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ABSTRACT
Proof of Work (PoW) powered blockchains currently account for
more than 90% of the total market capitalization of existing digital
currencies. Although the security provisions of Bitcoin have been
thoroughly analysed, the security guarantees of variant (forked) PoW
blockchains (which were instantiated with different parameters)
have not received much attention in the literature.

In this paper, we introduce a novel quantitative framework to
analyse the security and performance implications of various con-
sensus and network parameters of PoW blockchains. Based on
our framework, we devise optimal adversarial strategies for double-
spending and selfish mining while taking into account real world
constraints such as network propagation, different block sizes, block
generation intervals, information propagation mechanism, and the
impact of eclipse attacks. Our framework therefore allows us to
capture existing PoW-based deployments as well as PoW blockchain
variants that are instantiated with different parameters, and to objec-
tively compare the tradeoffs between their performance and security
provisions.

1. INTRODUCTION
Since its inception in 2009, Bitcoin’s blockchain has fueled inno-

vation and a number of novel applications, such as smart contracts,
have been designed to take advantage of the blockchain. Bitcoin
has been forked a number of times in order to fine-tune the con-
sensus (i.e., the block generation time and the hash function), and
the network parameters (e.g., the size of blocks and the information
propagation protocol) and to increase the blockchain’s efficiency.
For instance, Litecoin and Dogecoin—Bitcoin’s most prominent
forks—reduce the block generation time from 10 to 2.5 and 1 minute.
Parallel to these efforts, alternative decentralised blockchain-based
networks (such as Ethereum) emerged with the ambition to optimize
the consensus and network parameters and to ease the deployment
of decentralised applications on top of the blockchain.

Although a number of consensus protocols (PBFT [5], Proof of
Stake [29], Proof of Elapsed Time [20]) have been proposed, most
existing blockchains leverage the computationally expensive Proof
of Work (PoW) consensus mechanism—which currently accounts
for more than 90% of the total market capitalization of existing
digital currencies. While the security provisions of Bitcoin have
been thoroughly analysed [14, 21, 30, 32], the security guarantees
of variant PoW blockchains have not received much attention in the
literature. Recent studies hint that the performance of PoW based
blockchains cannot be enhanced without impacting their security.
However, the relationship between performance and security provi-
sions of PoW blockchains has so far not been studied in much detail.
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Figure 1: Components of our quantitative framework.

In this paper, we address this problem and provide a novel quan-
titative framework to analyse the security and performance im-
plications of various consensus and network parameters of PoW
blockchains. Leveraging our framework, we capture the security
properties of existing PoW instantiations (e.g., Bitcoin, Ethereum,
Litecoin, and Dogecoin) as well as other possible instantiations
subject to different consensus and network parameters.

Our framework (cf. Figure 1) consists of two key elements:
(i) a blockchain instance and (ii) a blockchain security model. A
blockchain instance is a PoW blockchain instantiated with a given
set of consensus and network parameters, such as network delays,
block generation times, block sizes, information propagation mech-
anisms, etc. For example, Bitcoin, Litecoin, and Ethereum corre-
spond to 3 different blockchain instances. To realistically capture
any other blockchain instance, we design a simulator that mim-
ics the blockchain consensus and network layer by implementing
advertisement-based information propagation, unsolicited block
pushes, the relay network, the sendheader propagation mechanism,
among others.1 The main output of the blockchain instance is the
(measured or simulated) stale (orphan) block rate, which is fed as
input into our security model. On the other hand, our security model
is based on Markov Decision Processes (MDP) for double-spending
and selfish mining and allows us to reason about optimal adver-
sarial strategies while taking into account the adversarial mining
power, the impact of eclipse attacks, block rewards, and real world
network and consensus parameters—effectively captured by the
stale block rate.

Given the current discussions in the Bitcoin community about a
suitable maximum block size that ensures the scalability and growth
in the system [1], our work provides a way to holistically compare
the security and performance of PoW blockchains when subject
to different parameters—-including the block size. For instance,

1We will make our simulator open-source at “address omitted due
to anonymization requirements”.



we find that increasing the block size from the current Bitcoin
transaction load (average 0.5MB) to up to 4 MB, does not signifi-
cantly affect the selfish mining and double-spending resilience of
the blockchain—provided that the block propagation mechanism en-
sures a low stale block rate. We summarize our findings as follows.

Summary of findings
• We show that selfish mining is not always a rational strat-

egy. To capture rational adversaries, we therefore quantify the
double-spending resilience of PoW blockchains and objec-
tively compare the security of different PoW blockchains with
respect to the required number of transaction confirmations.
By doing so, we provide merchants with the knowledge to
decide on the required number of confirmations for a given
transaction value to ensure security against double-spending.
• Our results show that, due to the smaller block rewards and

the higher stale block rate of Ethereum2 compared to Bitcoin
(from 0.41% to 6.8% due to the faster confirmation time),
Ethereum (block interval between 10 and 20 seconds) needs
at least 37 confirmations to match Bitcoin’s security (block
interval of 10 minutes on average) with 6 block confirmations
against an adversary with 30% of the total mining power.
Similarly, Litecoin would require 28, and Dogecoin 47 block
confirmations respectively to match the security of Bitcoin.
• We show that the higher the block reward of a blockchain (in

e.g., USD) the more resilient it is against double-spending.
• Finally, we analyze the impact of changing the block size

and/or the block interval on selfish mining and double-spending.
Our results surprisingly show that setting the block size to
an average 1 MB, and decreasing the block interval time to
1 minute do not considerably penalize security. Our results
therefore suggest that PoW blockchains can attain an effec-
tive throughput above 60 transactions per second (tps) (which
implies that the current throughput of Bitcoin of 7 tps can be
substantially increased) without compromising the security
of the system.

The remainder of the paper is organized as follows. In Section 2,
we overview the basic concepts behind PoW blockchain. In Sec-
tion 3, we introduce our MDP model to quantitatively analyze the
security of PoW blockchains. In Section 4, we present our simulator
and evaluate the security and performance of a number of variant
PoW-based blockchain instances. In Section 5, we overview related
work, and we conclude the paper in Section 6.

2. BACKGROUND
In this section, we briefly recap the operations of the consensus

layer and the network layer of existing PoW blockchains.

