
Can Homomorphic Encryption be Practical?

Kristin Lauter1, Michael Naehrig1,2, and Vinod Vaikuntanathan1,3⋆

1 Microsoft Research
klauter@microsoft.com

2 Eindhoven University of Technology
michael@cryptojedi.org
3 University of Toronto
vinodv@cs.toronto.edu

Abstract. The prospect of outsourcing an increasing amount of data storage and man-
agement to cloud services raises many new privacy concerns for individuals and businesses
alike. The privacy concerns can be satisfactorily addressed if users encrypt the data they
send to the cloud. If the encryption scheme is homomorphic, the cloud can still perform
meaningful computations on the data, even though it is encrypted.

In fact, we now know a number of constructions of fully homomorphic encryption schemes
that allow arbitrary computation on encrypted data. In the last two years, solutions for fully
homomorphic encryption have been proposed and improved upon, but it is hard to ignore
the elephant in the room, namely efficiency – can homomorphic encryption ever be efficient
enough to be practical? Certainly, it seems that all known fully homomorphic encryption
schemes have a long way to go before they can be used in practice. Given this state of
affairs, our contribution is two-fold.

First, we exhibit a number of real-world applications, in the medical, financial, and the
advertising domains, which require only that the encryption scheme is “somewhat” homo-
morphic. Somewhat homomorphic encryption schemes, which support a limited number of
homomorphic operations, can be much faster, and more compact than fully homomorphic
encryption schemes.

Secondly, we show a proof-of-concept implementation of the recent somewhat homomor-
phic encryption scheme of Brakerski and Vaikuntanathan, whose security relies on the “ring
learning with errors” (Ring LWE) problem. The system is very efficient, and has reasonably
short ciphertexts. Our unoptimized implementation in magma enjoys comparable efficiency
to even optimized pairing-based schemes with the same level of security and homomorphic
capacity. We also show a number of application-specific optimizations to the encryption
scheme, most notably the ability to convert between different message encodings in a ci-
phertext.

Keywords: Fully Homomorphic Encryption, Ring Learning with Errors, Lattices, MAGMA

1 Introduction

The development of cloud storage and computing platforms allows users to outsource storage and
computations on their data, and allows businesses to offload the task of maintaining data-centers.
However, concerns over loss of privacy and business value of private data is an overwhelming barrier
to the adoption of cloud services by consumers and businesses alike. An excellent way to assuage
these privacy concerns is to store all data in the cloud encrypted, and perform computations on
encrypted data. To this end, we need an encryption scheme that allows meaningful computation
on encrypted data, namely a homomorphic encryption scheme.

⋆ This research was conducted while the second and third authors were at Microsoft Research Redmond.
Full version of the ACM CCSW 2011 paper.



2 Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan

Homomorphic encryption schemes that allow simple computations on encrypted data have been
known for a long time. For example, the encryption systems of Goldwasser and Micali [GM82], El
Gamal [El-84], Cohen and Fischer [CF85], and Paillier [Pai99] support either adding or multiplying
encrypted ciphertexts, but not both operations at the same time. Boneh, Goh and Nissim [BGN05]
were the first to construct a scheme capable of performing both operations at the same time – their
scheme handles an arbitrary number of additions but just one multiplication. More recently, in a
breakthrough work, Gentry [Gen09,Gen10] constructed a fully homomorphic encryption scheme

(FHE) capable of evaluating an arbitrary number of additions and multiplications (and thus,
compute any function) on encrypted data.

The main point of this paper is to show to what extent current schemes can actually be used
to compute functions of practical interest on encrypted data. Since the appearance of Gentry’s
scheme, there has been much informal discussion in the industry as to whether fully homomorphic
encryption is implementable and practical. While the initial solution may not have been practical,
subsequent developments produced other schemes [DGHV10,SV10,SS10] leading up to the most
recent solutions of Brakerski and Vaikuntanathan [BV11b,BV11a], an implementation of which
we consider in this paper. The scheme is efficient and simple, produces short ciphertexts, and its
security is based on the ring learning with errors (Ring LWE) problem [LPR10].

While the performance of the state-of-the art FHE implementations is itself a question of
interest (and has indeed been considered recently in, e.g., [GH11,SV11]), our focus here is on
describing concrete practical applications and concrete useful functions to be computed, most
of which require only a limited number of multiplications of ciphertexts (as well as a possibly
very large number of additions of ciphertexts). For these applications, it is enough to consider
an implementation of a somewhat homomorphic encryption (SwHE) scheme, namely, one which
allows a fixed number of multiplications of ciphertexts. SwHE schemes are the building blocks
for the FHE schemes of, e.g., [Gen09,DGHV10,BV11b,BV11a], and provide much better efficiency
guarantees than their fully homomorphic counterparts.

1.1 Practical Applications for Homomorphic Encryption

We describe a number of concrete applications and functions to be implemented to provide cloud
services in the medical, financial, and advertising sectors. (We provide a sketch of the applications
here, and refer the reader to Section 2 for detailed descriptions.)

For a cloud service managing electronic medical records (EMR), consider a futuristic scenario
where devices continuously collect vital health information, and stream them to a server who then
computes some statistics (over these measurements, and over the course of time) and presumably
decides on the course of treatment (e.g., whether the dosage of medicine should be changed). The
volume of the data involved is large, and thus, the patient presumably does not want to store and
manage all this data locally; she may prefer to use cloud storage and computation. To protect
patient privacy, all the data is uploaded in encrypted form, and thus the cloud must perform
operations on the encrypted data in order to return (encrypted) alerts, predictions, or summaries
of the results to the patient.

We describe scenarios such as the above, which require computing simple statistical functions
such as the mean, standard deviation, as well as logistical regressions that are typically used for
prediction of likelihoods of certain desirable or undesirable outcomes. For these functions, it suffices
to have a somewhat homomorphic encryption system which computes many additions and a small

number of multiplications on ciphertexts: for example, averages require no multiplications, standard
deviation requires one multiplication, and predictive analysis such as logistical regression requires
a few multiplications (depending on the precision required). Other applications we describe in the
financial and advertising sector use similar functions, except that in those sectors, the function
itself may also be private or proprietary.

1.2 Our Implementation

We implemented the somewhat homomorphic encryption scheme from [BV11b] by Brakerski and
Vaikuntanathan using the computer algebra system Magma [BCP97]. We ran experiments on an



Can Homomorphic Encryption be Practical? 3

ordinary laptop with an Intel Core 2 Duo processor running at 2.1 GHz, with 3MB L2 cache
and 1GB of memory, using Magma’s polynomial arithmetic for all computations in the ring of
polynomials modulo a prime q (denoted Rq).

