
Preliminary draft.

The Security of Cha�ng and Winnowing

Mihir Bellare� Alexandra Boldyrevay

January 2000

Abstract

This paper takes a closer look at Rivest's cha�ng-and-winnowing paradigm for data privacy.

We begin with a de�nition which enables one to determine clearly whether a given scheme

quali�es as \cha�ng-and-winnowing." We then analyze Rivest's schemes to see what quality

of data privacy they provide. His simplest scheme is easily proven secure but is ine�ent. The

security of his more e�cient scheme |based on all-or-nothing transforms (AONTs)| is however

more problematic. It can be attacked under Rivest's de�nition of security of an AONT, and

even under stronger notions does not appear provable. We show however that by using a OAEP

as the AONT one can prove security. We also present a di�erent scheme, still using AONTs,

that is equally e�cient and easily proven secure even under the original weak notion of security

of AONTs.

Keywords: Message authentication, symmetric encryption, proofs of security, cryptographic pol-

icy.

�Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,

California 92093, USA. E-Mail: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir. Supported in

part by NSF CAREER Award CCR-9624439 and a 1996 Packard Foundation Fellowship in Science and Engineering.
yDept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La

Jolla, California 92093, USA. E-mail: aboldyre@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/aboldyre.

Supported in part by grants of �rst author.

1

Contents

1 Introduction 3

1.1 Background, motivation and questions . 3

1.2 De�ning cha�ng and winnowing . 4

1.3 Security of Rivest's schemes . 4

1.4 New schemes . 5

1.5 Is cha�ng and winnowing \encryption"? . 6

2 Symmetric encryption, PRFs and AONTs 6

3 De�ning cha�ng and winnowing 8

4 Bit-by-Bit CW 10

5 The scattering scheme 12

6 A new cha�ng and winnowing scheme 15

References 18

2

1 Introduction

Rivest presents a number of methods to achieve data privacy based on a paradigm he calls \cha�ng

and winnowing" [8]. In this paper we

| Provide a de�nition of cha�ng and winnowing

| Assess whether the schemes of [8] can be proven to meet standard data-privacy goals, and,

if so, under what kinds of assumptions on the underlying primitives

| Suggest more e�cient schemes and analyze their security.

Let us �rst provide some background and motivation, and see what are the basic questions. Then

we discuss our contributions in more detail.

1.1 Background, motivation and questions

Cha�ng and winnowing uses a message authentication code (MAC) to provide privacy. This by

itself is hardly novel, particularly since Rivest notes that in order to have privacy the MAC must

be a pseudorandom function| there are many well-known ways to use a pseudorandom function

to provide privacy. The interest of cha�ng and winnowing arises from the particular manner in

which the MAC is used, which is roughly the following. Each data block is authenticated so that

one has a sequence of data-MAC pairs. Then \cha�" is interspaced, this consisting of pairs, each

being a block with a random tag. The receiver can discard blocks with invalid tags |this is called

\winnowing"| thereby recovering the data. (Within this framework, many speci�c methods are

possible.) Privacy requires that it be computationally infeasible for an adversary to tell valid MACs

from random tags. (But is also very sensitive to the manner in which cha� is interspaced.) Rivest

argues that the use of the MAC here stays within its functionality as an authentication mechanism,

and thereby makes moot a policy that restricts \encryption" while allowing authentication.

Cha�ng-and-winnowing has received a lot of attention on the political front, but little on the

technical front barring that in the initial paper. It merits more serious attention from cryptogra-

phers. An immediate reason is that a better technical understanding leads to a better understanding

of the implications for the debate on cryptographic policy. The more important reason however is

foundational. As Rivest notes in introducing his idea, there are very few paradigms for cryptogra-

phy's main goal, namely data privacy. A new paradigm such as the one he presents should to be

explored in order to assess its potential.

The description and examples in [8] su�ce to get the gist of the idea, but as we consider more

complex mechanisms it is sometimes di�cult to decide whether they obey the \rules of the game."

A de�nition is needed to settle such questions, and also for rigorous security analyses. Accordingly,

we begin there.

Cha�ng and winnowing purports to provide data-privacy. A basic question is about the qual-

ity of privacy that it can provide. Speci�cally we want to know how it compares to standard

mechanisms such as modes of operation of a block cipher, which have been proven to meet strong,

well-de�ned notions of privacy under appropriate assumptions [1]. Can cha�ng and winnowing

based schemes provide the same level of privacy, and, if so, can this be proven, and under what

assumptions?

The �nal question we want to address is the cost of the method. How cost-e�ective can cha�ng

and winnowing be, especially compared to standard encryption mechanisms?

3

1.2 De�ning cha�ng and winnowing

The security goal of a cha�ng and winnowing scheme is to provide privacy in a symmetric setting.

Accordingly, from the security point of view, it is |in fact, must be| treated simply as a sym-

metric encryption scheme. There is some \encryption" process that takes a message and creates a

\ciphertext", and some \decryption" process that takes the ciphertext and recovers the message,

both operating under a common secret key. (This is the key for the MAC.) These processes are not

implemented in \usual" ways, but, abstractly, they must exist, else it is moot to talk of achieving

privacy. Once this is understood, security can be measured using any of several well-known notions

in the literature. (We adopt the simplest, namely the \�nd-then-guess" notion of [1], which is the

most direct extension to the symmetric case of the notion of indistinguishability of [7].)

Thus what de�nes cha�ng and winnowing as a \notion" is not some novel security property

but rather a novel set of restrictions on the processes (namely encryption and decryption) directed

at achieving a standard security property (namely data privacy). The crux of the de�nition is to

pin down these restrictions. We view a cha�ng and winnowing based encryption scheme as arising

by the use of an authentication to privacy transform (ATPT) over a MAC-based authentication

channel.

The channel captures the manner in which the parties have access to the MAC function

MAC(K; �). An application on the sender side can pass data down to be MACed, thereby cre-

ating a packet (data-MAC pair) which is transmitted over the channel. (The application has no

direct access to the MAC(K; �) function let alone to the underlying key K.) At the receiving end,

packets with invalid MACs are dropped and the data from valid packets is passed up to the receiv-

ing application. (The latter sees no MACs and does not even know of the existence of the dropped

packets.) See Figure 1 and De�nition 3.1.

The ATPT consists of three algorithms whose important feature is that they are all entirely

keyless. The sending application applies a MakeWheat algorithm to the plaintext to turn it into a

sequence of data blocks to be passed to the authentication channel. (In one of Rivest's schemes,

this algorithm uses an all-or-nothing transform.) An AddCha� procedure is responsible for inter-

spacing cha� packets into the stream of valid packets output by the authentication channel. Finally

the receiving application applies a Recover algorithm to the received data blocks to get back the

plaintext. See De�nition 3.2.

