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Abstract. A binary de Bruijn sequence of order n is a cyclic sequence
of period 2n, in which each n-bit pattern appears exactly once. These
sequences are commonly used in random number generation and sym-
metric key cryptography particularly in stream cipher design, mainly due
to their good statistical properties. Constructing de Bruijn sequences is
of interest and well studied in the literature. In this study, we propose a
new randomized construction method based on genetic algorithms. The
method models de Bruijn sequences as a special type of traveling sales-
man tours (TSP) and tries to find optimal solutions. We present some
experimental results for n ≤ 14.
Keywords: De Bruijn sequences, Genetic algorithms, Traveling sales-
man problem

1 Introduction

A binary de Bruijn sequence of order n is a cyclic sequence of period 2n, in which
each n-bit pattern appears exactly once. De Bruijn sequences are balanced, i.e.,
have same number of 1’s and 0’s, and have good randomness properties.

De Bruijn sequences are useful in random number generation, which is es-
sential for secure communication especially for generation of cryptographic keys,
nonces and salts. In stream cipher designs, feedback shift registers (FSRs) that
can generate de Bruijn sequences are commonly used. All three hardware-oriented
Ecrypt eStream competition [1] finalists, namely Trivium [4], Grain [13] and
Mickey [3] use these registers as their main building block. However, due to the
large size of these registers, it is not known whether the registers are capable of
generating de Bruijn sequences.

One simple application of De Bruijn sequences is to attack digital lock sys-
tems that do not require using the enter key after each trial [7]. For example,
a lock with four-digit combinations has 10,000 possible keys and the attacker
is expected to type 20,000 digits to open the lock (40,000 digits for the worst
case). Using de Bruijn sequences, the attacker can reduce the number of digits
he is expected to type to 5,000.
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De Bruijn sequences of order n exist for n ≥ 2 and for a given n, the number
of de Bruijn sequences is 22

n−1−n [11]. Efficiently generating de Bruijn sequences
with large n(≥ 64) has significance in stream cipher design, especially to have
more provable security properties. For example, in the alternating step generator
which is a generic stream cipher design approach, the security proofs of the
system regarding period and linear complexity is done by the assumption that
one of the registers generates a de Bruijn sequence [16].

There are various methods to construct de Bruijn sequences [7, 21]. Some
of the construction methods start with an n-bit pattern and append a new bit
to the sequence based on a pre-determined criteria, whereas some methods are
recursive and use lower-order de Bruijn sequences as input. These construction
methods are capable of generating a subset or all of the possible sequences for
a given order n, with varying time and memory complexity. It is of interest to
find an efficient construction method with a range that is not limited to a small
subset of all possible sequences.

Genetic Algorithms, developed by Holland [14], are a part of evolutionary
computation which is a subfield of artificial intelligence. These heuristic search
algorithms are based on the survival of the fittest and natural selection concept
of natural genetics. They simulate natural evolution with the goal of finding the
best solution to problems having a large and non-linear search space.

In this study, we propose a new method to construct de Bruijn sequences
using genetic algorithms. First, we define a special type of the traveling sales-
man problem (TSP), denoted as TSP∗

n with 2n nodes and a predefined distance
matrix. Then, we use our genetic algorithm to find an optimal tour for TSP∗

n

and convert the output tour to a de Bruijn sequence.

The outline of the paper is as follows. In Sect. 2, literature surveys on de
Bruijn sequence construction methods and genetic algorithms are provided. In
Sect. 3, the definition and some basic properties of TSP∗

n are given. In Sect. 4,
the details of the genetic algorithm are explained. The experimental results are
summarized in Sect. 5. Finally, the results are discussed in the last section.

2 Preliminaries

The preliminaries part of this study consists of two main parts; constructions of
de Bruijn sequences, and genetic algorithms especially focusing on their appli-
cation to TSP.