The first problem we face is that of choosing secure parameters for the encryption scheme.
Unlike traditional number-theory based systems, cryptosystems based on lattices and the learning
with errors (LWE) problem tend to be governed by a number of inter-related parameters. We follow
the methodology of Lindner and Peikert [LP11] (following earlier work of [GN08,MR09,RS10])
to choose these parameters correctly and securely.4 More precisely, fixing a parameter D – an
upper bound on the number of multiplication operations that the scheme supports – we compute
parameters of the scheme secure against an attacker with a time-to-advantage ratio of about 2120

(or larger) which, by the heuristics of Lenstra and Verheul [LV01], roughly translates to a security
level matching that of AES-128.

For parameter settings which support a single multiplication (i.e., D = 2) followed by a large
number of (integer) additions, the underlying ring in our scheme is Rq = Zq[x]/ 〈xn + 1〉 where
n = 2048 and q ≈ 258 is prime. We always set the error distribution for ring LWE to be a discrete
Gaussian with standard deviation σ = 8. In fact, for these choices of parameters, we get more
security than we asked for, namely a time-to-advantage ratio of about 2196. 5 For this setting, the
key and ciphertext sizes, and the running times are as follows:

– The public key is 2n lg q ≈ 29 KB, the secret key is n lg q ≈ 14 KB, and a ciphertext generated
by the encryption algorithm is 2n lg q ≈ 29 KB. The ciphertext has two ring elements in
Rq = Zq[x]/ 〈f(x)〉, however homomorphic multiplication adds another ring element to the
ciphertext making it 3n log q ≈ 43.5 KB.

– Key-generation runs in 250 milliseconds (ms), encryption takes 24 ms, whereas decryption takes
15–26 ms (depending on whether we are decrypting a 2- or 3-element ciphertext). Homomor-
phic addition is essentially instantaneous (i.e., takes less than 1 ms), whereas homomorphic
multiplication takes about 41 ms.

We note that polynomial multiplication modulo xn + 1 (i.e. multiplication in Rq) takes 11 ms
whereas polynomial addition is very cheap with less than 1 ms. The encryption function needs to
do 2 multiplications in Rq, which are responsible for the major part of the computation time for
encryption. Any improvement in polynomial modular multiplication thus will have drastic effects
on the efficiency of the scheme.

We also implement an optimization proposed in [BV11a] – termed relinearization – that reduces
the size of the ciphertext to two ring elements. This comes at a cost of increasing the keys and the
time for homomorphic multiplication, although we observe that the advantage of this optimization
outweighs the cost in the larger parameter settings.

Let us contrast these numbers with the performance of the BGN encryption scheme [BGN05]
based on bilinear pairings on elliptic curves, which also supports one multiplication. While the
key sizes in our scheme are larger, our homomorphic multiplication is much faster than that for
the BGN scheme, which requires a pairing computation. A magma implementation of the optimal
ate pairing on a 254-bit BN (Barreto-Naehrig) curve takes around 240 ms on the same machine
that we used to time the somewhat homomorphic scheme. The BGN scheme requires compos-
ite order pairing groups and thus, it is likely that the parameters are less favorable, leading to
an even slower pairing computation. Even if we assume highly optimized pairings at the 128-bit
security level (about 1ms per pairing) and the use of a prime-order version of the BGN scheme
[Fre10] which requires at least 4 such pairings, the performance of the homomorphic multiplication

4 Lindner and Peikert, and indeed all previous work, analyze security for the LWE problem, whereas here,
we rely on the security of the more restricted Ring LWE problem. We still choose to use the analysis
of [LP11] since (as pointed out therein), we do not know any attacks against Ring LWE that perform
better than the attacks on LWE.

5 Since we constrain the dimension n to be a power of 2, we sometimes get “jumps” in security levels. In
such a case, we choose to use the smallest setting whose security level exceeds our minimum, namely a
time-to-advantage ratio of 2120.



4 Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan

of our magma implementation is comparable to the BGN scheme. We remark that a C imple-
mentation (possibly using special purpose polynomial arithmetic along the lines of the SWIFFT
hash function [LMPR08]) would likely be several orders of magnitude faster than the magma

implementation that we report here.

We build on the somewhat homomorphic encryption, and implement simple statistics such
as mean, standard deviation and logistical regression, and report on the performance numbers
(See Section 5 for more details). To support computing these functions, we present two tricks to
encode messages appropriately. As such, the encryption scheme natively supports addition and
multplication modulo a fixed integer t, where t is a parameter of the system. The first trick shows
how to encode integers in a ciphertext so as to enable efficient computation of their sums and
products over the integers. This is useful in computing the mean, the standard deviation and
other private statistics efficiently. The second trick shows how to “pack” n encryptions of bits
into a single encryption of the n-bit string. Some homomorphic operations, e.g., comparison of
integers or private information retrieval, seem to require bit-wise encryptions of the input. Once
the answers are computed, though, they can be packed into a single encryption using this trick.

Finally, the work of [BV11a] shows how to make this scheme fully homomorphic under the same
assumption (Ring LWE) in an efficient way. Implementing the “bootstrapping” operation for this
system (thus, making it fully homomorphic) is a very interesting avenue for future implementation
efforts.

2 Cloud Services

Adoption of cloud services by consumers and businesses is limited by concerns over the loss of
privacy or business value of their private data. In this section we will describe concrete and
valuable applications of Somewhat Homomorphic Encryption which can help preserve customer
privacy while outsourcing various kinds of computation to the cloud. In all of these scenarios,
we imagine a future of streaming data from multiple sources, uploaded in encrypted form to the
cloud, and processed by the cloud to provide valuable services to the content owner. There are
two aspects of the computation to consider: the data itself, and the function to be computed on
this data. We consider cases where one or both of these are private or proprietary and should not
be shared with the cloud.

In all of these applications, we consider a single content-owner, who is the consumer for
the cloud service. All data that is encrypted and sent to the cloud is public-key encrypted to
the content-owner’s public key, using the semantically secure somewhat homomorphic encryption
scheme from [BV11b] described later in this paper.

2.1 Medical Applications: Private data and
Public functions

In [BCHL09], a private cloud medical records storage system (Patient Controlled Encryption) was
proposed, in which all data for a patient’s medical record is encrypted by the healthcare providers
before being uploaded to the patient’s record in the cloud storage system. The patient controls
sharing and access to the record by sharing secret keys with specific providers (features include a
hierarchical structure of the record, ability to search the encrypted data, and various choices for
how to handle key distribution). However this system does not provide for the cloud to do any
computation other than search (exact keyword match, or possibly conjunctive searches). With our
FHE implementation, we add the ability for the cloud to do computation on the encrypted data
on behalf of the patient. Imagine a future where monitors or other devices may be constantly
streaming data on behalf of the patient to the cloud. With FHE, the cloud can compute functions
on the encrypted data and send the patient updates, alerts, or recommendations based on the
received data.

The functions to be computed in this scenario may include averages, standard deviations or
other statistical functions such as logistical regression which can help predict the likelihood of



Can Homomorphic Encryption be Practical? 5

certain dangerous health episodes. Encrypted input to the functions could include blood pressure
or heart monitor or blood sugar readings, for example, along with information about the patient
such as age, weight, gender, and other risk factors. The functions computed may not need to be
private in this case since they may be a matter of public health and thus public.