We stress again that the algorithms in the ATPT are keyless, so that on their own they cannot

be used to provide privacy. The cha� and winnow based encryption scheme is realized by coupling

these algorithms with the authentication channel. This is illustrated in Figure 2.

This de�nition can help clarify the contribution of cha�ng and winnowing to the debate on

cryptographic policy by providing a means to evaluate whether a particular method quali�es as

\legal encryption based on authentication." If one scheme meeting the de�nition quali�es, so do

the rest, even if their implementation is more complex.

1.3 Security of Rivest's schemes

Rivest notes that his �rst few examples will not provide a high level of privacy. (In particular

they will not meet a notion of privacy such as �nd-then-guess.) The �rst serious candidate is the

bit-by-bit scheme.

Bit-by-bit scheme. Here the MakeWheat procedure splits the plaintext into bits and appends a

counter or nonce to each bit. These data blocks are MACed. The AddCha� procedure inserts, for

every valid packet, an invalid packet with the opposite bit value and an appended nonce, together

with a random value for the tag. We prove that this scheme provides privacy in the �nd-then-guess

4

sense assuming the MAC is a pseudorandom function. The concrete security analysis is provided

in Theorem 4.2.

This indicates that cha�ng and winnowing can provide privacy of as high a quality as standard

encryption schemes, and furthermore with provable guarantees based on the same assumption |

namely a pseudorandom function| used to prove the security of popular block cipher modes of

operation. There is however a high cost in bandwidth: two nonces and two tags are needed per bit

of plaintext.

Scattering schemes. In order to reduce the bandwidth, Rivest suggests an alternative paradigm.

First apply an all-or-nothing transform (AONT) [9] to the plaintext. (This is a keyless, invertible

transform with the property that inversion is hard if any block of the output is missing.) Each block

of the output of the AONT is MACed, resulting in a stream of valid packets. Then s0 cha� packets

are inserted into random positions in this stream. Intuitively, an adversary must guess the positions

of all s0 cha� packets in order to decipher. (Accordingly it is suggested that security will be provided

for a value of s0 that does not depend on the length of the plaintext, eg. s0 = 128, so this method

is cost-e�ective for long plaintexts.) Upon closer examination, however, the security provided by

this paradigm is unclear. We note �rst that under the original de�nition of an AONT provided in

[9] the scheme is insecure. (We show that there are example AONTs that meet the de�nition of [9]

but for which there are attacks compromising the privacy of the cha�ng and winnowing scheme.)

It is natural to then try to use Boyko's stronger de�nition of security for an AONT [5]. In that case

the analysis is inconclusive: the stronger property of an AONT still does not appear to su�ce to

prove security of the cha�ng and winnowing scheme, but neither do we exhibit a counter-example

that con�rms this. We would prefer a mechanism for which a proof is possible.

Scattering with OAEP. The above-mentioned analyses indicate that in general an AONT seems

neither necessary nor su�cient as the initial transform to provide privacy of the scattering based

cha�ng and winnowing scheme. We show however that if the OAEP transform of [4] is used as

the AONT, then privacy can be proved. (This, like all security proofs involving OAEP, is in a

random oracle model [3]). The concrete security analysis provided in Theorem 5.2 supports the

intuition regarding the scattering scheme provided in [8]| the probability of breaking the scheme

is inversely proportional to
�s+s0

s

�
where s is the number of blocks in the output of OAEP and s0 is

the number of cha� blocks.

Note that OAEP has been shown to be a secure AONT [5], but given the above we cannot

exploit this here. Instead, our proof is direct, based on techniques from [4, 5].

1.4 New schemes

Recall that the motivation for the scattering scheme was to reduce bandwidth relative to the bit-

by-bit scheme. The security is provable in a speci�c case, namely when the AONT is OAEP. We

would prefer a method that could be more generally instantiated and proven secure, and also had

the potential to avoid the random oracle model in analyses.

We point out that there is indeed an alternative method that is simpler, can be proven secure,

and is equally cost-e�ective. It too makes use of AONTs, but requires them only to meet the weak

security requirement of [8] as opposed to the strong one of [5]. (This makes it more likely that

random oracles are not required for a secure instantiation.) Apply the AONT to the plaintext

as before. Rather than scattering cha� into the output blocks, however, simply treat a pre�x of

this output as the plaintext for the bit-by-bit cha�ng and winnowing scheme and apply the latter.

In other words, we are suggesting that one can use a general paradigm: apply an AONT to the

plaintext and then encrypt a pre�x of the output of the AONT. Theorem 6.2 provide a concrete

5

security analysis of this paradigm at a general level, and Corollary 6.3 summarizes the security

of the �nal cha�ng and winnowing scheme. (It is surprising that this simpler method was not

suggested earlier in this setting. The reason could be that it was unclear whether it really met

the \rules of the game" in terms of being a cha�ng and winnowing scheme. Having a de�nition

enables us to answer this, and in fact we show that it does meet the de�nition.)

1.5 Is cha�ng and winnowing \encryption"?

We view cha�ng and winnowing schemes as (special kinds of) symmetric encryption schemes, the

key for encryption and decryption being that of the MAC function. This might at �rst seem to

contradict Rivest's view [8]. He says that the process of cha�ng and winnowing is \not encryption"

and that there is no \decryption key." These views are not at odds with each other; the di�erence

is purely in terminology. We are using the technical terminology of cryptographers which is more

suited to security analyses, while Rivest uses the terminology of cryptographic policy discussion.

(The convention in modern cryptography, which we are following here, is to use the term \encryption

scheme" for any mechanism whose goal is to provide privacy. Under this convention, the key for

the MAC is, by de�nition, a decryption key, since it enables recovery of the plaintext from the

ciphertext. In cryptographic policy, \encryption" seems to refer to certain mechanisms rather than

a goal. Actually, exactly what it refers to is unclear, which is part of the point made in [8].)

2 Symmetric encryption, PRFs and AONTs

We wish to assess the (concrete) security of certain cha�-and-winnow based con�dentiality pro-

cedures when viewed as symmetric encryption schemes, assuming the underlying MAC is a pseu-

dorandom function. To do this we need to briey recall formal notions of security for symmetric

encryption and PRFs. We also need security de�nitions for all-or-nothing transforms which are

used in some schemes.

