
Speed Optimizations in Bitcoin Key Recovery Attacks

Nicolas Courtois
University College London
n.courtois@ucl.ac.uk

Guangyan Song
University College London
g.song@cs.ucl.ac.uk

Ryan Castellucci
White Ops

pubs@ryanc.org

ABSTRACT
In this paper we study and give the first detailed benchmarks
on existing implementations of the secp256k1 elliptic curve
used by at least hundreds of thousands of users in Bitcoin
and other cryptocurrencies. Our implementation improves
the state of the art by a factor of 2.5, with focus on the
cases where side channel attacks are not a concern and a
large quantity of RAM is available. As a result, we are able
to scan the Bitcoin blockchain for weak keys faster than any
previous implementation. We also give some examples of
passwords which have we have cracked, showing that brain
wallets are not secure in practice even for quite complex
passwords.

Keywords
Bitcoin, Elliptic Curve Cryptography, Crypto Currency, Brain
Wallet

1. INTRODUCTION
Bitcoin is a cryptocurrency, an electronic payment system

based on cryptography. It was created by Satoshi Nako-
moto1 in 2008 [13]. In 2009, Bitcoin was launched as open-
source software. Bitcoin is designed to be a fully decen-
tralised peer-to-peer network — self-governing without sup-
port from trusted entities such as banks or governments.
Bitcoin transactions are like checks but signed cryptographi-
cally instead of using ink. Transactions are broadcast to the
peer-to-peer network and verified by each node. A public
ledger called a ”blockchain” records transactions pseudony-
mously.

Ownership of bitcoins implies that a user can spend bit-
coins associated with a specific address (equivalent to a bank
account). In order to spend the coins, a payer must digitally
sign the transaction using their private key. The signed
transaction is then broadcast to the peer-to-peer network.

1It is not known whether Satoshi Nakomoto is a real or
pseudonym name or if it represents one person or a group

Everyone on the network can verify the signature that has
been sent out. Anyone can spend all the bitcoin in a bit-
coin address as long as they hold the cosponsoring private
key. Once the private is lost, the bitcoin network will not
recognize any other evidence of ownership.

Bitcoin uses digital signature protect the ownership bit-
coin and private key is the only evidence of owning bitcoin.
Thus it is very important to look at the technical details of
the digital signature scheme used in bitcoin.

1.1 Structure of the paper
In this paper we study and give the first detailed bench-

marks on existing secp256k1 elliptic curve implementations
used in Bitcoin. Section 2 introduces background knowledge
about elliptic curve cryptography and brain wallets. Section
3 reviews previous research work in this area. Section 4 gives
detailed benchmark for existing method and our own imple-
mentation. Our implementation improves the state of the
art by a factor of 2.5. Section 5 is the conclusion of this
paper.

2. BACKGROUND

2.1 Elliptic Curve Cryptography
Elliptic curve cryptography (ECC) was independently pro-

posed by Neal Koblitz[11] and Victor Miller [12] in 1985. It
is a public-key cryptography protocol where each of the par-
ticipant has a pair of keys. There is one private key which
is kept as a secret by the owner and one public key which
can be shared with anyone. In the past 10+ years ECC
has been increasingly used in practise since its inclusion in
standards by organisations such as ISO, IEEE, NIST, NSA
etc. Elliptic curves are more efficient and offer smaller key
sizes at the same security as other widely adopted public
key cryptography schemes such as RSA [14].

An Elliptic Curve over finite field Fp where p is a large
prime, can be formed by choosing the variables a and b
within the field Fp. The elliptic curve includes all points
(x, y) which satisfy the elliptic curve equation modulo p
(where x and y are numbers in Fp). It is typically defined
in the short Weierstrass form:

y2 mod p = x3 + ax + b mod p

where a, b ∈ Fp satisfy 4a3 + 27b2 mod p is not 0, which
guarantees x3 +ax+b contains no repeated factors and then
the elliptic curve can be used to form a group. The elliptic
curve contains all points P = (x, y) for x, y ∈ Fp that satisfy

the elliptic curve equation and together with a special point
∞ call the point at infinity 2.

The elliptic curve used in Bitcoin is called secp256k1.
Secp256k1 curve is proposed in Certicom [7] in addition to
NIST curve for 256 bits prime. It is defined over prime field
Fp where

p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

The curve equation E is y2 = x3 + ax + b where a = 0 and
b = 7.