2.2 Financial Applications: Private data and Private functions

In the financial industry there is a potential application scenario in which both the data and the
function to be computed on the data is private and proprietary.

As an example, data about corporations, their stock price or their performance or inventory is
often relevant to making investment decisions. Data may even be streamed on a continuous basis
reflecting the most up-to-date information necessary for making decisions for trading purposes.
Functions which do computations on this data may be proprietary, based on new predictive models
for stock price performance and these models may be the product of costly research done by
financial analysts, so a company may want to keep these models private to preserve their advantage
and their investment.

With FHE, some functions can be evaluated privately as follows. The customer uploads an
encrypted version of the function to the cloud, for example a program where some of the evaluations
involve encrypted inputs which are specified. The streaming data is encrypted to the customer’s
public key and uploaded to the cloud. The cloud service evaluates the private function by applying
the encrypted description of the program to the encrypted inputs it receives. After processing, the
cloud returns the encrypted output to the customer.

2.3 Advertising and Pricing

Imagine an advertiser, for example a cosmetics company, who wants to use contextual information
to target advertising to potential customers. The consumer uses a mobile phone as a computing
device, and the device constantly uploads contextual information about the consumer, including
location, the time of day, information from email or browsing activity such as keywords from email
or browser searches. In the future, imagine that information is uploaded potentially constantly from
video devices: either pictures of objects of interest such as brands or faces which are automatically
identified, or from a video stream from a camera on the body which is identifying context in the
room (objects, people, workplace vs. home vs. store). When contextual information is uploaded
to the cloud server and made accessible to the cosmetics company, the company computes some
function of the contextual data and determine which targeted advertisement to send back to the
consumer’s phone.

Some examples of where context is important for advertising or providing targeted coupons:
beer commercials during sports events, or, you are near a Starbucks in the morning and a coffee
discount coupon for the Starbucks nearby is sent to your phone, or, cosmetics companies market
different products for different times of day (e.g. Friday night going out vs. Sunday morning
hanging out with the family), ads or coupons for shows if you are in New York near Broadway
in the evening. Other (private) contextual data might be: your income, your profession, your
purchasing history, your travel history, your address, etc.

Encrypted version: The problem with these scenarios is the invasion of privacy resulting from
giving that much detailed information about the consumer to the server or to the advertising
company. Now, imagine an encrypted version of this entire picture. All the contextual data is
encrypted and then uploaded to the server; the advertiser uploads encrypted ads to the server; the
server computes a function on the encrypted inputs which determines which encrypted ad to send
to the consumer; this function could be either private/proprietary or not. All contextual data and
all ads are encrypted to the consumer’s public key. Then the cloud can operate and compute on
this data, and the consumer can decrypt the received ad. As long as the cloud service provider



6 Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan

does not collude with the advertisers, and semantically secure FHE encryption is employed, the
cloud and the advertisers don’t learn anything about the consumer’s data. 6

2.4 Functions to be computed with FHE

We can compute the following functions with a somewhat homomorphic encryption scheme:

– Average of n terms {ci}: as a pair (
∑

i=1,...n ci, n), where m =
P

i=1,...n
ci

n is the average.

– Standard deviation:

√
P

i=1,...n
(ci−m)2

n , returned as a pair which is the numerator and denom-
inator of the expression, before taking the square root.

– Logistical regression: x =
∑

i=1,...n αixi , where αi is the weighting constant or regression

coeffficient for the variable xi, and the prediction is f(x) = ex

1+ex

A couple of remarks are in order. First, we set the parameter choices for the encryption system
based on the expected number of multiplication operations to be done to compute the given
functions. These parameter choices determine the efficiency and security of the system. Thus
parameters for the system need to be changed as the functions to be computed change.

Secondly, so far we do not have a way to efficiently do divisions of real numbers or square roots.
Thus in the above computations, numerators and denominators need to be returned as separate
encryptions.

3 The Encryption Scheme

We describe the ring learning with errors (Ring LWE) assumption of [LPR10] in Section 3.1,
and present the somewhat homomorphic encryption scheme of [BV11b] based on Ring LWE in
Section 3.2. We report on an instantiation of the parameters, as well as the running-times and
sizes of the keys and ciphertexts in Section 5.

3.1 The Ring LWE Assumption

In this section, we describe a variant of the ring learning with errors (RLWE) assumption of
Lyubashevsky, Peikert and Regev [LPR10]. In the RLWE assumption, we consider rings R :=
Z[x]/ 〈f(x)〉 and Rq := R/qR for some degree n integer polynomial f(x) ∈ Z[x] and a prime
integer q ∈ Z. Note that Rq ≡ Zq[x]/ 〈f(x)〉, i.e. the ring of degree n polynomials modulo f(x)
with coefficients in Zq. Addition in these rings is done component-wise in their coefficients (thus,
their additive group is isomorphic to Z

n and Z
n
q respectively). Multiplication is simply polynomial

multiplication modulo f(x) (and also q, in the case of the ring Rq).
Thus an element in R (or Rq) can be viewed as a degree n polynomial over Z (or Zq). One can

represent such an element using the vector of its coefficients. For an element a(x) = a0 + a1x +
. . . + an−1x

n−1 ∈ R, we let ‖a‖∞ = max |ai| denote its ℓ∞-norm.
The RLWEf,q,χ assumption is parameterized by an irreducible integer polynomial f(x) ∈ Z[x] of

degree n (which defines the ring R = Z[x]/ 〈f(x)〉), a prime integer q ∈ Z and an error distribution

χ over R, and is defined as follows. Let s
$← Rq be a uniformly random ring element. The assump-

tion is that given any polynomial number of samples of the form (ai, bi = ai ·s+ei) ∈ (Rq)
2, where

ai is uniformly random in Rq and ei is drawn from the error distribution χ, the bi’s are compu-
tationally indistinguishable from uniform in Rq. As shown in [ACPS09,LPR10], this is equivalent
to a variant where the secret is sampled from the noise distribution χ rather than being uniform
in Rq. It is also easy to see that the assumption is equivalent to a variant where the noise ei are
multiples of some integer t that is relatively prime to q.

We consider the RLWE problem for specific choices of the polynomial f(x) and the error
distribution χ. Namely,

6 If the cloud and the advertiser collude, then the cloud may be able to learn some information about
whether the user likes the ad or not, which reveals information about his preferences. This constitutes
a form of CCA attack, which might endanger the security of the FHE.



Can Homomorphic Encryption be Practical? 7

– We set f(x) to be the cyclotomic polynomial xn +1 for n a power of two. In addition to many
other useful properties, the fact that f(x) = xn +1 means that multiplication of ring elements
does not increase their L2-norm by too much (see Lemma 2 below).

