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Abstract

In this note, we prove the conjecture posed by Keller and Rosemarin at Eu-
rocrypt 2021 on the nullity of a matrix polynomial of a block matrix with
Hadamard type blocks over commutative rings of characteristic 2. Therefore,
it confirms the conjectural optimal bound on the dimension of invariant sub-
space of the Starkad cipher using the HADES design strategy. We also give
characterizations of the algebraic structure formed by Hadamard matrices
over commutative rings.
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1. Introduction

At Eurocrypt 2021, Keller and Rosemarin posed the following conjecture
in [3] (an initial version appeared on ePrint in Feb. 2020 1), in their study
of the resistance of the HADES design against invariant subspace attacks.

Conjecture 1 (See [3, Conjecture 1] ). Let k, s ∈ N. Let R be a commutative
ring with characteristic 2, and let M be an s-by-s block matrix over R, each
of whose blocks is a 2k-by-2k special matrix. Denote the blocks of M by
{Mi,j}si,j=1. Let M ′′ ∈ Rs×s be defined by M ′′

i,j = λ(Mi,j), where λ(Mi,j) is
the unique eigenvalue of the special matrix Mi,j. Denote by q(x) = fM ′′(x)
the characteristic polynomial of M ′′. Then q(M)2 = 0.

1See https://eprint.iacr.org/eprint-bin/versions.pl?entry=2020/179

https://eprint.iacr.org/
https://eprint.iacr.org/eprint-bin/versions.pl?entry=2020/179


In Conjecture 1, a 2k × 2k special matrix over a commutative ring2 R is
defined recursively in the manner that

M =

(
A B
B A

)
,

where A and B are both 2k−1×2k−1 special matrices over R (see [3, Definition
1]). Note that when R = F2n is a finite field, a special matrix is just the so-
called Finite Field Hadamard (FFHadamard) matrix definied in [4]. Since
when Char(R) = 2 such special matrices share similar properties with the
classical {±1}-valued Hadamard matrices, so in the following we also call
them Hadamard matrices over R.

Hadamard matrices over a commutative ringR have many nice properties.
For example, the set of all 2k × 2k Hadamard matrices, Hk(R), forms a
commutative ring (see [3, Proposition 1]), and since it is naturally an R-
module, it forms a commutative R-algebra. We further characterize structure
of this algebra in Section 4 as a supplement to help understanding properties
of Hadamard matrices.

It is easy to observe that any H ∈ Hk(R) is determined by its first row,
say, (a0, a1, . . . , a2k−1) ∈ R2k , from the recursive definition of a Hadamard
matrix. By induction on k, we can prove that

Hi,j = ai⊕j, 0 ≤ i, j ≤ 2k − 1. (1)

Note that here we index the rows and columns of H starting from 0, and ⊕
is the exclusive-or operation of integers, in the sense of distinguishing them
with binary vectors in Fk

2 through 2-adic expansions. From this explicit
representation of Hadamard matrices, one can derive all properties of them
presented in [3] in the case Char(R) = 2, in a slightly different but more
direct manner. We summarize some of them in the following proposition.

Proposition 1.1. Let R be a commutative ring of characteristic 2 and
H,H1, H2 ∈ Hk(R) where k ∈ N. Let det(·) and λ(·) denote the deter-
minant and an eigenvalue of any matrix over a commutative ring. Then we
have

(1) H has a unique eigenvalue, namely, λ(H) =
∑2k−1

i=0 ai, where (a0, a1, . . . ,
a2k−1) is the 1st row of H;

2All rings considered in this paper are assumed to be unital ones.
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(2) H2 = λ(H)2I2k , where I2k is the identity matrix;

(3) det(H1 +H2) = det(H1) + det(H2);

(4) λ(H1 +H2) = λ(H1) + λ(H2), λ(H1H2) = λ(H1)λ(H2).

From an algebraic point of view, Proposition 1.1 says that the two maps

det : Hk(R) −→ R and λ : Hk(R) −→ R

are both homomorphisms of rings.
LetR be a commutative ring with characteristic 2 and denote by Ms×s(Hk(R))

and Ms×s(R) the Hk(R)- and R-algebra of s × s matrices over Hk(R) and
R, respectively. The homomorphism λ : Hk(R) −→ R extends naturally to
an R-algebraic homomorphism λ̄ : Ms×s(Hk(R)) −→ Ms×s(R), (Mi,j) 7−→
(λ(Mi,j)). Similarly, the homomorphism det extends to det over matrix alge-
bras in this manner. For the purpose of clearity, let Det denote the classical
determinalt map for s × s matrices over commutative rings, which is a ho-
momorphism between multiplicative monoids of rings. Then Proposition 1.1
also implies that the diagrams for multiplicative monoids of algebras (rings)

Ms×s(Hk(R)) Det //

λ̄

��

Hk(R)

λ

��
Ms×s(R)

Det
// R

and

Ms×s(Hk(R)) Det //

det

��

Hk(R)

det

��
Ms×s(R)

Det
// R

are both commutative (see also [3, Proposition 8]).