2.1 Consensus Layer
The proof of work (PoW) consensus mechanism is the widest

deployed consensus mechanism in existing blockchains. PoW was
introduced by Bitcoin [27] and assumes that each peer votes with
his “computing power” by solving proof of work instances and
constructing the appropriate blocks. Bitcoin, for example, employs
a hash-based PoW which entails finding a nonce value, such that
when hashed with additional block parameters (e.g., a Merkle hash,
the previous block hash), the value of the hash has to be smaller
than the current target value. When such a nonce is found, the
miner creates the block and forwards it on the network layer (cf.

2We show that, contrary to common beliefs, Ethereum does not
apply GHOST’s principle to include the contributions of “uncles” in
the main chain and therefore currently resembles Bitcoin.

Section 2.2) to its peers. Other peers in the network can verify the
PoW by computing the hash of the block and checking whether it
satisfies the condition to be smaller than the current target value.

Block interval: The block interval defines the latency at which
content is written to the blockchain. The smaller the block interval is,
the faster a transaction is confirmed and the higher is the probability
of stale blocks. The block interval adjustment directly relates to
the difficulty change of the underlying PoW mechanism. A lower
difficulty results in a larger number of blocks in the network, while
a higher difficulty results in less blocks within the same timeframe.

It is therefore crucial to analyse whether changing the difficulty
affects the adversarial capabilities in attacking the longest chain—
which is the main pillar of security of most PoW-based blockchains.
This also implies the adjustment of the required number of con-
firmations that a merchant should wait in order to safely accept
transactions (and avoid double-spending attacks) (cf. Section 3).

2.1.1 PoW security
PoW’s security relies on the principle that no entity should gather

more than 50% of the processing power because such an entity can
effectively control the system by sustaining the longest chain. We
now briefly outline known attacks on existing PoW-based blockchains.

First, an adversary can attempt to double-spend by using the same
coin(s) to issue two (or more) transactions—thus effectively spend-
ing more coins than he possesses. Recent studies have shown that
accepting transactions without requiring blockchain confirmations
is insecure [21]. The more confirmations a transaction obtains, the
less likely this transaction will be reversed in the future.

Second, miners might attempt to perform selfish mining [14] at-
tacks in order to increase their relative mining share in the blockchain,
by selectively withholding mined blocks and only gradually pub-
lishing them [14, 31]. Recent studies show that, as a result of these
attacks, a selfish miner equipped with originally 33% mining power
can effectively earn 50% of the mining power.

Double-spending attacks and selfish mining can be alleviated if
all nodes in the blockchain system are tightly synchronised. Note
that, in addition to network latency, synchronisation delays can be
aggravated due to eclipse attacks [16,17] where an adversary creates
a logical partition in the network, i.e., provides contradicting block
and transaction information to different blockchain network nodes.

2.2 Network Layer
On the network layer, we identify two main parameters that are

of particular importance for PoW-based blockchains, namely: the
block size, and the information propagation mechanism.

2.2.1 Block size
The maximum block size indirectly defines the maximum number

of transactions carried within a block. This size therefore controls
the throughput attained by the system. Large blocks incur slower
propagation speeds, which in turn increases the stale block rate (and
weaken the security of the blockchain as stated earlier).

2.2.2 Information propagation mechanism
The block request management system dictates how information

is delivered to peers in the network. Eventually, since all peers
are expected to receive all blocks, a broadcast protocol is required.
The choice of the underlying broadcast protocol clearly impacts the
robustness and scalability of the network (cf. Section 4). In what
follows, we briefly describe well-known network layer implementa-
tions of existing PoW-based blockchains.

Advertisement-based information dissemination: Most PoW
blockchains propagate messages with the help of an advertisement-



based request management system. If node A receives information
about a new object (e.g., a transaction or a block) from another node,
A will advertise this object to its other connections (e.g. node B) by
sending them an inv message (the hash and type of the advertised
object). Only if node B has not previously received the advertised
object, B will request the object from A with a getdata request.
Node A will subsequently respond with a Bitcoin object, e.g., the
contents of a transaction or a block.

Send headers: Peers can alternatively issue a sendheaders mes-
sage in order to directly receive block headers in the future from
their peers—skipping the use of inv messages. This reduces the
latency and bandwidth overhead of block message propagation and
is adopted by Bitcoin since version 0.12.

Unsolicited block push: This mechanism enables miners to broad-
cast their generated blocks without advertisement (i.e., since they
mined the block). Note that this push system is recommended3, but
not implemented in Bitcoin.

Relay networks: Relay networks [6] primarily enhance synchro-
nization of miners that share a common pool of transactions. Trans-
actions are typically only referenced in relayed blocks with a trans-
action ID (2 bytes per transaction instead of an average of 250
bytes per transaction). As a consequence, the resulting block size is
smaller than the regular block (cf. Bitcoin Relay Network [6]).

Hybrid Push/Advertisement Systems: A number of systems, such
as Ethereum, combine the use of push and advertisement dissemina-
tion. Here, a block is directly pushed to a threshold number of peers
(e.g., Ethereum directly pushes blocks to

√
n peers, where n is the

total number of neighbors connected to the peer). Concurrently, the
sender advertises the block hash to all of its neighbors.

2.3 Stale blocks
Stale blocks refer to blocks that are not included in the longest

chain, e.g., due to concurrency, conflicts. Stale blocks are detrimen-
tal to the blockchain’s security and performance because they trigger
chain forks—an inconsistent state which slows down the growth of
the main chain and results in significant performance and security
implications. On the one hand, stale blocks increase the advantage
of the adversary in the network (e.g., double-spending). On the
other hand, stale blocks result in additional bandwidth overhead and
are typically not awarded mining rewards (except in Ethereum).

In an experiment that we conducted, we measure the stale block
rate in the Bitcoin (block generation time = 10 minutes, average
block size = 534.8KB), Litecoin (block generation time = 2.5 min-
utes, average block size = 6.11KB) and Dogecoin (block generation
time = 1 minute, average block size = 8KB) network. All three
blockchains rely on a PoW-based blockchain (with different gen-
eration times) and the same information propagation system (with
different block sizes).

