with
complexity given by:

N
(add)
FFT = 240500 and N

(mul)
FFT = 115928, (2.17)

the number of additions and multiplications, respectively.
By using the algorithm in [DM90, §2.3.2] that reduces the calculation of an FFT over Zn

q to
FFT’s over Zq, we deduce that the total cost to perform a discrete Fourier transform over Zn

q is

n qn−1 N
(add)
FFT and n qn−1 N

(mul)
FFT (2.18)

additions and multiplications, respectively. Finally, by supposing as in [MAT22, Ass. 7.4] that the
cost of an addition and a multiplication are

Cadd = 160 and Cmul = 1024, (2.19)

respectively, the total cost of an FFT over Zn
q is

CFFT = Cadd n q
n−1 N

(add)
FFT + Cmul n q

n−1 N
(mul)
FFT . (2.20)

6 The GSA may lead us to underestimate the final complexity of a few bits (see [DP23b, Appendix A.3]).
7 Experiments in [AD221] show that these assumptions hold for d > β and β → ∞ and in particular, it

hold with good accuracy for β > 50.
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We obtained the number of additions and multiplications required for an FFT over Z3329,
namely N

(add)
FFT and N

(mul)
FFT , by slightly modifying the FFTW software. This software basically

allows one to enumerate a large number of FFT’s and we simply selected the one that minimized
the cost CFFT

8.

3 Our Dual Attack Algorithm

In this section, we present our algorithm for solving the search LWE problem. Unlike MATZOV,
we do not use modulus switching to reduce the modulus size. As noted in the introduction, we
expect that a good lossy source code/quantizer results in a smaller additional noise term ⟨efft, sfft⟩
compared to modulus switching. However, modulus switching may still offer benefits: it has certain
advantages, such as improved FFT efficiency when the modulus is a power of two, which is not
the case in the starting LWE problem for Kyber. Additionally, modulus switching provides more
flexibility in choosing the parameter kfft. Although a hybrid approach combining both techniques
is possible, we do not pursue it in this paper due to the complexity it would add to the analysis.

3.1 Overview of the Algorithm

Our algorithm begins by partitioning the set of coordinates I △
= J1, nK of the secret s into Ienu,

Ifft and Ilat, with sizes nenu, nfft and nlat, respectively. The three parts of the vector s are denoted
as senu, sfft and slat respectively. Similarly, we divide the columns of A to obtain Aenu, Afft and
Alat. As described in the introduction, our algorithm basically tries to guess a value s̃enu for
senu by computing an associated score for s̃enu namely the maximum value of the score function,
max

z∈Zkfft
q
Fs̃enu(z) and making a decision on this value. Apart from the lossy source code approach

described above, we depart from the MATZOV algorithm in the two following ways: firstly, we
will make the bet that senu = 0, that is, we only consider s̃enu = 0 whereas MATZOV enumerates
and tests several values s̃enu taken by decreasing likelihood. Secondly, in our algorithm, we will
select Ilat once and for all (instead of changing it at each iteration), and then iterate R times with
different choices for Ienu and Ifft on the remaining positions, this allows us to reuse the computed
dual vectors for each iteration. The skeleton of the whole algorithm is given in Algorithm 3.1.

Algorithm 3.1 The code based dual attack to solve LWE
Input: a sample (A,b) ∈ Zm×n

q × Zm
q produced by an LWE (q, n,m,Bα,Bα) oracle.

Parameters: some positive integers R, T , βbkz, βsieve, nenu, nfft, kfft, nlat, dlsc and an [nfft, kfft]q linear
code with generator matrix G.

Output: the secret vector s.
1: choose Ilat ⊆ J1, nK such that |Ilat| = nlat;
2: S ← Set_of_short_lattice_vectors(A, Ilat);
3: repeat R times
4: choose a partition Ienu ∪ Ifft of J1, nK \ Ilat with |Ienu| = nenu, |Ifft| = nfft;
5: Aenu,Afft ← select the columns of A indexed by Ienu and Ifft respectively;
6: L ← LWE_Samples(S ,Afft,G);
7: V← Solve_LWE_with_FFT(L );
8: if V ≥ T then
9: senu ← 0

10: (sfft, slat)← sub_LWE_solver(
[
Afft Alat

]
, b)

11: return (senu, sfft, slat, Ienu, Ifft, Ilat)

12: end repeat

8 We give more details on how this result was obtained in https://github.com/kevin-carrier/
CodedDualAttack/tree/main/claimFFT
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We now give details on the procedures Set_of_short_lattice_vectors, LWE_Samples,
Solve_LWE_with_FFT and sub_LWE_solver.

The Lattice Reduction Function Set_of_short_lattice_vectors. This function
outputs a set S of pairs of short vectors (x,y) obtained by performing the short vectors sampler
Algorithm 2.1 with the appropriate choice of parameters on the lattice Λ(B) where the lattice
basis B ∈ R(m+nlat)×(m+nlat) is given by Construction A:

B
△
=

 Idm 0

Alat
⊤ qIdnlat

 . (3.1)

This gives pairs (x,y) ∈ Zm×Znlat for which both x and y are short and satisfy y = A⊤
latx mod q.

For the rest of this paper we denote by N the expected size of S . From Lemma 2.7, we have
Notation 3.1.

N
△
= Nsieve (βsieve)

△
=

(√
4

3

)βsieve

. (3.2)

Producing New LWE Samples with LWE_Samples. Each pair (x,y) of short vectors in
S yields one LWE sample by decoding A⊤

fftx in the code Clsc generated by G. This yields an output

ulsc ∈ Zkfft
q such that elsc

△
= A⊤

fftx − Gulsc is of small norm, say close to some dlsc.The new LWE
sample is given by the pair (ulsc, ⟨x,b⟩). It is readily seen that, when senu = 0 we have

⟨x,b⟩ =
〈
ulsc,G

⊤sfft
〉
+ ⟨x, e⟩+ ⟨y, slat⟩+ ⟨elsc, sfft⟩ (3.3)

which corresponds to an LWE sample with secret G⊤sfft and noise e′ = ⟨x, e⟩+ ⟨y, slat⟩+ ⟨elsc, sfft⟩.
All these samples (ulsc, ⟨x,b⟩) are then put in a list L which is the output of LWE_Samples.

Solving the Induced LWE Instance with Solve_LWE_with_FFT. This procedure
outputs a real number V which indicates to us how noisy the aforementioned LWE samples are.
This is done by searching exhaustively for the solution G⊤sfft by computing the score function for
all z ∈ Zkfft

q :

F
(lsc)
0 (z)

△
=

∑
(ulsc,b)∈L

cos
(

2π
q (b− ⟨ulsc, z⟩)

)
, (3.4)

and returning its maximum value, V = max
z∈Zkfft

q
F

(lsc)
0 (z). If senu = 0 we expect that this maxi-

mum value is achieved for z = G⊤sfft. The score function is efficiently computed with an FFT as
follows. First we compute a function f (lsc)0 defined for a ∈ Zkfft

q as

f
(lsc)
0 (a)

△
=

∑
(a,b) : (a,b)∈L

e
2iπ
q b, (3.5)

then we compute the FFT of f (lsc)0 and take its real part. It is readily seen that

F
(lsc)
0 = Re

(
f̂
(lsc)
0

)
. (3.6)

Recovering the Rest of the Secret with sub_LWE_solver. At this point, we expect
that, under the condition that our parameters are well-chosen, if V ≥ T (here T will be chosen
around the expected value of F (lsc)

0 (G⊤sfft) when senu = 0) then with overwhelming probability,
senu = 0. In other words, we recovered nenu positions of the secret from the original LWE problem
(A,b) of dimension m× n. Note that when senu = 0 we can write

b = As+ e =
[
Afft Alat

](sfft
slat

)
+ e. (3.7)
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As such, if indeed senu = 0, we can recover sfft and slat by solving the new LWE problem
given by

([
Afft Alat

]
, b
)
, which has strictly smaller dimension m× (n− nenu). We don’t specify a

particular algorithm for the sub_LWE_solver routine, since it will be called at most once, and
solving an LWE instance with smaller dimension and with error distribution Bα has complexity
negligible compared to the other computations in Algorithm 3.1.

3.2 Correctness of the Algorithm

The following lemma provides the conditions on the parameters for Algorithm 3.1 to succeed.