2.1.1 Key Pair Generation
An elliptic curve key pair is associated with a particular

set of valid domain parameters [10]. Let E be an elliptic
curve defined over a finite field Fp. Let P be a point in
E(Fp), and suppose that P has prime order n. Then the
cyclic subgroup of E(Fp) generated by P is

〈P 〉 = {∞, P, 2P, 3P, . . . , (n− 1)P}

The prime p, the equation of the elliptic curve E, the point P
and its order n are the public domain parameters. A private
key is an integer d that is selected uniformly at random
from the interval [1, n− 1], and the corresponding public
key Q = dP .

Algorithm 1 Key pair generation [10]

Input: Domain parameters D = (p,E, P, n)
Output: Public key Q, private key d

1: Select d ∈R [1, n− 1].
2: Compute Q = dP .
3: Return (Q, d).

Note that the process of computing a private key d given
public key Q is exactly the elliptic curve discrete logarithm
problem (ECDLP). Hence it is very important to chose a
set of domain parameters so that the ECDLP is hard to
solve. In addition the number d should be random in the
sense that it should have large entropy AND there should be
no way to distinguish a source which produces these values
from a source which generates them uniformly at random.
In particular the min-entropy should also be high and there
should be no efficient guessing strategy of any sort.

2.2 Brain Wallet
A Bitcoin wallet is a collection of Bitcoin addresses and

stores the corresponding keys for those addresses. Bitcoin
wallets come in different forms, including desktop software,
mobile apps, online services, hardware, smart card and pa-
per.

As we discussed earlier in section 2.1.1, the private key is
a number which we presume to be totally random. Normally
the private key will be a long hex string which is very hard
for a person to remember and store safely. No matter what
form of wallet you are using, there always exists a chance
that you might lose your wallet in a cybersecurity breach.

Brain wallets are another solution, which do not need the
users to keep anything in safe and still be able to recover

2In code implementation, ∞ is normally be represented as
point (0,0), but not always, as (0,0) might on the curve.

their private key. Instead of storing the private key and
protecting it, one can store it in a human mind. A brain
wallet creates private key from a (typically) human chosen
password or a passphrase, using the SHA-256 hash algorithm
turn it into a 256-bit number. As SHA-256 is deterministic
method, users can always use the same password to recreate
their private key. Note that since brain wallets use the hash
directly as the private key, the security of storing private
keys now depends only on how unpredictable the passwords
are.

3. RELATED WORK
We are not the first ones try to crack Bitcoin brain wal-

lets, a lot of other security researchers are doing it. Many
victims have found their money stolen and posted it in fo-
rums. The first ethical/research brain wallet cracker was an-
nounced publicly in a recent hacking conference DEF CON
23 (Aug 2015). Ryan Castellucci, a whitehat hacker pre-
sented his research on cracking brain wallets, and also pub-
lished his software [6]. Ryan’s attack was done on an Intel i7
PC with 4 hyper-threaded cores. The attack speed can reach
approximately 16,250 password per second on each thread
and he had cracked more than 18,000 brain wallet addresses.

The software Ryan has published uses an existing open
source secp256k1 bitcoin elliptic curve implementation mainly
written by Pieter Wuille, one of Bitcoin core developers.
This implementation is widely used in Bitcoin clients and is
considered the current best in terms of code level optimisa-
tion (detailed benchmarks are given in table 2).

Later Vasek et al. published their cybercrime analysis
results on brain wallets addresses cracked using Ryan’s soft-
ware implementation in FC 2016. Their work were more
focused on brain wallets usage measurements and did not
try to improve the speed of the attack.

4. SPECIAL DESIGNED POINT MULTIPLI-
CATION METHOD FOR ATTACK

The process of cracking Bitcoin brain wallets is to repeat-
edly generate public keys using guessed passwords. Key
generation method as we described in 2.1.1, is to compute
Q = dP . Here d is a SHA256 hash of the generated pass-
word, P is a fixed point which is the base point G for
secp256k1. We first benchmark the current best implemen-
tation, libsecp256k1. All benchmark results are running on
a laptop with the following specifications:

• CPU: Intel i7-3520m 2.9GHz

• RAM: 4G

• OS: 64-bit Windows 8

The time cost for computing one public key given a random
private key takes : 47.2 us.