We crawled the available nodes in Litecoin and Dogecoin [3] in
February 2016 and found about 800 and 600 IP addresses respec-
tively. We then measured the block propagation times by registering
the times at which we receive the block advertisements from a par-
ticular block from all our connections in the respective network [9].
We operated one node for Litecoin and Dogecoin, which we con-
nected to 340 and 200 peers, respectively. Once one of these peers
advertises block information in form of either (i) a new hash of a
block (inv message) or (ii) a block header (headers message), we
registered the time this block information appeared. Every sub-
sequent reception of a particular piece of block information then
provides information about the propagation of the block.

3https://bitcoin.org/en/developer-reference#data-messages

Bitcoin Litecoin Dogecoin Ethereum

Block interval 10 min 2.5 min 1 min 10-20 seconds
Public nodes 6000 800 600 4000 [11]
Mining pools 16 12 12 13
tMBP 8.7 s [8] 1.02 s 0.85 s 0.5 - 0.75 s [12]
rs 0.41% 0.273% 0.619% 6.8%
sB 534.8KB 6.11KB 8KB 1.5KB

Table 1: Comparison of different Bitcoin forks, Ethereum and the
impact of parameter choices on the network propagation times. Stale
block rate (rs) and average block size (sB) were measured over the
last 10000 blocks. tMBP stands for median block propagation time.

Our results (cf. Table 1) suggest that the stale block rate indeed
largely depends on the block interval and the block sizes. For
instance, unlike Dogecoin and Litecoin, Bitcoin features larger block
sizes due to a higher transaction load (of up to 1MB which results
in a higher stale block rate (0.41% vs. 0.273%)—although the block
interval of Bitcoin is 4 times longer than that of Litecoin. Moreover,
the stale block rate differences between Litecoin and Dogecoin are
mainly due to the difference in the block interval (2.5 minutes vs.
1 minute), since their average block sizes are comparable (6.11KB
and 8KB). Given a confirmation time reduction of 60%, the stale
block rate increased by 127% from Litecoin to Dogecoin.

Notice that in Ethereum, uncle blocks correspond to stale blocks
that are referenced in the main chain. The uncle block rate in
Ethereum is almost 6.8%, compared to a stale block rate of 0.41%
in Bitcoin. In Section 3, we study the impact of the stale block rate
on the security of PoW blockchains.

3. POW SECURITY MODEL
In this section, we introduce our blockchain security model that

we leverage to quantify the optimal adversarial strategies for double-
spending and selfish mining. We then use these strategies as a basis
to compare the security provisions of PoW-based blockchains when
instantiated with different parameters.

3.1 Security Model
Our model extends the Markov Decision Process (MDP) of [31]

to determine optimal adversarial strategies, and captures:

Stale block rate The stale block rate rs allows us to account for
different block sizes, block intervals, network delays, infor-
mation propagation mechanisms and network configuration
(e.g., number of nodes).

Mining power α is the fraction of the total mining power of the
adversary (the rest is controlled by the honest network).

Mining costs The adversarial mining costs cm ∈ [0, α] correspond
to the expected mining costs of the adversary (i.e., total min-
ing costs such as hardware, electricity, man-power) and are
expressed in terms of block rewards. For example, if cm = α,
the mining costs of the adversary are equivalent to its min-
ing power times the block reward, i.e., the mining costs are
covered exactly by the earned block revenue in honest mining.

The number of block confirmations k This corresponds to the num-
ber of blocks that need to confirm a transaction, such that a
merchant accepts the transaction.

Propagation ability The propagation parameter γ captures the con-
nectivity of the adversary within the network (i.e., captures
the fraction of the network that receives the adversary’s blocks
in the case when the adversary and the honest miner release
their blocks simultaneously in the network).



The impact of eclipse attacks Our model accounts for eclipse at-
tacks. Here, we assume that the miners of the honest network
are affected by the stale block rate, while the adversary and
the colluding eclipsed victims do not mine stale blocks. This
is due to the fact that the adversary can use any mined blocks
for an attack and effectively only has a small chance of min-
ing a stale block after adopting the honest chain. Therefore,
in practice, the adversary exhibits a significantly lower real
stale block rate than the honest network. The honest network
features propagation and validation delays—hence it will wit-
ness a higher stale block rate. Note that the blocks found by
the eclipsed victim can also count towards the private chain
of the adversary.

We contrast this to existing models, such as Sapirshtein et al.’s [31],
which only focus on selfish mining and cannot capture different
blockchain instances (with various stale block rates and confirma-
tions) and real-world parameters such as network delays.

To analyze optimal double-spending strategies, we define the
double-spending amount vd that corresponds to the minimum trans-
action value that makes double-spending more profitable than honest
mining. We argue that vd emerges as a robust metric to quantify secu-
rity under double-spending attacks. Namely, if the reward of honest
mining is larger than that of dishonest behaviour, merchants can
safely accept a payment transaction of value vd (since such a value
is considered secure, e.g., based on a given confirmation number).
If however, adversarial behaviour is financially more rewarding, a
merchant should be aware of the associated double-spending risks
and of the related incentives of miners.

We capture the blockchain model using a single-player decision
problem M := 〈S,A, P,R〉 where all other participants follow the
standard protocol, and S corresponds to the state space, A to the
action space, P to the stochastic transition matrix, and R to the
reward matrix. We instantiate M as a Markov Decision Process
(MDP) as outlined in Section 3.2 and 3.3.

In our model, the following actions are available to the adversary:
Adopt The adversary accepts the chain of the honest network,

which effectively corresponds to a restart of the attack. This
action is appropriate if the adversary deems that the likelihood
to win over the honest chain is small.

Override The adversary publishes one block more than the honest
chain has and consequently overrides conflicting blocks. This
happens when the adversary’s secret chain is longer than the
currently known public chain (i.e. la > lh) and it is optimal
for the adversary to publish lh + 1 of his blocks to replace the
honest network’s chain with his own. If the adversary exploits
the mining power of the victim, the adversary might use be
blocks from the victim for an override action.

Match The adversary publishes as many blocks as the honest chain
has, and triggers an adoption race between the two chains
instead of overriding the honest chain.

Wait The adversary continues mining on its hidden chain until a
block is found.