Lemma 3.2 (Correctness). Suppose (A,b) is sampled from an LWE (q, n,m,Bα,Bα) oracle,
and sub_LWE_Solver returns sfft and slat with probability 1− µ when the bet senu = 0 is valid
and the secret meets the threshold, namely F (lsc)

0 (G⊤sfft) ≥ T . The probability that our algorithm
succeeds in recovering the secret s, is lower bounded by

Psuccess
△
= η · Pgood · (1− µ)− ε (3.8)

where

ε
△
= R · qkfft · Pwrong, (3.9)

η
△
=

1−
nenu+nfft∑

t=0

(
1−

(
t

nenu

)(
nenu+nfft

nenu

))R(
nenu + nfft

t

)
pt0(1− p0)

nenu+nfft−t

 , (3.10)

Pgood
△
= P

(
F

(lsc)
0

(
G⊤sfft

)
≥ T

∣∣∣senu = 0
)
, (3.11)

Pwrong
△
= P

(
F

(lsc)
0 (z) ≥ T

∣∣∣senu ̸= 0
)
, (3.12)

p0
△
= P (Bα = 0) = 2−2α

(
2α

α

)
(3.13)

and where z is taken uniformly at random in Zkfft
q . We will use Approximations 4.8 and 4.9 to

estimate Pgood and Pwrong, respectively.

Proof. For i ∈ J1, RK, let us denote the following events for each iteration i:

– Ai: “senu = 0”;
– Bi: “F (lsc)

0 (G⊤sfft) ≥ T ”;
– Ci: “sub-LWE finds the secret”;
– Di: “∃z ∈ Zkfft

q , F
(lsc)
0 (z) ≥ T ”;

Using the union bound on the probability that the algorithm fails and taking the complement of
this event yields that the probability that our algorithm succeeds is lower bounded by

P

((⋃
i

(Ai ∩Bi ∩ Ci)

)
∩

(⋂
i

(
Ai ∪Di

)))
≥ P

(⋃
i

(Ai ∩Bi ∩ Ci)

)
− P

(⋃
i

(
Ai ∩Di

))

Next, applying the union bound again and considering that we run R iterations, we can upper
bound P

(⋃
i

(
Ai ∩Di

))
by RqkfftPwrong, which gives the −ε term in the inequality stated in the

lemma. On the other hand, it is straightforward to lower bound the first term:
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P

(⋃
i

(Ai ∩Bi ∩ Ci)

)
= P

(⋃
i

(Ai ∩Bi ∩ Ci)
∣∣ ⋃

i

Ai

)
· P

(⋃
i

Ai

)

≥ P (Bi0 ∩ Ci0 | Ai0) · P

(⋃
i

Ai

)

= P (Ci0 | Ai0 , Bi0) · P (Bi0 | Ai0) · P

(⋃
i

Ai

)

= (1− µ) · Pgood · P

(⋃
i

Ai

)
Let n0 denote the number of zeros in sJ1,nK\Ilat . Then, we have

P

(⋃
i

Ai

)
= 1− P

(⋂
i

Ai

)

= 1−
nenu+nfft∑

t=0

P

(⋂
i

Ai

∣∣ n0 = t

)
· P (n0 = t)

= 1−
nenu+nfft∑

t=0

(
1−

(
t

nenu

)(
nenu+nfft

nenu

))R

· P (n0 = t)

Clearly, n0 follows a binomial distribution with parameter nenu + nfft and p0. This concludes the
proof. ⊓⊔

Note that Lemma 3.2 does not impose any constraints on N and T . However, we must choose
them carefully. First, if R · qkfft ·Pwrong ≥ 1 or if Pgood is too small, then the lower bound we obtain
for the probability of success of our dual attack is 0, which means we cannot actually guarantee
a success. This is why, in Section 5, we select N and T that ensure a high probability of success.
In particular, we set η ≥ 0.62 and ε close to 0 (see Appendix C.2), ensuring a success probability
of at least 0.3(1− µ). Furthermore, it is worth noting that the condition “R · qkfft · Pwrong is much
smaller than 1” resolves the indistinguishability issue raised in [DP23b].

3.3 Which Codes Should We Use?

In Algorithm 3.1, one could ask: which code should we use for Clsc ? In terms of the decoding
distance alone, the answer would be, just use a random code of dimension kfft in Znfft

q . In this case,

we would obtain the decoding distance d ≈ q
1− kfft

nfft

√
nfft

2πe (see Equation (2.11)) attaining the bound
(2.9) or (2.10). However, the decoding algorithm we could use in this case would be too complex
for our purpose. We could instead use a product code structure as in [BDGL16]. Contrarily to
what happens in the latter case, where spherical codes can be used, we are in a situation where
more structured codes could do the job better. A natural answer is given here by polar codes.

The generator matrix of such a code in length n which is a power of 2 and an arbitrary
code dimension k is obtained as follows. We define a generator matrix G for our code as G

△
=

K1 ⊗ · · · ⊗Klog2(n)
·F where ⊗ stands for the Kronecker product, Ki

△
=

[
1 1
αi 0

]
and αi’s are some

invertible elements chosen uniformly at random in Z∗
q . The matrix F ∈ Zn×k

q is an expansion
matrix such that for all m ∈ Zk

q , Fm is exactly m on k positions and 0 on the others (that are
the frozen positions). Since the code length we need is not necessarily a power of 2, we adjust it
by puncturing the code (i.e. we remove as many rows of the generator matrix as needed).

Furthermore, the Successive Cancellation (SC) decoder which is classically used to decode
polar codes in the error correction scenario can be turned with a simple modification into an
algorithm for finding a close codeword (but not necessarily the closest one) [KU10]. This is precisely
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what is needed in our context. It needs a noise model to instantiate it, and this can be done
for our Euclidean metric by using the Gaussian noise model. To get even closer to the optimal
decoding distance, we have improved the decoding process: firstly we turn the SC algorithm into a
probabilistic decoder, then we call it several times to get a list of codeword candidates and choose
the closest one from this list (see Appendix A to get more details about our list decoder). This
procedure induces a new small constant factor L in the whole complexity which is the size of the
decoding list; but in return this additional cost allows us to achieve a better decoding distance.
The complexity for decoding is given by:

Lemma 3.3 (Decoding polar codes). List decoding an [nfft, kfft]q polar code by using L prob-
abilistic SC decoders can be done with time complexity of order

Tdec (q, nfft, kfft) = 3 · L ·
(
Cmul ·N (mul)

FFT (q) + Cadd ·N (add)
FFT (q)

)
· n′fft log2(n′fft) (3.14)

where n′fft is the smallest power of 2 greater than nfft and N (mul)
FFT (q) is the number of multiplications

we need to achieve a discrete Fourier transform over Zq.

The proof of this lemma directly follows from Lemma A.4.
By using similar arguments as in [KU10], it can be proven that for nfft tending to infinity and

constant kfft

nfft
, the average distance achieved by our decoder is

dlsc =
√

nfft

2πe · q1−
kfft

nfft · (1 + o(1)) (3.15)

This result is essentially due to the polarization phenomenon (see Appendix A). However,
Equation (3.15) is not precise enough to accurately estimate the full complexity of our dual attack
due to the o(1) term. For this reason, we provide a C implementation9 and present experimental
results demonstrating that polar codes are perfectly suited to our case. The experiments we con-
ducted use the exact codes required for our dual attacks, and our optimization suggests choosing
L = 1. To justify the use of polar codes in this context, we verified that the total complexity of our

dual attack closely matches the ideal scenario, where decoding at the distance dlsc
△
=
√

nfft

2πe ·q
1− kfft

nfft

would incur the same cost as using polar codes.

4 Analysis of our Dual Attack

4.1 Complexity of our Dual Attack

A general formula for the complexity of our algorithm using polar codes for Clsc is given by the
following theorem:

Theorem 4.1 (Complexity of Algorithm 3.1). Using the same notations as in the correctness
Lemma 3.2 and by supposing that the cost of one call to Sub_LWE_Solver is negligible, the
average time complexity of Algorithm 3.1 is upper bounded by

Tsample +R · (N · Tdec + TFFT) (4.1)

where

▷ Tsample
△
= Tsample(m + nlat, βbkz, βsieve) is the cost to produce N = Nsieve(βsieve) short vectors

in Λ(B). This cost is given by Lemma 2.7;
▷ Tdec

△
= Tdec(q, nfft, kfft) is the cost for decoding a random vector in Znfft

q in Clsc generated by
G. This cost is given by Lemma 3.3;

▷ TFFT is the cost of an FFT over Zkfft
q and is given by Proposition 2.11;

9 https://github.com/kevin-carrier/CodedDualAttack/tree/main/PolarCodeOverZq
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4.2 Computing an Accurate Approximation of Pgood and Pwrong

In this subsection, we provide an accurate estimation of the probabilities Pgood and Pwrong that
appear in Theorem 4.1. First, let’s recall the expression of the score function:

F
(lsc)
s̃enu

(
G⊤s̃fft

) △
=

∑
(x,y)∈S

cos
(

2π
q

(
⟨x,b−Aenus̃enu⟩ −

〈
ulsc,G

⊤s̃fft
〉))

(4.2)

=
∑

(x,y)∈S

cos
(

2π
q (⟨x,b−Aenus̃enu⟩ − ⟨clsc, s̃fft⟩)

)
(4.3)

where S is a set of N short vectors drawn from {(x,y) ∈ Λ(B) : ∥(x,y)∥ ≤ dlat}. Here, clsc
△
=

Gulsc is a codeword in Clsc ⊆ Znfft
q , obtained by decoding A⊤

fftx using our polar code decoder. It
is important to note that, according to Lemma 2.9, the short lattice vectors in S generated by
Algorithm 2.1 are not uniformly distributed within Λ(B) ∩ Ballm+nlat

dlat
; instead, they belong to a

βsieve-dimensional sublattice Λ (B′) ⊆ Λ(B), where B′ ∈ R(m+nlat)×βsieve . More precisely, we make
the following assumption regarding the distribution of vectors in S :

Assumption 4.2. We assume that the set S consists of N vectors uniformly sampled from

{w ∈ Λ(B′) : ∥w∥ ≤ dlat} ,

where Λ(B′) is a βsieve-dimensional sublattice of Λ(B) with basis B′ ∈ R(m+nlat)×βsieve , and volume
as stated in Lemma 2.9. The radius dlat

△
= ℓ(βsieve+1)

βsieve
corresponds to that of a βsieve-dimensional

Euclidean ball, within which the average vector length ℓ is given in Lemma 2.8.

Additionally, we assume that the probability distribution of the output of our polar code de-
coder has radial symmetry. This means that the probability depends only on the distance between
the returned codeword and the word to be decoded, not on the specific direction. Through exper-
imentation, we observed that this distance closely follows a normal distribution. Based on these
observations, we make the following assumption:

Assumption 4.3. Let u be any vector from Znfft
q , and let Dec(u) represent the random variable

corresponding to the output of our polar code decoding algorithm. The distribution of ∥u−Dec(u)∥
does not depend on u and we assume that it can be smoothed and approximated by the normal
distribution N (µlsc, σ

2
lsc), where µlsc is the mean and σlsc is the standard deviation, both determined

through simulations. We also assume that the conditional distribution of u − Dec(u) given that
∥u−Dec(u)∥ = dlsc is uniform over (Λ(Clsc) + u) ∩ Spherenfft

dlsc
.

First-Level Approximation of the Score Function. The score function F
(lsc)
s̃enu

(
G⊤s̃fft

)
, as

recalled in Equation (4.3), is a random variable influenced by multiple sources of randomness:

(i) the randomness in the short vector sampling Algorithm 2.1 that generates S ,
(ii) the inherent randomness in the polar code decoder Dec,
(iii) the randomness in the LWE instance, particularly in the choice of the matrix A,
(iv) the randomness of the guess s̃enu, which primarily arises from the selection of Ienu,
(v) the randomness of the guess s̃fft.

We denote by ES ,Dec (·) the conditional expectation over the randomness sources (i) and (ii).
Thus, a first-level approximation of the score function is:

Approximation 4.4 (First-Level Approximation). The score function F (lsc)
s̃enu

(
G⊤s̃fft

)
can be

approximated by its conditional expectation

ES ,Dec

(
F

(lsc)
s̃enu

(
G⊤s̃fft

))
(4.4)

where the expectation is taken over the randomness of the polar code decoder and the short vector
sampler.
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Lemma 4.5. The conditional expectation in Approximation 4.4 can be expressed as

ES ,Dec

(
F

(lsc)
s̃enu

(
G⊤s̃fft

))
=

∑
(w∨

lat,w
∨
lsc)

∈Λ(Btmp
global)

∨+
(B′⊤rlat,B

⊤
lscrlsc)

q

f̂lat (w
∨
lat) · f̂lsc (w∨

lsc) , (4.5)

where
flat (wlat)

△
= P (B′wlat ∈ S ) , flsc (wlsc)

△
= P (u−Dec (u) = Blscwlsc) , (4.6)

(rlat, rlsc)
△
= r

△
= (e+Aenu(senu − s̃enu) +Afft(sfft − s̃fft), slat, s̃fft) , (4.7)

and

Btmp
global

△
=

[
Idβsieve 0
A⊤

fftB
′
[m] Idnfft

]
. (4.8)

Here, rlat corresponds to the first m+nlat coordinates of r, while rlsc corresponds to its last nfft
coordinates. Additionally, under Assumption 4.3, we have that the random variable u−Dec(u) is
independent of u and follows the distribution induced by the polar code decoder.

Proof. For any vector in Λ(B′), let x and y denote its first m coordinates and its next nlat
coordinates, respectively. Taking the conditional expectation over the randomness of both the
polar code decoder and the short vector sampler, we obtain:

ES ,Dec

(
F

(lsc)
s̃enu

(
G⊤s̃fft

))
=

∑
(x,y)∈Λ(B′)
clsc∈Λ(Clsc)

P
(
(x,y) ∈ S and Dec

(
A⊤

fftx
)
= clsc

)
· cos

(
2π
q (⟨x,b−Aenus̃enu⟩ − ⟨clsc, s̃fft⟩)

)

=

∑
(x,y)∈Λ(B′)

wlsc∈Λ(Clsc)+A⊤
fftx

P
(
(x,y) ∈ S and A⊤

fftx−Dec
(
A⊤

fftx
)
= wlsc

)
· cos

(
2π
q

(
⟨x,b−Aenus̃enu⟩ −

〈
A⊤

fftx−wlsc, s̃fft
〉))

=

∑
(x,y)∈Λ(B′)

wlsc∈Λ(Clsc)+A⊤
fftx

P ((x,y) ∈ S ) · P
(
A⊤

fftx−Dec
(
A⊤

fftx
)
= wlsc

)
· cos

(
2π
q

(
⟨x,b−Aenus̃enu⟩ −

〈
A⊤

fftx−wlsc, s̃fft
〉))

where the last equality holds because of the independence of the decoding noise u−Dec(u) from
u. Next, we simplify the inner expression inside the cosine function:

⟨x,b−Aenus̃enu⟩ −
〈
A⊤

fftx−wlsc, s̃fft
〉

= ⟨x, e+Aenu(senu − s̃enu) +Alatslat +Afftsfft⟩ −
〈
A⊤

fftx−wlsc, s̃fft
〉

= ⟨x, e+Aenu(senu − s̃enu) +Afft(sfft − s̃fft)⟩+
〈
A⊤

latx, slat
〉
+ ⟨wlsc, s̃fft⟩

= ⟨(x,y,wlsc) , r⟩ mod q

where r is as defined in Equation (4.7). So, we obtain

ES ,Dec

(
F

(lsc)
s̃enu

(
G⊤s̃fft

))
=

∑
(x,y)∈Λ(B′)

wlsc∈Λ(Clsc)+A⊤
fftx

P ((x,y) ∈ S ) ·P
(
A⊤

fftx−Dec
(
A⊤

fftx
)
= wlsc

)
· cos

(
2π
〈
(x,y,wlsc) ,

r
q

〉) .
We observe that if (x,y) ∈ Λ(B′) and wlsc ∈ Λ(Clsc)+A⊤

fftx, then it follows that (−x,−y) ∈ Λ(B′)
and −wlsc ∈ Λ(Clsc) −A⊤

fftx. Furthermore, the probabilities involved in the formula are invariant
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under negation. This allows us to express the cosine function in its exponential form, which yields

ES ,Dec

(
F

(lsc)
s̃enu

(
G⊤s̃fft

))
=

∑
(x,y)∈Λ(B′)

wlsc∈Λ(Clsc)+A⊤
fftx

P ((x,y) ∈ S ) · P
(
A⊤

fftx−Dec
(
A⊤

fftx
)
= wlsc

)
· e2iπ

〈
(x,y,wlsc),

r
q

〉

=
∑

(wlat,wlsc)∈Λ(Btmp
global)

flat (wlat) · flsc (wlsc) · e
2iπ
〈
(B′wlat,Blscwlsc), rq

〉
.