2.1 Constructions of de Bruijn Sequences

Simplest construction method is the Prefer-one method which starts with n zeros
and adds the bit 1 to the sequence whenever possible. For n = 4, the prefer-one
method generates the following sequence;

0000111101100101.



Prefer-same [7] and prefer-opposite [2] methods are similar to the prefer-one
method using different bit insertion criteria. These methods are deterministic
and given the same initial state, they generate only one de Bruijn sequence.

De Bruijn sequences can also be generated using feedback shift registers
(FSRs). A FSR is a device that shifts its contents into adjacent positions within
the register and fills the position on the other end with a new value generated
by the feedback function. A FSR is uniquely determined by its length n and
feedback function f . The output sequence S= {s0, s1, s2, . . .} of a FSR satisfy
the following recursion

sn+i = f(si, . . . , si+n−1), i ≥ 0 (1)

given the initial state (s0, s1, . . . , sn−1). To guarantee that every state has a
unique predecessor and successor, f should be written in the form f(x1, . . . , xn) =
x1 + g(x2, . . . , xn) [11]. Some necessary conditions on f and g to generate a de
Bruijn sequence are given as follows;

1. To avoid all zero cycle, f(0, . . . , 0) = 1.

2. To avoid all one cycle, f(1, . . . , 1) = 0.

3. To avoid the cycle (00 . . . 01), not all of the linear terms exists in f [12].

4. The parity of the truth table of g is 1 [11].

5. The function g is non-symmetric [5], i.e.

g(x2, . . . , xn) 6= g(xn, . . . , x2).

These conditions are not sufficient and are only related to a very small por-
tion of feedback functions, therefore they are not very useful while searching
a feedback function for large n. One way to construct de Bruijn sequences us-
ing FSRs is to use linear feedback shift registers (LFSRs) with period 2n − 1.
De Bruijn sequences are constructed by simply appending 0 to the (n − 1)-bit
(00 . . . 0) pattern in LFSR output. The number of distinct de Bruijn sequences
generated by this method is bounded by the number of degree n primitive poly-
nomials over GF (2) which is equal to φ(2n − 1)/n, where φ is the Euler-phi
function.

Another way of constructing de Bruijn sequences is by taking a Hamiltonian
path of n-dimensional de Bruijn graph, also known as the Good’s diagram [11].
De Bruijn graph with dimension n is a directed graph with 2n nodes having an
edge from node (a1, . . . , an) to (b1, . . . , bn) if and only if ai = bi+1 for 1 ≤ i ≤ n−1
(See Fig. 1).

Fredricksen and Maiorana [8] proposed an efficient method to generate the
lexicographically minimal de Bruijn sequence. Etzion and Lempel [6] provided
construction methods that can generate de Bruijn sequences with minimal lin-
ear complexity. Games [9] provided a recursive construction that inputs two de
Bruijn sequence of order n to produce a de Bruijn sequence of order n + 1.
Fredricksen [7] and Ralston[21] give a survey of these construction methods.



Fig. 1. De Bruijn graph for n = 3

2.2 Genetic Algorithms

Genetic algorithms operate on population members by an iterative procedure.
Each member represents a candidate solution for the problem of interest, and
the ability of each member to survive over generations is measured by a fitness
function. As given in Figure 2, a genetic algorithm starts by generating an initial
population that contains Np members. In each generation, population members
undergo selection, crossover, and mutation to generate new children, according
to predetermined crossover and mutation probabilities. Some of the members are
removed from the population in order to reduce the population size back to its
initial size. This is repeated until given stopping conditions are satisfied. When
genetic algorithm stops, the best solution found so far is given as the output.
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Generate initial population;
Until stopping condition is satisfied
Select parents from the population;
Apply crossover operator to produce children;
Apply mutation operator to the children;
Extend the population by adding the children;
Reduce the population back to its original size;

Output the best population member;

Fig. 2. Pseudocode of a generic genetic algorithm



Genetic Algorithms for TSP Genetic algorithms can be used to solve the
TSP which is an NP-hard sequence-based combinatorial optimization problem.
Given n nodes and their pairwise distances, TSP aims to find a shortest closed
tour visiting each node exactly once. Although the exact methods (such as eval-
uating all possible tours) fall short when the problem size gets large (n > 30),
heuristic methods obtain near-optimal solutions for real-world applications in a
reasonable computation time.