2. Proof of Conjecture 1

In this part we explain how to prove Conjecture 1. It turns out that the
main argument leads to the proof is incredibly simple, as long as we have
found the key point.
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For a generic s × s matrix A = (aij) over a commutative ring, it is
well known from linear algebra that Det(A) is a multivariate polynomial in
the entries aij. Assume fA(x) = det(xIs − A) = xs +

∑s
i=1 fix

s−i is the
characteristic polynomial of A. We are then clear that fk is a multivariate
polynomial in the entries {aij} for any 1 ≤ k ≤ s. In fact, it is well known
fs = (−1)sDet(A). A not-so-well-known result is that for 1 ≤ k ≤ s,

fk = (−1)ktr
(∧k

A
)
,

where tr
(∧k A

)
is the trace of the k-th exterior power of the endmorphism

induced by A, which can be computed as the sum of all principle minors of
A of size k (of course a multivariate polynomial in the entries of A).

Let R be a commutative ring with characteristic 2, and let M and M ′′

be the matrices in Conjecture 1. Instead of a block matrix, we view M
as a matrix over the commutative ring Hk(R). Assume the characteristic
polynomial of M and M ′′ are Q(x) =

∑s
i=0 Qix

i and q(x) =
∑s

i=0 qix
i,

respectively. Note that Qi ∈ Hk(R) while qi ∈ R, 0 ≤ i ≤ s. From the above
discussion, Qi and qi can be computed by evaluating the same multivariate
polynomial in the corresponding entries of M and M ′′, respectively. Since
λ : Hk(R) −→ R is a homomorphism, we are clear that λ(Qi) = qi. From
Proposition 1.1 (2), we also have Q2

i = λ(Qi)
2 · id = q2i · id, where id is the

identity element of Hk(R), namely, I2k .
By Cayley–Hamilton theorem for matrices over commutative rings, we

know that Q(M) = 0, and of course Q(M)2 = 0. Since the ring Hk(R) also
has characteristic 2, we have

0 = Q(M)2 =
s∑

i=0

Q2
iM

2i =
s∑

i=0

(q2i · id)M2i =
s∑

i=0

q2iM
2i = q(M)2.

This completes the proof.

3. Further discussions on Conjecture 1 and cryptographic applica-
tions

The proof of Conjecture 1 answers the second open problem in [3]. It
is a great observation in [3] that the Cauchy-type MDS matrix used in the
design of the Starkad cipher [1], which is an instantiations of the HADES
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design [2], can be viewed as an s × s block matrix with 2k × 2k Hadamard-
type blocks over F2n . As a result, the authors mounted an attack on Starkad
after finding that this matrix admitted an invariant subspace with dimension
at least t − (k + 1)s for the PSPN part of the cipher, where t = 2ks. This
bound was obtained by proving that q(M)k+1 = 0, where q(x) and M are
the same as in Conjecture 1. In fact, dimension of the invariant subspace
depends on the smallest power l such that M l can be represented as R-
linear combinations of lower powers of M . The nullity of q(M)k+1 promises
l ≤ (k + 1)s since deg q(x)k+1 = (k + 1)s. Therefore, proof of Conjecture 1
improves this bound to 2s.

Can this bound be further improved? We should note first that the
bound 2s is a general one, not depending on the ring R and the shapes of
these Hadamard blocks of M . Of course when these blocks are of certain
special types, e.g., scalar matrices, the bound 2s can be improved to, e.g., s.
However, this is not the case for the Cauchy matrix used in Starkad.

Another natural question is whether the characteristic polynomial q(x) in
Conjecture 1 can be replaced by minimal polynomial, which may has a degree
less than s. More precisely, if the minimal polynomials of M ′′ is ϕ(x), shall
we have ϕ(M)2 = 0? First, it should be noted that in this case the method
for proving Conjecture 1 in Sect. 2 will not work, since coefficients of minimal
polynomial of a matrix have no direct and explicit relations with its entries.
Second, when R is a generic commutative ring, the minimal polynomial of
a matrix over R may not be unique. Actually, minimal polynomial of a
matrix A over R is defined as the least degree polynomials in the annihilating
ideal of A in R[x], which may not be a principle ideal. Even the minimal
polynomial is unique, ϕ(M)2 = 0 does not always hold. Indeed, one can
quickly observe that, for example, when M ′′ = 0, its minimal polynomial is
ϕ(x) = x, however, one cannot obtain M2 = 0 for any M whose blocks all
have eigenvalue 0.