Note that the function flsc is defined in terms of a vector u, which in this case depends on wlat.
However, the error vector produced by our polar code decoder is independent of the vector being de-
coded; that means the distribution flsc does not depend on u. Finally, following [CDMT24,DP23a],
we can apply the Poisson summation formula to obtain Equation (4.5). ⊓⊔

Second-Level Approximation of the Score Function. By estimating the Fourier transforms
f̂lat and f̂lsc from Lemma 4.5, we derive a new approximation of the score function:

Approximation 4.6 (Second-Level Approximation). Based on Approximation 4.4, As-
sumptions 4.2 and 4.3, and assuming the Gaussian Heuristic holds, we have

F
(lsc)
s̃enu

(
G⊤s̃fft

)
≈ N ·

∑
i≥0
j≥0

Ni,j ·
∫ ∞

0

ψlsc(dlsc) · Φdlsc
(i, j)ddlsc (4.9)

where
Φdlsc

(i, j)
△
= Υβsieve

2

(
2π
q dlati

)
· Υnfft

2 −1

(
2π
q dlscj

)
, (4.10)

Υn(x)
△
=
Γ (n+ 1) Jn(x)

(x/2)
n =

+∞∑
ℓ=0

(−1)ℓ(x/2)2ℓ

ℓ!
∏ℓ

s=1(n+ s)
, (4.11)

Ni,j
△
=
∣∣∣{ (wlat,wlsc) ∈ qΛ (Bglobal)

∨
+rproj ⊆ span (B′)× Rnfft

: ∥wlat∥ = i and ∥wlsc∥ = j
}∣∣∣, (4.12)

with rproj, the orthogonal projection on span(Bglobal) = span(B′)× Rnfft of

r
△
= (e+Aenu(senu − s̃enu) +Afft(sfft − s̃fft), slat, s̃fft) , (4.13)

and

Bglobal
△
=

B′ 0

A⊤
fft ·B′

[m] Blsc

βsieve nfft

m+ nlat

nfft

Here:

– B′ ∈ R(m+nlat)×βsieve is a basis of the sublattice where the sampled short vectors lie,
– B′

[m] consists of the first m rows of B′,
– and Blsc is a basis of the lattice Λ(Clsc).
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To justify the above approximation, we first show that under Assumptions 4.2 and 4.3, and
assuming the Gaussian Heuristic holds, the following two approximations hold:

f̂lat (w
∨
lat) ≈ N · Υβsieve

2

(
2πdlat

∥∥∥B′ (B′⊤B′)−1
w∨

lat

∥∥∥) , (4.14)

and

f̂lsc (w
∨
lsc) ≈

∫ ∞

0

ψlsc(dlsc) · Υnfft

2 −1

(
2π
q dlsc

∥∥B−⊤
lsc w∨

lsc

∥∥) ddlsc. (4.15)

On the one hand, under Assumption 4.2 and the Gaussian Heuristic, we can smooth and
approximate flat by

flat (wlat) ≈ 1≤dlat
(B′wlat) ·N · Vol(Λ(B′))

Vol
(
Ball

βsieve
dlat

) . (4.16)

Using the radial nature of both 1≤dlat
and 1̂≤dlat

, and the facts that ∥B′wlat∥ =
∥∥∥√B′⊤B′wlat

∥∥∥
and

∥∥∥√B′⊤B′−⊤
w∨

lat

∥∥∥ =
∥∥∥B′ (B′⊤B′)−1

w∨
lat

∥∥∥, we have

f̂lat (w
∨
lat) ≈

N ·Vol(Λ(B′))
Vol
(
Ball

βsieve
dlat

) ∫
Rβsieve

1≤dlat
(B′wlat) e

−2iπ⟨wlat,w
∨
lat⟩dwlat

=
N ·Vol(Λ(B′))
Vol
(
Ball

βsieve
dlat

) ∫
Rβsieve

1≤dlat

(√
B′⊤B′wlat

)
e−2iπ⟨wlat,w

∨
lat⟩dwlat

=
N ·Vol(Λ(B′))

Vol
(
Ball

βsieve
dlat

)
·
√

det(B′⊤B′)
·
∫
Rβsieve

1≤dlat
(v) e

−2iπ
〈√

B′⊤B′−1
v,w∨

lat

〉
dv

= N

Vol
(
Ball

βsieve
dlat

) · 1̂≤dlat

(√
B′⊤B′−⊤

w∨
lat

)
= N

Vol
(
Ball

βsieve
dlat

) · 1̂≤dlat

(
B′ (B′⊤B′)−1

w∨
lat

)
where the Fourier transform of the indicator function of a ball can be expressed in term of the
Bessel function:

1̂≤dlat
(w) =

(
dlat

∥w∥

)βsieve

2 · Jβsieve

2

(2πdlat ∥w∥)

= Vol
(
Ballβsieve

dlat

)
· Υβsieve

2

(2πdlat ∥w∥) .

On the other hand, based on Assumption 4.3, we state the following approximation for flsc:

flsc (wlsc)
△
= P (u−Dec (u) = Blscwlsc)

= P (∥u−Dec (u)∥ = ∥Blscwlsc∥) · P (u−Dec (u) = Blscwlsc | ∥u−Dec (u)∥ = ∥Blscwlsc∥)

≈

(∫ √
∥Blscwlsc∥2+1

∥Blscwlsc∥
ψlsc (dlsc) ddlsc

)
· Vol(Λ(Clsc))

Vol

(
Ball

nfft√
∥Blscwlsc∥2+1

)
−Vol

(
Ball

nfft

∥Blscwlsc∥

)

where ψlsc is the probability density function of the normal distribution N
(
µlsc, σ

2
lsc

)
. In the context

of our dual attack on Kyber, the decoding distance ∥Blscwlsc∥ takes values in the hundreds or even

thousands, as shown in Appendix C, Table C.1. Consequently, the difference
√

∥Blscwlsc∥2 + 1−
∥Blscwlsc∥ is small, allowing us to approximate flsc (wlsc) by

flsc (wlsc) ≈

(√
∥Blscwlsc∥2 + 1− ∥Blscwlsc∥

)
· ψlsc (∥Blscwlsc∥) · Vol (Λ(Clsc))(√

∥Blscwlsc∥2 + 1− ∥Blscwlsc∥
)
· Vol

(
Spherenfft

∥Blscwlsc∥

)
= ψlsc (∥Blscwlsc∥) ·

Vol (Λ(Clsc))

Vol
(
Spherenfft

∥Blscwlsc∥

)
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Note that we must have ∑
wlsc∈Znfft

P (u−Dec (u) = Blscwlsc) = 1.

Thus, the smoothed approximation of flsc should represent a probability density function, as we
can verify by the following10:∫

Rnfft

ψlsc (∥Blscwlsc∥) · Vol(Λ(Clsc))

Vol

(
Sphere

nfft

∥Blscwlsc∥

)dwlsc =

∫
Rnfft

ψlsc (∥w∥) · Vol(Λ(Clsc))

Vol
(
Sphere

nfft
∥w∥

) · 1
det(Blsc)

dw

=

∫
Rnfft

ψlsc (∥w)∥ · 1

Vol
(
Sphere

nfft
∥w∥)

)dw
=

∫ ∞

0

ψlsc (dlsc)

∫
Sphere

nfft
dlsc

1

Vol
(
Sphere

nfft
dlsc

)dσ(s)ddlsc
=

∫ ∞

0

ψlsc (dlsc) ddlsc

≈ 1

where dσ(s) represents the classical Lebesgue measure on the sphere Spherenfft

dlsc
. Finally, by using

[CE01, Prop.2.1], we have

f̂lsc (w
∨
lsc) ≈

∫
Rnfft

ψlsc (∥Blscwlsc∥) · Vol(Λ(Clsc))

Vol

(
Sphere

nfft

∥Blscwlsc∥

) · e−2iπ⟨w∨
lsc,wlsc⟩dwlsc

=

∫
Rnfft

ψlsc (∥w∥) · Vol(Λ(Clsc))

Vol
(
Sphere

nfft
∥w∥

) · e−2iπ⟨w∨
lsc,B

−1
lsc wlsc⟩ · 1

det(Blsc)
dw

=

∫
Rnfft

ψlsc (∥w∥) · 1

Vol
(
Sphere

nfft
∥w∥

) · e−2iπ⟨B−⊤
lsc w∨

lsc,wlsc⟩dw

=
2π∥∥B−⊤

lsc w∨
lsc

∥∥nfft

2 −1

∫ ∞

0

ψlsc(dlsc) · Vol(Λ(Clsc))

Vol
(
Sphere

nfft
dlsc

) · dlsc
nfft

2 · Jnfft

2 −1

(
2πdlsc

∥∥B−⊤
lsc w∨

lsc

∥∥) ddlsc
=

∫ ∞

0

ψlsc(dlsc) · Υnfft

2 −1

(
2πdlsc

∥∥B−⊤
lsc w∨

lsc

∥∥) ddlsc.
Finally, by leveraging Approximation 4.4 and Lemma 4.5, together with Approximations (4.14)

and (4.15) for f̂lat and f̂lsc, we can complete the justification for Approximation 4.6. First, we

observe that for all (w∨
lat,w

∨
lsc) ∈ Λ(Btmp

global)
∨ +

(B′⊤rlat,B
⊤
lscrlsc)

q , we have

q
(
B′ (B′⊤B′)−1

w∨
lat,B

−⊤
lsc w∨

lsc

)
∈ qΛ(Bglobal)

∨ + rproj,

And so, combining all the terms and making the appropriate variable change, we obtain

F
(lsc)
s̃enu

(
G⊤s̃fft

)
≈ N ·

∫ ∞

0

ψlsc(dlsc) ·
∑

(w∨
lat,w

∨
lsc)

∈qΛ(Bglobal)
∨+rproj

Υβsieve

2

(
2π
q dlat ∥w

∨
lat∥
)
· Υnfft

2 −1

(
2π
q dlsc ∥w

∨
lsc∥
)
ddlsc.

