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Abstract

Joux’s protocol [29] is a one round, tripartite key agreement protocol that is more bandwidth-
efficient than any previous three-party key agreement protocol. But it is insecure, suffering from a
simple man-in-the-middle attack. This paper shows how to make Joux’s protocol secure, presenting
several tripartite, authenticated key agreement protocols that still require only one round of com-
munication. A pass-optimal authenticated and key confirmed tripartite protocol that generalises the
station-to-station protocol is also presented. The security properties of the new protocols are studied
using provable security methods and heuristic approaches. Applications for the protocols are also
discussed.

Areas: Secure protocols; key agreement; authentication; pairings.

1 Introduction

Asymmetric key agreement protocols are multi-party protocols in which entities exchange public infor-
mation allowing them to create a common secret key that is known only to those entities and which
cannot be predetermined by any party. This secret key, commonly called a session key, can then be used
to create a confidential or integrity-protected communications channel amongst the entities. Beginning
with the famous Diffie-Hellman protocol [19], a huge number of two-party key agreement protocols have
been proposed (see [10] and [37, Chapter 12.6] for surveys). This reflects the fundamental nature of
key exchange as a cryptographic primitive.

The situation where three or more parties share a secret key is often called conference keying. The
three-party (or tripartite) case is of most practical importance not only because it is the most common
size for electronic conferences but because it can be used to provide a range of services for two parties
communicating. For example, a third party can be added to chair, or referee a conversation for ad hoc
auditing, data recovery or escrow purposes.

One of the most exciting developments in recent years in the area of key agreement is Joux’s
tripartite key agreement protocol [29]. This protocol makes use of pairings on elliptic curves and
requires each entity to transmit only a single broadcast message. This should be contrasted with the
obvious extension of the Diffie-Hellman protocol to three parties, which requires two broadcasts per
entity. However, just like the raw Diffie-Hellman, protocol, Joux’s protocol is unauthenticated and
suffers from man-in-the-middle attacks. See Section 3 for a description of Joux’s protocol and an
overview of pairings on elliptic curves.

1.1 Our Contribution

In this paper we show how to transform Joux’s protocol into a secure tripartite protocol that still
requires only a single broadcast per entity. In fact, we present four different one round, tripartite,
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authenticated key agreement (TAK) protocols in Section 4. These protocols all have the same protocol
messages, but have different methods for calculating session keys from those messages.

Note that we do not make the naive claim that the possibility of generating four different session
keys from one protocol run means that our protocol is four times as efficient as other protocols – there
are far better ways of deriving multiple session keys than this! Rather we present four protocols and
analyze their different security properties. Our one round protocols build on Joux’s protocol and draw
on ideas from the Unified Model [4], MTI [35] and MQV [32] protocols.

In Section 5, we consider proofs of security for our protocols. Our proofs use an adaptation of
the Bellare-Rogaway model [7] to the public key setting. Our model is similar to that given by Blake-
Wilson, Johnson and Menezes in [9] (though our model extends to the three-party situation, and our
extension is different to that presented in the symmetric-key setting in [8]). Our proofs show that three
of the TAK protocols are secure provided that the Bi-linear Diffie-Hellman Problem (BDHP) is hard.
This computational problem forms the basis for the security of the identity-based encryption scheme
of [11] – see Section 3 for more details on the BDHP. We do not provide a proof of security for our
fourth protocol. But we note that the MQV protocol, on which our fourth TAK protocol is modelled,
has never been proven secure in any model, though it has been widely adopted for standardisation
[1, 3, 27, 28]. In view of the incomplete analysis currently available through provable approaches, we
choose to supplement our proofs of security with ad hoc analysis in Section 6. This allows us to consider
attacks on our protocols not included in the security model. In Section 7, we look at the scenario where
one of the three parties is off-line. The protocol we give for this situation can be applied to key escrow
with an off-line escrow agent.

In our penultimate section, Section 8, we examine pairing-based authenticated key agreement with
key confirmation in the non-broadcast setting. The main point we make in that section is that a
properly authenticated and key confirmed protocol based on pairings can be no more efficient (in terms
of protocol passes) than the obvious extension of the station-to-station protocol [20] to three parties.
Thus the apparent efficiency of Joux’s protocol is lost when it is made secure and when an appropriate
measure of efficiency is used.

The final section, Section 9, contains some conclusions and ideas for future work.

1.2 Related Work

As we have already noted, our work builds on that of Joux [29], and our one round protocols draw upon
the Unified Model [4], MTI [35] and MQV [32] protocols. The tripartite AKC non-broadcast protocol
presented builds on the STS [20] protocol. Our security model is inspired by Blake-Wilson, Johnson
and Menezes’ extension [9] of the Bellare-Rogaway model [7]. More recent work on models for secure
protocols (in particular key agreement protocols) can be found in [6, 14, 16, 17, 42]. Work pertinent
to the efficient implementation of our protocols can be found in [5, 21, 22]. Other work, reflecting
the recent explosion of interest in using pairings to construct cryptographic schemes, can be found in
[11, 12, 18, 24, 25, 31, 39, 41, 43].

2 Protocol Goals and Attributes

Here we discuss the various desirable attributes and goals that one may wish a key agreement protocol
to possess.
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2.1 Extensional Security Goals

An extensional goal [13, 40] for a protocol is defined to be a design goal that is independent of the
protocol details. Here we list two desirable and widely-agreed extensional goals for key agreement
protocols. Further discussion can be found in [37, Chapter 12]. The first goal we try to achieve is
implicit key authentication. This goal, if met, assures an entity that only the intended other entities
can compute a particular key. This level of authentication results in what is known as an authenticated
key agreement (AK) protocol. If each entity is also assured that the intended other entities actually have
computed the key, then the resulting protocol is called an authenticated key agreement with confirmation
(AKC) protocol. Another goal is to provide a good key. This goal states that the key is selected
uniformly at random from the key space, so that no adversary has an information-theoretic advantage
when mounting a guessing strategy to determine the key.

2.2 Security Attributes

A number of desirable security attributes have been identified for key agreement protocols [9, 10, 32] and
we borrow our definitions from these sources. Depending on the application scenario, these attributes
can be vital in excluding realistic attacks.

Known session key security A protocol is known session key secure if it still achieves its
goal in the face of an adversary who has learned some previous session keys.

(Perfect) forward secrecy A protocol enjoys forward secrecy if, when the long-term private
keys of one or more entities are compromised, the secrecy of previous session keys is not af-
fected. Perfect forward secrecy refers to the scenario when the long term private keys of all the
participating entities are compromised.

No key-compromise impersonation Suppose A’s long-term private key is disclosed. Then
of course an adversary can impersonate A in any protocol in which A is identified by this key.
We say that a protocol resists key-compromise impersonation when this loss does not enable an
adversary to impersonate other entities as well and obtain the secret key.