4.1 Fixed Point Multiplication Methods
The most basic and naive method for point multiplication

Q = kP with a unknown point P is double-and-add method
[10]. The idea is to use binary representation for k:

k = k0 + 2k1 + 22k2 + · · ·+ 2mkm

where [k0 . . . km] ∈ {0, 1} and m is the length of k, in bitcoin
elliptic curve, m = 256.

Figure 1: Brain wallet generated by password “password”

Algorithm 2 double-and-add method for point multiplica-
tion of unknown points[10]

1: Q := infinity
2: for i from 0 to m do
3: if ki = 1 then Q := Q + P (using point addition)
4: P := 2P (using point doubling)
5: end for
6: return Q

The expected number of ones in the binary representa-
tion of k is approximately m

2
, so double-and-add method

will need m
2

+ mD computations in total. However, if the
point P is fixed and some storage is available, then the point
multiplication operation Q = kP can be accelerated by pre-
computing some data that depends only on P . For example
if the points 2P, 22P, . . . , 2m−1P are precomputed, then the
double-and-add method (algorithm 2) has expected running
time (m

2
)A, and all doublings are eliminated.

In [3] the authors introduced a new method for fixed point
multiplication. The precomputing step stores every multiple
2iP . Let (Kd−1, . . . ,K1,K0)2w be the base-2w representa-
tion of k, where d = [m/w], and let Qj =

∑
i:Ki=j 2wiP for

each j, 1 ≤ j ≤ 2w − 1, Then

kP =

d1∑
i=0

Ki(2
wiP) =

2w−1∑
j=1

(j
∑

i:Ki=j

2wiP) =

2w−1∑
j=1

jQj

= Q2w−1 + (Q2w−1 + Q2w−2) + · · ·+
(Q2w−1 + Q2w−2 + · · ·+ Q1)

(1)

By reviewing the literature and checking some other exist-
ing methods in [10] we noticed they are all memory friendly
implementations which do not take a lot of memory space
for precomputation. However, we are working on a different
task and aim to repeatedly run point multiplication method
for great many times. We have implemented an extreme
version of window method which will take much more pre-
computation space than methods introduced in [10].

In our implementation, the precomputation step will com-
pute Pj = jP where 1 ≤ j ≤ 2w−1 then for each Pj we com-
pute Pi,j = 2wiPj , which will cost 2w−1 times more memory
space than [3, 10], but expected running time for each point
multiplication will reduce to approximately (d− 1)A

Algorithm 3 Our implementation of windowing method
with larger precomputation table

INPUT: Window width w, d = [m/w], k =
(Kd−1, . . . ,K1,K0)2w
OUTPUT: kP

1: Precompute Pi,j = 2wijP, 0 ≤ i ≤ d − 1 and 1 ≤ j ≤
2w − 1

2: A← infinity
3: for i from 0 to d− 1 do
4: A← A + Pi,j where j = Ki

5: end for
6: return A

We have implemented code that can take any window
width w. Results and corresponding memory usages based
on different window size are shown in table 1

4.2 Point Representation
Representing a point as an affine coordinate P (x, y) on

an elliptic curve over Fp, the field operations for calculat-
ing point addition need 2 multiplications, 1 square and one
modular inverse (for short, 2M+1S+1I). Modular inverse is
more expensive operation compared to multiplication and
square. We list our benchmarks using different packages in
C to demonstrate the difference for modular inverse compu-
tation compared to multiplication and square. The packages
we have benchmarked are: openssl-1.0.2a (released in March
2015) and mpir-2.5.2 (released in Oct 2012), and the Pieter
Wuille’s implementation on Github [15] 3 .

The results are shown in table 2. The benchmarking shows
modular inverse is much more expensive than multiplica-
tion and squaring. It is also important to notice, for MPIR
big number library, the square operation is more expensive
than multiplication, and for openssl library, 1 square = 0.75
multiplication. As modular inverse is more expensive than
multiplication, it may be advantageous to represent points
using other coordinates.

