
Authentication and Key Agreement via Memorable Password

Taekyoung Kwon

University of California, Berkeley

tkwon@cs.berkeley.edu or ktk@emerald.yonsei.ac.kr

Updated on August 20, 2000

Preliminary Version 2.51 since May 1, 2000

Abstract

This paper presents a new password authentication and key agreement protocol, AMP,

based on the ampli�ed password idea. The intrinsic problems with password authentica-

tion are the password itself has low entropy and the password �le is very hard to protect.

We present the ampli�ed password proof and the ampli�ed password �le for solving these

problems. A party commits the high entropy information and ampli�es her password

with that information in the amplifed password proof. She never shows any informa-

tion except that she knows it. Our ampli�ed password proof idea is very similar to the

zero-knowledge proof in that sense. We adds one more idea; the ampli�ed password

�le for password �le protection. A server stores the ampli�ed veri�ers in the ampli�ed

password �le that is secure against a server �le compromise and a dictionary attack.

AMP mainly provides the password-veri�er based authentication and the Di�e-Hellman

based key agreement, securely and e�ciently. AMP is easy to generalize in any other

cyclic groups. In spite of those plentiful properties, AMP is actually the most e�cient

protocol among the related protocols due to the simultaneous multiple exponentiation

method. Several variants such as AMPi, AMPn, AMPn+, AMP+, AMP++, and AMPc

are also proposed. Among them, AMPn is actually the basic protocol of this paper that

describes the ampli�ed password proof idea while AMP is the most complete protocol

that adds the ampli�ed password �le. AMPi simply removes the ampli�ed password �le

from AMP. In the end, we give a comparison to the related protocols in terms of e�ciency.

This manuscript is a preliminary version of our paper available from the IACR eprint

archive, http://eprint.iacr.org/2000/026. The protocols described in this paper were

submitted as a contribution to the IEEE P1363 study group for future PKC standards,

Ultimate Solution to Authentication via Memorable Password[23]. It is available from the

website, http://grouper.ieee.org/groups/1363/StudyGroup/Passwd.html#amp.

Keywords: Authentication, key agreement, password guessing, password veri�er, public-

key cryptography, discrete logarithm problem, Di�e-Hellman problem, ampli�ed pass-

word proof, ampli�ed password �le.

1

1 Introduction

Entity authentication is one of the most important security functions. It is necessary for

verifying the identities of the communicating parties when they initiate their connection.

This function is usually provided in combination with a key establishment scheme such as

key transport or key agreement between the parties. For user authentication, three kinds

of approaches exist; knowledge-based authentication, token-based authentication, and biometric

authentication. Among them, the knowledge-based scheme is for human memory (� mind).

Actually, it is the most widely-used method due to such advantages as simplicity, convenience,

adaptability, mobility, and less hardware requirement. It requires users only to remember

and type in their knowledge such as a password or PIN(personal identi�cation number).

Therefore, users are allowed to move conveniently without carrying hardware tokens. How-

ever, a complex problem with this password-only authentication is that a human-memorable

password has low entropy so that it could be vulnerable to malicious guessing attacks. The

problem becomes much more critical in an open distributed environment. Moreover, pass-

word �le protection is another problem that makes password authentication more unreliable.

If a password �le is compromised, at least it is vulnerable to dictionary attacks. A cryp-

tographic protocol based on public-key cryptography is the most promising solution to this

problem.

Password Protocols.
1 Since the �rst scheme, LGSN[25], was introduced in 1989, many

protocols have followed it. Among them, EKE[7] was a great landmark of certi�cate-free

protocols. One variant of EKE, DH-EKE[7], introduced the password authentication and

key agreement, and was \enhanced" to A-EKE[8] that was the �rst veri�er-based protocol to

resist a password-�le compromise and to accommodate salt while there was an earlier work

describing the use of salt[38]. GLNS[15] was enhanced from LGSN. Due to the ine�ciency and

constraints of older schemes, various modi�cations and improvements have followed. They

include TH[37], AL[1], M-EKE[36], Gong[16], KS[21], SPEKE[18, 19], S3P[34], SRP[39],

HK[17], and GXY[22]. However, some of them have been broken and some are still being

cryptanalyzed[2, 13, 31, 9]; most were inadequate for the security proof due to ad-hoc meth-

ods of protecting the password. In the mean time, OKE[26] introduced a provable approach

and was followed by several great work such as SNAPI[27], EKE2[5], AuthA[6], and PAK[10].

They show the provable approach in this area is getting matured.

Among the password protocols, A-EKE, B-SPEKE, SRP, GXY, SNAPI-X, AuthA, and

PAK-X are classi�ed as password-veri�er based protocols[8, 19, 39, 22, 27, 6, 10]. They allow

the asymmetric model in which a client possesses a password, while a server stores its veri�er

rather than the password. Following A-EKE[8], B-SPEKE was augmented from SPEKE[18,

1Readers are referred to Figure 8 attached in Appendix of this document. Jablon's work[18] is recommended

as the best tutorial for the password protocol study while Wu's work[39] is the best for the veri�er protocol

study. Bellare and Rogaway's work[3] is the fundamental of the provable approach.

2

19]. SRP showed e�cient work on a veri�er and GXY was derived from SRP[39, 22]. SNAPI-

X was augmented from SNAPI while PAK-X was enhanced from PAK[27, 10]. AuthA was

derived from several previous protocols but strongly studies a provable approach[6]. How-

ever, even the veri�er-based protocols still allow dictionary attacks and server impersonation

attacks if a server �le is compromised. Currently, standardization work on this �eld is being

considered in IEEE P1363 group.

Contribution. Our goal is to design a new protocol in a provable manner, which com-

bines the following functions securely and e�ciently.

� Password(-veri�er) based authentication[8]

� Di�e-Hellman based key agreement[12]

� Easy generalization[28]

� Password �le protection

For achieving the goal, we propose two simple ideas called the ampli�ed password proof that

makes a user amplify her password and prove to know the ampli�ed password, and the

ampli�ed password �le that makes a server store the ampli�ed veri�er for resisting a server �le

compromise and a dictionary attack. From the point of view, we name our protocol AMP that

stands for Authentication and key agreement via Memorable Password. Regarding several

functional issues, we also present major variants of AMP. They are called AMPi, AMPn,

AMPn+, AMP+, AMP++, and AMPc. Among them, AMPn is actually the basic protocol

of this paper that describes the ampli�ed password proof idea though it is designed for

a symmetric setup. Several minor variants also can be considered but they are explained

implicitly. We compare the e�ciency of all veri�er-based protocols. Actually, AMP is the

most e�cient protocols among the existing veri�er-based protocols. Note that AMP will be

designed to avoid explicit encryption/decryption at least for authentication and veri�cation

though it will provide a key agreement function.

2 AMP Protocol Design

2.1 Preliminaries

AMP is typically the two party case so that we use Alice and Bob for describing a client and

a server, respectively. Eve indicates an adversary whether she is passive or active. � and �

denotes password and salt, respectively.
:
= means a comparison of two terms, for example,

�
:
= �. Let f0; 1g� denote the set of �nite binary strings and f0; 1g1 the set of in�nite ones.

� implies the empty string. k is our security parameter long enough to prevent brute-forcing

while l(k) � 2k, !(k) � 2
3
k, and t(k) � 1

3
k. h() : f0; 1g� ! f0; 1gl(k) means a collision-free

3

one-way hash function. All hash functions are assumed to behave like random oracles for

security proof[3]. Note we abbreviate a modular notation, mod p, for convenience hereafter.

Random Oracle. We assume random oracles hi() : f0; 1g� ! f0; 1gl(k) for i 2 [1; 5].

If Eve sends queries Q1;Q2;Q3; ::: to the random oracle hi, she can receive answers hi(Qj),

all independently random values, from the oracle. Let h() denote a real world hash function.

For practical recoveries of random oracles in the real world, we de�ne; h1(x) = h(00jxj00),

h2(x) = h(01jxj01), h3(x) = h(01jxj10), h4(x) = h(10jxj10) and h5(x) = h(11jxj11) by follow-

ing the constructions given in the Bellare and Rogaway's work[3]. j denotes the concatenation.