No unknown key-share In an unknown key-share attack, an adversary convinces a group of
entities that they share a key with the adversary, whereas in fact the key is shared between the
group and another party. This situation can be exploited in a number of ways by the adversary
when the key is subsequently used to provide encryption or integrity [30].

No key control It should not be possible for any of the participants (or an adversary) to
force the session key to a preselected value or predict the value of the session key. (See [38] for a
discussion of how protocol participants can partially force the values of keys to particular values
and how to prevent this using commitments).

2.3 Further Attributes

Two important computational attributes are low computation overhead and the ability to perform
precomputation. It may be desirable that one or more entities (perhaps with limited computational
environments) should perform less computation than the others.

It is an advantage when a protocol has low communication overhead, which means that only a
small amount of data is transmitted. Designing protocols with a minimal number of passes and rounds
is always desirable. The number of passes is the total number of messages exchanged in the protocol.
A round consists of all the messages that can be sent and received in parallel within one time unit. A
broadcastmessage is a message that is sent to every party in a protocol. These notions of communication
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complexity are each more or less appropriate depending on the particular network architecture that is
in use. For example, wireless systems operate exclusively in broadcast mode, so that every packet is
simultaneously available to all nodes. Then the number of rounds and broadcasts is a more natural
way of measuring a protocol’s communication complexity. On the other hand, the Internet Protocol
running over a public network like the internet usually makes use of point-to-point communications, and
then the number of passes is the right measure. As we shall see with Joux’s protocol, communication
advantages that a protocol apparently possesses can disappear when one either considers a different
network architecture or more stringent security requirements.

If the messages transmitted in a protocol are independent of each other, in the sense that they
can be sent and received in any order, then the protocol is message independent. A protocol is role
symmetric when messages transmitted and computations performed by all the entities have the same
structure. In the context of public key cryptography, short-term public keys (or values) are generally
only used once to establish a session, and are sometimes called ephemeral keys. On the other hand,
long-term public keys are static keys used primarily to authenticate the protocol participants.

2.4 Attacks

An attack occurs when the intended goals of a protocol are not met or the desired security attributes
do not hold. A passive attack occurs when an adversary can prevent the protocol from accomplishing
its goals by simply observing the protocol runs. Conversely, an active attack is one in which the
adversary may delete, inject, alter or redirect messages, by interleaving multiple instantiations of the
same protocol and the like. The formal model of security that we introduce in Section 5 is powerful
enough to capture many kinds of active attack.

3 Key Agreement via Pairings on Elliptic Curves

Here, we briefly review some background on pairings on elliptic curves, and then present Joux’s protocol
[29].

3.1 Pairings

We use the same notation as in [12]. We let G1 be an additive group of prime order q and G2 be a
multiplicative group of the same order q. We assume the existence of an efficiently computable bi-linear
map ê from G1×G1 to G2. Typically, G1 will be a subgroup of the group of points on an elliptic curve
over a finite field, G2 will be a subgroup of the multiplicative group of a related finite field and the map
ê will be derived from either the Weil or Tate pairing on the elliptic curve. We also assume that an
element P ∈ G1 satisfying ê(P, P ) 6= 1G2

is known. By ê being bi-linear, we mean that for Q,W,Z ∈ G1,
both

ê(Q,W + Z) = ê(Q,W ) · ê(Q,Z) and ê(Q+W,Z) = ê(Q,Z) · ê(W,Z)

hold.

When a ∈ Zq andQ ∈ G1, we write aQ forQ added to itself a times, also called scalar multiplication
of Q by a. As a consequence of bi-linearity, we have that, for any Q,W ∈ G1 and a, b ∈ Zq:

ê(aQ, bW ) = ê(Q,W )ab = ê(abQ,W ) = . . .

a fact that will be used repeatedly in the sequel without comment.

We refer to [5, 12, 11, 21, 22] for a more comprehensive description of how these groups, pairings
and other parameters should be selected in practice for efficiency and security. We simply assume in
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what follows that suitable groups G1 and G2, a map ê and an element P ∈ G1 have been chosen,
and that elements of G1 and G2 can be represented by bit strings of the appropriate lengths. We
note that the computations that need to be carried out by entities in our protocols will always involve
pairing computations, and that the complexity of these will generally dominate any other calculations.
However, with recent advances in efficient implementation of pairings, [5, 22], the complexity of a
pairing computation is now of a similar order to that of elliptic curve point multiplication.

3.2 Joux’s Protocol

In [29], Joux introduced a very simple and elegant one-round protocol in which the secret session key
for three parties could be created using just one broadcast per entity. In Joux’s protocol, a, b, c ∈ Z∗

q

are selected uniformly at random by A, B and C respectively. The ordering of protocol messages is
unimportant and any of the three entities can initiate the protocol. In all the protocol messages “Sends
to” is denoted by “→”.

Protocol messages:
A→B,C: aP (1)
B→A,C: bP (2)
C→A,B: cP (3)
Protocol 1 (Joux’s one round protocol).

Protocol description: Once the communication is over, A computes KA = ê(bP, cP )a, B com-
putes KB = ê(aP, cP )b and C computes KC = ê(aP, bP )c. By bi-linearity of ê, these are all equal to
KABC = ê(P, P )abc. This can serve as the secret key shared by A, B and C.

Although not explicitly mentioned in [29], the success of this protocol in achieving its aim of
agreeing a good key for the three entities in the face of passive adversaries is related to the hardness of
the Bi-linear Diffie-Hellman problem (BDHP) for the pair of groups G1, G2. This problem, formalised
in [12], can be stated as:

Given P, aP, bP, cP with a, b and c chosen uniformly at random from Z∗
q, compute ê(P, P )

abc.

More properly, the session key should be derived by applying a suitable key derivation function
to the quantity ê(P, P )abc. For otherwise, an attacker might be able to get partial information about
session keys even if the BDHP is hard. This motivates study of hard bits for the BDHP [23].

It is known that the BDHP is no harder than the computational Diffie-Hellman problems in either
G1 or G2. The reverse relationship is not known. Typically then, one chooses parameters so that G1,
a subgroup of the group of points on an elliptic curve, has around 2160 elements and so that G2 is a
subgroup of Fr where r has roughly 1024 bits. See [12, 21] for details.

Unfortunately just like the unauthenticated two-party Diffie-Hellman protocol, Joux’s protocol is
subject to a simple man-in-the-middle attack. The attack is easily realised, and allows an adversary E
to masquerade as any entity to any other entity in the network. We leave the construction of such an
attack as a straightforward exercise.

4 One Round Tripartite Authenticated Key

Agreement Protocols

The advantage of Joux’s tripartite protocol over any previous tripartite key agreement protocol is that a
session key can be established in just one round. The disadvantage is that this key is not authenticated,
and this allows a man-in-the-middle attack.