We conclude by noting that the inner sum depends only on the lengths of w∨
lat and w∨

lsc, that we
denote i and j, respectively.

Third-Level Approximation of the Score Function. In Appendix B, we provide an initial
intuition for why the good guess can be distinguished from the wrong ones, based on Approxima-
tion 4.6. However, here we present more precise calculations.
10 We verified that

∫ 0

−∞ ψlsc(r)dr is negligible.
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Recall that Approximation 4.6 gives

F
(lsc)
s̃enu

(
G⊤s̃fft

)
≈ N ·

∫ ∞

0

ψlsc(dlsc) ·
∑
i,j

Ni,j · Φdlsc
(i, j)ddlsc (4.17)

whereNi,j is a random variable representing the number of pairs (w∨
lat,w

∨
lsc) ∈ qΛ (Bglobal)

∨
+rproj ⊆

span (B′)× Rnfft such that ∥w∨
lat∥ = i and ∥w∨

lsc∥ = j.
Describing the distribution in Equation (4.17) is quite complex. To simplify this, we propose

the following model:

Model 4.7. We assume that F (lsc)
s̃enu

(
G⊤s̃fft

)
approximately follows the same distribution as D +

N (0, N/2), where N (0, N/2) denotes a normal distribution with mean 0 and standard deviation√
N/2, and

D △
= N ·

∫ ∞

0

ψlsc(dlsc) ·
(

max
i,j : Ni,j=1

(Φdlsc
(i, j))

)
ddlsc. (4.18)

We recall that ψlsc refers to the probability density function of N (µlsc, σ
2
lsc).

Based on Approximation 4.6 and Model 4.7, we can make the following two approximations,
with probabilities calculated over the randomness of the guesses Ienu and s̃fft, as well as over the
randomness of the LWE instance:

Approximation 4.8 (Good Guess). If we make the good guess (s̃enu, s̃fft) = (senu, sfft) and if
we choose T around the expectation of F (lsc)

senu

(
G⊤sfft

)
, namely by defining

T

N
=

exp
(

−α(πµlsc/q)
2

1+2α(πσlsc/q)2

)
√
1 + 2α(πσlsc/q)2

·
∫ 1

0

βsieve · tβsieve−1 · e
−α

(
πdlatt

q

)2

dt, (4.19)

then

Pgood
△
= P

(
F (lsc)
senu

(
G⊤sfft

)
≥ T

)
≈ 0.5 (4.20)

Approximation 4.9 (Wrong Guess). If we make the wrong guess (s̃enu, s̃fft) ̸= (senu, sfft), then

Pwrong
△
= P

(
F

(lsc)
s̃enu

(
G⊤s̃fft

)
≥ T

)
(4.21)

≈
∫ +∞

−∞

∫ +∞

0

min

(
1,

∫
E(T−t)

λ(x)µ(y)d(x, y)

)
· e

−t2

N −
(dlsc−µlsc)

2

2σ2
lsc

πσlsc
√
2N

ddlsc dt (4.22)

where

E(T − t)
△
=
{
(x, y) ∈ R2

+ : N · Φdlsc
(x, y) ≥ T − t

}
, (4.23)

λ(x)
△
=

2 · δ (βbkz)βsieve(m+nlat−βsieve) · π
βsieve

2 · xβsieve−1

q
βsieve· m

m+nlat · Γ
(

βsieve

2

) and µ(y)
△
=

2 · π
nfft

2 · ynfft−1

qkfft · Γ
(
nfft

2

) . (4.24)

Justification of Approximation 4.8. The rationale behind Approximation 4.8 is that if we make
the good guess (s̃enu, s̃fft) = (senu, sfft), then there exists an element

rproj
△
= (P(e, slat), sfft) ∈ qΛ (Bglobal)

∨
+ rproj (4.25)
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which has particularly small length. Specifically, the quantities ∥P(e,slat)∥√
α
2

and ∥sfft∥√
α
2

approximately

follow a χ-distribution11 with degrees of freedom βsieve and nfft, respectively. Therefore, we obtain

Eχβsieve
,χnfft

(
F

(lsc)
senu

(
G⊤sfft

))
≈ Eχβsieve

,χnfft
(D)

≈ N · Edlsc

(
Eχβsieve

,χnfft

(
Φdlsc

(√
α
2χβsieve ,

√
α
2χnfft

)))
= N · Eχβsieve

(
Υβsieve

2

(
2π
q dlat

√
α
2χβsieve

))
·Eχnfft

,dlsc

(
Υnfft

2 −1

(
2π
q dlsc

√
α
2χnfft

))
where Edlsc

(·) denotes the expectation with respect to the random variable dlsc, which follows a
normal distribution N (µlsc, σ

2
lsc).

Using Equation (4.11), each term in the above equation can be expressed in terms of the
moments of the χ2-distribution:

Eχnfft
,dlsc

(
Υnfft

2 −1

(
2π
q dlsc

√
α
2χnfft

))
= Edlsc


+∞∑
ℓ=0

(
−α

(
πdlsc

q

)2)ℓ

ℓ!
·

E
(
χ2ℓ
nfft

)
2ℓ
∏ℓ

s=1

(
nfft

2 − 1 + s
)


= Edlsc


+∞∑
ℓ=0

(
−α

(
πdlsc

q

)2)ℓ

ℓ!


= Edlsc

(
e
−α

(
πdlsc

q

)2)

=
exp

(
−α(πµlsc/q)

2

1+2α(πσlsc/q)2

)
√

1+2α(πσlsc/q)2

and

Eχβsieve

(
Υβsieve

2

(
2π
q dlat

√
α
2χβsieve

))
=

+∞∑
ℓ=0

(
−α

(
πdlat

q

)2)ℓ

ℓ!
·

E
(
χ2ℓ
βsieve

)
2ℓ
∏ℓ

s=1

(
βsieve

2 + s
)

=

+∞∑
ℓ=0

(
−α

(
πdlat

q

)2)ℓ

ℓ!
·

∏ℓ−1
s=0

(
βsieve

2 + s
)

∏ℓ−1
s=0

(
βsieve

2 + 1 + s
)

=

∫ 1

0

βsieve · tβsieve−1 · e
−α

(
πdlatt

q

)2

dt

where the last equality is a well-known result concerning generalized hypergeometric functions12.
Finally, in Equation (4.19), we chose T as the expected score E

(
F

(lsc)
senu

(
G⊤sfft

))
of the good

guess. Through experimentation, we verified that the expectation of this score is approximately
equal to its median, which justifies Approximation 4.8.

11 Strictly speaking, it is not an exact χ-distribution since the coordinates of rproj are not precisely normally
distributed.

12 Note that
∫ 1

0
βsieve · tβsieve−1e

−α
(

πdlatt
q

)2
dt = E

t∼Unif
(
Ball

βsieve
dlat

)(e−α
(

πt
q

)2)
.
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Justification of Approximation 4.9. On the other hand, Approximation 4.9 is obtained by esti-
mating the length of the short vectors in qΛ (Bglobal)

∨
+ rproj, where rproj is no longer the shortest

vector in the lattice coset. For i and j small enough, we can make the approximation that

P (Ni,j > 0) ≈ P (Ni,j = 1) . (4.26)

Thus, the survival function of D, knowing that the achieved decoding distance is dlsc, can be
approximated by

P (D > T | dlsc) ≈ P (∃(i, j) ∈ E(T ) : Ni,j > 0) (4.27)

≈ min

1,E

 ∑
(i,j)∈E(T )

(i2,j2)∈N2

Ni,j


 (4.28)

where

E(T ) △
=
{
(i, j) ∈ R2

+ : N · Φdlsc
(i, j) ≥ T

}
. (4.29)

We have already observed that when we make the correct guess, the probability P (Ni,j > 0)

is particularly high for a pair (i, j) close to
(√

αβsieve

2 ,
√

αnlsc

2

)
. Now, in the case where we make a

wrong guess – that is (s̃enu, s̃fft) ̸= (senu, sfft) – then we have

E

 ∑
(i,j)∈E(T )

(i2,j2)∈N2

Ni,j

 ≈

∫
E(T )

Vol
(
Sphereβsieve

x

)
· Vol

(
Spherenfft

y

)
d(x, y)

Vol (qΛ(Bglobal)∨)

=

∫
E(T )

Vol
(
Sphere

βsieve
x

)
·Vol(Λ(B′))

qβsieve
· Vol(Spherenfft

y ·Vol(Λ(Blsc)))
qnfft

d(x, y)

The volume of Λ(B′) is provided in Lemma 2.9, while the volume of Λ(Blsc) is qnfft−kfft . Meanwhile,
the integral can be evaluated numerically. Note that the Gaussian Heuristic is necessary here, as
q-ary lattices only behave approximately like random lattices.