Exit This action is only relevant when studying double-spending
as it corresponds to a successful double-spending with k con-
firmations and is only feasible if la > lh and la > k.

The state space S is defined as a four-tuple of the form (la, lh, be, fork),
where la and lh represent the length of the adversarial and honest
chain respectively, be the blocks mined by the eclipsed victim, and
fork can take three values, irrelevant, relevant and active:
relevant The label relevant signifies that (i) the last block has been

found by the honest network, and (ii) if la ≥ lh the match
action is applicable. A state of the form (la, lh − 1, be, ·) for
instance results in (la, lh, be, relevant).

irrelevant When the adversary found the last block, the previous
block has likely already reached the majority of the nodes in
the network. The adversary is therefore not able to perform a
match action. A state of the form (la−1, lh, be, ·) for instance
results in (la, lh, be, irrelevant).

active The state is described with the label active, if the adversary
performed a match action, i.e., the network is currently split
and in process of determining the longest chain.

In our model, every state transition (except exit) corresponds to
the creation of a block. Consequently, a state transition implies a
reward for the honest network, the adversary, or the eclipsed victim.

Given the adversarial mining power α, the initial state (0, 0, 0,
irrelevant) transitions to (1, 0, 0, irrelevant) with probability α,
i.e., the adversary found one block. If the honest network finds
a non-stale block, the resulting state is (0, 1, 0, relevant). On the
other hand, if the honest network’s block results in a stale block, the
state remains (0, 0, 0, irrelevant) since a stale block does not count
towards the longest chain. The last case accounts for the eclipsed
victim which finds a block with probability ω, resulting in state
(1, 0, 1, irrelevant).

Selfish Mining vs. Double-spending.
In this work, we consider double-spending and selfish mining

independently, since selfish mining is not always a rational strategy:
the objective of selfish mining is to increase the relative share of the
adversarial blocks committed to the main chain, while in double-
spending the adversary aims to maximize his absolute revenue.

Namely, as long as the difficulty of a PoW blockchain does
not change (e.g. Bitcoin’s difficulty changes only once every two
weeks), selfish mining yields fewer block rewards than honest min-
ing. In honest mining, the adversary is rewarded for every mined
block, while he will lose any previously mined blocks when adopt-
ing the main chain in selfish mining. Since the adversary has less
mining power than the honest network, he has a high probability of
falling behind the main chain, causing him to adopt the main chain
when he has no significant chance of catching up—which in turn
leads to lost block rewards. For instance, following our optimal
selfish mining strategy (cf. Section 3.2.1), an adversary with 30% of
the mining power earns 209 block rewards on average in a duration
where 1000 blocks are mined by the whole network (as opposed
to 300 for honest mining). Similarly, Eyal and Sirer’s [14] strategy
yields on average 205.80 blocks rewards.

Eclipse attacks.
In an eclipse attack, a fraction ω of the overall mining power

is eclipsed [17, 28] from receiving information from the honest
network. Here, a number of eclipse attack variants arise:

No eclipse attack This case is captured in our model if ω = 0.
Isolate the victim This is captured implicitly in our model. Namely,

this corresponds to a decrease of the total mining power and
thus an increase of the attacker mining power to α′ = α

1−ω .
Exploit the eclipsed victim Here, the adversary exploits the vic-

tim’s mining power ω and uses it to advance his private chain.
This is the most likely choice of a rational adversary when
performing double-spending attacks. In this case, we assume
that the victim is fully eclipsed from the network and does not
receive/send blocks unless permitted by the adversary [17,28].

3.2 Selfish Mining MDP
Our goal is to find the optimal adversarial strategy for selfish

mining. Recall that the objective of the adversary in selfish mining



is not to optimise the absolute reward, but to increase the share
of blocks that are included in the chain accepted by the network.
We capture this by optimising the relative revenue rrel defined in
Equation 1, where rai and rhi are the rewards in step i for the
adversary and the honest network, respectively:

rrel = E
[

lim
n→∞

∑n
i=1 rai∑n

i=1(rai + rhi)

]
(1)

Since an adversary aims to increase his relative reward rrel (Equa-
tion 1) in selfish mining, as opposed to the absolute reward, the
single-player decision problem cannot be modelled directly as an
MDP, because the reward function is non-linear. In order to trans-
form the problem into a family of MDPs, we apply the technique of
Sapirshtein et al.’s [31], which we describe below.

We assume that the value of the objective function (i.e., the op-
timal relative reward) is rho and define for any ρ ∈ [0, 1] the
transformation function wρ : N2 → R with the adversarial reward
ra and the reward of the honest network rh in Equation 2.

wρ(ra, rh) = (1− ρ) · ra − ρ · rh (2)

This results in an infinite state MDP Mρ = 〈S,A, P,wρ(R)〉
for each ρ that has the same action and state space as the original
decision problem and the same transition matrix but the reward
matrix is transformed using wrho. The expected value of such an
MDP under policy π is then defined by vπρ in Equation 3, where
ri(π) is the reward tuple in step i under policy π.

vπρ = E

[
lim
n→∞

1

n

n∑
i=1

wρ(ri(π))

]
(3)

The expected value under the optimal policy follows:

v∗ρ = max
π∈A

{
vπρ
}

(4)

To optimise rrel we adopt the following propositions [31]:
1. If v∗ρ = 0 for some ρ ∈ [0, 1], then an optimal policy π∗ in

the transformed MDP Mρ also maximises rrel and rrel = ρ.
2. v∗ρ is monotonically decreasing in ρ.
Since standard MDP solvers are not able to solve infinite state

MDPs, we restrict the state space of our family of MDPs by only
allowing either chain to be of length at most c, resulting in a finite
state MDP Mc

ρ . If either chain reaches length c, the adversary is
only allowed to perform the override or adopt action. This gives a
lower bound for the optimal value of the infinite state MDP.