Numerical Assumption. Security of AMP is based on two familiar hard problems which

are believed infeasible to solve in polynomial time. One is Discrete Logarithm Problem; given

a prime p, a generator g of a multiplicative group Z�p , and an element gx 2 Z�p , �nd the

integer x 2 [0; p � 2]. The other is Di�e-Hellman Problem; given a prime p, a generator g

of a multiplicative group Z�p , and elements gx 2 Z�p and gy 2 Z�p , �nd gxy 2 Z�p . These

two problems hold their properties in a prime-order subgroup[30, 28]. We assume that all

numerical operations of the protocol are on the cyclic group where it is hard to solve these

problems. We consider the multiplicative group Z�p and actually use its prime-order subgroup

Zq. We should use its main operation, a modular multiplication, for easy generalization. For

the purpose, Bob chooses g that generates a prime-order subgroup Zq where p = qr+1. Note

that a prime q must be su�ciently large (> l(k)) to resist Pohlig-Hellman decomposition

and various index-calculus methods but can be much smaller than p[30, 32, 33]. It is easy to

make g by �(p�1)=q where � generates Z�p . Zq is preferred for e�ciency and for preventing

a small subgroup con�nement more e�ectively. By con�ning all exponentiation to the large

prime-order subgroup through g of Zq, each party of the protocol is able to detect on-line

attack whenever a received exponential is con�ned to a small subgroup. We can use a secure

prime modulus p such that (p�1)=2q is also prime or each prime factor of (p�1)=2q is larger

than q, or a safe prime modulus p such that p = 2q+1[24]. We strongly recommend to use a

secure prime modulus because it allows much smaller q, e.g., closely down to l(k).

2.2 Our Idea

Our idea is to \amplify" the low entropy of password (1) on the well-structured cryptographic

protocol, i.e., on the secure interaction between communicating parties, and (2) in the well-

structured password �le, both for securing password authentication and password �le.

Definitions. Firstly we give some useful de�nitions followed by our detailed idea.

De�nition 1 A Password Proof de�nes; a party A who knows a low entropy secret called a

password makes a counterpart B convinced that A is who knows the password.

4

We can consider two kinds of setup such as a symmetric setup and an asymmetric setup.

The asymmetric setup could bene�t from salt for overcoming the text-equivalence of the

symmetric setup. The password proof is actually composed of two kinds of proof.

De�nition 2 A Secure Password Proof de�nes; a party A successfully performs the Password

Proof without revealing any information about the password itself.

De�nition 3 An Insecure Password Proof de�nes; a party A successfully performs the Pass-

word Proof but fails the Secure Password Proof, or a party A successfully performs the Pass-

word Proof by showing some or all information about the password.

The insecure proof can be classi�ed into the fully insecure password proof such as PAP(password

only), the partially insecure password proof such as CHAP(challenge and handshake), and

the cryptographically insecure password proof such as some cryptographic protocols.

De�nition 4 An Ampli�ed Password Proof de�nes; a party A who knows a password am-

pli�es the password and makes a counterpart B convinced that A is who knows the ampli�ed

password.

The Amplification. Our ampli�cation idea is very simple, for example, Alice insists on her

knowledge of password � by giving x+ � mod q rather than � only, while x is the randomly-

chosen high entropy information. For the purpose, fresh x must be securely committed by

Alice prior to her proof of each session. (x+ � is not guessable at all whereas � is guessable,

if x is kept secret.)

De�nition 5 The Ampli�ed Password $ de�nes a value that only who knows � and x can

make from A(�;x) where x is chosen randomly at Zq and � is a human-memorable password

for an arbitrary ampli�cation function A(). (Note: $ is rather ephemeral.)

We con�gure this idea as an ampli�ed password proof.

The Amplified Password Proof. Assume that Alice knows � while Bob knows g�.

The procedure of the ampli�ed password proof is composed of basically three steps such as

initial commitment, challenge, and response; the initial commitment step performs a secure

commitment of x having high entropy by Alice; the challenge step performs a random chal-

lenge of y by Bob; the response step performs a knowledge proof of Alice about the ampli�ed

password $. We de�ne three functions for each step; they are G1() for initial commitment,

G2() for challenge, and H() for response.

De�nition 6 The Ampli�ed Password Proof performs; Alice who knows her password �,

randomly chooses and commits the high-entropy information x to Bob. Bob who knows g�,

picks y at random and asks Alice if she knows the password and the committed information.

Alice responds with the fact she knows the ampli�ed password $.

5

Alice Bob

initial commitment
G1(x)
�!

G2(y)
 � challenge

response
H($)
�!

For secure commitment, G1() should not reveal x even to Bob, for example, gx. While G2()

transmits a fresh challenge, H() should imply the fact only that Alice knows $ without

revealing any information about x and �. If we set A(�;x) = (x+�)�1 mod q, then only who

knows x and � can compute $. So we set G2() = g(x+�)y for making veri�cation information,

i.e., (g(x+�)y)$ = gy. Bob who knows G1() as well as g
�, can make G2() by (gxg�)y. As a

result, both parties can get gy, the veri�cation information, so we set H() = gy. Of course,

they can also make gxy due to the Di�e-Hellman scheme. Therefore, we can derive the

following theorem that is easy to prove by assuming x is randomly chosen at Zq. (hint : $

is not derivable from gx, g(x+�)y, gy and even g�. � as well as x are necessary for computing

A(�;x).)

Theorem 1 The Ampli�ed Password Proof is a Secure Password Proof.

This means Alice never shows the password itself for her proof, rather she proves the fact of

knowing it. The ampli�ed password proof idea is very similar to the zero-knowledge proof

in that sense, but g� must be kept secure because it is actually vulnerable to guessing attacks.

The Amplification and Key Exchange. It is easy to add key exchange to the ampli�ed

password proof because we already utilized the Di�e-Hellman scheme. For key exchange,

Alice can derive a session key from gxy and show the fact of agreeing on it. Bob is also able

to do the same thing. A strong one-way hash function must be the best tool for this. For

Alice to agree on gxy, we set $ = (x + �)�1x mod q. For mutual key con�rmation as well

as mutual authentication, however, the protocol must be con�gured by four steps to add

Bob's response. The following describes the basic version. Note that the cases, x 2 f0; 1g1,

y 2 f0; 1g1, G1 2 f0; 1g
1 , G2 2 f0; 1g

1, and their small subgroup con�nements must be

avoided for a security reason.

Alice(id; �) Bob(id; g� or �)

x 2R Zq

G1 = gx
id;gx

�!

fetch (id; �)

y 2R Zq

$ = (x+ �)�1x mod q
g(x+�)y

 � G2 = (G1g
�)y or (G1)

yg�y

� = (G2)
$ � = (G1)

y

6

K1 = h1(�) K2 = h1(�)

H11 = h2(G1;K1)
h(G1;K1)
�! H12 = h2(G1;K2)

verify H11
:
= H12

H21 = h3(G2;K1)
h(G2;K2)
 � H22 = h3(G2;K2)

verify H21
:
= H22

Figure 1: AMPn Protocol

Both parties compute exponentials as like the Di�e-Hellman scheme. The di�erence is that

the random exponent of � and the base of G2 are tactfully transformed. We call this protocol

AMPn(AMP-naked) because the protocol is actually vulnerable to client impersonations as

well as server impersonations and dictionary attacks if a password �le is compromised. Bob

can store � rather than g� and for this case G2 bene�ts from the simultaneous multiple expo-

nentiation method in terms of e�ciency[28, 35]. Above all, g� must be kept secure because

it is actually vulnerable to guessing attacks. So we propose an ampli�ed password �le idea

for improving the security of the password �le.

The Amplified Password File. As for the password �le, an asymmetric setup is preferred

because of the weakness of text-equivalence in a symmetric setup[8, 19, 39]. If a password �le

is compromised, it can be used directly for a client impersonation in the symmetric setup.

However, the low entropy of password makes the password �le vulnerable to dictionary at-

tacks and server impersonation attacks even if each password is hashed or exponentiated in

the asymmetric setup. For example, a veri�er such as � = h(�) is vulnerable to guessing

attacks and sever impersonation attacks. For the password �le protection, encryption can be

considered but the key management and performance issue must be overcome. The ampli�ed

password �le is a password �le of which a record includes an ampli�ed veri�er.

De�nition 7 The Ampli�ed Veri�er � de�nes a value that only who knows & and � can use

for password veri�cation where & is chosen randomly at Zq and � is is chosen randomly at

f0; 1gk. Set � = g(&+�)
�1� where � = h(id; �). If (&+�)�1 = 1, � is not the ampli�ed veri�er.

(Note: � is semi-permanent.)