Finally, under Model 4.7, Pwrong is the convolution product of the probability density function
of the normal distribution N (0, N/2) and the survival function of D, that is given by

P (D > T ) =

∫ ∞

0

ψlsc(dlsc) · P (D > T | dlsc) ddlsc

Validating our Analysis Through Simulations. We verify here the soundness of Approx-
imation 4.9 for Pwrong, which is crucial for estimating the number of false candidates. To this
end, we implemented and ran Algorithm 3.1, computing an experimental value for Pwrong, namely∣∣∣{z∈Zkfft

q : F
(lsc)
0 (z)≥T}

∣∣∣
qkfft

for different values of T . We plotted it against its theoretical approximation
in Figure 4.1. Notably, we found that the experimental and theoretical estimates are in agreement,
though the plot on the right suggests that our analysis may be slightly optimistic.

We used the g6k library [ADH+19] to generate short vectors in a lattice and used polar codes,
along with the decoder described in Section 3.3, for the auxiliary code Clsc. We provide the program
used to generate Figure 4.1 in the GitHub repository13.

13 https://github.com/kevin-carrier/CodedDualAttack/tree/main/verifyModel
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Fig. 4.1: Experimental validation of Approximation 4.9 for Pwrong. The solid lines represent our
theoretical model, while the crosses indicate results obtained from simulations. The theoretical
model is drawn using the observed values for dlat and dlsc. In particular, dlsc follows a normal
distribution N (µlsc, σ

2
lsc) with mean µlsc and standard deviation σlsc that are derived from the

observed decoding distances of the [nfft, kfft]q polar codes used in the experiments. The experimental
data were obtained by running 4000 iterations of Algorithm 3.1, with each iteration using an input
(A,b) taken uniformly at random in Zm×n

q × Zm
q . The parameters used are:

– on the left: q = 241, m = 40, n = 43, nlat = 35, nenu = 0, nfft = 8, kfft = 3, N = 25971, βbkz = 32,
βsieve = 44, dlat = 42.00, µlsc = 23.94 and σlsc = 3.38,
– on the right: q = 241, m = 40, n = 50, nlat = 42, nenu = 0, nfft = 8, kfft = 3, N = 25970,
βbkz = 35, βsieve = 41, dlat = 58.60, µlsc = 23.87 and σlsc = 3.30.

5 Application

In this section we give estimates for the cost of our attack against LWE problems from the literature.
In particular, we consider NIST PQC standardized candidate Kyber [SAB+20]. We summarize
in Table 5.1 the parameters of Kyber and outline the security level required by NIST, along with
the attack complexities claimed by MATZOV. Note that MATZOV findings are not widely agreed
upon in the cryptographic community as the analysis is based on independence assumptions which
were strongly questioned in [DP23b].

The models C0, CC, and CN refer to different cost models for lattice reduction. These models
are consistent with those presented in [AS22], and they can be described as follows:

C0. Cost estimates in the “Core-SVP” cost model [ADPS16] for Algorithm 2.1 using [BDGL16]
as the sieving oracle. This model assumes a single SVP call suffices to reduce a lattice. It
furthermore assumes that all lower-order terms in the exponent are zero.

CC. Cost estimates in a classical circuit model [AGPS20b,SAB+20,MAT22] for Algorithm 2.1
using [BDGL16] as the sieving oracle. We derive these estimates by implementing the cost
estimates from [MAT22], those tagged “asymptotic” (cf. [MAB+22]). This is the most detailed
cost estimate available in the literature. However, we caution that these estimates, too, ignore
the cost of memory access and thus may significantly underestimate the true cost. That is
RAM access is not “free” (cf. [MAB+22]). This cost model is called “list_decoding-classical”
in [AGPS20b].

CN. Cost estimates in a query model for Algorithm 2.1 using [BDGL16] as the sieving ora-
cle. We include this cost model for completeness. This cost model is called “list_decoding-
naive_classical” in [AGPS20b].

These various models rely on [BDGL16] for nearest-neighbor search, using fuzzy hashing func-
tions based on product codes. It should be added that [Duc22] pointed out that the original
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analysis of [BDGL16] assumes an ideal case, underestimating the decoding cost and overlooking
the suboptimal rate-distortion of product codes. Specifically, [Duc22] estimates that for a sieving
dimension of 380, the complexity of the nearest-neighbor search increases by a factor of about 26.
Here we kept the same way of computing the costs as in Matzov’s paper [MAT22] to keep a fair
comparison with their work. Delving further into this topic and replacing for instance the simple
product codes with a better approach is outside the scope of this work.

For the same reasons, we only consider the classical RAM model. Adapting our analysis to
a more realistic memory access model, such as the one presented in [Jaq24], is left as future
work. Furthermore, we do not compare our results with the state-of-the-art primal attacks. A
fair comparison would require substantial effort, as it involves accounting for many confounding
factors, such as those listed in [DP23b, Appendix A]. Achieving a more precise estimate – down
to the gate count level, as done for instance in [SAB+20] – would demand a significantly more
in-depth analysis, which we leave as future work given the already considerable length of this
paper. Once again, our goal here is to provide a proof of concept for dual lattice attacks and to
help resolve the controversy surrounding them. In line with this objective, we deliberately chose
to work with a relatively simple and likely suboptimal dual attack algorithm. There are several
potential avenues for improving it, including: (i) allowing false positives and adding a verification
step to filter them out, (ii) combining modulus switching with our technique, as it would enable
computations in characteristic 2, thereby allowing for a much more efficient fast Fourier transform,
(iii) replacing the naive product code in the sieving procedure by a better quantizer... We leave
these improvements for future work, as they fall outside the scope of this paper.

Evaluating the Complexity of our Dual Attack. We optimize the time complexity of Al-
gorithm 3.1, as established in Theorem 4.1, under the assumptions outlined in Lemma 3.2. We
assume that 1 − µ ≈ 1, and we constrain the parameters N and T such that ε := RPwrong q

kfft

remains close to 1; in particular, in our setting, η is always greater than 0.62. Additionally, we
select T following Approximation 4.8, ensuring that Pgood ≈ 1

2 . At the same time, we ensure that ε
remains close to 0. These choices guarantee that the overall success probability14 of our algorithm
is lower-bounded by approximately 0.31− ε ≈ 0.31.

Our complexity results are summarized in the last three columns of Table 5.1. The associated
parameters are given in Appendix C, Table C.1 and some relevant intermediate quantities are
summarized in Appendix C, Table C.2. Note that the quantity dlat is defined from the other
parameters as in Lemma 2.8. The mean µlsc of the decoding distance dlsc and its standard deviation
σlsc are computed by choosing an [nfft, kfft]q polar code and by decoding many (a thousand) random
words of Znfft

q . For all instances of Kyber, we used a list size of L = 1 in the decoder (see Section 3.3,
Lemma 3.3). This list size allows us to achieve a decoding distance close enough to the optimal

decoding distance dGV
△
=
√

nfft

2πeq
1− kfft

nfft without incurring additional cost in the complexity. Finally,
we provide in the GitHub repository15 a file verifying that our parameters achieve the complexity
claims and verify all the constraints.
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Scheme
LWE

parameters

Security
level

required
by NIST

MATZOV
Complexity

Complexity
of our

Algorithm 3.1
q n α C0 CC CN C0 CC CN

Kyber-512 3329 512 3
AES-128
(143 bits) 115.4 139.2 134.4 121.8 139.5 134.5

Kyber-768 3329 768 2
AES-192
(207 bits) 173.7 196.1 190.6 173.0 195.1 189.8

Kyber-1024 3329 1024 2
AES-256
(272 bits) 241.8 262.4 256.1 239.0 259.7 254.6

Table 5.1: The LWE parameters for Kyber, the security level required by NIST, the claimed log2
complexity of MATZOV attack as given in [AS22, Table 2], and the log2 complexity of our dual

attack Algorithm 3.1.
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Appendix



A Quantizers, Lossy Source Coding and Polar Codes

In this section we give more details about the construction of polar codes over Zq that is mentioned
in Subsection 3.3. We then verify that, when decoding random words, it is possible, to achieve
a typical decoding distance which is very close to the lattice analogue of the Gilbert-Varshamov
distance that we recall to be

ω ≈
√

n

2πe
q1−

k
n . (A.1)

where n and k are respectively the length and the dimension of the polar code.