In this section, we develop protocols which also need just one round, but which provide a key which
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is implicitly authenticated to all entities. Our AK protocols are generalisations of the standardised
[1, 3, 27] Unified Model protocol [4], the MTI family of protocols [35] and the MQV protocol [32] to
the setting of pairings. In fact we present a single protocol with four different methods for deriving a
session key.

In order to provide session key authentication, some form of authenticated long-term private/public
key pairs are needed. As with the other protocols, a certification authority (CA) is used in the initial
set-up stage to provide certificates which bind users’ identities to long-term keys. The certificate for
entity A will be of the form:

CertA = (IA‖µA‖P‖SCA(IA‖µA‖P )).

Here IA denotes the identity string of A, ‖ denotes the concatenation of data items, and SCA denotes
the CA’s signature. Entity A’s long-term public key is µA = xP , where x ∈ Z∗

q is the long-term
private key of A. Element P is a public value and is included in order to specify which element is
used to construct µA and the short-term public values. Similarly CertB and CertC are the certificates
for entities B and C, with µB = yP and µC = zP as their long-term public keys. Certificates could
contain further information, such as validity periods.

As usual, in the protocol below, short-term keys a, b, c ∈ Z∗
q are selected uniformly at random by

A, B and C respectively.

Protocol messages:
A→B,C: aP‖CertA (1)
B→A,C: bP‖CertB (2)
C→A,B: cP‖CertC (3)
Protocol 2 (Tripartite Authenticated Key Agreement (TAK) protocol).

Protocol description: An entity A broadcasting to B and C, sends his fresh short-term public
value aP along with a certificate CertA containing his long-term public key. Corresponding values and
certificates are broadcast by B and C to A,C and A,B respectively. Notice that the protocol messages
are just the same as in Joux’s protocol, except for the addition of certificates. Each party verifies the
authenticity of the two certificates he receives. If any check fails, the protocol should be aborted. When
no check fails, one of four possible session keys described below should be computed. Below, H denotes
a suitable hash function.

TAK key generation:

1. Type 1 (TAK-1):
The keys computed by the entities are:
KA = H(ê(bP, cP )a‖ê(yP, zP )x),
KB = H(ê(aP, cP )b‖ê(xP, zP )y),
KC = H(ê(aP, bP )c‖ê(xP, yP )z).
By bi-linearity, all parties now share the session key KABC = H(ê(P, P )abc‖ê(P, P )xyz).

2. Type 2 (TAK-2):
The keys computed by the entities are:
KA = ê(bP, zP )a · ê(yP, cP )a · ê(bP, cP )x,
KB = ê(aP, zP )b · ê(xP, cP )b · ê(aP, cP )y,
KC = ê(aP, yP )c · ê(xP, bP )c · ê(aP, bP )z.
The session key is KABC = ê(P, P )(ab)z+(ac)y+(bc)x.

3. Type 3 (TAK-3):
The keys computed by the entities are:
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KA = ê(yP, cP )x · ê(bP, zP )x · ê(yP, zP )a,
KB = ê(aP, zP )y · ê(xP, cP )y · ê(xP, zP )b,
KC = ê(aP, yP )z · ê(xP, bP )z · ê(xP, yP )c.
The session key is KABC = ê(P, P )(xy)c+(xz)b+(yz)a.

4. Type 4 (TAK-4):
The keys computed by the entities are:
KA = ê(bP +H(bP‖yP )yP, cP +H(cP‖zP )zP )a+H(aP‖xP )x,
KB = ê(aP +H(aP‖xP )xP, cP +H(cP‖zP )zP )b+H(bP‖yP )y,
KC = ê(aP +H(aP‖xP )xP, bP +H(bP‖yP )yP )c+H(cP‖zP )z.
The session key is
KABC = ê(P, P )(a+H(aP‖xP )x)(b+H(bP‖yP )y)(c+H(cP‖zP )z).

Notes:

• Joux’s protocol [29] and our protocols are all vulnerable ‘small subgroup’ attacks and variants of
them observed by Lim and Lee [33]. To protect against this, a verification algorithm should be
applied by each entity to ensure that their received elements are actually in G1. This is fairly
cheap to do when G1 is an elliptic curve group.

• In all four cases, key generation is role symmetric and each entity uses knowledge of both short-
term and long-term keys to produce a unique shared secret key. No party has control over the
resulting session key KABC and if any one of a, b, c is chosen uniformly at random, then KABC

is a random element of G2. Of course delays in receipt of messages from the last entity should
not be tolerated by the other entities, because after the last entity sees all the other participants’
messages he is capable of fixing a small number of bits in the final shared secret key. See [38] for
more details.

• Since all four keys are created after transmitting the same protocol messages, the communication
overhead of each protocol version is identical. However, TAK-2 and TAK-3 key generation re-
quire more computation compared to TAK-1: in the former, each entity must make three pairing
calculations, with the latter, just two. Better still, TAK-4 requires only a single pairing compu-
tation per entity. Protocols TAK-1 and TAK-3 can exploit pre-computation if entities know in
advance with whom they will be sharing a key. In TAK-1, all entities can pre-compute the term
ê(P, P )xyz. With TAK-3, A can pre-compute ê(P, P )ayz, with similar pre-computations for B and
C. However, these terms cannot be re-used because fresh a, b and c should be used in each new
protocol session.

Rationale for the TAK keys’ algebraic forms:

• Protocol TAK-1 is analogous to the Unified Model protocol, whilst protocols TAK-2 and TAK-
3 have their roots in the MTI/A0 protocol. The Unified Model protcol is similar to the MTI
protocols but utilises a hash function H with concatenation to combine various components,
instead of a multiplication. The MTI-like variant of TAK-1, in which the agreed key is KABC =
ê(P, P )abc+xyz, suffers from a severe form of key-compromise impersonation attack. This attack
does not require the adversary to learn a long-term private key. Rather, the adversary only needs
to obtain a session key and one of the short-term secret values used in a protocol run to mount
the attack. We do not apply hash functions in TAK-2 and TAK-3 because this would still not
prevent serious and practical attacks presented in Section 6. In any case, it would be prudent to
derive session (and MAC keys for key confirmation if desired) by applying a hash function to each
KABC . This would prevent problems arising from the possible existence of relatively easy bits in
the BDHP. Using a hash function in TAK-1 has the additional benefit that it allows a security
proof to be given (assuming H is replaced by a random oracle) – see Section 5.
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• Protocol TAK-4 is modelled on the MQV protocol but avoids that protocol’s unknown key-share
weakness [30] by using a hash function H to combine long-term and short-term private keys. Here
H’s output is assumed to be onto Z∗

q . Note that the protocol resulting from omission of this hash

function produces the key KABC = ê(P, P )(a+x)(b+y)(c+z). However, this version of the protocol
suffers from an unknown key-share weakness similar to that presented for the MQV protocol in
[30], wherein the attacker does know the private key corresponding to his registered public key.
As a consequence, this attack cannot be prevented by requiring the adversary to provide a proof
of possession for her private key as part of the registration process. See Section 6.3 for further
discussion of unknown key-share attacks.