In a genetic algorithm, TSP tours can be represented in various forms, such
as path, adjacency, ordinal and rank representation [18]. Most common repre-
sentation is the path representation, in which a number assigned to each node
and the solutions are represented as an ordered sequence of nodes. The TSP has
a very natural fitness function, which is given by the tour length.

The success and the performance of genetic algorithms highly depend on the
selection of the crossover operator. Nearest neighbor crossover NNX, defined in
[22], randomly selects the starting node and finds the neighbors of this node in
each parent. The closest unused neighbor is used as the next node, if possible.
If all neighbors are used before, NNX randomly selects an unused node. Other
crossover examples can be given as; PMX [10], CX [20], EAX [19], NX [15], NEX
[17]. It seems that the crossover operators that make use of problem specific
information perform better.

3 A Special Type of TSP: TSP∗

n

Let (a1, . . . , an) be the binary representation of integer A (< 2n) . We define
msbs(A) and lsbs(A) to be the first and last s (s ≤ n) bits of (a1, . . . , an),
respectively, i.e.,

msbs(A) = (a1, a2, . . . , as),

lsbs(A) = (an−s+1, an−s+2, . . . , an).

Definition 1. TSP∗
n is a special type of TSP with 2n nodes where the distance

between two distinct nodes A = (a1, . . . , an) and B = (b1, . . . , bn) is defined to

be

dA,B = n−maxs{s|msbs(A) = lsbs(B)}, s ≥ 0.

TSP∗
n is constructed using a complete directed graph whose edge weights

is calculated using the de Bruijn graph. The distance between nodes A and B
corresponds to the number of edges in the shortest path from A to B in the de
Bruijn’s graph and can take values between 1 and n. As an example, the distance
from node 2 and node 7 is 3, since the shortest path (2 → 5 → 3 → 7) has three
edges (See Figure 1). Since the graph is directed, the distances are asymmetric.

The tour lengths for TSP∗
n vary between 2n and n2n. Each cyclically-distinct

optimal solution (i.e., the tours with length 2n) corresponds to a de Bruijn
sequence. Given an optimal tour (A(1), A(2), . . . , A(2n)), de Bruijn sequence is
generated as

(a
(1)
1 , a

(2)
1 , . . . , a

(2n)
1 )



where a
(i)
1 corresponds to the first bit in the binary representation of the node

A(i). Selecting different bit positions only results in the rotation of the same de
Bruijn sequence.

Example 1. TSP∗
3 has 8 nodes {0, 1, . . . , 7}, with the distance matrix given in

Figure 3. The length of the tour (0 1 2 5 3 7 6 4) = (000, 001, 010, 101, 011, 111,
110, 100) is 8 and corresponds to the following de Bruijn sequence (00010111).
The optimal tour is depicted in Figure 4.

From \ To 0 1 2 3 4 5 6 7
0 - 1 2 2 3 3 3 3
1 3 - 1 1 2 2 2 2
2 2 2 - 2 1 1 3 3
3 3 3 3 - 2 2 1 1
4 1 1 2 2 - 3 3 3
5 3 3 1 1 2 - 2 2
6 2 2 2 2 1 1 - 3
7 3 3 3 3 2 2 1 -

Fig. 3. Distance matrix for the TSP∗

3

Fig. 4. An optimal TSP∗

3 tour

4 Proposed Genetic Algorithm

In this section, we describe the main components of the proposed genetic algo-
rithm.



A natural way to represent de Bruijn sequences is to use the binary repre-
sentation, however since our underlying problem is the TSP, we used the path
representation which is more suitable to solve TSPs.