– The error distribution χ is the discrete Gaussian distribution DZn,σ for some σ > 0, defined
by the probability density function

∀e ∈ Z
n : Pr[e← DZn,σ] =

e−π||e||2/σ2

∑
e∈Zn e−π||e||2/σ2

A sample from this distribution defines a polynomial e(x) ∈ R.

We present some elementary facts about the Gaussian distribution, and multiplication over
the ring Z[x]/ 〈xn + 1〉. The first fact bounds the (Euclidean and therefore, the ℓ∞) length of a
vector drawn from a discrete Gaussian of standard deviation σ by σ

√
n. The second fact says that

multiplication in the ring Z[x]/ 〈xn + 1〉 increases the norm of the constituent elements only by a
modest amount.

Lemma 1 (see [MR07], Theorem 4.4). Let n ∈ N. For any real number σ > ω(
√

log n), we

have

Pr
x←DZn,σ

[‖x‖∞ > σ
√

n] ≤ 2−n+1.

Lemma 2 (see [LM06,Gen09]). Let n ∈ N, and let f(x) = xn + 1 and let R = Z[x]/ 〈xn + 1〉.
For any s, t ∈ R,

||s · t (mod xn + 1)||∞ ≤ n · ||s||∞ · ||t||∞.

Solving the RLWE problem (for the stated parameters) is also known to give us a quantum
algorithm that solves short vector problems on ideal lattices with related parameters. The latter
problem is believed to be exponentially hard.

3.2 Somewhat Homomorphic Encryption

The somewhat homomorphic encryption scheme

SHE = (SH.Keygen, SH.Enc, SH.Add, SH.Mult, SH.Dec)

is associated with a number of parameters:

– the dimension n, which is a power of 2,

– the cyclotomic polynomial f(x) = xn + 1,

– the modulus q, which is a prime such that q ≡ 1 (mod 2n),

Together, n, q and f(x) define rings R := Z[x]/ 〈f(x)〉 and Rq := R/qR = Zq[x]/ 〈f(x)〉.
– the error parameter σ, which defines a discrete Gaussian error distribution χ = DZn,σ with

standard deviation σ,

– a prime t < q, which defines the message space of the scheme as Rt = Zt[x]/ 〈f(x)〉, the ring
of integer polynomials modulo f(x) and t, and

– a number D > 0, which defines a bound on the maximum number of multiplications that can
be performed correctly using the scheme.

These parameters will be chosen (depending on the security parameter κ) in such a way as to
guarantee correctness and security of the scheme. See Section 5 for concrete choices of parameters.



8 Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan

The Scheme SH.Keygen(1κ): Sample a ring element s
$← χ and define the secret key sk := s.

Sample a uniformly random ring element a1 ← Rq and an error e ← χ and compute the public

key pk := (a0 = −(a1s + te), a1).
Publish pk and keep sk secret.

SH.Enc(pk, m): Recall that our message space is Rt. That is, we encode our message as a degree
n polynomial with coefficients in Zt.

Given the public key pk = (a0, a1) and a message m ∈ Rq, the encryption algorithm samples
u← χ, and f, g ← χ, and computes the ciphertext

ct = (c0, c1) := (a0u + tg + m, a1u + tf)

SH.Dec(sk, ct = (c0, c1, . . . , cδ)): To decrypt, we first compute

m̃ =
δ∑

i=0

cis
i ∈ Rq

and output the message as m̃ (mod t).

Homomorphic Operations. We now show how to compute the addition and multiplication oper-
ations homomorphically. To compute an arbitrary function f homomorphically, we construct an
arithmetic circuit for f (made of addition and multiplication operations over Zt), and then use
SH.Add and SH.Mult to iteratively compute f on encrypted inputs.

Although a ciphertext produced by SH.Enc contains two ring elements, the homomorphic op-
erations (in particular, multiplication) increase the number of ring elements in the ciphertext. In
general, the SH.Add and SH.Mult operations get as input two ciphertexts ct = (c0, c1, . . . , cδ) and
ct′ = (c′0, c

′
1, . . . , c

′
γ). The output of SH.Add contains max(δ + 1, γ + 1) ring elements, whereas the

output of SH.Mult contains δ + γ + 1 ring elements.

SH.Add(pk, ct0, ct1): Let ct = (c0, c1, . . . , cδ) and ct′ = (c′0, c
′
1, . . . , c

′
γ) be the two ciphertexts (If

δ 6= γ, we pad the shorter ciphertext with zeroes).
Homomorphic addition is done by simple component-wise addition of the ciphertexts. Namely,

compute and output

ctadd = (c0 + c′0, c1 + c′1, . . . , cmax(δ,γ) + c′max(δ,γ)) ∈ Rmax(δ,γ)+1
q

SH.Mult(pk, ct0, ct1): Let ct = (c0, c1, . . . , cδ) and ct′ = (c′0, c
′
1, . . . , c

′
γ) be the two ciphertexts.

Here, we do not pad either of the ciphertexts with zeroes.
Let v be a symbolic variable and consider the expression

(

δ∑

i=0

civ
i) · (

γ∑

i=0

c′iv
i)

(over Rq). We can (symbolically, treating v as an unknown variable) open the parentheses to
compute ĉ0, . . . , ĉδ+γ ∈ Rq such that

(
δ∑

i=0

civ
i

)
·
(

γ∑

i=0

c′iv
i

)
≡

δ+γ∑

i=0

ĉiv
i . (1)

The output ciphertext is ctmlt = (ĉ0, . . . , ĉδ+γ).
This scheme is correct, and secure under the Ring LWE assumption, as shown in [BV11b]. We

state their theorem below, which also serves as the setting of the modulus q (in terms of σ, t, n
and D) that ensures that the scheme can perform D multiplications and A additions.



Can Homomorphic Encryption be Practical? 9

Theorem 3. The encryption scheme SHE is correct, and can compute D multiplications followed

by A additions, assuming that

q ≥ 4 · (2tσ2
√

n)D+1 · (2n)D/2 ·
√

A (2)

The encryption scheme SHE is secure under the Ring LWE assumption with parameters n, q and

χ.

An Optimization to Reduce Ciphertext Size The homomorphic multiplication operation
increases the number of ring elements in a ciphertext. Brakerski and Vaikuntanathan [BV11a]
describe a transformation – called relinearization – that reduces the ciphertext back to two ring
elements. We describe this optimization below, implement it and report on the performance num-
bers in Section 5.

Essentially, the idea is the following: assume that we run SH.Mult on two ciphertexts (each
containing two ring elements) produced by the encryption algorithm. The resulting ciphertext ctmlt

contains three ring elements that satisfy the ”invariant”

fctmlt
(s) = c2s

2 + c1s + c0 = temult + mm′

This is a quadratic equation in s, and thus, SH.Mult turned two linear ciphertexts into a quadratic
ciphertexts. The goal of relinearization is to bring this back down to a linear ciphertext.