Intuitively, we can reason about the correctness of the first propo-
sition as follows for the bounded single-player decision problem. In
a recurring finite state MDP, the initial state will be visited again in
expectation after some finite number of steps S. During that time,
the adversary gains an expected reward ofRa = E

[∑S
s=1 rai

]
and

the honest network gains a reward of Rh = E
[∑S

s=1 rhi

]
in the

original (bounded) decision problem. It follows that the expected
reward per step in the Markov Chain is ra = E

[
1
S

∑S
s=1 rai

]
and

rh = E
[

1
S

∑S
s=1 rhi

]
for the adversary and the honest network,

respectively. We can thus simplify the expected relative revenue
rrel to:

rrel = E
[

lim
n→∞

∑n
i=1 rai∑n

i=1(rai + rhi)

]
(5)

= E
[

lim
n→∞

n · ra
n · (ra + rh)

]
(6)

= E
[

lim
n→∞

ra
(ra + rh)

]
(7)

= E
[

ra
ra + rh

]
(8)

=
ra

ra + rh
(9)

(10)

Additionally, we develop v∗ρ as follows:

v∗ρ = vπ
∗
ρ (11)

= E

[
lim
n→∞

1

n

n∑
i=1

wρ(ri(π
∗))

]
(12)

= E

[
lim
n→∞

1

n

n∑
i=1

((1− ρ) · rai − ρ · rhi)

]
(13)

= E

[
lim
n→∞

1

n

(
(1− ρ) ·

n∑
i=1

rai − ρ ·
n∑
i=1

rhi

)]
(14)

= E
[

lim
n→∞

1

n
(n · (1− ρ) · ra − n · ρ · rh)

]
(15)

= E
[

lim
n→∞

((1− ρ) · ra − ρ · rh)

]
(16)

= E [(1− ρ) · ra − ρ · rh] (17)
= (1− ρ) · ra − ρ · rh (18)

And thus, for the case where ρ = rrel = ra
ra+rh

:

v∗ρ = (1− ρ) · ra − ρ · rh (19)

= (1− ra
ra + rh

) · ra −
ra

ra + rh
· rh (20)

=
ra · (ra + rh)− ra2

ra + rh
− ra · rh
ra + rh

(21)

=
ra

2 + ra · rh − ra2 − ra · rh
ra + rh

(22)

= 0 (23)

The reasoning for the second proposition is straightforward. For
any given policy π, it holds for ρ > ρ′ thatwρ(ra, rh) ≤ wρ′(ra, rh)
for every transition with rewards ra and rh for the adversary and
the honest network, respectively. It follows directly that vπρ ≤ vπρ′
for every policy π and thus v∗ρ ≤ v∗ρ′ , i.e., v∗ρ is monotonically
decreasing in ρ.

We use binary search on our restricted family of MDPs for ρ ∈
[0, 1] in order to find the ρ for which the expected value in the
instantiated MDP is zero and which therefore maximizes the reward
in the original single-player decision problem [31]. Since v∗ρ is
monotonically decreasing, this can be done efficiently as follows:



function OPTIMAL STRATEGY(c, ε)
low ← 0
high← 1
repeat

ρ← (low + high)/2
(π, v∗ρ)← MDP_SOLVER(Mc

ρ )
if v∗ρ > 0 then

low ← ρ
else

high← ρ
end if

until high− low < ε
return π, ρ

end function

As far as we are aware, this is the first selfish mining model that
(i) captures various parameters such as block propagation times,
block size, block generation interval, and (ii) known network vul-
nerabilities such as eclipse attacks. Note that we do not consider
mining costs in the selfish mining MDP since the objective here is
to increase the relative mining share (and not the monetary reward).

3.2.1 Optimal Strategies for Selfish Mining
In order to solve the MDP’s, we apply an MDP solver for finite

state space MDPs [18], and use a cutoff value of 30 blocks.
We first analyse the impact of the stale block rate on selfish

mining. In Figure 2, we compare selfish mining under a stale block
rate of 1% and 10%, and we observe that the higher the adversarial
mining power, the bigger the relative revenue of a selfish miner
grows (up to a maximum difference of 0.074). For comparison
purposes, we plot an upper bound α

1−α of the adversarial relative
revenue from selfish mining which corresponds to the case where
the adversary’s advantage is maximized by utilizing one block to
override one block generated by the honest network (as reported by
Sapirshtein et al. [31]). As we observe, this upper bound is exceeded
when taking into account network delays and parameters that we
capture via the stale block rate.

For an adversary with a mining power of α = 0.1 and α =
0.3 respectively, we observe in Figure 3 that there is a non-linear
relationship between the stale block rate and the relative mining
revenue of selfish mining.

We moreover study the impact of eclipse attacks on selfish mining
in Figure 4. Here, we only consider the case where the adversary (i)
exploits the victims mining power ω, and (ii) uses all the victim’s
blocks to advance his private chain. We therefore only determine the
optimal adversarial choices given these restraints. We observe that
the higher ω, the stronger his selfish mining capabilities become. We
note that for some values of ω (e.g., ω = 0.3, α = 0.38), it is more
rewarding for the adversary not to include some of the victims block
in his private chain. This is because the victim’s block rewards count
towards the reward of the honest network, and therefore reduce the
relative block share of the adversary.

3.3 Double-Spending MDP
Unlike selfish mining where the optimal strategy is not always

financially rewarding compared to honest mining (cf. Section 3), we
proceed in what follows to study optimal double-spending strategies,
where we assume a rational adversary that is interested in maximiz-
ing his benefits (measured in financial gains) in the network.

We implicitly require that each time the adversary starts a double-
spending attack (e.g. after an adopt action), he publishes a transac-
tion Tl in the network, and mines on including a conflicting transac-
tion Td in his private chain. We assume that the operational costs of

“losing” a double-spending attempt are small, since the adversary
effectively receives a good or service in exchange for transaction Tl.

In addition to the states described for the selfish mining, the
double-spending MDP features the exit state (cf. Table 2). This state
can only be reached provided that the adversarial chain is at least
one block ahead the honest chain (la > lh), after k confirmations
(la > k), given an honest network with mining power 1−α. Before
reaching the exit state, the adversary adopts an optimal strategy to
maximize its reward, given the state and action space described in
Section 3. After reaching the exit state, transitions back to the exit
state model rewards of honest mining. Note that since we assume
that the adversary is rational, an optimal strategy might advise
against performing double-spending attacks (i.e. the adversary will
never reach the exit state)—depending on the value of the attempted
attack. In the exit state, the adversary earns a block reward of
la− be+ vd, b(lh+ 1) la−be

la
c− cm block rewards after an override

with eclipse attack (because the adversary’s reward needs to discount
the be victim’s blocks and b(lh) la−be

la
c − cm block rewards if the

adversary’s chain wins the race after a match action. For every state
transition we discount the mining costs −cm.