The fitness function is selected to be the tour length, for which the optimal
value is known to be 2n. Since the optimal solution for TSP∗

n is known unlike
other random TSP instances, the genetic algorithm stops whenever the optimal
solution is found. Limiting the iteration number to 500 is used as an alternative
stopping condition, to stop the genetic algorithm if the population converges to
a non-optimal solution.

To generate the initial population, two different methods are used;

– Method I simply generates random tours, therefore the quality of the initial
population is low in terms of the tour lengths.

– Method II uses an heuristic approach which results in higher quality mem-
bers. This method first starts with a random node and selects the next node
randomly from the nodes whose distance is 1 to the current node, if possible,
otherwise, an unused node is selected randomly.

At each iteration, Np couples are selected randomly, and from each couple,
one offspring is produced. The new offsprings are added to the population and
the population size doubles. Then, population members are sorted based on their
fitness values. The best Np members are moved to the next generation.

NNX[22] is originally proposed for the symmetric TSP, where the distances
between nodes are independent of the direction of the edges. Since in TSP∗

n, the
distances are asymmetric, selection of the nodes are slightly modified as given
in the following example.

Example 2. Let Parent I = (1 2 4 7 6 3 0 5 ) and Parent II = (5 2 6 7 0 3 4 1)
with tour lengths 17 and 19, respectively. The initial node is randomly chosen
to be 3,

(3 * * * * * * *).

The successors of 3 are 0 and 4 from Parent I and Parent II, respectively. Since
d3,4 < d3,0, the next node is selected as 4,

(3 4 * * * * * *).

Continuing this way, the offspring is obtained as

(3 4 1 2 6 7 0 5)

with tour length 16, with better fitness value compared to its parents.

To avoid premature convergence, two different mutation operators are used.

– Mutation I simply randomly selects two nodes and swaps their positions.
– Mutation II is an improvement of Mutation I, in which one of the nodes to

be swapped (let’s say A(i)), is selected when dA(i−1),A(i) + dA(i),A(i+1) > 2,
which means that



( . . . A(i−1) A(i) A(i+1) . . . )

part of the member should be updated in order the member to be optimal.
Second node to be swapped is selected randomly. The swap operation is
applied to the member, if it results in an improvement in the fitness value.

5 Experimental results

In this section, we provide the details of our parameter settings and experimental
results. To investigate the effect of population size, initial population generation
method and mutation type on the solution quality, the variations given in Table
1 are used.

Population size, Np 25

28

Initial Population Method I - Random
Method II - Heuristic

Mutation No Mutation
Mutation I with probability 0.05
Mutation II with probability 0.05

Table 1. Parameter selection of the experiments for n = 3, . . . , 10

For n = 3, . . . , 10, our experiments are repeated 100 times for each choice
of population size, initial population generation method and mutation operator.
The algorithm is considered to be successful, if it outputs a tour with length 2n,
i.e. an optimal TSP∗

n tour.
Table 2 and 3 summarizes the results of our experiments using the number

of successful experiments (out of 100 trials), average number of iterations for
successful trials, and the number of distinct de Bruijn sequences generated in all
trials.

For the experiments using Method I with Np = 25, the success rate is strongly
affected by the mutation operator. Using the mutation operator increases the
success rate by 12 and 20 percent with Mutation I and II, respectively. However,
this setting is unsuccessful for problems with order n > 6. Using higher popula-
tion size increases the success rates for problems up to order of n = 8 (See Table
2).

For the experiments using Method II, the success rates of the algorithms
are more than 90 percent for all n ≤ 10. For small n values, even the initial
population generation method manages to generate optimal solutions, however
as n gets larger, the heuristic method seems to fall short. The genetic algorithm



manages to generate optimal solutions after small number of iterations, usually
less than 10 iterations on the average. Mutation operator seems to have a very
limited effect on the results of the problems starting with high quality initial
population.