Symmetric encryption. A symmetric encryption scheme SE = (K; E ;D) consists of a (ran-

domized) key generation algorithm K (returning a key K), a (randomized or stateful) encryption

algorithm E (taking K and a message M 2 f0; 1g� to return a ciphertext C) and a decryption algo-

rithm D (taking K and a ciphertext and returning a message). We require that DK(EK(M)) =M

for all M 2 f0; 1g�. In the \�nd-then-guess" model [1] an adversary is given an oracle for encryp-

tion under key K and wins if it can �nd two equal-length messages whose ciphertexts it can later

distinguish. Below we associate to any adversary an \advantage" which measures its winning prob-

ability, and then use as security measure of the scheme the maximum possible advantage subject

to stated resource restrictions on the adversary.

De�nition 2.1 [Find-then-guess security of encryption, [1]] Let SE = (K; E ;D) be a sym-

metric encryption scheme. For an adversary A and b = 0; 1 de�ne the experiment

Experiment Exp
priv
SE

(A; b)

K
R
 K ; (M0;M1;St) AEK(�)(�nd) ; C EK(Mb) ; d AEK (�)(guess; C;St)

Return d

It is mandated that jM0j = jM1j above. Now de�ne the advantage of A and the advantage function

of the scheme respectively, as follows:

Adv
priv
SE

(A) = Pr
h
Exp

priv
SE

(A; 0) = 0
i
� Pr

h
Exp

priv
SE

(A; 1) = 0
i

Adv
priv
SE

(t; q; �) = max
A
fAdv

priv
SE

(A) g

6

where the maximum is over all A with \time-complexity" t, making at most q encryption oracle

queries, these totalling at most � bits.

In this paper for simplicity we assume that all messages encrypted have the same length, usually

denoted m. This means that � = mq. We also assume that the length of each of the challenge

messages is m. The \time-complexity" refers to the worst case execution time of experiment

Exp
priv
SE

(A) plus the size of the code of A, in some �xed RAM model of computation. We are

considering only chosen-plaintext attacks, not chosen-ciphertext attacks.

Pseudorandom functions. Consider a map F : f0; 1gk � S ! f0; 1gl which takes a key K 2

f0; 1gk and an input x from the domain S to return an output y = F (K;x). The domain S is

for convenience f0; 1g�, or at least the set of all strings of length up to some very large maximum

length. The notation g
R
 F is shorthand for K

R
 f0; 1gk ; g F (K; �). We let R denote the

family of all functions of S to f0; 1gl so that g
R
 R denotes the operation of selecting at random

a function of S to f0; 1gl. A distinguisher D is an algorithm that takes an oracle for a function

g : S ! f0; 1gl, and after computing with this oracle returns a bit. The following is the notion of

[6] concretized as per [2].

De�nition 2.2 Let F;R be as above, let D be a distinguisher, and suppose t; q; � � 0. De�ne the

advantage of D, and the advantage function of F , respectively, as

Adv
prf
F (D) = Pr

h
Dg = 1 : g

R
 F

i
� Pr

h
Dg = 1 : g

R
 R

i

Adv
prf
F (t; q; �) = max

D
fAdv

prf
F (D) g :

where the maximum is over all D with time-complexity at most t, making at most q oracle queries,

these totalling at most � bits.

All-or-nothing transforms. Rivest [9] de�nes an all-or-nothing transform as an e�ciently

computable, keyless, randomized transformation AONT which maps a message to a sequence of

blocks and has the following properties: Given the AONT of some message, one can easily compute

the original message, and given all but one of the output blocks, it is computationally infeasible

to get any non-trivial information about the message. The (deterministic) inverse transformation

permitting recovery of the message from the output is dentoted AONT�1.

We will Rivest's formalization of security |rather than the stronger requirement of Boyko's

[5]| because Rivest's notion is easier (or at least, no harder) to achieve and su�ces for our new

scheme.

We assume for simplicity that the AONT takes input messages of length m and has outputs of

length sn. The attack allowed is non-adaptive, meaning the adversary �xes beforehand the position

of the output block that will be omitted. Denote this by L 2 f1; : : : ; sg. During the �nd stage

the adversary comes up with a pair of messages M0 and M1, both of length m. In its guess stage

it is given a AONT for one of the plaintexts M0;M1, with block L missing. The adversary wins

if it correctly guesses which message goes with the challenge AONT. (The stronger requirement

made by Boyko is that an adversary can choose any subset of the bit positions to play the role

of the missing bits, not just a block of contiguous bits.) If X 2 f0; 1gsn is a string of s blocks,

each n-bits long, then we let X[1; : : : ; L � 1; L + 1; : : : ; s] denote the string consisting of blocks

1; : : : ; L� 1; L+ 1; : : : ; s of X, meaning all but block L.

De�nition 2.3 Let AONT be a (possibly randomized) algorithm taking inputs of length m and

returning outputs of length sn. Let L 2 f1; : : : ; sg be a block number. For b = 0; 1 de�ne the

experiment

7

dt1; : : : ;dtn (dt1; tg1); : : : ; (dtn; tgn)

Sender ReceiverChannel

dt1; : : : ;dtnTagMAC(K;�)

ApplicationApplication

WinnowMAC(K;�)

Figure 1: Authentication channel: An application on the sender side can put out a data stream

dt1; : : : ;dtn. This is passed to a \tagging" procedure which invokes MAC(K; �) to append a MAC

to each item, resulting in a stream of packets (dt1; tg1); : : : ; (dtn; tgn) where tgi = MAC(K;dti) for

i = 1; : : : ; n. This packet stream is transmitted across the channel. A receiving procedure uses

MAC(K; �) to \winnow" an incoming stream of packets: packets with invalid tags are discarded and

the data from packets with valid tags is passed up to the receiving application. The applications

do not have direct access to MAC(K; �) let alone to the underlying key K.

Experiment ExpaontAONT;L(A; b)

(M0;M1;St) A(�nd) ; C AONT(Mb)[1; : : : ; L� 1; L+ 1; : : : ; s] ; d A(guess; C;St)

Return d

Now de�ne the advantage of A and the advantage function of AONT, respectively, as follows:

AdvaontAONT;L(A) = Pr
h
ExpaontAONT;L(A; 0) = 0

i
� Pr

h
ExpaontAONT;L(A; 1) = 0

i

AdvaontAONT;L(t) = max
A
fAdvaontAONT;L(A) g

where the maximum is over all A with \time-complexity" t.