• Other MTI-like protocols can be produced if A, B and C broadcast the ordered pairs ayP‖azP ,
bxP‖bzP and cxP‖cyP respectively (along with the appropriate certificates). This protocol can
be used to produce the MTI/C0-like shared secret key KABC = ê(P, P )abc, which for example
A calculates by KABC = ê(bxP, cxP )ax

−2

. It can also be used to produce the MTI/B0-like
shared secret key KABC = ê(P, P )ab+bc+ca, which A can calculate by KABC = ê(bxP, cxP )x

−2

·
ê(P, bxP )ax

−1

· ê(P, cxP )ax
−1

. Although these protocols produce a key with forward security, we
do not consider them further here because they require significantly higher bandwidth and do not
offer a security advantage over our other protocols. For example, both protocols suffer from key
compromise impersonation attacks and the MTI/C0 analogue is also vulnerable to known session
key attacks.

Our TAK protocols prevent simple man-in-the-middle attacks. This is because the long-term
private keys are involved in the computation of each KABC prevents an adversary not in possession of
a long-term private key from obtaining these session keys. However, other forms of active attack can
still occur. We consider such attacks on a case-by-case basis in Section 6, after considering proofs of
security.

5 Security Proofs

In this section, we introduce a security model for TAK protocols, and consider in detail the security of
protocol TAK-1 in this model. We also sketch proofs of security for minor variants of protocols TAK-2
and TAK-3.

Our model is similar to those introduced in [7] and [9], with some simplifications that are possible
because of the one round nature of our TAK protocols. In particular, we avoid the use of matching
conversations (and session IDs introduced in later work [6]). Rather than fully describing our model,
we highlight the differences to previous work.

Let k be a security parameter. As usual, we assume a set I = {1, 2, . . . , T1(k)} of protocol
participants, where T1(k) is a polynomial bound in k on the number of participants. We will also
use A,B,C, . . . to refer to protocol participants, while E is reserved for our adversary (who is not a
participant). Each participant A is modelled by an oracle Πs

A, which the adversary E can query at
will. Here, s is a session number, that determines which random tape Πs

A will use. In previous work,
oracles were of the form Πs

i,j and modelled messages sent from participant i to participant j in session
s. We remove this dependence on receiving parties; in all our protocols, all messages are broadcast.

Oracles exist in one of several possible states Accept, Reject, or *. In our protocols, an oracle
accepts only after receipt of two properly formulated messages (containing different certificates to
its own) and the transmission of two messages, not necessarily in that order (and with the received
messages possibly originating from the adversary and not the oracles identified in the certificates in
those messages). When an oracle accepts, we assume it accepts holding a session key K that is k bits in
length. We also assume there is a key generation process G which produces a description of groups G1
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and G2 and the map ê, assigns random tapes and oracles as necessary, distributes long-term private keys
to participants, and prepares certificated long-term public keys. (Thus our model assumes a perfect
certification process and does not capture attacks based on registration weaknesses like those described
in Section 6.3). As usual, the benign adversary is defined to be one that simply passes messages to and
fro between participants.

Adversary E is assumed to have complete control over the network, and we allow E to make three
kinds of query to an oracle Πs

A: Send, Reveal and Corrupt. These have the usual meanings, as per
[9]: Send allows the adversary to send a message of her choice to Πs

A and to record the response, or to
induce Πs

A to initiate a protocol run with participants of E’s choosing. Reveal reveals the session key
(if any) held by Πs

A, while Corrupt produces the long-term private key of the oracle. Notice that when
making a Send query, E does not need to specify the intended recipients of the oracle’s reply. This is
because, in our protocols, the oracle’s replies are independent of these recipients anyway. In fact E can
relay these messages to any party of her choosing.

In our TAK protocols, each party sends the same message to two other participants and receives
two messages from those participants. In our model, we say that three oracles Πs

A, Π
t
B and Π

u
C have

participated in a matched session if they have received messages exclusively generated by one another
(via the adversary). In other words, the two messages that Πs

A has received are those generated by Π
t
B

and Πu
C , and these are the two oracles and sessions which received the single message from Π

s
A, and

likewise for the other two participants.

In addition to the above queries, we allow E to make one further Test query of one of the oracles
Πs

A at any point during her attack. This oracle must be fresh: it must have accepted, not have been
subject to a reveal query, be uncorrupted, not have participated in a matched session with any revealed
oracle, and not have received messages containing the certificate of a corrupted oracle. The reply to
this Test query is either the session key K held by the oracle, or a random k-bit string, the choice
depending on a fair coin toss. The adversary’s advantage, denoted advantageE(k), is the probability
that E can distinguish K from the random string. Notice that we remove the unnatural restriction in
earlier models [7, 9] that this Test query be the adversary’s last interaction with the model.

As usual, a function ε(k) is negligible, if for every c > 0 there exists a kc > 0 such that for all
k > kc, ε(k) > k−c.

We say that a protocol is a secure TAK protocol if:

1. In the presence of the benign adversary, and when oracles participate in a matched session, all the
oracles always accept holding the same session key, which is distributed randomly and uniformly
on {0, 1}k.

2. If uncorrupted oracles Πs
A, Π

t
B and Π

u
C participate in a matched session, then all three oracles

accept and hold the same session key, which is again uniformly distributed on {0, 1}k.

3. advantageE(k) is negligible.

The first two conditions here ensure that a secure TAK protocol does indeed distribute a key of the
correct form. The last condition says that no adversary can obtain any information about the session
key held by a fresh oracle.

With the description of our security model in hand, we now state:

Theorem 1 Protocol TAK-1 is a secure TAK protocol, assuming that the adversary makes no Reveal
queries, that the Bi-linear Diffie-Hellman problem (for the pair of groups G1 and G2) is hard and
provided that H is a random oracle.

We prove this theorem in Appendix A. Here we comment on the significance of this proof.
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We emphasise that our proof of security does not allow the adversary to make Reveal queries
of oracles. This means that our proof does not capture known session-key attacks. In fact protocol
TAK-1 is vulnerable to a simple attack of this type. We describe the attack in full in Appendix B.
The attack only works on TAK-1 because of the symmetry of the short-term components, and attacks
of this type do not appear to apply to TAK-2, TAK-3 or TAK-4. The attack is analogous to known
session key attacks well-understood for other protocols (see the comments following [9, Theorem 11]
for an example).

Results analogous to Theorem 1 can be proved for variants of protocols TAK-2 and TAK-3 in
which the various key components are concatenated and hashed, rather than multiplied. For example,
we can show this for the TAK-2-like protocol TAK-2′ in which the key is equal to

H(ê(P, P )(ab)z‖ê(P, P )(ac)y‖ê(P, P )(bc)x).