A record of the ampli�ed password �le is (id; �; �). The ampli�ed password �le is stored in an

ordinary server system while & must be stored in and supplied from a secure storage device

such as a smart card. Ideally, & should not leave such a secure device but a bottleneck may

be a problem with a poor-performance device. Otherwise, we can devise a special hardware

device for performing & related operations with higher performance but practically & may be

loaded to the server's memory. However, even if & resides in the server's run-time memory,

the memory dump and its analysis are necessary for launching a server impersonation attack

or a dictionary attack with the compromised password �le. That is, the ampli�ed password

�le itself is secure against such attacks if & is secure; even if not, an adversary cannot directly

7

impersonate a server or launch dictionary attacks without memory dump. AMP will be the

protocol that enables the ampli�ed password ideas and the key agreement. The following

subsection describes AMP.

2.3 Complete Protocol Description

We set $ = (x+ �)�1(x+ e) where � = h1(id; �) and e = h2(G1;G2; id; Alice;Bob).

Protocol Setup. This step determines and publishes global parameters of AMP.

1. Alice and Bob share g, p and q. id indicates precisely a user name (id) while Alice and

Bob mean rather addresses.

2. Alice chooses � 2R f0; 1g
!(k) and notify Bob, in an authentic and con�dential manner

(secure registration, o�-line distribution with picture id proof).

3. Bob chooses � 2R f0; 1g
k and stores (id; �; � = g(&+�)

�1�) where � = h1(id; �). Bob

should throw away � and �.

Protocol Run. Note that the cases, x 2 f0; 1g1, y 2 f0; 1g1, G1 2 f0; 1g
1 , G2 2 f0; 1g

1,

� 2 f0; 1g1, and their small subgroup con�nements must be avoided for a security reason.

Alice (id; �) Bob (id; �; �)

x 2R Zq

G1 = gx
id;gx

�!

fetch (id; �; �)

� = h1(id; �) y 2R Zq

� = (x+ �)�1 mod q
g(x+�)y

 � G2 = (G1)
y�(&+�)y = (G1g

�)y

e = h2(G1;G2; id; Alice;Bob) e = h2(G1;G2; id; Alice;Bob)

$ = �(x+ e) mod q

� = (G2)
$ � = (G1)

ygey = (G1g
e)y

K1 = h3(�) K2 = h3(�)

H11 = h4(G1;K1)
h(G1;K1)
�! H12 = h4(G1;K2)

verify H11
:
= H12

H21 = h5(G2;K1)
h(G2;K2)
 � H22 = h5(G2;K2)

verify H21
:
= H22

Figure 2: AMP Protocol

The following steps explain how the protocol is executed in Figure 2.

8

1. Alice computes G1 = gx by choosing x 2R Zq and sends (id;G1) to Bob.

2. After receiving message 1, Bob loads � and �, and computes G2 = (G1)
y�(&+�)y by

choosing y 2R Zq. This can be done by the simultaneous multiple exponentiation

method. Note that G2 = (G1)
y�(&+�)y = (gxg�)y. He sends G2 to Alice.

3. While waiting for message 2, Alice computes � = h1(id; �) and � = (x + �)�1 mod q.

After receiving message 2, Alice computes e = h2(G1;G2; id; Alice;Bob), $ = �(x +

e) mod q and � = (G2)
$. Note that � = (g(x+�)y)$ = gy(x+e). She computes K1 =

h3(�) and H11 = h4(G1;K1). She sends Bob H11.

4. While waiting for message 3, Bob computes e = h2(G1;G2; id; Alice;Bob), � = (G1)
ygey =

(gxge)y = g(x+e)y, K2 = h3(�) and H12 = h4(G1;K2). After receiving message 3, Bob

compares H12 with H11. If they are matched, he computes H22 = h5(G2;K2) and sends

Alice H22. This means he authenticated Alice who knows $ (actually � and thus �

since x is secure from gx), and agreed upon K(= K1 = K2).

5. While waiting for message 4 from Bob, Alice computes H21 = h5(G2;K1). After receiv-

ing message 4, she compares H21 with H22. If they are matched, Alice also agrees on

K(= K1 = K2) with authenticating Bob who knows �.

Small Discussion. AMP passes four messages between Alice and Bob who agree on g(x+e)y

while AMPn agreed on gxy. The password �le compromise still needs memory dump and

its analysis for getting &. The existence of e is explicit against a compromise of both. For

example, if Eve sends �(&+�)x to Bob, then Bob will respond with (g�xg�)y and compute

� = (g�xge)y = g(�x+e)y . If e does not exist, � will be equal to g�xy so that it will be

computable by G
(x+1)�1x
2 . Due to the existence of e, Eve cannot compute � from �, x, e

and g�y(= G
(x+1)�1

2). That is, she cannot falsely convince Bob that she is Alice even with

the password �le and &. Here, we should note that the statistical di�erence between G2 and

�(= �) is only dependent upon the di�erence between � and e. If ABS(� � e) = 0, they

must be exactly same to each other though its probability is extremely low. Such a case can

be detected easily by both parties, for example, �
:
= G2 and �

:
= G2. Note that � and e is

unchangeable and untraceable in G2 and �(= �) actually without knowing either x or y (see

Lemma 1 in Appendix). We can make h1() and h2() have far di�erence for � and e. In this

point, we could set q larger than h2() where h2() should be at least k larger than h1(). For

example, we de�ne h2(x) = h(01jxj01)h(10jxj01) while h1(x) = h(00jxj00) by recommending

SHA-1 or RIPEMD-160 for 160-bit hash. Otherwise, there are several variants removing

such a point, for example, AMPn, AMP+, and AMP++. Final two steps can be modi�ed, for

example, H11 = h4(�;G1;G2; id; A;B) and H22 = h5(�;G2;G1; B;A; id). We can choose salt

� implicitly by computing f(id;B) where f() is an implicit salt function[6, 10], for example,

9

� = h1(id; f(id;B); �). For updating the existing system such as Unix, we can modify � such

that � = h(�
0

; �) and sends �
0

in message 2 where h(�
0

; �) is an existing veri�er.

3 AMP Protocol Variants

We present �ve explicit variants of AMP and AMPn. They are AMPi, AMPn+, AMP+,

AMP++, and AMPc. Among them, AMPi excludes the use of the ampli�ed password �le

while AMPn+ loses the zero-knowledge property for enabling veri�er-based authentication to

AMPn. AMP+ and AMP++ are extended for perturbing the structural similarity between G2

and �(= �) in AMP. Every AMP provides one-way authentication in three steps. Finally,

AMPc is a crippled version of AMP family for one-way authentication in two steps.

3.1 AMPi

AMPi excludes the ampli�ed password �le from AMP. The di�erence of protocol setup is that

Bob stores (id; �; � = g�) where � = h1(�; �). Of course, salt can be obtained implicitly. The

di�erence in protocol run is that Alice computes the inverse of the ampli�ed password, after

receiving message G2. AMPi slightly reduces the running time about G2 but loses the strong

security against a password �le compromise. That is, if the password �le is compromised,

Eve is able to directly impersonate a server or launch dictionary attacks in AMPi while it

was much more di�cult in AMP. We set $ = (x+ �)�1(x+ e) mod q.

Protocol Run. Note that the cases, x 2 f0; 1g1, y 2 f0; 1g1, G1 2 f0; 1g
1 , G2 2 f0; 1g

1,

� 2 f0; 1g1, and their small subgroup con�nements must be avoided for a security reason.

Alice(id; �) Bob(id; �; �)

x 2R Zq

G1 = gx
id;gx

�!

fetch (id; �; �)

y 2R Zq

�;g(x+�)y

 � G2 = (G1�)
y

e = h2(G1;G2; id; Alice;Bob) e = h2(G1;G2; id; Alice;Bob)

� = h1(�; �)

$ = (x+ �)�1(x+ e) mod q

� = (G2)
$ � = (G1)

ygey = (G1g
e)y

K1 = h3(�) K2 = h3(�)

H11 = h4(G1;K1)
h(G1;K1)
�! H12 = h4(G1;K2)

verify H11
:
= H12

10

H21 = h5(G2;K1)
h(G2;K2)
 � H22 = h5(G2;K2)

verify H21
:
= H22

Figure 3: AMPi Protocol

3.2 AMPn+

AMPn was totally vulnerable to the password �le compromise. However, we can extend AMPn

for veri�er-based authentication in the asymmetric setup model. Comapred to AMP, this ex-

tension is proposed for e�ciency and \easy deployment" at the cost of security. AMPn+

actually loses the zero-knowledge property, that is, Bob is always able to read � in a protocol

run. The main di�erence of protocol setup is that � = h2(�; �) where � = h1(id; �). Of

course, we can remove salt or use implicit salt; the following version explicitly uses salt. For

AMPn+, we de�ne a function such that E(x; y) = x + y mod q and D(x; y) = x � y mod q.

We can replace their operations with a modular multiplication or a conventional encryption

function though the conventional encryption is not recommended. We set (x+ �)�1x mod q.