3 De�ning cha�ng and winnowing

Fix for reference a map MAC: f0; 1gk � f0; 1g� ! f0; 1gl to be used as a message authentication

code. (Security assessments will assume that this map is a pseudorandom function, but discussions

and constructions will refer to it as a MAC.) A packet is a pair (dt; tg) consisting of data dt and a

tag tg where the length of tg is l-bits, the length of the output of MAC. A packet (dt; tg) is valid

with respect to MACK |where K 2 f0; 1gk is some key for the MAC| if MACK(dt) = tg, and

invalid with respect to MACK otherwise. When MACK is understood, we simply talk of valid and

invalid packets.

The sender and receiver have an authenticated channel of communication based on the MAC.

Each party has a module responsible for authentication. These modules hold in common a key

K 2 f0; 1gk for the MAC. When the sender wants to send data dt to the receiver in an authenticated

way, the sender passes dt to its authentication module, which creates the (valid) packet Pkt =

(dt;MAC(K;dt)). This packet is sent to the receiver. We call this the \tag" procedure. The packet

is received by the receiver's authentication module, which veri�es the tag. If the tag is valid, it

passes the data \up" to the receiver. If the tag is not valid, the packet is simply discarded; nothing

is passed up to the receiver. The receiving module thus acts as a \�lter", separating \wheat"

(valid) packets from \cha�" (invalid) packets, and passing to the receiver only the data from the

valid packets. This is what [8] calls the \winnow" procedure. The two procedures are speci�ed in

detail below, and the channel is depicted in Figure 1.

8

MakeWheat

M

Pkt01 Pkt0n0

WinnowMAC(K;�)

M

Recover

AddCha�

S
e
n
d
e
r

R
e
c
e
iv
e
r

(w1; tg1)| {z }
Pkt1

TagMAC(K;�)

(wn; tgn)| {z }
Pktn

w1 wn

w1 wn

The (plaintext) message M is �rst processed by

a (keyless) transform MakeWheat to yield a se-

quence w1; : : : ; wn of strings, each of which is

MACed to yield a stream Pkt1 = (w1; tg1), : : : ,

Pktn = (wn; tgn) of valid packets, where tgi =

MAC(K;wi) for i = 1; : : : ; n. The (keyless)

AddCha� procedure adds cha� packets to produce

a new stream Pkt01; : : : ;Pkt
0

n0 of packets (the ci-

phertext) which is sent to the receiver. They hit

the receiver's winnow (cf. De�nition 3.1) which

discards packets with invalid MACs, and passes up

to the receiver the data dt1; : : : ; dtn from the valid

packets. A (keyless) Recover procedure now puts

this data together to get back the original mes-

sageM . The three keyless algorithmsMakeWheat,

AddCha�, and Recover comprise what we call the

ATPT (authentication to privacy transform)|

they enable the possibility of obtaining con�den-

tiality via an existing authentication channel with-

out the addition of any extra cryptographic ele-

ments.

Figure 2: Cha�-and-winnow based \encryption".

De�nition 3.1 [MAC-based tag and winnow procedures] We associate to a MAC function

MAC: f0; 1gk � f0; 1g� ! f0; 1gl the following tag and winnow procedures. The tag procedure
produces a valid packet from the input data. The winnow procedure takes as input a stream of
packets and returns the data of the valid packets:

Algorithm TagMAC(K;�)

For i = 1; : : : ; n do

tgi MAC(K; dti)

Return (dti; tgi)

EndFor

Algorithm WinnowMAC(K;�)(Pkt01; : : : ;Pkt
0

n0)

For i = 1; : : : ; n0 do

Parse Pkt0i as (dt; tg)

If MAC(K; dt) = tg then return dt

EndFor

Here K 2 f0; 1gk is a key for the MAC and n is the number of packets in the input stream.

The receiver has no direct access to the packets or their MACs, no access to (or even knowledge

of) the invalid packets, which are simply discarded by the winnow procedure. The receiver only

gets, in order, the data part of the valid packets.

De�nition 3.2 [ATPT] An authentication to privacy transform (ATPT) with tag length l is a

triple ATPT = (MakeWheat;AddCha�;Recover) of algorithms, where

� MakeWheat takes as input a message M and returns a sequence w1; : : : ; wn of strings called the

wheat strings

9

� AddCha� takes as input a sequence Pkt1; : : : ;Pktn of packets called the wheat packets and

returns another sequence Pkt01; : : : ;Pkt
0

n0 of packets

� Recover takes as input strings d1; : : : ; dn and returns a message M .

The �rst two algorithms can be probabilistic or stateful (accessing a global state variable such as

a counter). The last algorithm is usually deterministic and stateless.

An ATPT above is used in combination with an authentication channel to provide con�dentiality.

The way the process works is depicted and explained in Figure 2. Our interest is in the security of

this entire procedure viewed as a symmetric encryption scheme. For this purpose it is convenient

to think of it more as a standard symmetric encryption scheme, consisting of a key generation,

encryption and decryption procedure. (The fact that it works by cha� and winnow is irrelevant

to the security, although of course crucial to policy debate.) Below, we specify the symmetric

encryption scheme that results from running a given ATPT over a given authentication channel,

by specifying the three constituent algorithms.

De�nition 3.3 Let ATPT = (MakeWheat;AddCha�;Recover) be an ATPT with tag length l, and

letMAC: f0; 1gk�f0; 1g� ! f0; 1gl be a MAC. Associated to them is a canonical encryption scheme
(K; E ;D). The key generation algorithm K is the same as that of the MAC, namely it outputs a
random k-bit key K, and the encryption and decryption algorithms are as follows:

Algorithm EK(M)

(w1; : : : ; wn) MakeWheat(M)

For i = 1; : : : ; n do

Pkti (wi;MACK(wi))

EndFor

(Pkt01; : : : ;Pkt
0

n0) AddCha�(Pkt1; : : : ;Pktn)

Return Pkt01; : : : ;Pkt
0

n0

Algorithm DK(Pkt
0

1; : : : ;Pkt
0

n0)

(dt1; : : : ; dtn) WinnowMAC(K;�)(Pkt01; : : : ;Pkt
0

n0)

M Recover(dt1; : : : ; dtn)

Return M

We require that DK(EK(M)) =M for all M 2 f0; 1g�.

The last requirement is made so that this is a valid symmetric encryption scheme, meaning correctly

encrypted data can be decrypted by a receiver that knows the secret key.

In the sequel, we will specify cha�-and-winnow based encryption schemes directly as standard

symmetric encryption schemes, because this is more conducive to security assessments. Accordingly

it is useful to have the following terminology.