The adversary either abides by the optimal double-spending strat-
egy π or performs honest mining, depending on the expected reward.
We are therefore interested in the minimal double-spending value
vd, such that vd is strictly larger than the honest mining reward (cf.
Equation 25).

P = (α, γ, rs, k, ω, cm) (24)

vd = min{vd|∃π ∈ A : R(π, P, vd) > R(honest mining, P )}
(25)

The double-spending value vd can serve as a generic metric to
compare the security of various blockchain instantiations. Namely,
if vd of a blockchain instance A is bigger than for blockchain B
for given α, γ and ω, then blockchain A can be considered more
resistant against double-spending attacks.

3.3.1 Optimal Strategies for Double-Spending
In what follows, we analyze the solutions of our aforementioned

double-spending MDP given various parameters. To solve for the
optimal strategy in our MDP, we rely on the pymdptoolbox library4

and apply the PolicyIteration algorithm [18] with a discount value
of 0.999. This methodology allows us to assess whether the number
of transaction confirmations k are sufficient to ensure security in
the presence of a rational adversary, with respect to the considered
transaction value. That is, if the adversary has a higher expected
financial gain in double-spending than honest mining, then the
transaction cannot be considered safe given k confirmations, and
the merchant should wait additional confirmations.

In order to decide whether the adversary should choose to follow
the optimal double-spending policy or honest mining (cf. Equa-
tion 25), and to determine the minimum vd, we instantiate the
double-spending MDP with a high double-spending value (> 109

block rewards), such that the exit state is reachable in the optimal
policy. If the policy contains an exit state, the expected gain of fol-
lowing the optimal double-spending strategy is higher than honest
mining. Otherwise, honest mining is the preferred strategy. We
apply binary search to find the lowest double-spending value (in
units of block rewards, within an error margin of 0.1), for α, k, rs,
γ and cm.

In Table 3, we sketch an example of an optimal strategy for the
case whereα = 0.3 (adversarial mining power), γ = 0 (propagation
parameter), cm = α (maximum mining costs), ω = 0 (no eclipse
4https://github.com/sawcordwell/pymdptoolbox
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State × Action Resulting State Probability Reward (in Block reward)

(la, lh, be, ·), adopt

(1, 0, 0, i)
(1, 0, 1, i)
(0, 1, 0, r)
(0, 0, 0, i)

α
ω

(1− α− ω) · (1− rs)
(1− α− ω) · rs

(−cm, lh)
(−cm, lh)
(−cm, lh)
(−cm, lh)

(la, lh, be, ·), override

(
la − lh, 0, be − d(lh + 1) be

la
e, i
)

α
(
b(lh + 1) la−be

la
c − cm, 0

)(
la − lh, 0, be − d(lh + 1) be

la
e+ 1, i

)
ω

(
b(lh + 1) la−be

la
c − cm, 0

)(
la − lh − 1, 1, be − d(lh + 1) be

la
e, r
)

(1− α− ω) · (1− rs)
(
b(lh + 1) la−be

la
c − cm, 0

)(
la − lh − 1, 0, be − d(lh + 1) be

la
e, i
)

(1− α− ω) · rs
(
b(lh + 1) la−be

la
c − cm, 0

)
(la, lh, be, i),wait
(la, lh, be, r),wait

(la + 1, lh, be, i)
(la + 1, lh, be + 1, i)

(la, lh + 1, be, r)
(la, lh, be, i)

α
ω

(1− α− ω) · (1− rs)
(1− α− ω) · rs

(−cm, 0)
(−cm, 0)
(−cm, 0)
(−cm, 0)

(la, lh, be, a),wait
(la, lh, be, r),match

(la + 1, lh, be, a) α (−cm, 0)
(la + 1, lh, be + 1, a) ω (−cm, 0)

(la − lh, 1, be − d(lh) be
la
e, r) γ · (1− α− ω) · (1− rs)

(
b(lh) la−be

la
c − cm, 0

)
(la, lh + 1, be, r) (1− γ) · (1− α− ω) · (1− rs) (−cm, 0)

(la, lh, be, a) (1− α− ω) · rs (−cm, 0)

(la, lh, be, ·), exit exit 1 (la − be + vd, 0)

Table 2: State transition and reward matrices for optimal selfish mining and double-spending strategies in PoW blockchains. α is the mining
power of the attacker, ω is the mining power of the eclipsed node, be is the number of blocks in the attacker chain that were mined by the
eclipsed node, γ is the fraction of nodes that an attacker can reach faster than the honest network, rs is the stale block rate and vd is the value
of the double-spend. The actions override and match are feasible only when la > lh or la ≥ lh, respectively. We discount the mining costs
cm ∈ [0, α] in the state transition reward only for double-spending. The fork label (last element of the state) is denoted by i, r and a for
irrelevant, relevant and active respectively. For a reward tuple (a, b), a corresponds to the adversary’s costs, while b represents the reward for
the honest network for selfish mining.

attack), where we observe only wait, adopt and exit actions. Because
we can only solve finite MDPs, we choose a cutoff value of 20
blocks, i.e., neither the chain of the adversary nor the chain of the
honest network can be longer than the cutoff value. In the following
paragraphs, we discuss in greater details the impact of α, γ, cm,
rs, k, vd and ω on the optimal double-spending strategy and its
implications on the security of transaction confirmations.

Recall that the absorbing state [22] of the Markov chain of our
double-spending MDP is the exit state. By computing the funda-
mental matrix [22] of the Markov chain, we calculate the expected
number of steps in the Markov chain—before being absorbed by the
exit state. These steps correspond to the expected number of blocks
required for a successful double-spending attack. In Figure 5, we
evaluate the expected number of blocks with respect to the adversar-
ial mining power and the number of transaction confirmations k. We
observe that an adversary with a mining power of more than 0.25
is expected to need less than 1000 blocks for a successful double-
spending attack (up to k = 10 confirmations), which corresponds
to a one week attack duration in Bitcoin.