Construction of Polar Codes over Zq. Let assume a codeword in Zn
q of which each symbol is

transmitted through a Gaussian channel of standard deviation σ △
= ω√

n
. The polar code construc-

tion basically consists of transforming those n Gaussian channels into n virtual channels that are,
for most of them, either of maximal or minimal entropy. The idea then is to fix (or in other words
freeze) the information that will transit via the bad channels and involve the good channels for
the k symbols of useful information.

Our construction essentially follows the papers [ŞTA09,Chi14,Sav21]. We refer to those articles
for more details about polar codes. It is a recursive construction which can be described as follows.

Definition A.1 ((U+V, αU)-construction). Let U and V be two linear codes of the same length
n over Zq and let α ∈ Z∗

q be an invertible scalar. The (U + V, αV ) is a Zq-linear code of length 2n
defined by

(U + V, αU)
△
= {(u+ v, αu) : u ∈ U and v ∈ V } (A.2)

A polar code of length n △
= 2m and dimension k is then defined by

Definition A.2 (polar code). Let F be a subset of {0, 1}m of size 2m−k and let α be a function
mapping the binary words of length < m to Z∗

q . The polar code of length 2m associated to F and
α is defined recursively by

C
△
= Uε (A.3)

where the Ux are codes of length 1 for all x ∈ {0, 1}m (we denote by ε the empty binary word) and
are given by

Ux =

{
{0} if x ∈ F
Zq otherwise (A.4)

and the other Ux’s where x is a binary word of length < m are defined recursively by

Ux
△
=
(
U0||x + U1||x, α(x)U0||x

)
. (A.5)

Thus, a polar code is fully defined by the set F of frozen positions and the α(x)’s. In [Chi14], it is
admitted that choosing the α(x)’s uniformly at random in Z∗

q is good enough. However, in [Sav21],
it is shown that those coefficients can be optimized. Thereafter, we do not use the optimization
technique from [Sav21] but simply try several polar codes then choose the best of them. On another
hand, we classically determine the optimal frozen positions F using Monte-Carlo simulation: we
run many times a genie-aided decoder for estimating the probability distribution of each virtual
channel then selecting the worst of them; that are the 2m − k virtual channels for which the error
probabilities are the highest.
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Decoding Polar Codes over Zq. The Successive Cancelation (SC) decoding algorithm (see
[ŞTA09,Chi14,Sav21]) can be described as a recursive decoding algorithm. For each code Ux ⊆
Z2m−t

q such that x ∈ {0, 1}t and t ∈ J0,m− 1K, we decode a noisy codeword in this code by using
recursively the decoders of U0||x and U1||x.

Let c
△
= (c1, · · · , c2m−t)

△
= (u+ v, α(x)u) be a codeword in Ux; i.e.

u
△
= (u1, · · · , u2m−t−1) and v

△
= (v1, · · · , v2m−t−1) are respectively in U0||x and U1||x. Let assume

that c is transmitted through a channel W (x); let

y
△
= (y1, · · · , y2m−t)

△
= (yℓ,yr) ∈ Z2m−t−1

q × Z2m−t−1

q (A.6)

be the received word. We assume that for each position i ∈ J1, 2m−tK and symbol s ∈ Zq, we know
the probability that the transmitted symbol is s knowing that the received one is yi:

Π
(x)
i (s)

△
= P (ci = s|yi) (A.7)

Instead of decoding directly y, we decode first yℓ −α(x)−1yr expecting to find v ∈ U1||x. The
virtual channel through which v has transited is then the serialization of two W (x) channels that
we denote by W (1||x). Thus for each coordinate i ∈

q
1, 2m−t−1

y
and symbol s ∈ Zq, we have the

probability

Π
(1||x)
i (s)

△
= P (vi = s|yi, yi+2m−t−1) (A.8)

=
∑
s′∈Zq

Π
(x)
i (s+ s′) ·Π(x)

i+2m−t−1(α(x) · s′) (A.9)

=
∑
s′∈Zq

Π
(x)
i (s− s′) ·Π(x)

i+2m−t−1(−α(x) · s′) (A.10)

=
(
Π

(x)
i ∗Π(x)

i+2m−t−1

)
(s) (A.11)

where Π
(x)

i (s)
△
= Π

(x)
i (−α(x) · s).

On another hand, let us assume that the decoding of yℓ − α(x)−1yr has led us to the vector
ṽ that we expect to be v (for the genie-aided decoder used for the construction of the code, we
actually take ṽ = v, regardless of the result of the decoding of yℓ − α(x)−1yr). We now have two
independent noisy versions of the same vector u that are α(x)−1yr and yℓ − ṽ. In other words,
supposing ṽ = v, the vector u has been sent twice through the channel W (x); we denote by W (0||x)

the resulting channel and for each coordinate i ∈
q
1, 2m−t−1

y
and symbol s ∈ Zq, we have the

probability

Π
(0||x)
i (s)

△
= P (ui = s|yi, yi+2m−t−1) (A.12)

=
1

η
·Π(x)

i (s+ ṽi) ·Π(x)
i+2m−t−1(α(x) · s) (A.13)

where η △
=
∑

s′∈Zq
Π

(x)
i (s′ + ṽi) ·Π(x)

i+2m−t−1(α(x) · s′) is a normalization factor.
Finally, for decoding a received word y ∈ Z2m

q in the code Uε that has been sent through a
Gaussian channel of standard deviation σ, one essentially has to compute recursively the vector
probabilities Π(x)

i for all t ∈ J1,mK, x ∈ {0, 1}t and i ∈ J1, 2m−tK using the Equations (A.11) and
(A.13). Note that the initial channel W (ε) is the original Gaussian channel; so for all i ∈ J1, 2mK
and s ∈ Zq, we have

Π
(ε)
i (s) = P

(
GZq,σ = yi − s

)
(A.14)

where GZq,σ is the modular Gaussian distribution defined as follows:
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Definition A.3 (Discrete Gaussian Distribution). Let σ > 0 and let S ⊂ R be a discrete
set. The discrete Gaussian distribution GS,σ over S is defined by:

P (GS,σ = x)
△
=

ρσ(x)∑
y∈S ρσ(y)

(A.15)

where ρσ(x)
△
= exp(−x2/2σ2) is the probability density function of the normal distribution N(0, σ2).

In particular, if S △
= Zq then we speak of modular Gaussian distribution and for all x ∈ Zq, we

have

P
(
GZq,σ = x

)
= P (GZ,σ ∈ x+ qZ) =

∑
u∈x+qZ ρσ(u)∑

y∈Z ρσ(y)
(A.16)

where x is assimilated to any of its representatives.

When arriving to the codes on the leaves – that are the codes Ux such that x ∈ {0, 1}m – then
we can exhaustively decode Ux:

1. if x ∈ F (meaning the corresponding symbol is frozen) then the only possible codeword in Ux

is the symbol 0,
2. if x ̸∈ F , then we choose the maximum likelihood codeword in Ux that is the symbol s for

which Π(x)
1 (s) is the greatest.

The running time of Successive Cancelation decoding is given by the following lemma:

Lemma A.4 (Complexity of the SC decoder). Assuming q is a power of 2. The running
time for decoding a word in a polar code of length 2m and dimension k over Zq is:

TSC ≤ 3 ·
(
Cadd ·N (add)

FFT (q) + Cmul ·N (mul)
FFT (q)

)
·m · 2m (A.17)

where Cadd and Cmul are the costs of an addition and a multiplication, respectively, and N (add)
FFT (q)

and N (mul)
FFT (q) are the number of additions and multiplications needed to achieve a discrete Fourier

transform over Zq (Proposition 2.11 provides those numbers for q = 3329, which were computed
using the FFTW software [FJ05]).