But on the contrary, if we can find the minimal polynomial Φ(x) =∑s
i=0Φix

i ∈ Hk(R)[x] of M , that is Φ(M) = 0, then we can obtain ϕ(M)2 =
0 where ϕ(x) =

∑s
i=0 ϕix

i with ϕi = λ(Φi). This will improve the bound
for the aforementioned l to 2 · deg Φ(x). However, for generic s × s matri-
ces over commutative rings, the best general upper bound for the degrees of
their minimal polynomials one can get is s. So in this sense, the bound 2s
for a generic M is optimal. When M is considered in some special classes
of matrices over Hk(R), e.g., circulant matrices, Vandermonde matrices, or
Hadamard matrices we consider, this bound can possibly be improved.
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As for Conjecture 1, it seems hard to directly prove it through evaluating
q(M)2. It has already been observed in [3] that q(M) lies in the kernel of the
homomorphism λ̄, that is, all blocks of q(M) have eigenvalue 0. However, as
mentioned above, we cannot obtain M̃2 = 0 for any M̃ ∈ kerλ̄ in general.
Besides, we can see that if q(M)2 = 0, then for any M̃ ∈ kerλ̄, we have

q(M + M̃)2 = 0.

But this does not mean if g(M) = 0 for certain g(x) ∈ R[x], then we have
g(M + M̃) = 0 for any M̃ ∈ kerλ̄. Indeed, any M ∈ Ms×s(Hk(R)) can be
factorized into

M = M ′′ ⊗ I2k + M̃

for a unique M̃ ∈ kerλ̄. Obviously, for any g(x) ∈ R[x] with g(M ′′) = 0 (e.g.,
g(x) = q(x), the characteristic polynomial of M ′′), we have

g(M ′′ ⊗ I2k) = g(M ′′)⊗ I2k = 0.

But this does not promise g(M) = 0 for any M̃ ∈ kerλ̄.
Another interesting corollary of Conjecture 1 is, ifM ∈ kerλ̄, then we have

M2s = 0 (not depending on k) since the characteristic polynomial of M ′′ = 0
is xs. Recall that in [3] it was proved Mk+1 = 0, an equality depending on k.
The power k+1 comes from [3, Proposition 7], namely, any k+1 elements of
Hk(R) all having eigenvalue 0 will multiply to 0. The result M2s = 0 implies
more complicated relations between elements of Hk(R) having eigenvalue 0,
which seems not easy to directly reveal. In the next section we will further
discuss the set of all such elements.

4. Structure of the algebra Hk(R)

To further understand properties of Hadamard matrices over a commu-
tative ring R, in this part, we give characterizations of the structure of the
algebra formed by them, namely, the R-algebra Hk(R).

Let G = (Fk
2,⊕), the additive group of the vector space Fk

2. We denote
the identity of G by e, i.e., e = (0, 0, . . . , 0). Let R[G] be the group ring
(algebra) generated by G over R. Elements of R[G] are all of the form
a =

∑
g∈G agg where ag ∈ R for any g ∈ G, that is, formal linear combinations

of elements of G over R. Multiplication of two elements a and b are defined
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in a convolutional manner, that is,(∑
g∈G

agg

)(∑
g∈G

bgg

)
=
∑
g,h∈G

agbh(g ⊕ h) =
∑
g∈G

(∑
h∈G

agbg⊕h

)
g.

We have the following theorem.

Theorem 4.1.
Hk(R) ∼= R[G].

Proof. For two Hadamard matrices A and B in Hk(R), assume their first
rows are (a0, a1, . . . , a2k−1) ∈ R2k and (b0, b1, . . . , b2k−1) ∈ R2k , respectively.
Then we know from (1) that

A = (ai⊕j)
2k−1
i,j=0 , B = (bi⊕j)

2k−1
i,j=0 .

Let C = AB = (cij). Then we have

cij =
2k−1∑
k=0

aikbkj =
2k−1∑
k=0

ai⊕kbk⊕j =
2k−1∑
k=0

akbk⊕i⊕j,

which means C is a Hadamard matrix with first row (
∑2k−1

k=0 akbk⊕j | 0 ≤ j ≤
2k − 1). Therefore, the map

Hk(R) −→ R[G], (ai⊕j) 7−→
2k−1∑
j=0

abin(j)bin(j)

implies the isomorphism between Hk(R) and R[G], where

bin : Z2k −→ G, j =
k−1∑
l=0

jl2
k−1−l 7−→ (j0, j1, . . . , jk−1),

represents the 2-adic expansion of integers. □

R[G] is an algebra over R with dimension 2k, and a basis is {g | g ∈ G}.
Note that all these basis elements are idempotent in R[G]. Elements of R[G]
can also be distinguished with functions from G to R. In this sense, R[G] is
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isomorphic to the R-representation of G. Since G = F⊕k
2 , the k-fold direct

sum of F2, we also have

Hk(R) ∼= R[G] ∼= R[F2]
⊗k ∼= H1(R)⊗k. (2)