Impact of the propagation parameter: Recall that the propaga-
tion parameter specifies the connection capability of the adversary.
In Figure 8, we depict the minimum double-spending transaction
value that would result in financial gain when compared to honest
mining (cf. Equation 25) when γ = 0, 0.5 and 1 respectively. Re-
call that a merchant is safe as long as he accepts transactions with a
value less than vd given these parameters.

Clearly, the higher γ is, the lower is the transaction value that an
adversary is expected to double-spend. For example, if the adversary
has α = 0.3 of the hashing power in the network, assuming k = 6
confirmations, and a mining cost of cm = α, a double-spending
strategy is clearly profitable if the double-spending transaction has
a value of at least 0.5 block rewards (one block reward is 25 Bit-
coin, where one Bitcoin is about 436.7 USD at the time of writing,
for rs = 0.41%) when γ = 1. When γ = 0.5, the minimum
transaction value increases to 12.9 block rewards.

Impact of the mining costs: In Figure 6, we analyze the impact of
the mining costs on the minimum required double-spending trans-
action value. Our results show that mining costs have negligible
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Figure 5: Expected number of blocks for
successful double-spending given rs =
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0.0 0.1 0.2 0.3 0.4 0.5

Adversarial mining power α

10−1

100

101

102

103

104

105

106

v d

cm = 0

cm = α

∆vd

Figure 6: Impact of the mining cost cm on
the security of double spending (rs = 0.41%,
γ = 0, ω = 0). ∆vd is the difference in costs.
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(b) γ = 0.5
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Figure 8: Impact of the propagation parameter γ. We observe that the higher is γ, the lower is vd for double-spending to be more profitable
than honest mining. rs = 0.41% (Bitcoin’s stale block rate), cm = α (maximum mining costs), ω = 0 (no eclipse attack).

lh

la 0 1 2 3 4 5 6 7 8

0 w** *a* *** *** *** *** *** *** ***

1 w** ww* ww* *a* *** *** *** *** ***

2 w** ww* ww* ww* ww* *a* *** *** ***

3 w** ww* ww* ww* ww* ww* *a* *** ***

4 w** ww* ww* ww* ww* ww* ww* *a* ***

5 w** ww* ww* ww* ww* ww* ww* ww* *a*

6 w** ww* ww* ww* ww* ww* ww* ww* ww*

7 e** e** e** e** e** e** e** w** ww*

8 *** *** *** *** *** *** *** e** w**

Table 3: Optimal double-spending strategy for α = 0.3, γ =
0, rs = 0.41%, cm = α, ω = 0 and vd = 19.5. The rows cor-
respond to the length la of the adversary’s chain and the columns
correspond to the length lh of the honest network’s chain. The three
values in each table entry correspond to the fork labels irrelevant,
relevant and active, where * marks an unreachable state and w, a
and e denote the wait, adopt and exit actions, respectively.

impact on the adversarial strategy.

Impact of the stale block rate: We evaluate the impact of the stale
block rate for adversaries with a mining power of α = 0.1 and
α = 0.3 in Figure 7. We observe that there exists a non-linear
relationship between the stale block rate and the double-spending
value and that the higher the stale block rate, the worse is the double-
spending and selfish mining resistance of a PoW blockchain (cf.
Figure 7). For instance, for an adversary with mining power α = 0.3

and a stale block rate of 10% and 20%, the double-spending value
vd decreases from 9.2 to 6.4 block rewards. Similarly, the relative
revenue from selfish mining (cf. Figure 3) increases from 0.37 to
0.43.

Impact of eclipse attacks We evaluate the impact of eclipse attacks
on the adversarial strategy given our MDP. We assume that the
adversary eclipses a victim with mining power ω in order to increase
its advantage in sustaining his blockchain (cf. Figure 9). We observe
that an eclipse attack clearly empowers the adversary, since it allows
the adversary to effectively increase its overall mining power. For
instance, an adversary with α = 0.1 can reduce the double-spending
value vd from 880 block rewards to 0.75 block reward if eclipsing a
miner with ω = 0.025.

3.3.2 Bitcoin vs. Ethereum
In order to alleviate the problem that stale blocks decrease PoW’s

efficiency, a number of proposals, such as Ethereum, suggest to
reward miners for stale blocks [4]. Here, although uncle blocks
that are included in a block receive a reward, they do not count
towards the total difficulty of a chain, i.e., Ethereum uses a longest
chain rule with added rewards for uncle blocks. This clearly con-
tradicts Ethereum’s claim of using a blockchain protocol adapting
GHOST [33].

Ethereum has also recently modified its longest chain algorithm to
incorporate uniform tie breaking [10]. Notice that such a strategy is
meant as a selfish mining countermeasure, but allows a selfish miner
to increase its chances of catching up to the honest chain [31]. In
Table 4, we extend our model to cater for uncle rewards and uniform
tie breaking, and describe the resulting double-spending MDP in
order to capture the security of Ethereum against double-spending.
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and their respective difference ∆vd .

Building on this analysis, we compare in Figure 10, the double-
spending resilience of Bitcoin (rs = 0.41%, cf. MDP in Table 2)
to that of Ethereum (rs = 6.8%, cf. MDP in Table 4), given γ =
0, cm = 0 and ω = 0. In order to provide a fair cost comparison,
we rely on US dollar based valuation (Bitcoin’s block reward is
more than 200 times higher than Ethereum’s block reward).

We observe that 6 Bitcoin block confirmations are more resilient
to double-spending than 6 Ethereum5 block confirmations. Second,
when comparing 12 Ethereum with 6 Bitcoin block confirmations,
Ethereum’s double-spending resilience is only better than Bitcoin
for an adversary with less than 11% of the PoW hashing power.
Note that 12 Ethereum blocks are likely to be generated in less
than 4 minutes, while 6 Bitcoin blocks last about one hour. Third,
we discover that the monetary value of the block reward directly
impacts the double-spending security: the higher the block reward of
a blockchain (in $) the more resilient it is against double-spending.