Protocol Run. Note that the cases, x 2 f0; 1g1, y 2 f0; 1g1, G1 2 f0; 1g
1 , G2 2 f0; 1g

1,

and their small subgroup con�nements must be avoided for a security reason.

Alice(id; �) Bob(id; �; �)

x 2R Zq

G1 = gx
id;gx

�!

fetch (id; �; �)

� = h1(id; �) y 2R Zq

�;(g(x+�)y

 � G2 = (G1)
yg�y

� = h2(�; �)

$ = (x+ �)�1x mod q

� = (G2)
$ � = (G1)

y

K1 = h3(�) K2 = h3(�)

e = h4(id;Alice;Bob;K1 ; �) e = h4(id;Alice;Bob;K2; �)

H11 = E(e; �)
E(e;�)
�!

verify �
:
= h2(�;D(H11; e))

H21 = h5(G2;K1)
h(G2;K2)
 � H22 = h5(G2;K2)

verify H21
:
= H22

Figure 4: AMPn+ Protocol

e�1 is applied to H11 for recovering �.

11

3.3 AMP+

AMP+ perturbs the structural similarity between G2 = g(x+�)y and � = � = g(x+e)y. The

di�erence in protocol setup is to set $ = (x + �)�1(x + e2) mod q. The main di�erence in

protocol run is that both parties compute e1 such that e1 = h2(G1; id; Alice;Bob). We set

$ = (xe1 + �)�1(x+ e2) mod q. The randomness of e1 is totally dependent upon that of G1

so that Bob cannot contribute to its randomness, while the randomness of e2 is dependent

upon that of G2 as well as G1.

Protocol Run. Note that the cases, x 2 f0; 1g1, y 2 f0; 1g1, G1 2 f0; 1g
1 , G2 2 f0; 1g

1,

� 2 f0; 1g1, and their small subgroup con�nements must be avoided for a security reason.

(id; �) Alice Bob (id; �; �)

x 2R Zq

G1 = gx
id;gx

�!

fetch (id; �; �)

� = h1(id; �) y 2R Zq

e1 = h2(G1; id; Alice;Bob) e1 = h2(G1; id; Alice;Bob)

� = (xe1 + �)�1 mod q
g(xe1+�)y

 � G2 = (G1)
e1y�(&+�)y = (Ge11 g�)y

e2 = h3(G1;G2; id; Alice;Bob) e2 = h3(G1;G2; id; Alice;Bob)

$ = �(x+ e2) mod q

� = (G2)
$ � = (G1)

yge2y

K1 = h4(�) K2 = h4(�)

H11 = h5(G1;K1)
h(G1;K1)
�! H12 = h5(G1;K2)

verify H11
:
= H12

H21 = h6(G2;K1)
h(G2;K2)
 � H22 = h6(G2;K2)

verify H21
:
= H22

Figure 5: AMP+ Protocol

Note that G2 = g(xe1+�)y while � = g(x+e2)y. We should de�ne h6(x) = h(10jxj01) for AMP+.

3.4 AMP++

AMP++ is another form of perturbing the structural similarity between G2 and �(= �). The

di�erence in protocol setup is that Bob stores (id; � = g�(&+�)�1�) where � = h1(id; f(id;Bob); �).

Protocol run is di�erent that Alice chooses two ephemeral parameters such as x1 and x2.

Alice computes G0 = x1+� mod q and G1 = gx2 , sends them to Bob who will respond with G2.

We set $ = (x2��)
�1(x1+ex2) mod q so that Alice computes � = $�1(x1+ex2) mod q for

12

getting �. Bob gets � by computing (g)G0y(�)y(G1)
ey. Therefore, the agreed key is g(x1+ex2)y

while G2 = g(x2��)y .

Protocol Run. The following describes how to run AMP++. Note that the cases, x1 2

f0; 1g1, x2 2 f0; 1g
1, y 2 f0; 1g1, G0 2 f0; 1g

1 , G1 2 f0; 1g
1 , G2 2 f0; 1g

1, � 2 f0; 1g1,, and

their small subgroup con�nements must be avoided for a security reason.

Alice(id; �) Bob(id; �)

x1; x2 2R Zq

� = h1(id; f(id;B); �)

G0 = x1 + � mod q

G1 = gx2
id; x1+�; g

x2

�!

fetch (id; �)

y 2R Zq

g(x2��)y

 � G2 = (G1)
y�(&+�)y = (G1g

��)y

e = h2(G0;G1;G2; id; Alice;Bob) e = h2(G0;G1;G2; id; Alice;Bob)

$ = (x2 � �)�1(x1 + ex2) mod q

� = (G2)
$ � = gG0y�(&+�)y(G1)

ey

K1 = h3(�) K2 = h3(�)

H11 = h4(G0;G1;K1)
h(G1;K1)
�! H12 = h4(G0;G1;K2)

verify H11
:
= H12

H21 = h5(G2;K1)
h(G2;K2)
 � H22 = h5(G2;K2)

verify H21
:
= H22

Figure 6: AMP++ Protocol

3.5 AMPc

AMPc is a crippled version of AMP for allowing one-way authentication in a very restricted

environment where Bob is allowed only one random challenge and Alice is allowed only

one response to it. This protocol is inevitably vulnerable to a server impersonation attack.

However, our idea is that if a server is strongly wired, AMPc may be useful for strong authen-

tication even without encryption in two steps. For example, practically, by combining with

a digital signature scheme, AMPc can be a complete protocol like sf AMP only in two steps.

We de�ne a signature function S() and a veri�cation function V() for AMPc. We assume

Alice has a certi�cate of Bob but it can be sent to Alice in step 1. The protocol setup is the

same to that of AMP. We set $ = ye+ � mod q where � = h1(id; �).

13

Protocol Run. Note that the cases, x 2 f0; 1g1, y 2 f0; 1g1, G1 2 f0; 1g
1 , G2 2 f0; 1g

1,

� 2 f0; 1g1, and their small subgroup con�nements must be avoided for a security reason.

Alice(id; �) Bob(id; �)

x 2R Zq

G1 = gx

G1;S1
 � S1 = S(G1)

verify D(S1)

y 2R Zq

G2 = gy

e = h2(G1;G2; id; Alice;Bob)

� = h1(id; �)

$ = ye+ � mod q

� = (G1)
$

H1 = h3(�)
id;G2;H1
�!

e = h2(G1;G2; id; Alice;Bob)

fetch (id; �)

� = (G2)
xe�(&+�)x

H2 = h3(�)

verify H1
:
= H2

Figure 7: AMPc Protocol with Digtal Signature

The above protocol is an implicit salt version of AMPc but it is easy to get a symmetric setup

version by removing e where a server stores � or �. Of course, an explicit salt version must

need one more step for exchanging the assigned salt. AMPc with digital signature scheme

must be useful for secure web login by assuming Alice a signed active program such as a

signed Java Applet. Suppose that Alice is a signed Java Applet that can be downloaded

from a web server Bob; the signed applet is being widely used for preventing a hostile applet.

Then, our simple idea is embedding an uncerti�ed signature-veri�cation key (a public key)

of Bob into Alice because Alice is an active program signed by a certi�cate authority. That

is, we don't need to verify Bob's veri�cation key additionally. Otherwise, we can remove the

digital signature of G1 by simply imbedding gc in the singed Java Applet where c is a private

key of a server.

14

4 Analysis and Comparison

4.1 Security of AMP

Appendix A (Lemma 1,2 and Theorem 2) may be helpful for security discussion.

1. AMP provides perfect forward secrecy via the Di�e-Hellman problem and the discrete

logarithm problem (Lemma 2-2). That is, even if � (or �) is compromised, Eve cannot

�nd old session keys because she is not able to solve the hard problems.

2. Denning-Sacco attack is the case that Eve, who compromised an old session key, at-

tempts to �nd � or to make the oracle accept her[11]. For the purpose, Eve has to

solve the discrete logarithm problem even if g(x+e)y(= � = �) is compromised. It is also

infeasible to check the di�erence between e and � in g(x+e)y and g(x+�)y without solving

the discrete logarithm of gx. Therefore, AMP is secure against this attack (Lemma 2-1).

3. Replay attack is negligible because G1 should include an ephemeral parameter of Alice

while the others such as G2, H1 and H2, should include ephemeral parameters of both

parties of the session (Theorem 2-2,5). Finding those parameters corresponds to solv-

ing the discrete logarithm problem and each parameter is bounded by 2�l(k) < 2�k.

Therefore, both active replay and succeeding veri�cation are negligible.