To this end, we publish some “homomorphism keys” to aid relinearization. This could be
thought of as part of the public key, but the homomorphism key is only used for relinearization
(following an SH.Mult operation). The homomorphism key hk = (h1, . . . , h⌈logt q⌉−1) is computed
as:

hi = (ai, bi = −(ais + tei) + tis2) for i = 0, . . . , ⌈logt q⌉ − 1

where ai ← Rq and ei ← χ are chosen independently for every i. In a sense, these are “quasi-
encryptions” of ti · s2. They are not real encryptions since ti · s2 may not lie in the message space
of the encryption scheme, namely Rt.

The homomorphic multiplication generates a ciphertext ctmlt = (c0, c1, c2), starting from two
2-element ciphertexts. Relinearization is performed after every homomorphic multiplication, and
proceeds as follows.

1. Write the polynomial c2 in its base-t representation as follows. c2 =
∑

c2,it
i (for i = 0, . . . , ⌈logt q⌉−

1), where all the coefficients of c2,i are smaller than t.
2. Now, set

crelin
1 := c1 +

⌈logt q⌉−1∑

i=0

c2,iai and (3)

crelin
0 := c0 +

⌈logt q⌉−1∑

i=0

c2,ibi (4)

where hi = (ai, bi) come from the “homomorphism key”.
3. Output the 2-element ciphertext ctmlt := (crelin

0 , crelin
1 ).

To see why this works, note that7

crelin
0 = c0 +

∑

i

c2,ibi

= c0 +
∑

i

c2,i(−ais− tei + tis2)

= c0 −
(
∑

i

c2,iai

)
s− terelin +

(
∑

i

c2,it
i

)
s2

= c0 − (crelin
1 − c1)s− terelin + c2s

2

7 The summation runs from i = 0 to i = ⌈logt q⌉ − 1. We omit the indices for brevity.



10 Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan

from Equation 3 and by the definition of c2 :=
∑

i c2,it
i.

This means that
crelin
0 + crelin

1 s = c0 + c1s + c2s
2 − terelin

But, since c0 + c1s + c2s
2 = temult + mm′, we have

crelin
0 + crelin

1 s = t(emult − erelin) + mm′

thus maintaining the invariant and achieving correctness of decryption if the final error emult−erelin

is small enough. Note that the relinearization process adds a fixed amount of error to the ciphertext,
and does not accumulate error multiplicatively.

On the one hand, relinearization reduces the length of the ciphertext considerably. On the flip
side, the public parameters become much larger. They now consist of an additional logt q ring
elements, totaling to logt q ·n lg q = n(lg q)2/ lg t bits. Relinearization also affects the running time
of the homomorphic multiplication. In particular, one needs to additionally perform roughly logt q
polynomial multiplications and additions. These (side-)effects are most pronounced for small t,
where our experiments indicate considerable overhead. Quite encouragingly, though, the benefits
of relinearization seem to dominate the side-effects for large t (see Section 5 for more details).

The security of the encryption scheme given the homomorphism keys relies on the circular
security of the encryption scheme when encrypting quadratic functions of the secret key.

4 Message Encoding Techniques

The ease of performing homomorphic operations depends crucially on the specific message-encoding
used in the ciphertexts. Consider the following two examples.

– If we wish to compare two encrypted integers x, y ∈ Zt homomorphically, then it seems best
to encrypt them bit-wise rather than as elements of Zt. The former approach translates to
computing a polynomial of degree lg t over the encrypted bits, whereas the latter seems to
require a polynomial of degree O(t).

– If we wish to compute the mean of k integers, then it seems most natural to encode them as
elements of Zt (for a large enough t). Computing the mean homomorphically then involves
only cheap homomorphic additions over Zt. On the other hand, if the numbers are encrypted
bit-wise, then addition requires computation of expensive carry operations that involve homo-
morphic multiplication over Z2.

We describe two tricks for encoding messages. The first trick shows how to efficiently encode
integers in a ciphertext so as to enable efficient computation of their sums and products over

the integers. This is useful in computing the mean, the standard deviation and other private
statistics efficiently. The second trick shows how to “pack” n encryptions of bits into a single
encryption of the n-bit string. Some homomorphic operations, e.g., comparison of integers or
private information retrieval, seem to require bit-wise encryptions of the input. Once the answers
are computed, though, they can be packed into a single encryption using this trick.

4.1 Efficient Encoding of Integers for Arithmetic Operations

Given a list of integers (m1, . . . , mℓ) ∈ Z
ℓ, if our goal is to compute their sum or product over

the integers homomorphically, the obvious (and sub-optimal) choice is to encrypt them directly.
Namely, for every m in the list, compute

Enc(pk, m) = (c0, c1) = (a0u + tg + m, a1u + tf)

To ensure that we obtain
∑

i mi over the integers (and not mod t), we are forced to choose t to
be rather large, namely t >

∑
i mi, which could be rather prohibitive.



Can Homomorphic Encryption be Practical? 11

We show a method of encrypting integers more efficiently by encoding them in the polynomial
ring, in essence enabling a smaller choice of t and better efficiency. In particular, for small enough
mi < 2n, we show that it suffices to choose t > ℓ in order to add ℓ integers. Being able to work
with a small t in turn enables us to choose other parameters, e.g., q and n to be correspondingly
smaller.

The idea is very simple: break each m into (at most n) bits (m(0), . . . , m(n−1)), create a degree-
(n-1) polynomial pm(x) =

∑
j m(j)xj and encrypt m as

Enc(pk, m) = (c0, c1) = (a0u + tg + pm, a1u + tf)

Adding these encryptions adds up the polynomials pmi(x) coefficient-wise. Note that each co-
efficient was a single bit to start with, and a sum ℓ of them grows to at most ℓ. As long as
q > t > ℓ, this does not wrap around modulo t and upon decryption, we in fact get the polynomial
pmadd(x) =

∑
i pmi(x) over Z[x]. Now, the result is simply pmadd(2).

Extending this idea to support multiplication is a bit trickier. The problem stems from the fact
that the product of two polynomials pm(x) and pm′(x) in general has a larger degree than each of
the original polynomials. If their original degree was close to n to start with, we will only be able
to obtain pm(x)pm′(x) (mod xn +1) upon decryption, which loses information about the product.
The solution is to encode the messages m as polynomials of degree at most n/d, if we anticipate
performing d multiplications. For our applications (e.g., computing standard deviations), this is
an acceptable trade-off since we only anticipate doing a single multiplication (or, at most a small
number of them in the case of computing higher-order regression functions).

