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Abstract - An attack on the A5/2 stream cipher algorithm is described,

that determines the linear relations among the output sequence bits. The

vast majority of the unknown output bits can be reconstructed. The time

complexity of the attack is proportional to 217.

Introduction: A5 is the stream cipher algorithm used to encrypt the link from the

telephone to the base station in the GSM system. According to [1], two versions

of A5 exist: A5/1, the 'stronger' version, and A5/2, the 'weaker' version. The

attacks on the A5/1, utilizing the birthday paradox, are described in [2, 3]. The

attack on the A5/2 presented here is of algebraic nature.

The scheme of the A5/2 algorithm is given in the Fig. 1. The LFSR R4 clocks

the LFSRs R1; : : : ;R3 in the stop/go manner. The feedback polynomials of

the registers are: g1(x) = 1 + x14 + x17 + x18 + x19, g2(x) = 1 + x21 + x22,

g3(x) = 1 + x8 + x21 + x22 + x23, g4(x) = 1 + x12 + x17. The function F is the

majority function F (x1; x2; x3) = x1x2 + x1x3 + x2x3.

The communication in the GSM system is performed through frames. Each

frame consists of 228 bits. For every frame to be enciphered, the initialization

procedure takes place, that yields the initial state of the LFSRs on the basis of

the 64-bit secret key K and the 22-bit frame number F . During the initializa-

tion, the bits of the secret key are �rst imposed into all the LFSRs, at every

clock pulse, without the stop/go clocking, starting from the LSB of each key

byte. Then the bits of the frame number are imposed into all the LFSRs in the
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same way, starting from the LSB. Finally, the algorithm is run for 100 clock

pulses utilizing the stop/go clocking, but producing no output.

Cryptanalytic attack: The attack consists of updating the system of linearized

equations that relate the state variables of the LFSRs R1; : : : ;R3 with the output

bits, on the basis of the clock-control sequence produced by the LFSR R4, for

its initial state picked from the set of 217 possible states. The linearization of

the equations is performed by substitution of the nonlinear terms by the new

variables. Due to the frequent reinitializations, small number of skipped bits in

the initialization process and the distribution of the feedback taps, many linearly

dependent equations appear, and almost all the unknown output bits, that come

after very few known output bits, can be reconstructed without solving the

system at all.

For the analysis of the system, we start from the analysis of the rank of a matrix

to which a random last row is added. Namely, we prove the following

Proposition 1 - Let W = [wi;j ]i=1;:::;m;j=1;:::;n
be a matrix over GF(2), whose

rank is r(W) = m. Let U = [ui;j ]i=1;:::;m+1;j=1;:::;n
be a matrix over GF(2),

whose �rst m rows are respectively equal to the rows of W, and the elements

of the last row are generated independently at random, with the probability

Pr(um+1;j = 1) = 0:5, 1 � j � n. Then the probability that r(U) = r(W) is

Pr(r(U) = r(W)) = 2m�n: (1)

Proof: The �rst m linearly independent rows of the matrix U span the vector

space, whose cardinality is 2m. The claim that r(U) = r(W) means that the

last row of U must belong to the vector space spanned by the �rst m rows.

Since Pr(um+1;j = 1) = 0:5, the required probability is 2m�n. Q.E.D.

Due to the nonlinear order of the majority function, the maximum number of

variables in the system will be n = 719. Consider now the process of adding

equations to this system. Suppose that for some clock pulse ct of the algorithm,

the system consists of m linearly independent equations. If the contribution of
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Ri to the new equation does not depend on kit state variables, i = 1; : : : ; 3, then

the number of equations that can be added to the system reduces at least from

2719 to 2719�dt , where dt =
P3

i=1

�
kit +

�
kit
2

��
. In such a way, the probability

that the rank of the new system is the same as the rank of the previous system

can be signi�cantly greater than that for the equation generated at random.

In general, dt depends on the initial state of the algorithm. Let us call a de-

pendency the set of state variables on which a particular position of an LFSR

depends. Due to the concentrations of the feedback taps of the LFSRs R1 and

R2 to the right of the inputs to the majority function, the input positions to

this function and the last positions of these LFSRs depend on very few initial

state variables after every initialization. The cardinalities of the dependencies

of these positions will grow much slower than in the case when the feedback

taps are not concentrated at the ends (R3). Thus, the total cardinalities of the

dependencies for the LFSR R1 and R2 can be very small and the probability

that the newly added equation will be linearly dependent on the others can

become very close to one.