We still require for our proofs that the adversary makes no Reveal queries, but we conjecture that this
restriction is actually unnecessary for these two variants. The proofs are very similar to the proof of
Theorem 1 given in Appendix A. For example, for protocol TAK-2′, we simply need to replace one of
oracle ΠB’s replies to Send queries in F ’s simulation with the value xBP , one of oracle ΠC ’s replies to
Send queries with the value xCP , and B and C’s private values with random values known to F . We
must also adjust F ’s parsing of H queries slightly. We leave the details to the reader.

In Section 8.1, we consider the confirmed versions of our four protocols. These are obtained in
the usual way, by adding three confirmation messages (which are piggy-backed on other messages
in a non-broadcast environment), one for each protocol participant. The confirmation messages use
encryptions and signatures; these could be replaced with MACs using keys derived from the short term
values exchanged during the protocol run. We expect that the techniques used to prove the security of
Protocol 2 of [9] could be adapted to prove that the described confirmed versions of TAK-1, TAK-2′

and TAK-3′ are indeed secure AKC protocols.

Finally, no security proof has yet appeared for the MQV protocol (on which TAK-4 is based)
although the MQV protocol is widely believed to be secure and has been standardised [1, 3, 27, 28]. As
we shall see in the next section, current security models do not handle all the reasonable attack types
and so need to be augmented by ad hoc analysis. We include TAK-4 because it is a very practical and
heuristically secure protocol.

6 Heuristic Security Analysis of TAK Protocols

We present a variety of attacks on our TAK protocols that are not captured by the security models
of the previous section. These are mostly inspired by earlier attacks on the two-party MTI protocols.
Following this analysis, we summarise the security attributes of our TAK protocols in Table 1. In this
section, we use EA to indicate that the adversary E is impersonating A in sending or receiving messages
intended for or originating from A. Similarly, EB,C denotes an adversary impersonating both B and
C.

6.1 Key-Compromise Impersonation Attacks on TAK-1 and TAK-2

We present a key-compromise impersonation attack that occurs when E can obtain the long-term
private key of one of the entities. Suppose E has obtained x, A’s long-term private key. Then E can
calculate ê(P, P )xyz using x and public data in B and C’s certificates. Knowledge of this value now
allows E to impersonate any entity engaging in a TAK-1 protocol run with A (and not just A).

TAK-2 is vulnerable to a related attack, which also occurs whenever E obtains x. In the attack E
impersonates B and C to A, by choosing values a, b and broadcasting bP , cP to A. With knowledge
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of x, b and c, EB,C has enough components to create a TAK-2 key. Note that this attack requires the
impersonation of two entities to A and not one as in the previous attack. These kinds of attacks do
not appear to apply to TAK-3 or TAK-4 because of the combinations of long-term and short-term key
components in computing KABC used in those protocols.

One way to defeat key-compromise attacks on the protocols in general is for each entity to use
his long-term private key as an ECDSA signature key to sign short-term keys [2]. These signatures
should be broadcast in the protocol along with the short-term keys and certificates. This prevents an
attacker from ‘cutting and pasting’ certificates onto values δP for identities other than the one whose
long-term key has been compromised. However, this clearly increases the bandwidth and computational
requirements of the protocols. It is also generally accepted as bad practice to use key pairs for more
than one purpose.

6.2 Forward Security Weakness in TAK-2 and TAK-3

A protocol is not forward secure if the compromise of the long-term private keys of one or more entities
also allows an adversary to obtain session keys previously established between honest entities. With
TAK-1, this weakness is not present, no matter how many long-term private keys are available to the
adversary. Indeed if all three keys are available to her, then extracting the session key KABC from an
old session can be shown to be equivalent to solving the BDHP. Thus TAK-1 is perfect forward secure.
The same is true of TAK-4, because the key KABC agreed in that case also includes the component
ê(P, P )abc. However, it is straightforward to see that if an adversary obtains either two long-term
private keys in TAK-3, or all three long-term private keys in TAK-2, then she has the ability to obtain
old session keys (assuming she keeps a record of the public values aP, bP, cP ). Thus TAK-2 and TAK-3
are not forward secure. Both protocols can be made perfectly forward secure, at extra computational
cost, by using the key KABC · ê(P, P )

abc in place of the key KABC in each case.

6.3 Unknown Key-Share Attacks

A basic source substitution attack applies to all our TAK protocols. It utilises a potential registration
weakness for public keys to create fraudulent certificates [36].

Adversary E registers A’s public key µA as her own, creating CertE = (IE‖µA‖P‖SCA(IE‖µA‖P )).
Then she intercepts A’s message aP‖CertA and replaces CertA with her own certificate CertE . Note
that E registered the A’s long-term public key xP as her own without knowing the value of x. Therefore
she cannot learn the key KABC . However, B and C are fooled into thinking they have agreed a key
with E, when in fact they have agreed a key with A. They will interpret any subsequent encrypted
messages emanating from A as coming from E. This basic attack could be eliminated if the CA does
not allow two entities to register the same long-term public key. However, this solution may not scale
well to large or distributed systems. A better solution is discussed after highlighting another type of
source substitution attack.

A second source substitution attack can be applied to TAK-2 and TAK-3. Even if the CA does
the previous check, the adversary can still obtain a CertE from the CA which contains a component
µE which is a multiple of µA. The adversary can then alter the short-term keys in subsequent protocol
messages by appropriate multiples. As with the last attack the adversary does not create the shared
key. Rather, the attack gives her the ability to fool two participants B, C into believing messages came
from her rather then from the third (honest) participant A. This attack is described in Appendix C.

The adversary in our attacks does not know her long term private key. Therefore, all these source
substitution attacks are easily prevented if the CA insists that each registering party provides a proof
of possession of his private key when registering a public key. This can be achieved using a variety
of methods. For example, one might use zero-knowledge techniques or regard the pair (x, xP ) as an
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ECDSA signature key pair and have the registering party sign a message of the CA’s choice using
this key pair. As an alternative, identities can be included in the key derivation function to prevent
unknown key-share attacks.

6.4 Insider Attacks

Certain new kinds of insider attack must be considered when we move to tripartite protocols. For
example, an insider A might be able to fool B into believing that they have participated in a protocol
run with C, when in fact C has not been active. An active A can do this easily in our TAK protocols,
simply by choosing C’s value cP and injecting it into the network along with C’s certificate and
stopping B’s message from reaching C. This kind of attack can have serious consequences for tripartite
protocols: for example, if C acts as an on-line escrow agent, then B believes a shared key has been
properly escrowed with C when in fact it has not. On the other hand, when C acts as an off-line escrow
agent, as in the protocol we describe in Section 7, this insider attack is only significant if C is providing
an auditing function. This lack of auditability is actually beneficial if protocol participants want to
have a deniability property, as in protocols like IKE, IKEv2 and JFK [26].