De�nition 3.4 Let SE = (K; E ;D) be a symmetric encryption scheme. We say that SE is a

cha�-and-winnow based encryption scheme if there exists an ATPT transform ATPT and a MAC

MAC: f0; 1gk � f0; 1g� ! f0; 1gl such that SE is exactly the canonical con�dentiality procedure

associated to ATPT and MAC as per De�nition 3.3.

Having speci�ed a symmetric encryption scheme, we will briey indicate why it is a cha�-and-

winnow based encryption scheme by saying what are the algorithms MakeWheat, AddCha�, and

Recover.

4 Bit-by-Bit CW

As above, MAC: f0; 1gk � f0; 1g� ! f0; 1gl is a message authentication code. In the bit-by-bit

scheme, the sender maintains a counter ctr that is initially zero. The encryption procedure (more

10

precisely, the MakeWheat algorithm) increments this counter upon each invocation. Assume all

messages to be encrypted have length m.

Scheme 4.1 [Bit-by-bit CW] The key generation algorithm K of this symmetric encryption
scheme returns a random k-bit key K for the MAC, and the encryption and decryption algorithms
are as follows:

Algorithm EK(M)

Break M into bits, M = b1 : : : bm

For i = 1; : : : ;m do

tg[i; bi] MAC(K; bikhctr + ii)

tg[i;�bi]
R

 f0; 1gl

Pkt[i; 0] (0khctr + ii; tg[i; 0])

Pkt[i; 1] (1khctr + ii; tg[i; 1])

EndFor

ctr ctr +m

Return Pkt[1; 0];Pkt[1; 1]; : : : ;Pkt[m; 0];Pkt[m; 1]

Algorithm DK(Pkt1; : : : ;Pkt2m)

For i = 1; : : : ; 2m do

Parse Pkti as (dt; tg)

If MAC(K; dt) = tg

then return �rst bit of dt

EndFor

Here �b denotes the complement bit of b and hii denotes the binary representation of integer i as a

binary string of some �xed, prede�ned length p. The \wheat" packets are Pkt[i; bi] for i = 1; : : : ;m

and the \cha�" packets are Pkt[i;�bi] for i = 1; : : : ;m.

We claim that this is a cha�-and-winnow based encryption scheme. We need to check that

it has the form of De�nition 3.3 for some ATPT. The MakeWheat procedure takes M and re-

turns b1khctr i; : : : ; bnkhctr +mi. The AddCha� procedure would get as input the wheat packets

corresponding to this data stream, namely Pkt[1; b1]; : : : ;Pkt[m; bm]. It would create the packets

Pkt[1;�b1]; : : : ;Pkt[m;�bm] and then output them in the order indicated by the output of EK above.

The Recover procedure would receive b1khctr i; : : : ; bmkhctr +ni and would drop the counter values

to return b1 : : : bm.

The following theorem shows that this scheme meets the \�nd-then-guess" notion of privacy under

the assumption that MAC is a PRF. The reduction is almost tight.

Theorem 4.2 Let MAC: f0; 1gk � f0; 1g� ! f0; 1gl be a pseudorandom function and let SE =

(K; E ;D) be the bit-by-bit cha�-and-winnow based encryption scheme of Scheme 4.1. Assume the

counter is p-bits long. Then for any t; q; � with � < 2p{

Adv
priv
SE

(t; q; �) � 2 �Adv
prf
MAC

(t; q0; �0) ;

where q0 = � and �0 = (1 + p)�.

Proof of Theorem 4.2: Let A be any adversary trying to break the bit-by-bit CW encryption

scheme in the �nd-then-guess setting as described in Section 2. We will design a distinguisher D

which attacks the MAC as a pseudorandom function. D takes an oracle g : f0; 1g� ! f0; 1gl. The

distinguisher does not know a priori whether g is drawn at random from F or from R. To �gure it

out D will use A. D will provide the ciphertext of one of the two messages found by A during its

�nd stage and will respond to all oracle queries that A makes. Assume A makes q oracle queries

totaling � bits, and runs for the time t. Here is what D does:

Distinguisher Dg(�)

b
R
 f0; 1g ; (M0;M1; st) AE

g
(�nd) ; C Eg(Mb) ; d AE

g
(guess; C; st)

If b = d then return 1 (PRF) else return 0 (random)

11

Here Eg(�) denotes the procedure which substitutes all applications of MAC(K; �) in EK with an

application of g(�). It is possible for D to compute this as above because EK only makes oracle use

of MAC(K; �). We now analyze this distinguisher. We claim that

Pr
h
Dg = 1 : g

R
 F

i
= Pr

h
b = d : g

R
 F

i
=

1

2
+
Adv

priv
SE

(A)

2

Pr
h
Dg = 1 : g

R
 R

i
= Pr

h
b = d : g

R
 R

i
=

1

2
+
Adv

priv

SE
R(A)

2

where SER denotes the encryption scheme using a random function in place of the MAC. Because

of the globally incremented counter, oracle g is always invoked on distinct inputs. If oracle g

is a random function, then its output on these distinct values yields a one-time pad, meaning

random and unpredictable values, so the adversary cannot get any advantage. This means that

Adv
priv

SE
R(A) = 0. Now by subtraction we get Adv

priv

SE
F (A) � 2 �Adv

prf
F (D). The statement of the

theorem follows after taking maximums.

If the counter is allowed to wrap around the scheme is obviously insecure. It is possible to use

randomness instead of a counter. In this case each bit of the message is concatenated with random

value represented as a string of some �xed prede�ned length. This value is drawn at random for

each bit of the message. The analysis is analogous but the concrete security is worse due to birthday

attacks.

The security of these schemes comes with a price. They are very ine�cient since they have

large data expansion: if the message is m bits long then 2m(1 + p+ l) bits are transmitted, where

p is the length of a counter and l is the length of the output of the MAC.

Another scheme mentioned in [8] authenticated message blocks of some length rather than single

bits, but the author already indicated that it was insecure under stringent notions of privacy such

as the one we use here.

5 The scattering scheme

As before letMAC: f0; 1gk�f0; 1g� ! f0; 1gl be our message authentication code. In the scattering

scheme, the output of an AONT is viewed as a sequence of s blocks, each n bits long. The ciphertext

will contain s wheat packets interspaced with s0 > 0 cha� packets, where s0 is a parameter of the

scheme. The wheat packet positions are a random subset of f1; : : : ; s + s0g. The full description

follows.