4.2 Packing Many Bits in a Ciphertext

We show how to transform ciphertexts that encode n bits b0, b1, . . . , bn−1 separately, into a single
ciphertext that encodes the polynomial b(x) = b0 + b1x + . . . + bn−1x

n−1.
Given n ciphertexts cti = (c0,i, c1,i) that encrypt the bits bi, it is easy to see that the ciphertext

ctpack := (
∑

i

c0,ix
i,
∑

i

c1,ix
i)

encrypts the polynomial b(x) = b0 + . . . + bn−1x
n−1. (It is equally easy to do this with homomor-

phically evaluated – and thus, potentially longer – ciphertexts as well).
In contrast, it seems much harder to unpack a ciphertext. Namely, transform a ciphertext that

encodes the polynomial b(x) = b0 + . . .+bn−1x
n−1 into n separate ciphertexts that encode the bits

bi. This is a useful thing to do when the homomorphic computation demands that the messages
be encrypted bit-wise, forcing the client to send many ciphertexts, one for each bit. If we had a
technique for unpacking bits, we could have the client send a single ciphertext, unpack it at the
server’s end, have the server perform computations, and finally, pack the result into one ciphertext
to send it back.

5 Implementation Details

We have implemented the somewhat homomorphic public key encryption scheme in the computer
algebra system magma [BCP97] and ran experiments on an Intel Core 2 Duo processor at 2.1
GHz. We use magma’s polynomial arithmetic for all computations in Rq, in particular we use
magma’s addition and multiplication of polynomials over Zq modulo xn + 1.

5.1 Choice of Parameters

We assess the security of our encryption scheme against the attacks described in [MR09,LP11].
We follow the analysis described in [LP11] and adjust it to our setting. In particular, this lets us
compute secure parameter choices for the scheme, in order to support homomorphic computation



12 Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan

of (multi-variate) polynomials of different degrees D. The results are summarized in Table 1.
According to the analysis in [LP11], the chosen parameters provide a security level of 128 bits or
more against the distinguishing attack with advantage ǫ = 2−32.

We now briefly explain the analysis of security against the distinguishing attack of [MR09].
We remark that the parameters in the tables also offer a large degree of protection against the
more powerful decoding attack of [LP11]. For more details on these attacks, the reader is referred
to the original papers [MR09,LP11].

In order to succeed with advantage ǫ, the distinguishing attack first produces vectors of length
c · q/s in the dual Λ⊥(A), where c ≈

√
lg(1/ǫ)/(lg 2 · π). This translates to c ≈ 2.657 for ǫ = 2−32

or c ≈ 3.758 for ǫ = 2−64.
The short vectors in Λ⊥(A) are produced using the BKZ algorithm, whose running time is

determined by the root Hermite factor δ defined by the following equation:

c · q/s = δm · det(Λ⊥(A))1/m = δm · qn/m.

The optimal value of δ (and thus, the optimal running time of the attack) is achieved for m =√
n log q/ log δ which gives us the following relation between q, n and δ:

c · q/s = 22
√

n log q log δ. (5)

To determine specific parameters, we fixed a value for n which we require to be a power of
2. The correctness condition (2) (or an experimentally confirmed smaller value) gives us a lower
bound on the prime q. Fixing the prime q now allows us to solve equation (5) for δ. Using the
heuristic run-time estimate of the attack provided by the equation

lg tAdv = 1.8/ lg δ − 110.

from [LP11] lets us determine the running time of attacks for various parameter settings.

5.2 Analysis of the Tables

Table 1 shows the choices of parameters n (the dimension) and log q (the bit-length of the modulus)
for different values of t (the message space modulus) and D (the maximal degree for the polynomial
whose homomorphic evaluation we can support). For each such n and log q, we provide the security
level achieved as the logarithm of the running time required for the distinguishing attack with
distinguishing advantage ǫ = 2−32. To the extent possible, we have set the parameters n and log q
so that the running time of the distinguishing attack is more than 2128 basic operations (although,
see below for an explanation of apparent “jumps” in the running times in Table 1). All these
calculations assume that the noise in ring LWE is chosen from a discrete Gaussian with standard
deviation parameter s = 8.

In Table 1, we go on to show the sizes of the ciphertext and the public key for these values
of n and log q. The ciphertext and the public key in the scheme have two ring elements each.
The “evaluation key” (required for degree reduction during homomorphic multiplication), on the
other hand, has logt q ring elements. In the last three columns in Table 1, we show the size of a
single element of Rq, the size of a ciphertext (that encrypts an element of Rt) and the size of the
public key (including the evaluation key), respectively. We choose to include the evaluation key
in calculating the size of the public key in order to illustrate the extent to which it increases the
length of the (otherwise rather short) public key.

Our calculations show that both n and log q grow almost linearly in the maximal ciphertext
degree D (more precisely, they grow as D log D). Thus, the bit length of the ciphertext grows
quadratically in D and that of the public key (including the evaluation key) grows cubically.8

A phenomenon worth explaining is that of discontinuity in the security levels in Table 1. To
illustrate this, lets look at the two rows in Table 1 corresponding to t = 2 and D = 4. Since our

8 In the graph in Figure 1, it seems as if the growth of the ciphertext is linear and that of the public key
is quadratic, but this is just an artifact of the limited parameter settings we implement.



Can Homomorphic Encryption be Practical? 13

system requires the polynomial f(x) to be cyclotomic of form xn +1, we are constrained to choose
n to be a power of two. In the first of the two rows, we set n = 2048 and in the second, we set
n = 4096, the next possible choice. The security, measured as the logarithm of the running time of
the distinguishing attack, jumps from lg(T ) = 64 to lg(T ) = 218 when n goes from 2048 to 4096.
In other words, suppose we require 128 bits of security for the system, we are constrained to one
of two choices – set n = 2048 (and risk the possibility of better attacks), or set n = 4096 (and
settle for worse efficiency). This conundrum arises due to the constraint on n being a power of
two, which can potentially be removed by working with general cyclotomics (i.e., not of the form
xn + 1). Smart and Vercauteren [SV11] provide additional motivations for such generalization.

In Table 2, we provide running times for key generation, encryption, decryption and homo-
morphic addition and multiplication for various parameters. For SH.Enc, we distinguish the case
where sampling from the discrete Gaussian χ is included in the measurement and the case where it
is done as precomputation. For SH.Dec we give timings for decrypting ciphertexts of degree 1 and
of degree 2. The two columns with timings for SH.Mult correspond to multiplication of degree-1
ciphertexts with and without relinearization.

Mean and variance computation. To compute the mean, we do not need any multiplications, just
additions of ciphertexts, i.e. the maximal degree of ciphertext we need is D = 1. We used the
parameters from Table 1 with t = 1024, D = 1 and n = 1024. The corresponding 30-bit prime is
q = 1061093377 and has been chosen so as to support up to 1000 additions. We do not compute
the ciphertext of the mean, but of the sum of all numbers instead together with a ciphertext
encrypting the number of numbers that have been added. The mean can then easily be computed
by one division after decryption. Computing the ciphertext for the sum of 100 numbers of size
128-bits from the single ciphertexts takes about 20ms.

Computation of the variance requires one multiplication. Suitable parameters are given in
Table 1 as t = 1024, D = 2, and n = 2048 with a 58-bit prime q = 144115188076060673. To obtain
the ciphertexts for the sum and sum of squares that can be used to determine mean and variance
takes about 6s.