Attacks of this type can be prevented in a number of ways. Adding a confirmation phase, as we
do in Section 8, prevents them. An alternative requires a complete protocol re-design, but maintains
a one round broadcast protocol: simply use the long-term keys to sign ephemeral values (rather than
combining them with short-term keys as in our TAK protocols) and agree the key ê(P, P )abc. This
approach requires each participant to maintain a log of all ephemeral values used, or to use synchronized
clocks and time-stamps, to prevent an attacker simply replaying an old message. This requirement
along with the need to create and verify signatures for each protocol run makes this solution somewhat
unwieldy.

6.5 Security Summary

In addition to the above attacks, we note that TAK-3 is vulnerable to a triangle attack of the type
introduced by Burmester [15]. We do not include it here, as it is somewhat theoretical in nature.

Table 1 compares the security attributes that we believe our protocols TAK-1, TAK-2, TAK-3 and
TAK-4 to possess. We have also included a comparison with the ‘raw’ Joux protocol.

Based on this table and the analysis in Section 5, we recommend the use of protocol TAK-4
or protocol TAK-3 along with pre-computation (in the event that the use of a hash function is not
desirable). If perfect forward security is also required, then TAK-3 can be modified as described in
Section 6.2. Protocol TAK-4 has the additional benefit of being the most computationally efficient of
all our protocols. Of course, robust certification is needed for all of our TAK protocols in order to avoid
unknown key-share attacks.

7 Tripartite Protocols with One Off-line Party

As we mentioned in the introduction, there is an application of tripartite key exchange protocols to the
two-party case when one of the parties acts as an escrow agent. It may be more convenient that this
agent be off-line, meaning that he receives messages but is not required to send any messages. In this
section, we adapt our earlier protocols to this situation.

The protocol below is a modified version of TAK-2. The modification has the added benefit of
eliminating the second of our source substitution attacks, and the key-compromise impersonation attack
which were applied to TAK-2. We assume that C is the off-line party and that C’s certificate CertC is
pre-distributed, or is readily available to A and B.
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Joux TAK-1 TAK-2 TAK-3 TAK-4

Implicit key authentication No Yes Yes Yes Yes
Known session key secure No No Yes Yes Yes

Perfect forward secure n/a Yes No(i) No(ii) Yes

Key-compromise impersonation secure n/a No No(iii) Yes Yes

Unknown key-share secure No Yes(iv) Yes(v) Yes(v) Yes(iv)

Table 1: Comparison of security goals and attributes for one round tripartite key agreement protocols.

(i) Not forward secure when a fatal compromise occurs on all three long-term private keys, but still forward
secure for a compromise of two or less such keys.

(ii) Not forward secure when two long-term private keys are compromised, but still forward secure if only one
is compromised.

(iii) Not key-compromise impersonation secure when both participants are impersonated, but is secure if an
attempt is made to only impersonate one participant.

(iv) If the CA checks that public keys are only registered once, and if inconvenient use (v).

(v) If the CA verifies that each user is in possession of the long-term private key corresponding to his public
key.

Protocol messages:
A→ B,C: aP‖CertA (1)
B → A,C: bP‖CertB (2)
Protocol 6 (Off-line TAK protocol).

Protocol description: The protocol is as in TAK-2, but without the participation of C. Entities
A and B use C’s long-term public key zP in place of his short-term public value cP when calcu-
lating the session key. Thus, the session key computations carried out by the entities is KABC =
ê(P, P )(ab)z+(a)yz+(b)xz. Note that C can compute the key when required.

Both this protocol and the similarly constructed variant of TAK-4 producing the session key
KABC = ê(P, P )(a+H(aP‖xP )x)(b+H(bP‖yP )y)(z) exhibit excellent security properties: they are resistant
to all the previous attacks except the simple source substitution attack which is easily thwarted via
robust registration procedures. They are also forward secure, obviously except when private key z is
compromised. Here z can be viewed as an independent master key, which can be regularly updated
along with the corresponding certificate.

8 Non-Broadcast, Tripartite AKC Protocols

Up to this point, we have considered protocols that are efficient in the broadcast setting: they have
all required the transmission of one broadcast message per participant. As we mentioned in the in-
troduction, the number of broadcasts is not always the most relevant measure of a protocol’s use of
communications bandwidth. A good example is the basic broadcast Joux protocol, which offers neither
authentication nor confirmation of keys and requires six passes in a non-broadcast network. In this
section we introduce a pairing-based tripartite key agreement protocol that also requires six passes, but
that offers both key confirmation and key authentication, i.e. is an AKC protocol. We show that any
such protocol requires at least six passes. We then compare our protocol to a tripartite version of the
station-to-station protocol [20].
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8.1 A Six Pass Pairing-Based AKC Protocol

Our notation in describing our pairing-based tripartite, authenticated key agreement with key confir-
mation (TAKC) protocol is largely as before. Additionally, SA(σ) denotes A’s signature on the string
σ. We assume now that the CA’s certificate CertA contains A’s signature verification key. Also EK(σ)
denotes encryption of string σ using a symmetric algorithm and key K, and χ denotes the string
aP‖bP‖cP .

Protocol messages:
A→ B: aP‖CertA (1)
B → C: aP‖CertA‖bP‖CertB (2)
C → A: bP‖CertB‖cP‖CertC‖EKABC

(SC(IA‖IB‖χ)) (3)
A→ B: cP‖CertC‖EKABC

(SC(IA‖IB‖χ))‖EKABC
(SA(IB‖IC‖χ)) (4)

B → C: EKABC
(SA(IB‖IC‖χ))‖EKABC

(SB(IA‖IC‖χ)) (5)
B → A: EKABC

(SB(IA‖IC‖χ)) (6)
Protocol 3 (TAKC protocol from pairings).

Protocol description: Entity A initiates the protocol execution with message (1). After receiving
message (2), entity C is able to calculate the session key KABC = ê(P, P )abc. The same session key is
calculated after receiving messages (3) and (4), for A and B respectively. Messages (3) and onwards
contain signatures on the ephemeral values and identities in the particular protocol run. This provides
key authenticity. These signatures are transmitted in encrypted form using the session key KABC and
this provides key confirmation. The confirmations from C to B, A to C and B to A are piggy-backed
and forwarded by the intermediate party in messages (3), (4) and (5) respectively. More properly,
encryptions should use a key derived from KABC rather than KABC itself. The symmetric encryptions
can be replaced by appending MACs to the signatures with the usual safeguards.

If the expected recipients’ identities were not included in the signatures this protocol would be
vulnerable to an extension of an attack due to Lowe [34]. This attack exploits an authentication error
and allows a limited form of unknown key-share attack. To perform it, we assume adversary D has
control of the network. The attack is as follows.