Scheme 5.1 [Scattering scheme]We �x an all-or-nothing transform AONT: f0; 1gm ! f0; 1gsn.
We assume that all messages to be encrypted have length m. The key generation algorithm K of
this symmetric encryption scheme returns a random k-bit key K for the MAC, and the encryption
and decryption algorithms are as follows:

12

Algorithm EK(M)

M 0 AONT(M)

Parse M 0 as m1km2k � � � kms where jmij = n

Pick S � f1; : : : ; s+ s0g at random subject to jSj = s

j 0

For i = 1; : : : ; s+ s0 do

If i 2 S then

j j + 1

tg[i] MAC(K;mj)

Pkt[i] (mj ; tg[i])

else

dt[i]
R

 f0; 1gn

tg[i]
R

 f0; 1gl

Pkt[i] (dt[i]; tg[i])

EndIf

EndFor

Return Pkt[1];Pkt[2]; : : :Pkt[s+ s0]

Algorithm DK(Pkt1; : : : ;Pkts+s0)

For i = 1; : : : ; s+ s0 do

Parse Pkti as (dt; tg)

If MAC(K; dt) = tg

then mi dt

EndFor

M AONT�1(m1km2k � � � kms)

Return M

We claim that this is a cha�-and-winnow based encryption scheme. We need to check that it has the

form of De�nition 3.3 for some ATPT. The MakeWheat procedure takes M and returns m1; : : : ;ms

as computed above. The AddCha� procedure would get as input the wheat packets corresponding

to this data stream. It would create the s0 cha� packets, pick the set S at random as above, and

interspace the wheat and cha� packets appropriately to get the packet stream Pkt[1]; : : : ;Pkt[s+s0].

The Recover procedure would receive m1; : : : ;ms, concatenate them to get M 0, and apply AONT�1

to get M .

The most obvious attack is to test each group of s packets to see whether they are the wheat

packets. The adversary goes through all size s subsets of the packets. In each case it forms a

candidate output of AONT and applies AONT�1. Assuming it knows some partial information

about the message, it can tell when it got the choice of the subset right. The time taken by this

attack is proportional to
�s+s0

s

�
.

The intuition for security given in [8] is that this is the best possible attack. The complexity is

large as long as both s and s0 are above some minimal threshold; for example, both more than 128.

Accordingly we could set s0 = 128 and choose the AONT so that its output always had at least 128

blocks.

A closer look reveals however that security is not so straightforward. For example, another

thing to consider is the e�ect of equal data blocks. If the data blocks in two packets are equal, an

adversary can get some information by looking at their tags: if the tags are unequal, they cannot

both be wheat packets, because the MAC is deterministic. This can reduce the complexity of an

attack, indicating that the time-complexity of an attack must also be a function of the block size

n of the output.

There are other such considerations, but more importantly, we claim that Rivest's notion of

security for the AONT (namely De�nition 2.3) can be shown to be insu�cient to make this scheme

secure. An example illustrating this is to consider an AONT each of whose output blocks has the

property that the �rst few bits are 0. (One can show that if any AONT meeting De�nition 2.3

exists, then so does one with this property.) But with this AONT, Scheme 5.1 can be broken

because wheat packets can be distinguished from cha� packets: the wheat packets are the ones

whose data has �rst few bits zero.

The example AONT we constructed above does not however meet Boyko's stronger notion of

security for AONTs [5], so the next question is whether Scheme 5.1 could be proven secure under

13

this stronger notion. However even with this stronger notion it is unclear one can prove security.

The reason is that the ciphertext contains the complete output of the AONT, while the security

property of the AONT pertains to a setting where the adversary has no information about at least

one block of the output of the AONT. This makes it unclear how to do a reduction. Indeed, the

security property of an AONT does not seem to mesh well with what is required to prove security

of Scheme 5.1. We will see next that a positive statement can be made by considering a particular

AONT, namely the OAEP transform of Bellare and Rogaway [4]. But in general, as the transform

used in the initial step, an AONT seems to be neither su�cient nor necessary for the security of

Scheme 5.1.

The OAEP transform appeals to random oracles G: f0; 1gn ! f0; 1gm and H : f0; 1gm !

f0; 1gn where n is the length of the OAEP seed and m as usual is the message length. It takes as

input an m-bit string M and proceeds as follows{

Algorithm OAEPG;H(M)

r
R
 f0; 1gn ; y G(r)�M ; w H(y)� r ; Return wky

Boyko showed that OAEP is an AONT, but this will not help us here given the above discussion.

Instead, we go back to the transform itself and prove the security of Scheme 5.1 when AONT is set

to OAEP.

As with any proof concerning OAEP, we work in the random oracle model of [3]. We must \lift"

our de�nitions to allow all algorithms and parties, including the adversary, access to the random

oracles G;H. Briey, modify Exp
priv
SE

(A; b) in De�nition 2.1 to begin by picking G;H randomly.

Allow EK and A oracle access to G;H. Allow the scheme advantage to take extra parameters,

Adv
priv
SE

(t; q; �; qG; qH), these being bounds on the number of queries made by the adversary to the

oracles in question. T

The bound below reects the above intuition: it is inversely proportional to
�s+s0

s

�
and also to

2n. This shows that for OAEP the security is what one would have liked it to be for a \good"

AONT.

Theorem 5.2 Let n;m be integers with m a multiple of n. Let MAC: f0; 1gk � f0; 1g� ! f0; 1gl

be a pseudorandom function. Let SE = (K; E ;D) be Scheme 5.1 using OAEP as the AONT, with

parameters n; s; s0 where s = m=n+ 1. For any t; q we let � = nq(s� 1). Assume qH � 2n=2 and

qG � (1=2) �
�s+s0

s

�
. Then

Adv
priv
SE

(t; q; �; qG; qH) �
2qH�s+s0
s�1

� + 2qG + (q + 1)2 � [(s+ s0)2 + 1]

2n
+Adv

prf
MAC

(t0; q0; �0)

where t0 = t, q0 = q(s+ s0) and �0 = nq(s+ s0).

Proof of Theorem 5.2: The main step in the analysis is to consider the scheme which uses, in

place of MAC(K; �), a truly random function of the same domain and range. Now we consider an

adversary making q queries to its encryption oracle, qG queries to G, and qH queries to H, and

show that in this case

Adv
priv
SE

(A) �
2qH�s+s0
s�1

� + 2qG + (q + 1)2 � [(s+ s0)2 + 1]

2n
: (1)

Once we have shown this, the theorem follows by a standard simulation argument for pseudorandom

functions which is omitted.