4.2.1 Projective Coordinates

For elliptic curve over Fp where the curve equation is y2 =
x3 + ax + b. The standard projective coordinates represent
elliptic curve points as (X : Y : Z), Z 6= 0, correspond to the
affine point (X

Z
, Y
Z

). The projective equation of the elliptic

3with the following configuration: USE NUM GMP
USE FIELD 10x26 USE FIELD INV NUM
USE SCALAR 8x32 USE SCALAR INV BUILTIN

Table 1: Time cost for different window width w, point addition method secp256k1 library [15]
secp256k1 gej add ge

w=4 w=8 w=12 w=16 w=20
d 64 32 22 16 13

number of additions 63 31 21 15 12
precomputation memory 81.92 KB 655.36 KB 7.21 MB 83.89 MB 1.09 GB

time cost 46.36 us 22.76 us 15.35 us 11.23 us 9.23 us

Table 2: Benchmarking openssl and MPIR library for field multiplication, square and modular inverse in
affine coordinate

multiplication mod p square mod p mod inverse
MPIR 0.07 us 0.15 us 0.13 us 0.15 us 1.8 us
openssl 0.08 us 0.43 us 0.06 us 0.43 us 18.0 us

secp256k1 0.049 us 0.039 us 1.1 us

curve is:

Y 2Z = X3 + aXZ2 + bZ3

The point at infinity ∞ corresponds to (0:1:0), where the
negative of (X : Y : Z) is (X : −Y : Z)

4.2.2 Jacobian Coordinates

Elliptic curve points in Jacobian coordinate are represented
in the following format (X : Y : Z), Z 6= 0, corresponds
to the affine point (X

Z2 ,
X
Z3). The projective equation of the

elliptic curve is

Y 2 = X3 + aXZ4 + bZ6

The point at infinity ∞ corresponds to (1:1:0), while the
negative of (X : Y : Z) is (X : −Y : Z).

The field operations needed for point addition and dou-
bling are shown in table 3. We see that Jacobian coordinates
yield the fastest point doubling, while mixed Jacobian-affine
coordinates yield the fastest point addition.

We refer the reader to [10, 5] for other detailed equations
in different coordinates. Here we only interested in point
addition functions using mixed coordinates.

4.2.3 secp256k1 point addition formulas
In the latest version, secp256k1 point addition formulas

are based on [4] which introduced strongly unified addition
formulas for standard projective coordinates. Bitcoin devel-
opers implemented a mixed coordinate formula (Jacobian-
Affine) version based on [4].

Let P = (X1 : Y1 : Z1) be a Jacobian projective point on
elliptic curve y2 = x3 + ax + b, and Q = (X2 : Y2 : 1) be
another point on the curve, suppose that P 6= ±Q, P +Q =
(X3 : Y3 : Z3) is computed by the following equations:

X3 = 4(K2 −H)

Y3 = 4(R(3H − 2K2)−G2)

Z3 = 2FZ1

(2)

where

A = Z2
1 , B = Z1 ·A, C = X2 ·A, D = Y2 ·B, E = X1 + C

F = Y1+D,G = F 2, H = E·G, I = E2, J = X1·C,K = I−J

4.2.4 Bernstein-Lange point addition formulas
In [2], Bernstein introduced the following method which

take 7M+4S using Jacobian-Affine coordinate, the explicit
formulas are given as follows [1]

X3 = r2 − J − 2V

Y3 = r · (V −X3)− 2Y1 · J
Z3 = (Z1 + H)2 − Z2

1 −H2

(3)

where

U2 = X2 · Z2
1 , S2 = Y2 · Z3

1

H = U2−X1, I = 4H2

J = H · I, r = 2(S2− Y1), V = X1 · I

4.3 Detailed Field Operation Benchmarks

From the results of table 2 we saw that Wuille’s secp256k1
library [15] has much faster field multiplication and square
speed than openssl and mpir library. Wuille’s field imple-
mentation is optimised based on the special prime used in
secp256k1 curve. Libsecp256k1 has 5x52 and 10x26 field
implementations for 64 bits and 32 bits integers 4. Here we
use the 10x26 representation and each 256 bit value is rep-
resented as a 32 bit integer array with size of 10. We refer
readers to file field 10x26 impl.h in libsecp256k1 for more de-
tails. Libsecp256k1 already implemented the equation from
[1, 10] in method secp256k1 gej add ge var, which uses 8
multiplications, 3 squares and 12 multiply integer / addition
/ negation. Equation 2 is implemented in another method
called secp256k1 gej add ge, which uses 7 multiplications, 5
squares and 21 multiply integer / addition / negation. We
have implemented equation 3 which takes 7 multiplication,
4 squares and 22 multiply integer / addition / negation.