(Here ⊗k denotes k-fold tensor product of an R-algebra.) This tensor de-
composition can also be made explicit. Let {ei | 0 ≤ i ≤ k − 1} be the
standard basis of G over F2. Then any g ∈ G\{e} can be represented as
g = ei1 ⊕ ei2 ⊕· · ·⊕ eis for certain 0 ≤ i1 < i2 < · · · < is ≤ k−1. It is easy to
check that the Hadamard matrix corresponding to this g, which is actually
a permutation matrix, can be decomposed into

I2 ⊗ · · · ⊗ I2⊗
i1
J2 ⊗I2 ⊗ · · · ⊗ I2⊗

i2
J2 ⊗ · · ·⊗

is
J2 ⊗ · · · ⊗ I2 (k terms in total),

where

I2 =

(
1 0
0 1

)
, J2 =

(
0 1
1 0

)
.

Besides, the Hadamard matrix corresponding to e is obviously I2k = I⊗k
2 .

Note that I2 and J2 form the basis of H1(R) and J2
2 = I2. Therefore, under

the conversion that J0
2 = I2, the isomorphism (2) implies that any 2k × 2k

Hadamard matrix over R can be decomposed into a polynomial-like form,
that is,

A =
2k−1∑
i=0

aiJ
i
2, ai ∈ R,

where

J i
2 := J i0

2 ⊗ J i1
2 ⊗ · · · ⊗ J

ik−1

2 , i =
k−1∑
l=0

il2
k−1−l.

From properties of Kronecker products of matrices, we have J i
2 · J

j
2 = J i⊕j

2 .
Hence this polynomial-like representation for Hadamard matrices indeed in-
duces an isomorphism between Hk(R) and a polynomial algebra. In this
sense, Hk(R) is also a Clifford algebra over R.

Theorem 4.2.

Hk(R) ∼= R[x1, x2, . . . , xk]/(x
2
1 − 1, . . . , x2

k − 1).
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Recall that for any group ring, we can define the augmentation map, that
is,

ϵ : R[G] −→ R,
∑
g∈G

agg 7−→
∑
g∈G

ag.

The kernel I of ϵ is called the augmentation ideal of R[G]. It is easy to
prove that, as a sub-algebra of R[G], I has dimension 2k − 1 with a basis
{g − e | g ∈ G\{e}}. In the following, we assume Char(R) = 2. From
Proposition 1.1 we know that, by distinguishing a Hadamard matrix over R
with an element in R[G], its image under ϵ is just the eigenvalue. Therefore,
all elements in I are nilpotent. When the ring R has no nilpotent elements,
the ideal I is just the nilradical of R[G], i.e., intersection of all prime ideals
of R[G]. Specifically, when R is a field, I is the unique maximal ideal of R[G]
and thus R[G] is a local ring.

The nilpotency degree of an ideal is defined to be the smallest power that
will make it vanish. For the ideal I we talk about, its nilpotency degree can
be determined.

Theorem 4.3. Assume Char(R) = 2 and I is the augmentation ideal of the
group ring R[G]. Then the nilpotency degree of I is k + 1.

Proof. We prove Ik+1 = (0) while Ik ̸= (0). As I is an R-algebra, we need
only to prove that any k+ 1 basis elements multiply to 0 while there exist k
basis elements that cannot.

Let {ei | 0 ≤ i ≤ k − 1} be the standard basis of G over F2. Then
{ei + e | 0 ≤ i ≤ k − 1} are k basis elements of I. Note that

k−1∏
i=0

(ei + e) =
∑

c0,c1,...,ck−1∈F2

k−1⊕
i=0

ciei =
∑
g∈G

g ̸= 0

in R[G].
On the other hand, let {gi + e | gi ∈ G, 0 ≤ i ≤ k} be any k + 1 basis

elements of I. We can assume they are pairwise distinct, since otherwise
they will multiply to 0 naturally. Then

k∏
i=0

(gi + e) =
∑

c0,c1,...,ck∈F2

k⊕
i=0

cigi.

Note that this sum iterates over all F2-linear combination of {gi | 0 ≤ i ≤ k}.
As {gi | 0 ≤ i ≤ k} must be linearly dependent over F2, each term turns out
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to appear 2r times in the sum (in fact, r = k − rank {gi}). Therefore, the
sum vanishes since Char(R[G]) = 2. □

Theorem 4.3 indicates that any k + 1 elements of I multiply to 0, which
coincides with [3, Proposition 7].
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