14

In its �nd stage A outputs challenge messages M0;M1. Then it gets a challenge ciphertext C which

is an encryption of Mb for a challenge bit b. Let r; y denote the values in the computation of

OAEPG;H(Mb). Let AskR be the event that A makes G-oracle query r. Let AskY be the event that

A makes H-oracle query y. Let Corr denote the event that A is correct, meaning its output equals

the bit b. Then

Pr [Corr] = Pr [Corr j AskR] � Pr [AskR] + Pr [C j :AskR] � Pr [:AskR]

� Pr [AskR] + Pr [C j :AskR]

� Pr [AskR] +
1

2
:

The last term is because if A did not see G(r), it has no advantage in predicting b. So we need to

upper bound Pr[AskR]. Let AskRi and AskYi denote the events that A's i'th query to a random

oracle is r or y respectively. Then

Pr [AskR] � Pr [AskR _ AskY]

� Pr
h
AskR1 _ AskY1

i
+

qG+qHX
i=2

Pr

2
4 (AskRi _ AskYi) j

i�1̂

j=1

:AskRj ^ :AskYj

3
5 :

As long as r was a query to G and y was not a query to H the adversary knows nothing about

H(y). So r = H(y)� w could be any value. By the same reasoning an adversary does not know

anything about the value of y = G(r)�M . Let Dist denote the event that all the (q + 1)(s + s0)

blocks that form the output of the OAEP transform on the queried messages and on the challenge

messages are distinct. (If :Dist then an adversary can get some information by looking at the tags

of equal blocks as discussed above.) We will say the adversary has won if Dist occurs. Now we

claim that for any i � 1 we have

Pr
h
AskRi j Dist ^

Vi�1
j=1:AskR

j ^ :AskYj
i
�

1

2n � (i� 1)

Pr
h
AskYi j Dist ^

Vi�1
j=1:AskR

j ^ :AskYj
i
�

1�s+s0
s�1

�
� (i� 1)

:

This is by the above reasoning combined with the fact that if Dist occurs then there are
�s+s0
s�1

�
di�erent possible choices for y. (Recall y is s � 1 blocks long.) We assumed that qH � 2n=2 and

qG � (1=2) �
�s+s0

s

�
. So

Pr [AskR j Dist] �

qG�1X
j=0

1

2n � j
+

qH�1X
j=0

1�s+s0
s�1

�
� j

�
2qG

2n
+

2qH�s+s0
s�1

� :

On the other hand Dist can fail for two reasons. One is that the same seed was picked twice. Another

is a standard birthday collision. Together this means that Pr [:Dist] � (q+1)2 � [(s+ s0)2+1]=2n.

Putting all this together gives us Equation (1).

6 A new cha�ng and winnowing scheme

Here we suggest an alternative scheme that has low data expansion and analyze its advantage

function. It returns to much more \standard" paradigms of encryption than the scattering scheme.

Simply apply an AONT to the message and then encrypt the �rst block of the message. If the last

15

encryption is done by cha�ng-and-winnowing, say using the bit-by-bit scheme, the whole scheme

is also a cha�ng and winnowing scheme, since the AONT is keyless. The savings in bandwidth

comes from the fact that the number of bits encrypted using the bit-by-bit scheme is independent of

the length of the message. The construction is presented using an arbitrary symmetric encryption

scheme se to encrypt the �rst block of the output of the AONT, since the analysis can be done at

this general level.

Scheme 6.1 Let AONT be an all-or-nothing transform taking input messages of length m and

returning outputs of length sn. The output is viewed as a sequence of n-bit blocks. Let se =

(K; e; d) be a given symmetric encryption scheme with message space f0; 1gn. The new scheme is

SE = (K; E ;D) where

Algorithm EK(M)

M 0 AONT(M)

Let m0 be the �rst block of M 0 and m00 the rest

C1 eK(m
0)

Return C1k(m
00;MAC(K;m00))

Algorithm DK(C1k(m
00; �))

m0 dK(C1)

M 0 m0km00

M AONT�1(M 0)

Return M

We claim that if se is Scheme 4.1 then the above is a cha�-and-winnow based encryption scheme. We

need to check that it has the form of De�nition 3.3 for some ATPT. Note that when se is Scheme 4.1,

C1 will have the form Pkt[1; 0];Pkt[1; 1]; : : : ;Pkt[n; 0];Pkt[n; 1]. The MakeWheat procedure takes

M and returns b1khctr i; : : : ; bnkhctr + ni;m00, where b1 : : : bn are the �rst n bits of AONT(M) and

the m00 is the rest. The AddCha� procedure would get as input the wheat packets corresponding to

this data stream, namely Pkt[1; b1]; : : : ;Pkt[n; bn]; (m
00;MAC(K;m00)). It would create the packets

Pkt[1;�b1]; : : : ;Pkt[n;�bn] and then output

Pkt[1; 0];Pkt[1; 1]; : : : ;Pkt[n; 0];Pkt[n; 1]; (m00;MAC(K;m00)) :

The Recover procedure would receive b1khctr i; : : : ; bnkhctr + ni;m00 and would drop the counter

values to get M 0 = b1 : : : bnkm
00, perform AONT�1(M 0) and return M .

More generally, the above is a cha�-and-winnow based encryption scheme as long as se is any

cha�-and-winnow based encryption scheme, not just Scheme 4.1.

We now analyze the security of Scheme 6.1 at a general level. Refer to De�nition 2.3 for the

de�nition of the advantage function of AONT and note that L = 1 in this case, meaning we are

requiring security only in the case where the �rst block is the one not provided to the adversary.

Note that the MAC attached to m00 is irrelevant to security; it is only there in order to make the

�nal scheme a cha�ng and winnowing scheme. Accordingly, the advantage function of the MAC

does not show up in the following theorem.

Theorem 6.2 Let se = (K; e; d) be a given, secure symmetric encryption scheme with message

space f0; 1gn. Let AONT be a given, secure all-or-nothing transform. We associate to them the

symmetric encryption scheme SE = (K; E ;D) of Scheme 6.1, with message space f0; 1gm. Let

� = qm. Then

Adv
priv
SE

(t; q; �) � 2 �Advprivse (t; q; qn) +AdvaontAONT;1(t) :

16

This is proved below. First however we state the corollary for the case where se is the bit-by-bit

cha�-and-winnow scheme.