1. DC intercepts message (2), thenD forwards (2) replacing CertB with CertD to C as if it originated
from D. Thus, C assumes he is sharing a key with A and D.

2. DA intercepts message (3) en route to A. Now DC forward this message replacing CertD with
CertB to A.

3. Entity A receives (3) and continues with the protocol, sending message (4).

4. D blocks messages (5) and (6), so C and A assume an incomplete protocol run has occurred
and terminate the protocol. However, on receipt of message (4), entity B already thinks he has
completed a successful protocol run with A and C, whilst C might not even know B exists.

As usual in an unknown key-share attack, D cannot compute the shared key. The attack is limited
because A and C end up with an aborted protocol run (rather than believing they have shared a key
with B). The attack is defeated in our protocol because the inclusion of identities in signatures causes
the protocol to terminate after message (3), when A realises that an illegal run has occurred.

We claim that no tripartite AKC protocol can use fewer than six passes. This can be reasoned as
follows. Each of the three entities must receive two ephemeral keys to construct KABC , so a total of
six ephemeral values must be received. But the first pass can contain only one ephemeral key (the one
known by the sender in that pass), while subsequent passes can contain two. Thus a minimum of four
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passes are needed to distribute all the ephemeral values to all of the parties. So only after at least four
passes is the last party (entity B in our protocol) capable of creating the key. This last party needs
another two passes to provide key confirmation to the other two entities. So at least six passes are
needed in total. Notice that this argument holds whether the network supports broadcasts or not.

8.2 A Six Pass Diffie-Hellman Based AKC Protocol

The station-to-station (STS) protocol is a three pass, two-party AKC protocol designed by Diffie, van
Oorschot and Wiener [20] to defeat man-in-the-middle attacks. Here we extend the protocol to three
parties and six passes, a pass-optimal protocol by the argument above.

An appropriate prime p and generator g mod p are selected. In Protocol 4 below, a, b, c ∈ Z∗
p are

randomly generated ephemeral values and χ denotes the concatenation ga‖gb‖gc. As before, EKABC
(·)

donates symmetric encryption under session key KABC , and as before SA(·) denotes A’s signature.
Again, we assume that authentic versions of signature keys are available to the three participants. We
have omitted modulo p operations for simplicity of presentation.

Sequence of protocol messages:
A→ B: ga‖CertA (1)
B → C: ga‖CertA‖g

b‖CertB‖g
ab (2)

C → A: gb‖CertB‖g
c‖CertC‖g

bc‖EKABC
(SC(IA‖IB‖χ)) (3)

A→ B: gc‖CertC‖g
ac‖EKABC

(SC(IA‖IB‖χ))‖EKABC
(SA(IB‖IC‖χ)) (4)

B → C: EKABC
(SA(IB‖IC‖χ))‖EKABC

(SB(IA‖IC‖χ)) (5)
B → A: EKABC

(SB(IA‖IC‖χ)) (6)
Protocol 4 (TAKC protocol generalising STS protocol).

Protocol description: The protocol is similar to protocol 3 in operation, with an additional
extra computation done before steps (2)(3) and (4). The shared session key is KABC = gabc mod p.

8.3 Analysis of AKC Protocols

Two immediate conclusions from our analysis can be drawn. Firstly, we have given a pairing-based,
tripartite AKC protocol using just the same number of passes as are needed in Joux’s protocol (but
with the penalty of introducing message dependencies). Secondly, this AKC version of Joux’s protocol
is no more efficient in terms of passes than a 3-party version of the STS protocol! Thus when one
considers confirmed protocols in a non-broadcast environment, the apparent advantage that Joux’s
protocol enjoys disappears. Of course, there is a two round broadcast version of the TAKC protocol
(requiring 6 broadcasts and 12 passes). Both of our six pass AKC protocols can be done in 5 rounds
in a broadcast environment.

9 Conclusions

We have taken Joux’s one round tripartite key agreement protocol and used it to construct one round
TAK protocols. We have considered security proofs and heuristic security analysis of our protocols, as
well as an off-line version of our protocols. We have preserved the innate communications efficiency of
Joux’s protocol while enhancing its security functionality. We also considered tripartite variants of the
STS protocol, suited to non-broadcast networks, showing that in this case, pairing-based protocols can
offer no communication advantage over more traditional Diffie-Hellman style protocols.

Future work should consider the security of our protocols in more robust models, capturing a larger
set of realistic attacks. Constructing multi-party key agreement protocols using our TAK protocols as
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a primitive might result in bandwidth-efficient protocols. Finally, it would be interesting to see if the
methods of [14] could be emulated in the setting of pairings to produce TAK protocols secure in the
standard model.
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Appendix A: Proof of Theorem 1

We provide a proof of Theorem 1.

Conditions 1 and 2: Given the assumption that H is a random oracle, these conditions follow directly
from the protocol description.

Condition 3: Suppose that advantageE(k) = n(k) is non-negligible. We show how to construct from
E an algorithm F which solves the BDHP with non-negligible probability. We describe F ’s operation.
F ’s input is a description of the groups G1, G2 and the map ê, a non-identity element P ∈ G1, and
a triple of elements xAP, xBP, xCP ∈ G1 with xA, xB, xC chosen randomly from Z∗

q . F ’s task is to
compute and output the value gxAxBxC where g = ê(P, P ).

F operates as follows. F chooses a triple A,B,C ∈ I uniformly at random. F simulates the
running of the key generation algorithm G, choosing all participants’ long-term private keys randomly
itself, and computing the corresponding long-term public keys and certificates, but with the exception
of ΠA, ΠB and ΠC ’s keys. As public values for ΠA, ΠB and ΠC , F chooses the values xAP , xBP , xCP
respectively. Then F starts adversary E.

In E’s attack, F will simulate all the oracles Πi, i ∈ I. So F must answer all the oracle queries
that E makes. F answers E’s queries as follows. F simply answers E’s distinct H queries at random,
maintaining a table of queries and responses as he proceeds. Note that we do not allow our adversary
to make Reveal queries, so F does not need to answer any queries of this type. F answers any Corrupt
queries by revealing the long-term private key, except for Corrupt queries on ΠA, ΠB or ΠC . In the
event of such queries, F aborts. F replies to Send queries in the usual way, with correctly formulated
responses ai,sP ||CertΠi

for all oracles Πs
i , where ai,s ∈R Z∗

q .

Finally, we consider how F responds to the Test query on oracle Πi. F generates a random bit
b ∈ {0, 1}. If b = 0, F should respond with the key held by Πi, while if b = 1, F should respond with
a random k-bit value. Now F is capable of answering the Test query correctly except when b = 0
and the tested oracle is an instance of ΠA, ΠB or ΠC . In this last case, F ’s response should be of
the form H(Q‖gxAxBxC ) where Q ∈ G2, involving the invocation of the random oracle. This use of
H should be consistent with previous and future uses, but of course F does not know gxAxBxC , so
cannot properly simulate the oracle in this case. Instead, F responds with a random k-bit value. This
potentially introduces an imperfection into F ’s simulation, but we will argue below that this has no
effect on success probabilities.