Potential Improvements. We remark that our implementation uses the generic polynomial arith-
metic in magma. A number of performance optimizations are possible; we mention one such
possibility. The encryption scheme uses addition and multiplication of polynomials over Zq mod-
ulo xn +1, where n is a power of two and q = 1 (mod 2n). However, the particular choice of n and
q could allow for much faster implementations than the generic magma code. Such optimizations
have already been considered in the context of hash functions (e.g., SWIFFT [LMPR08]) that use
fast Fourier-transform techniques to speed up computations.

6 Extensions and Future Work

Implementing Fully Homomorphic Encryption. The somewhat homomorphic encryption scheme
of [BV11b] can be turned into a fully homomorphic encryption scheme using the relinearization
and the dimension reduction techniques of [BV11a]. We leave the problem of implementing the
resulting fully homomorphic encryption scheme (along the lines of [GH11,SV11] who implement
Gentry’s FHE scheme) as an important future work. Implementing the [BV11a] FHE could also
lead to a number of nice applications, for example, to the problem of optimizing communication
with the cloud described below.

Optimizing communication with the cloud. We present a solution to help mitigate the problem of
the large ciphertext size for the Ring-LWE based FHE solution. In any of the above applications,
a client communicates with the cloud service and uploads its data encrypted under a FHE scheme,
and the cloud operates on this data and returns encrypted outputs to the client. Each ciphertext
has size n log(q), and for functions requiring a large number of multiplications, q and n could be
very large (see the implementation section for sample choices of q and n).

The solution to this is two fold. First, all encryptions that the client sends to the server can
be encrypted using (a semantically secure encryption scheme based on) AES (which, by itself,



14 Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan

is not homomorphic at all). The main observation is that the steps of AES decryption can all
be carried out on FHE-encrypted entries. A one time set-up cost is that the client uploads the
FHE-encryption of its AES secret key K:

”Client sends FHE(K) to Cloud”

Then for each piece of content m to be uploaded to the cloud, the client uploads only the AES-
encryption of m to the cloud, encrypted under its own secret key K.

”Client sends AESK(m) to Cloud”

Now the cloud is expected to operate on the inputs it receives for the client and compute and return
FHE-encryptions of functions of those inputs. In order to do that, the cloud must first compute
the FHE-encryption of m: in other words the cloud computes the public key FHE-encryption of
the AES encryption of the content, FHE(AESK(m)), and must now unravel the AES encryption
inside the FHE encryption to obtain FHE(m). Once this is done, the cloud computes the FHE
encryption of f(m), for the appropriate function f .

There is still a snag in this solution, namely that the resulting ciphertext that the server re-
turns to the client is still a large FHE ciphertext. The solution to this is the dimension reduction
technique introduced by [BV11a]. In particular, the dimension reduction technique converts a
ciphertext in Zq[x]/ 〈xn + 1〉 (where both n and q are large in order to support expressive ho-
momorphisms) to a ciphertext in Zp[x]/

〈
xk + 1

〉
, where both k and p are small. The resulting

ciphertext encrypts the same message, although it does not support any further homomorphisms.
The server then applies this transformation and sends the resulting short ciphertext to the client.

In short, all the communication over the network consists of short, non-homomorphic cipher-
texts. At the server’s end, the ciphertexts are first “upgraded” to homomorphic ciphertexts which
are then computed on, and finally “downgraded” to short non-homomorphic ciphertexts which are
then sent to the client.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2

4

6

8

10

12

14

16

18

20

22

24

D

106 bits

bc bc bc bc
bc

bc

bc

rs rs rs rs
rs

rs

rs

ut
ut

ut

ut

ut

lRq

2 · lRq

(2 + logt q) · lRq

Fig. 1. Graphical representation of part of the data in the last three columns of Table 1 for t = 1024,
giving the size lRq of a general element in Rq, public key size, original ciphertext size (both 2 · lRq ) and
public key size including the parameters for the relinearization step.

7 Conclusion

In answer to the question of whether homomorphic encryption can be practical, we give several
concrete applications to useful cloud computing scenarios where only somewhat homomorphic en-



Can Homomorphic Encryption be Practical? 15

t D n ⌈lg(q)⌉ δ lg(T) lRq/103 2 · lRq/103 (2 + logt q) · lRq/103

2 1 512 19 1.0054 123 10 20 205
2 1024 38 1.0058 107 39 78 1557
3 2048 64 1.0051 134 132 263 8651
4 2048 89 1.0072 64 183 365 16587
4 4096 94 1.0038 218 386 771 36963
5 4096 120 1.0049 145 492 984 59966
10 8192 264 1.0055 117 2163 4326 575276
15 16384 423 1.0044 172 6931 13861 2945434

128 1 1024 27 1.0041 199 28 56 162
2 2048 52 1.0041 198 107 213 1005
3 2048 82 1.0067 78 168 336 2304
3 4096 86 1.0035 250 353 705 5033
4 4096 118 1.0048 149 484 967 9115
5 4096 150 1.0062 92 615 1229 14395
10 8192 324 1.0068 74 2655 5309 128161
10 16384 338 1.0035 243 5538 11076 278472
15 16384 513 1.0054 122 8405 16810 632776

1024 1 1024 30 1.0047 164 31 62 154
2 2048 58 1.0046 164 119 238 927
3 2048 91 1.0074 59 187 373 2069
3 4096 95 1.0039 215 390 779 4475
4 4096 130 1.0053 124 533 1065 7988
5 4096 165 1.0068 73 676 1352 12504
5 8192 171 1.0035 242 1401 2802 26756
10 8192 354 1.0074 59 2900 5800 108459
10 16384 368 1.0039 214 6030 12059 233938
15 16384 558 1.0059 103 9143 18285 528424
32 65536 1298 1.0034 255 85066 170132 11211663
64 131072 2705 1.0036 239 354550 709100 96614810

Table 1. Example parameters and cost of the distinguishing attack from [LP11] for distinguishing ad-
vantage ǫ = 2−32, i.e. c ≈ 2.657, modulus t for the message space Rt, maximal ciphertext degree D,
size of prime q, Hermite root factor δ, and logarithm of the runtime lg(T ). We also give the bitlength
lRq = n · ⌈lg(q)⌉ of an element from Rq and the bitlength 2 · lRq of the public key and an original cipher-
text that both consist of 2 elements. The last column gives the size of the public key together with the
logt q public elements used for the relinearization technique described in Section 3.2. The entries in the
last three columns are given in multiples of 103 bits and are rounded up to the next such multiple.