Corollary 6.3 Let MAC: f0; 1gk � f0; 1g� ! f0; 1gl be a pseudorandom function and let AONT

be an all-or-nothing transform with input length m, output length sn. Let SE = (K; E ;D) be

Scheme 6.1 using AONT as the all-or-nothing transform and Scheme 4.1 as se. Assume the counter

in the latter is p-bits long. Then for any t; q; � with � = qm and qn < 2p{

Adv
priv
SE

(t; q; �) � 4 �Adv
prf
MAC

(t; q1; �1) +AdvaontAONT;1(t)

where q1 = qn and �1 = (s+ p)n.

Proof: This follows from Theorem 6.2 and Theorem 4.2. Details omitted.

Proof of Theorem 6.2: Let A be an adversary attacking the scheme SE. We will construct an

adversary B attacking se and an adversary C attacking AONT such that

Adv
priv
SE

(A) = 2 �Advprivse (B) +AdvaontAONT;1(C) : (2)

Furthermore the resources used by B;C are related to those of A in the appropriate manner to

yield the theorem. In the following we will for simplicity ignore the MAC function since it won't

a�ect security.

We �rst de�ne four (hybrid) experiments. Let eK(�); EK(�) denote the encryption procedures of
se;SE respectively.

Experiment 1

K
R

 f0; 1gk

(M0;M1;St) AEK(�)(�nd)

A0 AONT(M0)

Let A0
0 be the �rst block of A0 and A00

0 the rest

m
R

 f0; 1gr

C eK(m)jjA00
0

c AEK(�)(guess; C;St)

Return c

Experiment 2

K
R

 f0; 1gk

(M0;M1;St) AEK(�)(�nd)

A1 AONT(M1)

Let A0
1 be the �rst block of A1 and A00

1 the rest

m
R

 f0; 1gr

C eK(m)jjA00
1

c AEK(�)(guess; C;St)

Return c

Experiment 3

K
R

 f0; 1gk

(M0;M1;St) AEK(�)(�nd)

A0 AONT(M0)

Let A0
0 be the �rst block of A0 and A00

0 the rest

C eK(A
0
0)jjA

00
0

c AEK(�)(guess; C;St)

Return c

Experiment 4

K
R

 f0; 1gk

(M0;M1;St) AEK(�)(�nd)

A1 AONT(M1)

Let A0
1 be the �rst block of A1 and A00

1 the rest

C eK(A
0
1)jjA

00
1

c AEK(�)(guess; C;St)

Return c

Let Pi be the probability that experiment i outputs 0. By de�nition of the advantage of A

Adv
priv
SE

(A) = P3 � P4 = (P3 � P1) + (P2 � P4) + (P1 � P2) : (3)

Now we de�ne the algorithms B and C as follows

17

Adversary BeK(�)(�nd)

b
R

 f0; 1g

(M0;M1;St) AEK (�)(�nd)

m
R

 f0; 1gr

Ab AONT(Mb)

Let A0

b be the �rst r bits of Ab and A00

b the rest

If b = 0 then

return(A0
0;m; (A00

0 ;St))

else

return(m;A0
1; (A

00
1 ;St))

EndIf

Adversary BeK(�)(guess; C; (A00

b ;St))

C CjjA00

b

d AEK(�)(guess; C;St)

Return d

Adversary C(�nd)

(M0;M1;St) AEK(�)(�nd)

Return (M0;M1;St)

Adversary C(guess; C;St)

K
R

 f0; 1gk

m
R

 f0; 1gr

C eK(m)jjC

d AEK(�)(guess; C;St)

Return d

Both adversaries B and C can simulate the encryption oracle EK(�) for A. B does it using its

own encryption oracle eK(�) and computing the AONT of a desired message, while C computes the

AONT and encrypts the �rst part of a desired message by choosing the random key and simulating

the eK procedure. The advantage of B is

Advprivse (B) = Pr [ExpSE(B; 0) = 0]� Pr [ExpSE(B; 1) = 0]

=
1

2
� (P3 + P2)�

1

2
� (P4 + P1)

=
1

2
� (P3 � P1) +

1

2
� (P2 � P4) :

The advantage of C is

AdvaontAONT;1(C) = Pr
h
ExpAONT;r(C; 0) = 0

i
� Pr

h
ExpAONT;r(C; 1) = 0

i

= P1 � P2 :

Combining these two observations with Equation (3) yields Equation (2). The rest of the proof is

standard and is omitted.

A concrete instantiation can be obtained by using OAEP in the role of the AONT. The security

of this instantiation relies on the fact that OAEP is a secure AONT [5], and the concrete security

can be obtained by combining the above with the results in [5]. (In that case we would have to lift

all of the above to the random oracle model, but this is easily done.)

Acknowledgments

References

[1] M. Bellare, A. Desai, E. Jokipii and P. Rogaway, \A concrete security treatment of symmet-

ric encryption: Analysis of the DES modes of operation," Proceedings of the 38th Symposium on

Foundations of Computer Science, IEEE, 1997.

[2] M. Bellare, J. Kilian and P. Rogaway, \The security of cipher block chaining," Advances in

Cryptology { Crypto 94 Proceedings, Lecture Notes in Computer Science Vol. 839, Y. Desmedt ed.,

Springer-Verlag, 1994.

18

[3] M. Bellare and P. Rogaway, \Random oracles are practical: a paradigm for designing e�cient

protocols," Proceedings of the 1st Annual Conference on Computer and Communications Security ,

ACM, 1993.

[4] M. Bellare, P. Rogaway, \Optimal asymmetric encryption - How to encrypt with RSA," Advances

in Cryptology { Eurocrypt 94 Proceedings, Lecture Notes in Computer Science Vol. 950, A. De Santis

ed., Springer-Verlag, 1994.

[5] V. Boyko, \On the Security Properties of OAEP as an All-or-nothing Transform,"Advances in

Cryptology { Crypto 99 Proceedings, Lecture Notes in Computer Science Vol. 1666, M. Wiener ed.,

Springer-Verlag, 1999.

[6] O. Goldreich, S. Goldwasser and S. Micali, \How to construct random functions,"Journal of

the ACM, Vol. 33, No. 4, 210{217, (1986).

[7] S. Goldwasser and S. Micali, \Probabilistic encryption," Journal of Computer and System Sci-

ence, Vol. 28, 1984, pp. 270{299.

[8] R. Rivest, \Cha�ng and Winnowing: Con�dentiality without Encryption," http://theory.

lcs.mit.edu/~rivest/publications.html.

[9] R. Rivest, \All-Or-Nothing Encryption and The Package Transform," Proceedings of the 4th Work-

shop on Fast Software Encryption, Lecture Notes in Computer Science Vol. 1267, Springer-Verlag,

1997.

19