4. Small subgroup con�nement is defeated and avoided by con�ning to the large prime-order

subgroup. An intentional small subgroup con�nement can be detected easily.

5. On-line guessing attack is detectable and the following o�-line analysis can be frustrated,

even if Eve attempts to disguise parties (Lemma 1, Theorem 2). Actually, Eve is able

to perform the on-line attack to either party but its failure is countable. Impersonation

of the party or man-in-the-middle attack is also infeasible without knowing � or �.

6. O�-line guessing attack is also infeasible because Eve cannot disintegrate G2 (Lemma 1,

Theorem 2). Partition attack is to reduce the set of passwords logarithmically by asking

the oracle in parallel with o�-line analysis, while chosen exponent attack is to analyze

it via her chosen exponent. Both attacks are infeasible because Eve cannot solve or

reduce y
0

= (x+ �)y(x + �
0

)�1 mod q for guessed passwords without knowing both x

and y.

7. Security against password-�le compromise is the basic property of AMP family except

AMPn that has a naked assumption (Lemma 1-2). Additionally, AMP, AMP+, AMP++,

and AMPc provides the stronger security against the password �le compromise by using

& without degrading the performance notably; they make such an attack much more

di�cult. That is, the password �le compromise does not allow dictionary attacks and

server impersonations. Even if & is compromised, a dictionary attack is still necessary

to impersonate a client.

15

4.2 E�ciency and Constraints

Efficiency. We examine the e�ciency of AMP and compare it with other related protocols.

1. In the aspect of a communication load, AMP has only four protocol steps while the

number of large message blocks is only two in AMP. They are G1 and G2. For AMP++,

the size of G0 can be bounded by l(k) + � with negligible � when we use a secure prime.

2. A total amount of execution time could be approximated by the number of modular

exponentiation by considering the parallel execution of both parties. We describe it as

E(Alice : Bob). Note that AMP has intrinsically only 3E, except that AMP++ has 4E

with explicit salt. AMP has E(gx : �), E(� : (G1)
y�(&+�)y) and E(G$2 : G

y
1g

ey) while all

variants have similar operations. Here '�' means no-modular-exponentiation such as

O((log n)3). Note that AMP operations should bene�t from the simultaneous multiple

exponentiation method for e�ciency[35, 28]. As for g1
e1g2

e2 , we don't need to compute

g1
e1 and g2

e2 separately. A simple description of the simultaneous method is as follows;

(a) t = length(e); // length of exponent : blog qc + 1

(b) gx = g1g2 mod p; // precomputation

(c) set() fG[0]=1; G[1]=g1; G[2]=g2; G[3]=gx;g

(d) A = 1;

(e) set() ffor(i=1;i<=t;i++) fBi = ExponentArray(i);gg

(f) for(i=1;i<=t;i++) fA = A*A mod p; A=A*G[Bi] mod p;g

(g) return(A);

Note that g1
e1g2

e2 needs 16% and g1
e1g2

e2g3
e3 needs 25% more multi-precision multi-

plications than g1
e1 does on the average[35, 28].

3. Each party of AMP performs only two exponentiations, respectively, regarding the

e�ciency of the simultaneous multiple exponentiation. It is the same to the number

in the Di�e-Hellman scheme though AMP needs more operations for larger base, Zq

operation or simultaneous exponentiation.

4. For run time parameters, each party generates only one random number, respectively,

in AMP family except for AMP++. Alice can reduce her run time exponentiations to

only once and parallel exponentiations to only twice, by pre-computation of gx. AMP++

needs Alice to generate two random numbers.

5. In step 3, Alice should compute (x+ �)�1 but only in the q-order subgroup. Modular

inversion, O((log q)2), is much less expensive than modular exponentiation, O((log p)3).

Moreover, the size of q can be bounded by only l(k) + � with negligible � by virtue of a

secure prime. Note that O(log l(k)) << O(log p). Therefore, it is quite negligible when

we consider modular exponentiation.

16

Protocol Large Exponentiations Random Numbers

Steps Blocks Client Server Parallel Client Server

A-EKE 7 (+4) 3 (+1) 4 (+2) 4 (+2) 6 (+3) 1 (+0) 1 (+0)

B-SPEKE 4 (+1) 3 (+1) 3 (+1) 4 (+2) 6 (+3) 1 (+0) 2 (+1)

SRP 4 (+1) 2 (+0) 3 (+1) 3 (+1) 4 (+1) 1 (+0) 1 (+0)

GXY 4 (+1) 2 (+0) 4 (+2) 3 (+1) 5 (+2) 1 (+0) 1 (+0)

SNAPI-X 5 (+2) 5 (+3) 5 (+3) 4 (+2) 7 (+4) 2 (+1) 3 (+2)

AuthA 5 (+2) / 3 (+0) 2 (+0) 4 (+2) 3 (+1) 6 (+3) 1 (+0) 1 (+0)

PAK-X 5 (+2) / 3 (+0) 3 (+1) 4 (+2) 4 (+2) 8 (+5) 1 (+0) 2 (+1)

AMP 4 (+1) 2 (+0) 2 (+0) 2 (+0) 3 (+0) 1 (+0) 1 (+0)

Table 1: Comparisons of Veri�er-based Protocols

6. AMP uses the main group operation so that it is easy-to-generalize in any cyclic groups.

Therefore, AMP can be easily implemented on the elliptic curve group. A generalization

on such a group must be very useful for further e�ciency of space and speed, though

there may be a patent restriction on the elliptic curve algorithms.

E�ciency can be compared to the other related protocols such as A-EKE, B-SPEKE, SRP,

GXY, SNAPI-X, AuthA and PAK-X[8, 19, 39, 22, 27, 6, 10]. Table 1 compares them with

regard to several factors such as the number of protocol steps, large message blocks, and

exponentiations. Note that the number of exponentiations of AMP is approximated; actually

2.32 for a server and 3.32 for parallel on the average. Note that AuthA and PAK-X have

�ve steps with explicit salt and three steps with implicit salt. We consider �ve as their steps

respectively because other protocols are the cases that use explicit salt. The use of explicit

salt does not a�ect any other parameters of AuthA and PAK-X except the number of steps.

The number of random numbers is given as a subsidiary reference. The number of parallel

exponentiations could compare approximately the amount of protocol execution time. The

value in parenthesis implies the di�erence from the most e�cient one that is denoted by bold

characters. Note that AMP provides the stronger security against the password �le compro-

mise compared to all the others in Table 1.

Constraints. AMP prefers g to be a generator of the large (> l(k)) prime-order sub-

group Zq for defeating and avoiding a small subgroup con�nement e�ectively by con�ning

exponentials into the large prime-order subgroup[30]. A secure prime modulus is higly recom-

mended for easy detection of an intentional small subgroup con�nement and great e�ciency

of the protocols though a safe prime modulus is also favorable. Note that the secure prime

is easier to get than the safe prime[24]. A compromise of � does not allow a guessing attack

17

steps blocks exp(c) exp(s) exp(p) rng(c) rng(s)

Th
e

N
um

be
r o

f E
ac

h
Ite

m

0

2

4

6

8

10

A-EKE
B-SPEKE
SRP
GXY
SNAPI-X
AuthA
PAK-X
AMP

Figure 8. Graphical Representation of Table 1

and a server impersonation without additional comromise of & that can be loaded to memory

from a secure storage like a smart card. As a strong veri�er-based protocol, AMP needs

an additional guessing attack complexity for a client impersonation even if � and & are all

compromised. AMP needs both parties to count the other side's on-line failure to detect the

on-line guessing attack. However, this is the shared requirement of all password protocols.

4.3 Why AMP

Figure 8 rewrites Table 1 graphically so that we can see AMP(�) has the best performance.

1. AMP is a secure password(-veri�er) based protocol on the basis of the ampli�ed pass-

word proof and the ampli�ed password �le, and its security is provable in the random

oracle model.

2. AMP is the most e�cient protocol among the existing veri�er-based protocols; AMP

provides the best e�ciency even with the ampli�ed password �le.

3. AMP has the light constraints and is easy to generalize, e.g., in elliptic curve groups for

further e�ciency.

4. AMP has several variants for various functional considerations.

5. AMP truly allows the Di�e-Hellman based key agreement.

6. AMP has a simple structure so that it is easy to understand and implement the protocol.

7. AMP is favorable to upgrading the existing system; AMP accommodates any kinds of

salt schemes without notable degrade of performance.