16 Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan

Sχ SH.Keygen SH.Enc SH.Dec SH.Add SH.Mult SH.Mult

precomp. deg 1 deg 2 w/ deg red
t D n ⌈lg(q)⌉ ms ms ms ms ms ms ms ms s

2 1 512 19 27 60 81 2 2 − < 1 − −
2 1024 38 55 120 171 9 6 10 1 15 0.34
3 2048 64 110 260 353 29 18 33 1 56 1.98
4 2048 89 111 270 357 32 19 35 1 59 2.94
4 4096 94 221 540 733 82 46 89 2 155 7.63
5 4096 120 223 560 742 85 49 94 3 163 10.59
10 8192 264 438 1480 1738 425 227 454 7 887 114.57
15 16384 423 880 4000 4176 1503 781 1561 14 3160 669.40

128 1 1024 27 54 110 163 4 4 − < 1 − −
2 2048 52 110 270 348 23 15 25 1 41 0.23
3 2048 82 110 270 357 32 20 35 1 60 0.44
3 4096 86 222 520 724 69 41 77 4 130 1.05
4 4096 118 221 550 740 86 49 93 4 162 1.62
5 4096 150 221 590 771 117 65 124 4 226 2.76
10 8192 324 437 1620 1845 548 283 565 6 1069 26.17
10 16384 338 870 3540 3864 1269 656 1327 19 2501 63.49
15 16384 513 864 4710 4503 1925 977 1960 29 3844 145.55

1024 1 1024 30 54 110 164 5 4 − < 1 − −
2 2048 58 110 250 348 24 15 26 1 41 0.19
3 2048 91 111 270 366 38 22 41 2 73 0.46
3 4096 95 221 530 733 81 46 88 4 154 0.95
4 4096 130 220 580 756 102 57 109 4 196 1.50
5 4096 165 220 600 770 117 64 125 4 226 2.19
5 8192 171 440 1250 1582 275 148 288 5 526 5.33
10 8192 354 435 1720 1824 523 271 538 9 538 19.28
10 16384 368 868 3690 3851 1260 664 1300 19 1593 48.23
15 16384 558 863 5010 4805 2343 1136 2269 13 4411 126.25

Table 2. Timings for the somewhat homomorphic encryption scheme using the example parameters given
in Table 1. The column labeled Sχ gives timing for sampling an element from the discrete Gaussian
distribution χ. In the second column for SH.Enc, labeled prec., encryption is measured without sampling
from χ, which is instead done as a precomputation. The two columns for SH.Dec correspond to decryption
of a degree-1 and a degree-2 ciphertext, respectively. The last column gives the time taken for a ciphertext
multiplication of two linear ciphertexts including the degree reduction resulting in a degree-1 ciphertext
for the product. Measurements were done on a 2.1 GHz Intel Core 2 Duo using the computer algebra
system Magma [BCP97].



Can Homomorphic Encryption be Practical? 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

D

s

SH.Enc
(precomp.)

SH.Dec
(deg 1)

SH.Mult

bc bc bc bc
bc

bc

bc

rs rs rs rs rs

rs

rs

ut ut ut

ut

ut

ut

Fig. 2. Graphical representation of part of the timing data in Table 2 for t = 1024, giving the time for
encryption SH.Enc when sampling from the discrete Gaussian distribution χ is done as a precomputation,
the time for decryption SH.Dec of a ciphertext of degree 1, and the time for multiplication SH.Mult of two
ciphertexts of degree 1.

cryption is required, and we give performance numbers based on our Magma implementation of
the new scheme of [BV11b]. The scenarios we present are such that outsourced computation is
actually valuable. That is, the cloud service may collect encrypted data from multiple sources and
do computation on that data before providing useful encrypted content back to the user. Precise
performance data was given in Section 5, but it is worthwhile to highlight here a sample of the
results. We showed that an encryption for the sum of 100 128-bit numbers can be computed from
the individual ciphertexts in 20 milliseconds on a laptop running Magma. We noted that compu-
tation of the variance requires one multiplication and taking suitable parameters from Table 1,
we found that for t = 1024, n = 2048, and a 58-bit prime q, ciphertexts for the sum and sum of
squares can be computed in about 6 seconds.

Acknowledgments. We would like to thank Daniele Miccicancio for valuable comments.

References

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primi-
tives and circular-secure encryption based on hard learning problems. In Shai Halevi, editor,
CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages 595–618. Springer, 2009.

[BCHL09] Josh Benaloh, Melissa Chase, Eric Horvitz, Kristin Lauter. Patient-controlled encryption:
patient privacy in electronic medical records. In Proceedings of the 2009 ACM workshop on
Cloud computing security.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system I: The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number
theory (London, 1993).

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In
Theory of Cryptography - TCC’05, volume 3378 of Lecture Notes in Computer Science, pages
325–341. Springer, 2005.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. FOCS, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE
and security for key dependent messages. CRYPTO 2011, 2011.

[CF85] Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptographically secure election
scheme (extended abstract). In FOCS, pages 372–382. IEEE, 1985.



18 Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In EUROCRYPT 2010, pages 24–43.

[El-84] Taher El-Gamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In CRYPTO, pages 10–18, 1984.

[Fre10] David Mandell Freeman. Converting pairing-based cryptosystems from composite-order groups
to prime-order groups. In EUROCRYPT 2010, pages 44–61.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, STOC, pages 169–178. ACM, 2009.

[Gen10] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In Tal
Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages 116–137.
Springer, 2010.

[GH11] Craig Gentry and Shai Halevi. Implementing Gentry’s fully-homomorphic encryption scheme.
In EUROCRYPT, 2011. (To appear).

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In STOC, pages 365–377. ACM, 1982.

[GN08] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P. Smart, editor,
EUROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages 31–51. Springer,
2008.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are collision
resistant. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors,
ICALP (2), volume 4052 of Lecture Notes in Computer Science, pages 144–155. Springer, 2006.

[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. Swifft: A modest
proposal for FFT hashing. In Kaisa Nyberg, editor, FSE, volume 5086 of Lecture Notes in
Computer Science, pages 54–72. Springer, 2008.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption.
In Aggelos Kiayias, editor, CT-RSA, volume 6558 of Lecture Notes in Computer Science, pages
319–339. Springer, 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Eurocrypt 2010, pages 1–23. Draft of full version was provided by the
authors.

[LV01] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes. J. Cryptology,
14(4):255–293, 2001.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput., 37(1):267–302, 2007.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-Quantum Cryptog-
raphy. Springer, 2009.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT, pages 223–238, 1999.

[RS10] Markus Rückert and Michael Schneider. Estimating the security of lattice-based cryptosystems.
Cryptology ePrint Archive, Report 2010/137, 2010. http://eprint.iacr.org/2010/137.

[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In Masayuki Abe, edi-
tor, ASIACRYPT, volume 6477 of Lecture Notes in Computer Science, pages 377–394. Springer,
2010.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small
key and ciphertext sizes. In Phong Q. Nguyen and David Pointcheval, editors, Public Key
Cryptography, volume 6056 of Lecture Notes in Computer Science, pages 420–443. Springer,
2010.

[SV11] N.P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Cryptology ePrint
Archive, Report 2011/133, 2011. http://eprint.iacr.org/2011/133.