It is important to notice the squaring and multiplication
differences we discussed in table 2. In [9] Bernstein listed
the best operation counts based on different assumptions: S
= 0M, S = 0.2M, S= 0.67M, S=0.8M and S=1M. In [8], the
author showed that the ratio S/M is almost independent of
the field of definition and of the implementation, and can
be reasonably taken equal to 0.8. Our benchmark results is

4Depends on whether compiler and target support 64 bit
integers

Table 3: Operation counts for point addition and doubling. A = affine, P = standard projective, J = Jacobian
[10, 5]

Doubling General addition Mixed coordinates*
2A → A 1I,2M,2S A+A → A 1I,2M,1S J+A → J 8M,3S
2P → P 7M,3S P+P → P 12M,2S
2J → J 4M,4S J+J → J 12M,4S

* Here mixed coordinates means Jacobian-Affine mixed coordinates

very similar to S = 0.8M. In [1], other field operations are
considered as 0M, in table 4 our benchmark results shows
field addition and other operations have approximately 0.1M
cost.

The secp256k1 gej add ge method which is also the de-
fault method for key generation, uses 6 secp256k1 fe cmov
operations which has a cost approximately 0.2 M. The ra-
tionale for writing code in this way is stated by Wuille in
the following comment:

”This formula has the benefit of being the same for both ad-
dition of distinct points and doubling”[15]

The purpose of making addition and doubling using the
same function is to prevent side channel attacks, as point
doubling is otherwise much cheaper than point addition.
Our experiments are done based on the benchmark results of
S/M ratio with specified machine setting (earlier in section
4) and specific library configuration (footnote in section 4.2).
Different operating systems or library configurations might
have different results. One should choose between our code
and secp256k1 gej add ge method. Detailed benchmark re-
sults are given in table 5

DEF CON attack [6] published code on github in August
2015 uses a faster version of secp256k1 library 5, and the
results is marked as * in table 5. Our best result using
1.09 GB precomputation memory gives ≈ 2.5 times speed
up for key generation process than the current known best
attack.

In theory the best point addition method is 7M+4S intro-
duced in [2]. However in practice, when field multiplication
and square are well optimised, other field operations (such
as addition, negation) become more significant than theoret-
ical value, see table 4. Our results show that for our laptop
specification, 8M+3S method is better than 7M+4S.

In order to compare the results with DEF CON attack, we
also benchmark our implementation and the DEF CON re-
leased software on Amazon server. Experiments are done on
an m4.4xlarge Amazon EC2 instance 6. Results are shown in
table 6. The results confirm a 2.5 times improvement. Note
that when running on Amazon EC2 (Intel Haswell CPU),
the theoretical best method (7M+4S) performs a little bit
better than 8M+3S.

Based on the current price for Amazon EC2 service, we
observe the following cost for implementing such brain wallet
attack: 17.9 billion passwords check per US dollar; 55.86 dol-
lars to check a trillion passwords. We have found more than
18,000 passwords using this tool. Some sample passwords,

5Also written by Pieter Wuille one year ago, this version is
performance focused and using 8M+3S
6https://aws.amazon.com/ec2/instance-types/

including some quite difficult ones are listed in appendix A.

5. CONCLUSION
In this paper we have analysed and improved the state of

the art on the implementation of the secp256k1 elliptic curve
and similar curves. We provide the first benchmarks on ex-
isting implementations and provide a faster implementation
for specific applications where private keys are not manip-
ulated or there exist other protections against side channel
attacks [e.g. physical and electro-magnetic isolation] and
when larger amounts of RAM are available. For example
we are able to examine passwords in brain wallets 2.5 times
faster than the state of the art implementation presented at
DEF CON 2 months ago. We have released our source code.

As an example application of this research, we have been
able to crack thousands of passwords including some quite
difficult ones. Our research demonstrates again that brain
wallets are not secure and no one should use them.

6. REFERENCES
[1] D. J. Bernstein and T. Lange. Explicit-formulas

database, 2007.

[2] D. J. Bernstein and T. Lange. Faster addition and
doubling on elliptic curves. In Advances in
cryptology–ASIACRYPT 2007, pages 29–50. Springer,
2007.