18

5 Conclusion

In this paper, we introduced a new protocol, AMP, for password authentication and key

agreement, by following the various notable predecessors. AMP has been designed on the

basis of the ampli�ed password proof and the ampli�ed password �le ideas. The adavan-

tages are well summarzied in section 4.3. We are considering several applications such as

A-Updates (A-Telnet, A-FTP, A-RADIUS, A-CHAP, and etc.), A-Web Login, AA-Gate, and

Networked Smart Card. Internet business and commercial services are growing rapidly while

personal privacy and security concerns are slower than those activities. Authentication is

undoubtedly very important. Though the hardware-dependent authentication methods are

growing steadily, the pure password authentication scheme is still reasonable in a distributed

environment, and the public-key based cryptographic protocol is the best solution for im-

proving its security. We should note that the only password authentication method can truly

authenticate the human mind over the network. For example, a private-key is not memorable

for human users even in the public key infrastructure so that we need a hardware storage.

We might keep using passwords over the Internet and in mobile environments even with the

hardware-supported authentication schemes such as smart card or biometric method. Ap-

pendices include the proof story and the geneology of password protocols.

Acknowledgment The author thanks Doug Tygar, David Wagner, David Jablon, Radia

Perlman and Li Gong for their helpful comments and kind suggestions on this work.

References

[1] R.Anderson and T.Lomas, \Fortifying key negotiation schemes with poorly chosen pass-

words," Electronics Letters, vol.30, no.13, pp.1040-1041, 1994

[2] R.Anderson and S.Vaudenay, \Minding your p's and q's," Asiacrypt'96, LNCS, 1996

[3] M.Bellare and P.Rogaway, \Entity authentication and key distribution," Crypto 93,

LNCS 773, 1993

[4] M.Bellare, R.Canetti, and H.Krawczyk, \A modular approach to the design and analysis

of authentication and key exchange protocols," STOC 98, pp.419-428, 1998

[5] M. Bellare, D. Pointcheval and P. Rogaway, \Authenticated key exchange secure against

dictionary attack," Eurocrypt 2000

[6] M.Bellare and P.Rogaway, \The AuthA protocol for password-based authen-

ticated key exchange," available from http://grouper.ieee.org/groups/1363/Study

Group/submissions.html#autha

19

[7] S.Bellovin and M.Merritt, \Encrypted key exchange : password-based protocols secure

against dictionary attacks," Proc. IEEE Comp. Society Symp. on Research in Security

and Privacy, pp. 72-84, 1992

[8] S.Bellovin and M.Merritt, \Augmented encrypted key exchange: a password-based pro-

tocol secure against dictionary attacks and password-�le compromise," Proceedings of

the 1st ACM Conference on Computer and Communications Security, pp. 244-250, 1993

[9] M.Boyarsky, \Public-key cryptography and password protocols: the multi-user case,"

ACM Conference on Computer and Communication Security, 1999

[10] V. Boyko, P. MacKenzie and S. Patel, \Provably secure password authenticated key

exchange using Di�e-Hellman," Eurocrypt 2000

[11] D.Denning, G.Sacco, \Timestamps in key distribution protocols," Commun. ACM,

vol.24, no.8, pp.533-536, 1981

[12] W.Di�e and M.Hellman, \New directions in cryptography," IEEE Transactions on In-

formation Theory, vol.22, no.6, pp.644-654, Nov. 1976

[13] Y.Ding and P.Hoster, \Undetectable on-line password guessing attacks," ACM Operat-

ing Sys. Review, vol.29, no.4, pp.77-86, Oct. 1995

[14] T.Elgamal, \A public-key cryptosystem and a signature scheme based on discrete loga-

rithms," IEEE Trans. Information Theory, vol.IT-31, no.4, pp.469-472, 1985

[15] L.Gong, M.Lomas, R.Needham, and J.Saltzer, \Protecting poorly chosen secrets from

guessing attacks," IEEE Journal on SAC., vol.11, no.5, pp.648-656, June 1993

[16] L.Gong, \Optimal authentication protocols resistant to password guessing attacks,"

IEEE Comp. Security Foundation Workshop,, pp. 24-29 June 1995

[17] S.Halevi and H.Krawczyk, \Public-key cryptography and password protocols," The 5th

ACM Conference on Computer and Communications Security, 1998

[18] D.Jablon, 'Strong password-only authenticated key exchange', ACM Comp. Comm. Re-

view, vol.26, no.5, pp.5-26, 1996

[19] D.Jablon, \Extended password key exchange protocols," WETICE Workshop on Enter-

prise Security, 1997

[20] D.Jablon, Personal Communication, May 2000

[21] T.Kwon and J.Song, \E�cient key exchange and authentication protocols protecting

weak secrets," IEICE Transactions on Fundamentals of Electronics, Communications

and Computer Sciences, vol.E81-A, no.1, pp.156-163, January 1998

20

[22] T.Kwon and J.Song, \Secure agreement scheme for gxy via password authentication,"

Electronics Letters, vol.35, no.11, pp.892-893, 27th May 1999

[23] T.Kwon, \Ultimate solution to authentication via memorable password," Contribu-

tion to the IEEE P1363 study group for Future PKC Standards, available from

http://grouper.ieee.org/groups/1363/StudyGroup/Passwd.html#amp

[24] C.Lim and P.Lee, \A key recovery attack on discrete log-based schemes using a prime

order subgroup," Crypto 97, pp.249-263, 1997

[25] M.Lomas, L.Gong, J.Saltzer, and R.Needham, \Reducing risks from poorly chosen keys,"

ACM Symposium on Operating System Principles, 1989, pp.14-18

[26] S.Lucks, \Open key exchange: how to defeat dictionary attacks without encrypting

public keys," The Security Protocol Workshop '97, April 7-9, 1997

[27] P.MacKenzie amd R.Swaminathan, \Secure network authentication with password iden-

ti�cation," Presented to IEEE P1363a, August 1999

[28] A.Menezes, P.van Oorschot, S.Vanstone, Handbook of applied cryptography, CRC

Press,Inc., 1997

[29] K.Nyberg and R.A.Rueppel, \Message recovery for signature scheme based on the dis-

crete logarithm problem," Eurocrypt 94, pp. 182-193, 1994

[30] P.van Oorschot and M.Wiener, \On Di�e-Hellman key agreement with short exponents,"

EUROCRYPT 96, pp. 332-343, 1996

[31] S.Patel, \Number theoretic attacks on secure password schemes," IEEE Symposium on

Security and Privacy, 1997

[32] S.Pohlig and M.Hellman, \An improved algorithm for computing logarithms over GF (p)

and its cryptographic signi�cance," IEEE Transactions on Information Theory, vol.24,

no.1, pp.106-110, 1978

[33] J.Pollard, \Monte carlo methods for index computation mod p," Mathematics of Com-

putation, vol.32, pp.918-924, 1978

[34] M.Roe, B.Christianson, D.Wheeler, \Secure sessions from weak secrets," Technical re-

port from University of Cambridge and University of Hertfordshire, 1998

[35] C.P.Schnorr, \E�cient identi�cation and signatures for smart cards," Crypto 89, LNCS,

pp.239-251, 1989

[36] M.Steiner, G.Tsudik, and M.Waidner, \Re�nement and extension of encrypted key ex-

change," ACM Operating Sys. Review, vol.29, no.3, 1995, pp.22-30

21

[37] G.Tsudik, E.van Herreweghen, \Some remarks on protecting weak keys and poorly-

chosen secrets from guessing attacks," Proc. 6th IEEE Comp. Security Foundation Work-

shop, 1993, pp.136-142

[38] V.Voydoc and S.Kent, \Security mechanisms in high-level network protocols," Comput-

ing Surveys, vol.15, no.2, June 1983, pp.135-171

[39] T.Wu, \Secure remote password protocol," Internet Society Symposium on Network and

Distributed System Security, 1998

A AMP Proof Story

A.1 A Communication Model

We assume all communication among interacting parties is under the adversary's control[3].

The Protocol. The protocol can be formally speci�ed by an e�ciently computable function

� for two players; set I 2 fA;Bg for Alice and Bob. Eve is not included in the players[3].

De�nition 8 Our protocol is a set of function �I(1
k; �; �; r) = (m; �; �) for I.

1k is the security parameter, k 2 N . � 2 f0; 1g� is the secret information of the sender.

� 2 f0; 1g� is the conversation so far. r 2 f0; 1g1 is the random coin ips of the sender.

m 2 f0; 1g� [f�g is the next message for a reply. � 2 fAccept;Reject; �g is the decision.

� 2 f0; 1g� [f�g is the agreed session key. For example, �s
A indicate Alice computes on

Bob's message and gives out an output in session s. Each party is formally modeled by an

in�nite collection of oracles; �i
A and �

j
B where i and j 2 N indicate the instances. Thus Eve

can call the oracles, �i
A and �

j
B , and attempts to obtain desired information.