Let AX = B be a linear system over GF(2), where A = [ai;j ]i=1;:::;m;j=1;:::;n
,

X = [xi]i=1;:::;n, and B = [bi]i=1;:::;m. Denote by A0 the extended matrix of

the system. Let us transform the matrix A0 into the trapezoidal form using

the Gauss algorithm. Denote the state of the matrix A0 after the performing

of the k-th set of such transformations by A0

k. Thus, A0 = A0

0. Let us de�ne

the matrix P = [pi;j ]i;j=1;:::;m in the following way: p0i;i = 1, p0i;j;i6=j
= 0; at

the k-th step of the transformation, if i-th and j-th rows of the matrix A0

k are

interchanged or summed, so are the respective rows of Pk . In such a way, the

nonzero elements of the i-th row of the matrix Pk , i = 1; : : : ;m at the k-th step

of the transformation, point to the ordinal numbers of the rows of the original

system A0

0, on which the i-th row of the matrix Ak linearly depends.

Let A0

m be the extended matrix of the system AX = B in its trapezoidal form

and suppose that the rank of this system is r(A0

m) = m. Let us add the new

equation WX = Z to the system, where W = [wi]i=1;:::;n, and Z = [z1]. Let
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� denote the operation of adding a row to a matrix. Apply the process of

transformation to the trapezoidal form to the new system CX = D, where C =

Am �W = [ci;j ]i=1;:::;m+1;j=1;:::;n
and D = Bm � Z = [di]i=1;:::;m+1. Suppose

r(C0

m+1) = m and denote by q the biggest row index for which pm+1q;m+1 = 1.

If q = m+ 1 and z1 is known, then c0m+1q;n+1
= 0 and

z1 =

mX
i=1

bipm+1q;i : (2)

If q = m+1 and z1 is not known, we can guess z1 and transform the matrix C0

in the same way as if z1 were known. Since r(C
0

m+1) = m, for the correct value

of z1, c
0

m+1q;n+1
must be zero. Thus, in this case, z1 is also given by (2).

If q < m+ 1 and z1 is known, then the following relation will obviously hold:

z1 = c0m+1q;n+1
+

mX
i=1

bipm+1q;i : (3)

But if q < m + 1 and z1 is not known, the relation (3) will still hold, but the

calculated value for z1 can be incorrect.

The degenerate cases when q < m + 1 will be rare [4]. To guess the bits that

cannot be reconstructed, the runs of these cases should be short. Experiments

performed on a great number of frames show that approximately 70% of these

runs are of length less than 10.

The attack on the A5/2 consists of the following major steps:

Input: 4 frames of the output sequence and their corresponding frame numbers;

frame numbers of the output sequence frames to be reconstructed; threshold T

chosen according to the actual bit error ratio in the channel;

Output: reconstructed frames of the output sequence, except of the bits that

correspond to the degenerate cases and to the linearly independent equations.

1. SET s = 0; f Ordinal number of the initial state of R4 g

SET i = 0; f Frame number index g

4



SET m = 0; f The number of linearly independent equations g

2. Choose the s-th state of the LFSR R4; SET d = 0 ;

3. SET i = i+ 1; Complete the initialization process, starting from the state s

of R4, imposing the frame number Fi into all the LFSRs, and keeping track

of the dependencies;

4. IF d > T THEN SET s = s+ 1, and go to Step 2; if the end of the frame is

reached, then go to Step 3; otherwise, run the algorithm A5/2 for one cycle,

keeping track of the dependencies, and setting the equation that relates

these dependencies and the corresponding output bit;

5. Linearize the obtained equation, by substituting the nonlinear terms by the

new variables; add this equation to the system;

6. Check the current system for its rank, updating the matrix P; if the current

rank is greater than the previous rank, then SET m = m+1 and go to Step

4; if the current rank is equal to the previous rank and the current output

bit is known, check whether the known bit is equal to the bit calculated by

the relation (3); if not, then SET d = d + 1, return to the previous state of

the system and go to Step 4; if the current rank is equal to the previous rank

and the output bit is unknown, �nd the biggest q such that pm+1q;m+1 = 1;

IF q = m+1, then calculate the unknown bit by the relation (2), return to

the previous state of the system and go to Step 4; IF q < m+1 then return

to the previous state of the system and go to Step 4.

Our algorithm examines all the possible 217 initial states of the LFSR R4 in the

worst case. For each such state and for all the checks after the �rst one, the

system already has the trapezoidal form, except for the newly added last row.

So, the complexity of these checks will be linear in m.
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Fig. 1 - The scheme of the A5/2 algorithm
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