For larger n values, the initial population is generated using Method II, since
Method I fails to be successful for n ≥ 9. Although having a higher population
size significantly increases the success rate, due to the large memory require-
ments, the population size is fixed to 25. Since the mutation operators do not
have a significant effect on the results when the initial population is generated
using Method II, mutation operator is not used for larger problems. All experi-
ments are replicated 10 times and the results are summarized in Table 4.

6 Discussion and Conclusion

In this study, we construct de Bruijn sequences using a new evolutionary method
that models the sequences as a special type of traveling salesman tours. The
method is randomized and capable of generating all possible de Bruijn sequences.
We presented some experimental result for n ≤ 14.

The proposed genetic algorithm requires n, n2n and n2nNp bits to represent
each node, member and the population, respectively. For n > 14, the algorithm
becomes inefficient mainly due to the memory requirement. More efficient rep-
resentations such as binary representation will be studied as a future work.
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No Mutation Mutation I Mutation II
n Np Success Rate Avr. Iter. Distinct Success Rate Avr. Iter. Distinct Success Avr. Iter. Distinct

3 25 91 2.16 2 100 3.28 2 100 1.17 2

4 25 77 16.35 16 88 22.46 16 98 22.52 16

5 25 51 36.64 51 58 59.08 59 64 43.98 68

6 25 0 - 0 0 - 0 0 - 0

3 28 100 0.02 2 100 0.47 2 100 0 2

4 28 97 6.46 16 97 3.23 16 99 5.16 16

5 28 96 8.56 143 99 9.64 132 97 11.07 137

6 28 88 22.92 119 88 22.82 111 89 27.46 130

7 28 79 39.82 92 73 41.15 87 77 51.23 91

8 28 45 116 49 31 95.46 35 33 99.63 36

9 28 0 - 0 0 - 0 0 - 0

Table 2. Summary of results obtained using Method I to generate the initial population



No Mutation Mutation I Mutation II
n Np Success Rate Avr. Iter. Distinct Success Rate Avr. Iter. Distinct Success Avr. Iter. Distinct

3 25 100 0 2 100 0 2 100 0 2

4 25 100 0 16 100 0.06 16 100 0.02 16

5 25 100 0.54 199 100 0.61 194 100 0.42 219

6 25 100 2.81 155 100 2.69 128 100 2.9 131

7 25 100 6.8 113 100 7.74 117 100 6.96 111

8 25 100 14.39 103 100 16.83 107 99 16.67 105

9 25 100 32.4 100 96 34.19 98 99 27.32 99

10 25 97 59.27 97 95 63.84 95 90 60.26 90

3 28 100 0 2 100 0 2 100 0 2

4 28 100 0 16 100 0 16 100 0 16

5 28 100 0 1190 100 0 1191 100 0 1163

6 28 100 0 881 100 0 867 100 0 901

7 28 100 0.07 208 100 0.04 428 100 0.05 420

8 28 100 0.85 205 100 1.19 222 100 1.06 203

9 28 100 4.32 129 100 4.21 144 100 3.37 142

10 28 100 7.98 110 100 8.49 117 100 9.63 110

Table 3. Summary of results obtained using Method II to generate the initial popula-
tion

n Success rate Avr. Iter. Distinct

11 8 /10 136.00 8
12 5 /10 118.40 5
13 2 /10 152.00 2
14 3 /10 262.33 3

Table 4. Summary of results obtained using Method II with Np = 25, for larger n

values



References

1. eSTREAM: ECRYPT Stream Cipher Project. IST-2002-507932
http://www.ecrypt.eu.org/stream, 2004.

2. A. Alhakim. A Simple Combinatorial Algorithm for de Bruijn Sequences. American

Mathematical Monthly, 117(8):728–732, 2010.

3. S. Babbage and M. Dodd. The Stream Cipher MICKEY. eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/015, 2005.

4. C. D. Cannière and B. Preneel. Trivium - A Stream Cipher Construction Inspired
by Block Cipher Design Principles. eSTREAM, ECRYPT Stream Cipher Project,
Report 2005/030, 2005.
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