The Long-lived Weak-key Generator. A long-lived weak-key(LW-key) generator is

W(1!(k); �; rG) where � 2 I [fEg and rG 2 f0; 1; g
1. Note that the LW-key may have a

length of k but its entropy is totally di�erent2 When we assume the strong-key length is only

k, i.e., our security parameter, the parameter !(k) means the low entropy of the LW-key.

Brute-forcing 2!(k) values is feasible whereas k is large enough against brute-forcing 2k val-

ues (hence 2!(k) << 2k). The point of the LW-key is that the adversary is denied by the

generator as like the long-lived key case[3] but it is acceptable in the probability of 2�!(k).

Our model agrees on W(1!(k); A; rG) = �, W(1!(k); B; rG) = �, and W(1!(k); E; rG) = �.

The Adversary. The adversary Eve is represented as a probabilistic machine E(1k; �E ; rE)

equipped with an in�nite collection of oracles �s
I for i 2 I and s 2 N [3]. Let Pr[] � 2�k be a

2Actually the LW-key, i.e., the password, is chosen by a human-user through a restricted input device.

22

negligible probability for our security parameter k. Eve is allowed to do everything she wants

except for solving the discrete logarithm problem as well as the Di�e-Hellman problem, and

�nding out a hidden-value in a negligible probability. Therefore, we can say; fPr[Discrete-

LogE(k)],Pr[Di�e-HellmanE(k)]g< 2�k where Discrete-LogE(k) and Di�e-HellmanE(k) are

such events. When the adversary is deterministic and restricts its action to faithfully convey-

ing each ow among oracles, i.e., matching conversations, she is called a benign adversary[3].

Let No-MatchingE(k) be the event that �s
i is accepted and there is no oracle �t

j which en-

gaged in a matching conversation. Eve communicates with the oracles via queries of the

form Q(i; s; n); Eve sends message n to the oracle of i. There are some special queries for

adversary such as Q(i; s; guess) for searching at most 2!(k) space with the LW-key generator,

and Q(i; s; compromise) for compromising a veri�er. Note that a compromise query converts

s to a compromised session for handling a password �le compromise[8]. Also note that the

number of failures of the query Q(i; s; guess) asked to fresh oracles is counted globally. We

de�ne that counter Ci for i 2 I. If �s
i has accepted, Eve is able to send other special queries;

Q(i; s; reveal) for compromising a session key, Q(i; s; corrupt) for compromising a password

and Q(i; s; test) for measuring adversarial success. Note that a corrupt query converts s to a

corrupted session for handling perfect forward secrecy[18], while a reveal query converts s to

a revealed session for handling a known-key attack (Denning-Sacco attack)[11].

The Sessions. Depending on the ability of the adversary, we can classify considerable ses-

sions as follows. There must be FreshSession and UnfreshSession. They can be converted to

SucceededSession or FailedSession. SucceededSession can be devided into MatchedSession and

No-matchedSession. Each session could allow the adversary to have some valid information

before running or examining those sessions. FreshSession can be devided into PureFreshSes-

sion in which valid information is never provided, and CompromisedButFreshSession where

the veri�er � is provided. UnfreshSession can be devided into RevealedSession that provides

g(x+e)y or K, and and CorruptedSession provides �. CompromisedUnfreshSession is negligible

because o�-line guessing attacks on � is inevitable in every protocol. The adversary is allowed

to use all of these session for achieving her goals.

Running The Protocol. Running a protocol � (with the LW-key generator W) in the

presence of Eve and k, means performing the following experiment in a given session: Choose

a string rG 2R f0; 1g
1 and �i =W(1k; i; rG), for i 2 I, and set �E =W(1k; E; rG). Choose a

string rsi 2R f0; 1g
1 for i 2 I and s 2 N , and a string rE 2R f0; 1g

1. Let �si = � for all i 2 I

and s 2 N . Run the adversary, E(1k; �E ; rE), answering oracle calls as follows. When E asks

a query, Q(i; s; n), oracle �s
i answers with (m; �) by computing (m; �; �) = �I(1

k; �; �si :n; r
s
i),

and sets �si = �si :n. The adversary chooses an oracle �s
i and asks as she wants.

Security Definition. The following de�nition is derived from work of Bellare and Rogaway[3],

23

and the following work of Stefan Lucks[26].

De�nition 9 Protocol � is a secure authenticated key exchange with a LW-key

generator W() if the following statements are true:

1. If two oracles have matching conversations, then both oracles accept and agree on the

identical key.

2. If it is the case that the oracles accept and agree on the same key, then the probability

of no-matching is negligible.

3. If Eve is benign, her probability of success is negligible.

4. If Eve has been rejected R times, the possible set of � decreases linearly, 2!(k) �R.

5. If Eve has been rejected R(< 2!(k)�1) times but �nally remains benign, her probability

of success is still negligible.

A.2 Security Examination

Note that we abbreviate & for convenience in this section. We show the security of our

protocol by inducing that the probability of success for adversary is negligible. Our most

favorite tools are, of course, Discrete-LogE(k) and Di�e-HellmanE(k).

Lemma 1 The probability of success is negligible for forging G1 or G2 in FreshSession of AMP.

Proof Sketch: The adversary Eve is allowed to ask Q(i; s;G1) or Q(i; s;G2) for FreshSession.

1. Let Eve choose x 2R Zq and ask Q(B; s; gx) in PureFreshSession. Then �B responds

with G2 = g(x+�)y . Eve could �nd �
0

= gy
0(x+e) by computing G2

(x+�0)�1(x+e) and

asking Q(B; s; guess) with �
0

2R f0; 1g
!(k) . However, she cannot verify �

0 :
= �, i.e.,

gy
0(x+e) :

= g(x+e)y, without submitting H
0

1 ahead of H2. The probability of successful

submission is 2�!(k). CB must count up the number of failures so that her attack can

be detected easily in only R trials where R is very small such that R << 2!(k)=2.

2. Let Eve choose x 2R Zq and ask Q(B; s; �x) in CompromisedButFreshSession. Note

that guessing attacks on � is not a concern in CompromisedButFreshSession. Then �B

responds with G2 = g(x+1)�y . Eve could �nd g�y simply by G
(x+1)�1

2 . However, as

long as she is not given �, she cannot compose g(x+e)y without �nding y. Finding y is

bounded by Pr[Discrete-LogE(k)] so that it is negligible.

3. Let Eve choose c 2R Zq and ask Q(A; s; gc) where she is given G1 in PureFreshSession.

Then �A responds with H1 by getting � = (G
0

2)
(x+�)�1(x+e). We can rewrite c =

(x + �
0

)y
0

mod q where �
0

and y
0

are variables. Eve must �nd y
0

such that y
0

�

c(x+�
0

)�1(mod q) for getting �
0

= (G1g
e)y

0

and verifying �
:
= �

0

. For the computation

24

of y
0

, it is necessary to know x of G1. However, getting x from G1 is bounded by

Pr[Discrete-LogE(k)] so that it is negligible.

4. Let Eve choose y 2R Zq and �
0

2R f0; 1g
!(k), and ask Q(A; s;G

0

2) where she is given

G1 in PureFreshSession and G
0

2 = (G1g
�0)y. Then �A responds with H1 by computing

� = (G
0

2)
(x+�)�1(x+e), but note that � = (g(x+�

0)y)(x+�)
�1(x+e), i.e., � = gy

0(x+e) rather

than gy(x+e) where y
0

� (x+ �0)y(x+ �)�1(mod q). Finding y
0

or � is the only way for

Eve to be accepted by the oracle.

(a) x chosen by �A, x 2R f0; 1g
>l(k), is not given to Eve. We can say that � = �

0

if

and only if y
0

� y(mod q). It corresponds to the on-line attack. (i) Let Eve attempt to

verify �
:
= �

0

. However, �
0

is rather a constant because she de�ned it before receiving

H1 from �A. Eve cannot replace �
0

for further veri�cation without retrying it on line.

The probability of � = �
0

is 2�!(k); an extremely low probability for on-line success.

Due to the maximum count of on-line failure, CA = R, she must be denied by the oracle

before trying 2!(k) �R more guesses. The probability of � 6= �
0

is very high such that

Pr[] � 1 � 1
2!(k)�R

. Therefore, we can say hereafter �
0

is a constant such that � 6= �
0

in this case. (ii) Let Eve attempt to �nd y
0

but she has to know x for attempting the

equation, y
0

� (x+�0)y(x+�)�1(mod q). Finding x from G1 is bounded by Pr[Discrete-

LogE(k)] so that it is negligible. Even if Eve computes �
0

= (G1g
e)y = g(x+e)

y

, it is

clear that � 6= �
0

when � 6= �
0

. Thus, the probability of �nding y
0

is Pr[] < 2�k.