The final stage is as follows. Let T2(k) denote a polynomial bound on the number of H queries
answered by F in the course of E’s attack. F picks a value ` uniformly at random from {1, . . . , T2(k)}.
Now F parses the `-th H query into the form Q||W where Q,W ∈ G2. If this is not possible, F aborts.
If it is, then F outputs W as its guess for the value gxAxBxC and stops.

Now we must evaluate the probability that F ’s output is correct. Notice that E’s view of F ’s
simulation of the oracles is indistinguishable from E’s view in a real attack provided that F is not
forced to abort when asked a Corrupt query and that E does not detect that F ’s simulation of the
random oracle was deficient when responding to the Test query – more on these situations later. Now
E picks some accepted oracle Πs

i1
for its Test query in a real attack. Suppose that Πs

i1
has received

two messages containing certificates of oracles Πi2 and Πi3 . The session key held by oracle Π
s
i1
will

be of the form H(Q||gxi1
xi2

xi3 ) where Q ∈ G2 and xij is the long-term private key of Πij , 1 ≤ j ≤ 3.
Since by definition, the oracles Πij are uncorrupted, and E does not ask any Reveal queries, if E is to
succeed in distinguishing this session key from a random string with non-negligible probability n(k),
then E must have queried H on an input of the form Q||gxi1

xi2
xi3 at some point in its attack with some

non-negligible probability n′(k). The probability that this event occurs in F ’s simulation of the oracles
is therefore also n′(k). Since F outputs a random query from the list of T2(k) queries, has randomly
distributed public keys xAP , xBP , xCP amongst the T1(k) participants, and is only deemed successful
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if he does not abort and his output is of the form gxAxBxC , we see that F is successful with probability
better than:

n′(k)

T1(k)3T2(k).

However, this is still non-negligible in k.

We claim that our argument is not affected by the imperfection introduced into F ’s simulation
when E asks a Corrupt query that F cannot answer: to be successful, E must ask a Test query of
an uncorrupted but accepted oracle which has received messages containing certificates of two further
uncorrupted oracles. This means that for E to be successful, at least three distinct, uncorrupted oracles
must remain. So F , having made a random choice of where to place public keys xAP, xBP, xCP , has
at least a 1

T1(k)3
chance of not facing an unanswerable Corrupt query whenever E is successful. This

factor is already taken into account in our analysis.

One problem remains: what effect on E’s behaviour does F ’s deviation in giving a random response
to the “difficult” Test query have? In particular, what effect does it have on success probabilities? E’s
behaviour can only differ from that in a true attack run if E detects any inconsistency in F ’s simulation
of the random oracle. In turn, this can only happen if at some point in the attack, E queries H on
an input of the form Q‖gxAxBxC . For otherwise, no inconsistency arises. At this point, E’s behaviour
becomes undefined. (In this situation, E might guess that F ’s response to the Test query is a random
key (b = 1) rather than the “correct” key (b = 0). But we must also consider the possibility that E
simply might not terminate.) So we assume that F simply aborts his simulation whenever E’s attack
lasts longer than some polynomial bound T3(k) on the length of a normal attack. Notice that H has
been queried on an input of the form Q‖gxAxBxC at some point in F ’s simulation, and that up until
this point, E’s view is indistinguishable from that in a real attack. Thus the number of H queries
made by E will still be bounded by T2(k) up to this point, and an input of the required type will occur
amongst these. So F ’s usual guessing strategy will be successful with probability 1/T2(k) even when
E’s behaviour is affected F ’s inability to correctly respond to the Test query. Since this is the same
success probability for guessing in the situation where everything proceeds normally, it is now easy to
see that F ’s overall success probability is still at least

n′(k)

T1(k)3T2(k).

Appendix B: Known Session Key Attack on TAK-1

We present a known session key attack on TAK-1 that makes use of session interleaving and message
reflection. In the attack, E interleaves three sessions and reflects messages originating from A back
to A in the different protocol runs. The result is that the session keys agreed in the three runs are
identical, so E, upon revealing one of them, gets keys for two subsequent sessions as well. In what
follows, EA indicates that the E is impersonating A in sending or receiving messages intended for or
originating from A. Similarly, EB,C denotes an adversary impersonating both B and C.

A is convinced to initiate three sessions with E:
Session α : A→ EB,C : aP‖CertA (1α)
Session β : A→ EB,C : a′P‖CertA (1β)
Session γ : A→ EB,C : a′′P‖CertA (1γ)

E reflects and replays pretending to be B and C, to complete session α:
EB → A : a′P‖CertB (2α)
EC → A : a′′P‖CertC (3α)
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Similarly the second session is completed by EB,C sending a
′′P‖CertB (2

β) and aP‖CertC (3
β) to

A. In the third parallel session she sends aP‖CertB (2
γ) and a′P‖CertC (3

γ) to A.

E now obtains the first session key H(ê(P, P )aa
′a′′‖ê(P, P )xyz). She then knows the keys for the

next two sessions, as these are identical to this first session key.

Appendix C: Source Substitution Attacks on TAK-2 and TAK-3

We now present in detail the second source substitution attack on TAK-2, and then sketch the attack
on TAK-3.

1. A sends aP‖CertA to EB,C .

2. E computes µE = δ2µA = δ2xP and registers µE as part of her CertE .

3. E initiates a run of protocol TAK-2 by sending δaP‖CertE to B, C.

4. B sends bP‖CertB to E,C; C sends cP‖CertC to E,B.

5. B and C (following the protocol) compute
KEBC = ê(P, P )(δab)z+(δac)y+(bc)δ

2x.

6. EB sends δbP‖CertB to A.

7. EC sends δcP‖CertC to A.

8. A (following the protocol) computes a key
KAEB,C

= ê(P, P )(a·δb)z+(a·δc)y+(δb·δc)x = KEBC .

9. Now E, forwarding A’s messages encrypted under key KEBC = KAEB,C
to B and C, and fools

them into believing that A’s messages come from her.

The corresponding attack on TAK-3 is similar: µE in CertE becomes δxP , and the message
broadcast by E in step 3 of the above attack is now aP‖CertE . Thus, the session key created in steps
5 and 8 is KEBC = KAEB,C

= ê(P, P )(δxy)c+(δxz)b+(yz)a. The attack is otherwise identical.

This attack does not seem to apply to TAK-1 or TAK-4 because of the way in which long-term
private key components are separated from the short-term components in KABC in TAK-1 and due to
the use of a hash function in TAK-4.
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