[3] E. F. Brickell, D. M. Gordon, K. S. McCurley, and
D. B. Wilson. Fast exponentiation with
precomputation. In Advances in
Cryptology-EUROCRYPT’92, pages 200–207.
Springer, 1993.

[4] E. Brier and M. Joye. Weierstraß elliptic curves and
side-channel attacks. In Public Key Cryptography,
pages 335–345. Springer, 2002.

[5] M. Brown, D. Hankerson, J. López, and A. Menezes.
Software implementation of the NIST elliptic curves
over prime fields. Springer, 2001.

[6] R. Castellucci. Cracking cryptocurrency brainwallets.
https:
//www.defcon.org/html/defcon-23/dc-23-index.html.

[7] S. Certicom. Sec 2: Recommended elliptic curve
domain parameters. Proceeding of Standards for
Efficient Cryptography, Version, 1, 2000.

[8] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic
curve exponentiation using mixed coordinates. In
Advances in Cryptology ASIACRYPT 98, pages 51–65.
Springer, 1998.

[9] T. L. Daniel J. Bernstein. Explicit-formulas database.
https://www.hyperelliptic.org/EFD/.

[10] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide
to elliptic curve cryptography. Springer Science &

Table 4: Field operation counts and benchmark results
#Multiplication #Square #add/neg/*int #fe cmov total time cost

1M ≈ 0.8 M ≈ 0.1 M ≈ 0.2 M
secp256k1 gej add ge 7 5 15 6 ≈ 0.681 us

secp256k1 gej add ge var 8 3 12 0 ≈ 0.562 us
7M + 4S code 7 4 21 0 ≈ 0.594 us

Table 5: Time cost for different window width w for EC key generation
w=4 w=8 w=12 w=16 w=20

d 64 32 22 16 13
number of additions 63 31 21 15 12

precomputation memory 81.92 KB 655.36 KB 7.21 MB 83.89 MB 1.09 GB
secp256k1 gej add ge 45.85 us 22.16 us 15.35 us 11.23 us 9.23 us

secp256k1 gej add ge var 37.37 us* 17.86 us 12.21 us 8.89 us 7.16 us
7M + 4S code 39.01 us 18.79 us 12.77 us 9.23 us 7.48 us

covert Jacobian to Affine ≈ 10 us
Benchmark on my laptop
i7-3520m 2.9 GHz CPU

≈ 42 K guesses / sec (single thread)

DEF CON Attack**
i7-2600 3.5 GHz CPU

≈ 130 K guesses / sec

Improved DEF CON attack** ≈ 315 K guesses / sec

* DEF CON attack [6] is equivalent to this result
** Results are reported by Ryan Castellucci running his DEF CON code and our improved code on 8 threads with linux gcc

compiler.

Table 6: Benchmark with DEF CON results on
Amazon EC2 instance

processes
passwords
per second

brainflayer
(DEF CON)

16 219,460

win size 20
8M+3S

16 533,196

win size 24
8M+3S

16 556,294

win size 24
7M+4S

16 558,449

Business Media, 2006.

[11] N. Koblitz. Elliptic curve cryptosystems. Mathematics
of computation, 48(177):203–209, 1987.

[12] V. S. Miller. Use of elliptic curves in cryptography. In

Advances in CryptologyâĂŤCRYPTOâĂŹ85
Proceedings, pages 417–426. Springer, 1985.

[13] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. Consulted, 1(2012):28, 2008.

[14] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[15] P. Wuille. bitcoin secp256k1 library, version
2015/08/11. https://github.com/bitcoin/secp256k1.

APPENDIX
A. CRACKED PASSWORD SAMPLES

Our open source tool was given to students for our code

breaking competition, more than 100 new passwords were
found by master students: Iason Papapanagiotakis, Jeonghyuk
Park, Ellery Smith, Weixiu Tan and Wei Shao.

1. say hello to my little friend

2. to be or not to be

3. Walk Into This Room

4. party like it’s 1999

5. yohohoandabottleofrum

6. dudewheresmycar

7. dajiahao

8. hankou

9. {1summer2leo3phoebe

10. 0racle9i

11. andreas antonopoulos

12. Arnold Schwarzenegger

13. blablablablablablabla

14. for the longest time

15. captain spaulding