(b) Let Eve guess �
00

2R f0; 1g
!(k) and compute �

00

= G
00

2 g
��00y = g(x+e+�

0)y��00y for

verifying �
00 :
= � in 2�!(k) probability, rather than attempt to replace �

0

with �
00

, where

G
00

2 = (G1g
eg�

0

)y. If �
00

= � with guessed �
00

, she can be convinced � = �
00

. Thus, if the

equation, (x+�
0

)y(x+�)�1(x+ e) � (x+ e)y+�
0

y��
00

y(mod q) is true, then she can

�nd � in 2�!(k) probability, regardless of x and �
0

. Otherwise, she has to �nd x �rst. We

can rewrite it as, (x+�
0

) 6 y(x+�)�1(6 x+ 6 e) � (6 x+ 6 e) 6 y(1+�
0

x�1��
00

x�1)(mod q).

That is, (x+�
0

)(x+�)�1 � (1+�
0

x�1��
00

x�1)(mod q). We can transpose (x+�)�1 so

that, (x+�
0

) � (x+�)+(x+�)�
0

x�1�(x+�)�
00

x�1 � x+�+�0+��
0

x�1��
00

���
00

x�1

� (x + �
0

) + (� � �
00

) + (�
0

� �
00

)�x�1 (mod q). Then, we can transpose (x + �
0

)

so that; 0 � (� � �
00

) + (�
0

� �
00

)�x�1(mod q). Therefore, the equality such that,

� = �
0

= �
00

(due to � = �
00

and �
0

= �
00

), is the mandatory requiremet of this modular

equation. However, the probability of success is negligible because � 6= �
0

with very

high probability as we mentioned above in (a). Therefore, Eve must �nd x for getting

�. The probability of verifying �
00 :
= � is Pr[] < 2�k.

After all, the probability of success is negligible for forged queries in FreshSession. �

Theorem 2 AMP is a secure authenticated key exchange protocol with W().

Proof Sketch: We deal with each condition of De�nition 9.

1. A completeness of the protocol in MatchedSession is already shown in Figure 1.

25

2. The �nal acceptance means both H1 and H2 are successfully veri�ed. Therefore, we

have to scrutinize whether it is possible in No-matchedSession. If it is not true, we may

have Pr[No�MatchingE(k)] � 2�k.

(a) The birthday paradox is negligible due to the nature of the random oracle, hi() :

f0; 1g� ! f0; 1gl(k); the probability is 2�
1
2
l(k)
� 2�k.

(b) Due to item (a), the correct value K(= K1 = K2) is mandatory for the acceptance

even in sf No-matchedSession. For �nding K, Eve must obtain � or � due to the

one-way property of random oracles. i) The probability of guessing g(x+e)y(= � = �)

in PureFreshSession is Pr[] < 2�k. ii) Rewrite � and � where G1 = glog G1 and G2 =

(G1�)
(log G1+�)

�1 log G2 , i.e., � = (G2)
(log G1+�)

�1(log G1+e) = (G1g
e)(log G1+�)

�1 logG2 = �.

For G1 there is nothing ahead, but for G2 we need G1. Note that (G1;G2)! e. Thus, we

can �nd easily the ows, (G1 ! G2 ! e ! �) and (G1 ! G2 ! e ! �). Without such

ows, the exponents of G1 and G2 must be analyzed but the probability is Pr[] � 2�l(k)

even with a forged attempt by Lemma 1.

After all, we have Pr[No�MatchingE(k)] � 2�k so that it is infeasible inNo-matchedSession.

3. When Eve is benign, all she receives from the oracle are fid; �;G1;G2;H1;H2g for

every session where their internal values, x and y, are independent random values

from f0; 1g>l(k). Therefore, gx, gy, and their composition on the cyclic group must be

well distributed on the group. We assume the uniform distribution. Since W(E) = �

and G2 = (G1g
�)y, the probability of �nding gy

0

by guessing �
0

in G1 and G2, is less than

2�(!(k)+l(k)). For verifying the guess of �
0

, Eve must �nd � or � for asking the random

oracle. However, �nding g(x+e)y over gx and g(x+�)y without � must be bounded by

Pr[Di�e-HellmanE(k)] so that it is negligible. Therefore, the probability of success for

benign Eve is Pr[] < 2�k.

4. Since G1 and G2 remain on the cyclic group under uniform distribution, there is no way

to �nd the relationship between the rejected guesses and the remaining guesses. Other

possibilities are all negligible by Lemma 1. If Eve is rejected, she must reduce the set

by one, 2!(k)� 1, and try again with another guess. That is, the set is reduced linearly.

Therefore, the success probability of her on-line guess is only Pr[] � 1
2!(k)�R�c

for very

small c(� 0). She must be denied by the oracle only in R trials by Lemma 1.

5. Assume all Cis are set o� and Eve has been rejected with di�erent guesses 2!(k) � 2

times by the oracle, then she could have bernoulli trial on two remaining guesses; if

one is rejected then the other is the one and vice versa. However, assume Eve does not

participate in FreshSession any more but she only be benign in FreshSession. Then, she

is only able to analyze all rejected messages and new eavesdropped messages equipped

with bernoulli trial on guess. For actual participation, the probability was less than

2�k by Lemma 1. For her analysis, the probability is 2�(l(k)+1)(< 2�k) by item 3 of this

proof. Hence, the probability of success for partially benign Eve is negligible. That

26

means if Eve attempts o�-line analysis even with a small dictionary, she does not have

any advantage without knowing x or y for each message.

AMP is a secure authenticated key exchange protocol with a LW-key generator W(). �

Lemma 2 The adversary does not bene�t from RevealedSession or CorruptedSession for achiev-

ing each goal.

Proof Sketch: Eve attempts to �nd � or � in RevealedSession while she attempts to �nd K

or �(= �) in CorruptedSession. If Eve bene�ts from each session, the given information must

make non-negligible probability of success or make some advantage for the query Q(i; s; test).

1. Let Eve ask Q(i; s; reveal). Then she is given K and �(= �) in RevealedSession.

Due to the one-way property of random oracles, we assume �(= �) is given. Since

�(= �) is not re-usable due to x and y, she cannot attempt to be granted on-line.

For tracking to � or �, she must be also in MatchedSession. Then we say she is given

fid; �; e; gx; g(x+�)y ; g(x+e)y ;H1;H2g with matching-conversations. For verifying �
0

and

�
0

, she should make g(x+�
0)y on the given information but she cannot make it without

�nding y. Otherwise, she has to �nd x for �nding gy from g(x+e)y and making gy(x+�
0).

Both are still bounded by Pr[Discrete-LogE(k)]. It is not di�cult to understand Re-

vealedSession is not advantageous to Eve.

2. Let Eve ask Q(i; s; corrupt). Then she is given � and � in CorruptedSession. Due to the

one-way property of random oracles, we assume � is given. For tracking to K or �(= �),

she must be also inMatchedSession. Then she is also given fid; �; �; e; gx ; g(x+�)y ;H1;H2g

with matching-conversations. For making g(x+e)y, she should remove $ from g$y and

�nd y where $ = x+ �. Finding $ includes x so that both �ndings must be bounded

by Pr[Discrete-LogE(k)]. Even if we assume $ is removed, the problem is still bounded

by Pr[Di�e-HellmanE(k)]. It is not di�cult to understand CorruptedSession is not ad-

vantageous to Eve. �

27

1989

1992

1993

1994

1995

1996

1997

1998

1999

2000

LGSN [25]

EKE [7] DH-EKE [7]

GLNS [15] A-EKE[8]

AL [1]

Gong [16] M-EKE [36]

SPEKE[18]

B-SPEKE [19]

SRP [39]

OKE [26]

KS [21]S3P [34]HK [17]

Boyarsky [9]

AMP [23]

SNAPI [27]

SNAPI-X[27]

Figure 9. Password Authentication Protocols

B Genealogy of Password Protocol

PAK [10]

3

3 The above genealogy is typically based on the opinion of the author. We analyzed all the protocols
carefully and arranged them in the figure by considering their similarity or improvement. However, each
author of the protocols could have different opinions. At this moment, we would like to make it clear
that the above genealogy is only one of good references.

KS-II [21]

AuthA [6]
PAK-X[10]

GXY [22]

TH [37]

A-SPEKE [19]

28