Proof. For all t ∈ J1,mK, x ∈ {0, 1}t and i ∈ J1, 2m−tK – i.e. for m · 2m triplets (t,x, i) – we can
compute the vector of probabilities Π(x)

i with at most 3 · q · log2(q) multiplications. Indeed, we
either have to compute Equation (A.11) or Equation (A.13). In the first case, it is a convolution;
this can be done with the help of three fast Fourier transforms, with each FFT requiring N (add)

FFT (q)

additions and N (mul)
FFT (q) multiplications. In the second case, we only have to do 2.q multiplications

and q additions, which is less than the cost of a convolution.

Remark A.5. We could reduce the cost of the SC decoder by considering the vectors of LLR (Log
Likelihood Ratio) instead of the vectors of probabilities. This trick allows to transform multiplica-
tions into additions.

List Decoding Using Probabilistic SC Decoder. We can modify the above SC decoder to
obtain a probabilistic decoder. To this end, when decoding non-frozen symbols in the codes on
the leaves Ux where x ∈ {0, 1}m \F , then output the symbol s according to the distribution Π(x)

1

instead of returning the one with the best probability. Note that as m tends to infinity and k
2m

remains constant, for x ∈ {0, 1}m \ F , the channels W (x)’s have capacity very close to 1 and for
x ∈ F , they have capacity very close to 1. Because of this polarization phenomenon, we can prove
similarly to [KU10] that our probabilistic SC decoder achieves an average decoding distance

d =
√

2m

2πe · q1−
k
2m · (1 + o(1)) (A.18)

33



when decoding a random vector in Z2m

q .
To turn this probabilistic SC decoder into a list decoder, one only has to running it L times then

choosing the codeword that minimizes the decoding distance. The complexity of a such algorithm
is essentially L times the complexity of the SC decoder given by Lemma A.4. Note that, contrary
to some more classical list decoders of polar codes, the L decoding procedures of our algorithm
can be trivially parallelized.

Punctured Polar Code. The polar codes construction above is about codes of length that are
a power of 2. In our case, we may require codes of other length. A simple way for reducing the
length of a code without changing its dimension is to puncture it. Let n, k be two positive integers.
We build a linear code of length n and dimension k by puncturing a polar code of length 2m and
dimension k where m △

= ⌈log2(n)⌉. Let denote by ℓ △
= 2m − n the number of symbol to puncture.

The puncturing operation essentially consists of ignoring the ℓ first symbols of the codeword; that
is equivalent to suppose that the ℓ first physical channels through which transit the codewords are
of maximal entropy:

Π
(ε)
i (s)

△
=

1

q
∀i ∈ J1, ℓK (A.19)

Note that we made this assumption both for the decoder and also for the genie-aided decoder used
to determine the frozen positions.
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B An Intuition about the Distinguishability of the Good Guess.

An important insight from Approximation 4.6 is that the score F (lsc)
s̃enu

(
G⊤s̃fft

)
depends on the

length enumerator of the vectors in the coset qΛ (Bglobal)
∨
+ rproj. Specifically, for the good guess

(s̃enu, s̃fft) = (senu, sfft), this lattice coset contains a particularly short vector rproj = (P(e, slat), sfft)

where P
△
= B′ (B′⊤B′)−1

B′⊤ is the orthogonal projection onto span(B′). In contrast, for wrong
guesses where (s̃enu, s̃fft) ̸= (senu, sfft), the shortest vector is no longer rproj. This observation pro-
vides a preliminary answer to the indistinguishability question posed in [DP23b]. Indeed, we cannot
distinguish the good guess from the wrong ones if the length of (P(e, slat), sfft) is greater than the
length of the shortest vector in qΛ (Bglobal)

∨
+ rproj. Given that the coordinates of (e, slat, sfft) are

i.i.d. random variables following a centered binomial distribution with parameter α, we estimate
the length of (P(e, slat), sfft) to be

∥(P(e, slat), sfft)∥ ≈
√

α(βsieve+nfft)
2 . (B.1)

On the other hand, if Λ (Bglobal) is treated as a random lattice with volume Vglobal
△
= Vol (Λ(Bglobal)) =

Vol (Λ(B′)) · Vol (Λ(Blsc)), then, using the Gaussian Heuristic, we can estimate the length of the
shortest vector in the lattice coset to be

λ1
(
qΛ (Bglobal)

∨
+ rproj

)
≈ q

V
1

βsieve+nfft

global

·
√

βsieve+nfft

2πe . (B.2)

However, we don’t consider just one such coset, but rather M △
= R · qkfft . Therefore, the

probability of having an even smaller shortest vector in one of the cosets is not negligible. In
[DP23b, Section 4.3], the shortest vector, across all cosets, is estimated to be

≈
λ1
(
qΛ (Bglobal)

∨
+ rproj

)
M

1
βsieve+nfft

. (B.3)

Table B.1 compares (B.1) and (B.3) for the parameters derived for Kyber in Section 5.

Scheme C0 CC CN
Eq. (B.1) Eq.(B.3) Eq. (B.1) Eq.(B.3) Eq. (B.1) Eq.(B.3)

Kyber-512 25.42 26.61 25.66 27.21 25.57 26.58

Kyber-768 25.63 26.70 25.82 27.23 25.75 27.19

Kyber-1024 30.25 31.17 30.38 31.99 30.48 32.34

Table B.1: Comparison between the estimated length of (P(e, slat), sfft) and the estimated length
of the shortest vector in all the cosets qΛ (Bglobal)

∨
+ rproj, based on the parameters provided in

Table C.1 (Appendix C). We are outside the contradictory regime raised in [DP23b] as soon as
Eq.(B.1) < Eq.(B.3).

In Subsection 4.2, we refine these calculations to provide an accurate approximation of F (lsc)
s̃enu

(
G⊤s̃fft

)
,

which we validate through simulations. In particular, we no longer assume that Λ (Bglobal) is a ran-
dom lattice of volume Vglobal; instead, we separately analyze the first βsieve coordinates and the last
nfft coordinates.
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C Parameters Tables Related to the Complexities Given In Table 5.1.

C0:

Scheme m βbkz βsieve nenu nfft kfft nlat dlat µlsc σlsc log2(N) log2(T )

Kyber-512 488 393 393 1 38 8 473 2882.14 975.17 42.11 81.55 43.82
Kyber-768 667 588 588 6 69 12 693 4401.02 1741.80 48.28 122.02 64.69
Kyber-1024 920 815 815 9 100 17 915 5190.00 2134.08 45.25 169.13 88.47

CC:

Scheme m βbkz βsieve nenu nfft kfft nlat dlat µlsc σlsc log2(N) log2(T )

Kyber-512 475 384 387 5 52 9 455 2706.86 1528.73 47.38 80.31 43.31
Kyber-768 636 581 574 6 93 14 669 4015.56 2410.56 46.47 119.12 63.01
Kyber-1024 802 811 792 10 131 19 883 4683.71 2956.65 50.05 164.35 85.86

CN:

Scheme m βbkz βsieve nenu nfft kfft nlat dlat µlsc σlsc log2(N) log2(T )

Kyber-512 457 384 388 4 48 9 460 2830.06 1292.55 39.26 80.51 43.42
Kyber-768 682 583 577 8 86 13 674 4083.09 2309.88 57.72 119.74 63.50
Kyber-1024 782 816 797 6 132 19 886 4678.80 2997.51 46.56 165.39 86.37

Table C.1: Parameters to obtain Table 5.1.

C0:

Scheme log2(Pwrong) log2(R) log2(Tsample) log2(N · Tdec) log2(TFFT) η log2(ε)

Kyber-512 −103.25 2.84 115.76 118.95 112.13 0.91 −6.81
Kyber-768 −220.73 9.49 172.70 160.64 159.52 0.69 −70.83
Kyber-1024 −295.30 13.74 238.98 207.75 218.53 0.62 −82.65

CC:

Scheme log2(Pwrong) log2(R) log2(Tsample) log2(N · Tdec) log2(TFFT) η log2(ε)

Kyber-512 −119.57 9.39 139.51 117.71 124.00 0.66 −4.87
Kyber-768 −177.79 9.49 194.81 157.74 183.15 0.73 −4.49
Kyber-1024 −244.03 15.15 259.35 204.17 242.09 0.63 −6.57

CN:

Scheme log2(Pwrong) log2(R) log2(Tsample) log2(N · Tdec) log2(TFFT) η log2(ε)

Kyber-512 −120.51 7.71 143.30 117.91 124.00 0.71 −7.49
Kyber-768 −225.52 12.32 189.78 158.36 171.34 0.63 −61.09
Kyber-1024 −240.59 9.49 254.44 205.21 242.09 0.76 −8.78

Table C.2: Intermediate results for Table 5.1. We recall that Pgood ≈ 0.5.
η and ε are defined in Lemma 3.2.
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