In addition to comparing Bitcoin to Ethereum, we compare in
Figure 11 the two blockchains by setting Bitcoin’s stale block rate
equal to Ethereum’s stale block rate to objectively evaluate their
security implications. We observe that, in spite of the reliance on
uncle block rewards, and uniform tie breaking, Ethereum’s security
is weaker than Bitcoin, and conclude that the uniform tie breaking
and the uncle reward lower the security of Ethereum’s blockchain.

4. SECURITY VS. PERFORMANCE OF
POW-BLOCKCHAINS

In this section, we evaluate the performance (and security) of var-
ious blockchain instantiations by leveraging our model in Section 3.

To this end, we constructed a Bitcoin blockchain simulator in
order to evaluate different blockchain instances from a performance
perspective. Relying on simulations emerges as the only workable
alternative to realistically capture the blockchain performance under
different parameters since neither formal modeling, nor the deploy-
ment of a thousands of peers (e.g., currently there are 6000 reachable
nodes in Bitcoin) would be practical.

By leveraging our simulator, we evaluate different blockchain pa-
rameters, such as the block interval, the block size, the propagation
mechanisms by measuring the resulting stale block rate, throughput
and block propagation times. This also allows us to connect our
blockchain simulator to our MDP model in a unified framework.
Namely, we feed the stale block rate output by the simulator into
our MDP model in order to assess the security (under selfish mining
and double-spending) of the resulting blockchain instance.

5Block generation time between 10 and 20 seconds.

4.1 Blockchain Simulator
In Table 5, we summarize the parameters captured by our sim-

ulator. Here, we simulate the PoW for miners, by attributing a
particular mining power to each miner. Based on the block interval
distribution (which defines at what time a block is found), a new
block is then attributed to a miner. Conforming with the operation
of existing PoW-blockchains, a miner mines on the first block he
receives, and we assume that forks are inherently resolved by the
longest chain rule. Once a fork is resolved, the blocks that do not
contribute to the main chain are considered stale blocks. Within our
simulations, we do not consider difficulty changes among different
blocks; the longest chain is therefore simply defined by the number
of its blocks.

When establishing the connections between nodes, we create
point-to-point channels between them, which abstracts away any
intermediate devices (routes, switches, etc). These channels have
two characteristics; the latency and bandwidth. To capture realistic
latencies in the network, we adopt the global IP latency statistics
from Verizon [36] and assume a Pareto traffic distribution with
variance accounting for 20% of the mean latency [2]. On the other
hand, to model a realistic bandwidth distribution in the network, we
adapted the distribution6 from testmy.net [34].

Our simulator does not model the propagation of transactions,
since the focal point of our simulator is to study the impact of
the block size, block interval, and the block request management
system—all of which can be captured independently of the trans-
action propagation. Note that transactions are implicitly captured
within the block size.

In our simulator, we distinguish between two node types: (i)
regular nodes, and (ii) miners. For regular nodes (up to 6000), we
retrieved the current geographical node distribution from bitnodes.
21.co (cf. Figure 12a) and adopted this distribution to define the
location of our simulated nodes. We also adapted the bandwidth
and network latency (according to the geographical location) from
Verizon [2, 36] and testmy.net [34]. To model miners, we retrieved
the mining pool distribution from blockchain.info, and accordingly
distributed the mining pool’s public node to the respective region (cf.
Figure 12b). Mining pools typically maintain private peering con-
nections among themselves—which we capture in our simulations.
Besides direct peering, a number of mining pools nowadays partic-
ipate in Matt Corallo’s relay network [6] that is operated indepen-
dently of the default Bitcoin P2P overlay network (cf. Section 2.2).
We also capture the relay network and assume in our simulations
that all miners participate in the relay network whenever the relay

6Upload bandwidth characteristics: min=0.1Mbps, max=100Mbps,
interval=0.1Mbps. Download bandwidth characteristics:
min=0.1Mbps, max=500Mbps, interval=0.5Mbps.



State × Action Resulting State Probability Reward Condition

(la, lh, ·, nr), adopt
(1, 0, relevant, nr)
(0, 1, relevant, nr)
(0, 0, relevant, nr)

α
(1− α) · (1− rs)

(1− α) · rs

−cm
−cm
−cm

-
-
-

(la, lh, ·, inc), adopt
(1, 0, relevant, nr)
(0, 1, relevant, nr)
(0, 0, relevant, nr)

α
(1− α) · (1− rs)

(1− α) · rs

ru − cm
ru − cm
ru − cm

-
-
-

(la, lh, ·, rel), adopt
(1, 0, relevant, rel)
(0, 1, relevant, inc)
(0, 0, relevant, rel)

α
(1− α) · (1− rs)

(1− α) · rs

−cm
−cm
−cm

-
-
-

(la, lh, ·, ·), override
(la − lh, 0, relevant, nr)

(la − lh − 1, 1, relevant, nr)
(la − lh − 1, 0, relevant, nr)

α
(1− α) · (1− rs)

(1− α) · rs

lh + 1− cm
lh + 1− cm
lh + 1− cm

la > lh
la > lh
la > lh

(la, lh, relevant, nr),wait
(la + 1, lh, relevant, nr)
(la, lh + 1, relevant, nr)

(la, lh, relevant, nr)

α
(1− α) · (1− rs)

(1− α) · rs

−cm
−cm
−cm

-
-
-

(la, lh, relevant, inc),wait
(la + 1, lh, relevant, inc)
(la, lh + 1, relevant, inc)

(la, lh, relevant, inc)

α
(1− α) · (1− rs)

(1− α) · rs

−cm
−cm
−cm

-
-
-

(la, lh, relevant, rel),wait
(la + 1, lh, relevant, rel)
(la, lh + 1, relevant, inc)

(la, lh, relevant, rel)

α
(1− α) · (1− rs)

(1− α) · rs

−cm
−cm
−cm

-
-
-

(la, lh, active, nr),wait
(la, lh, relevant, nr),match

(la + 1, lh, active, nr)
(la + 1, lh, active, rel)

(la − lh, 1, relevant, nr)
(la, lh + 1, relevant, nr)
(la, lh + 1, relevant, inc)

(la, lh, active, nr)
(la, lh, active, rel)

α
α

γ · (1− α) · (1− rs)
(1− γ) · (1− α) · (1− rs)
(1− γ) · (1− α) · (1− rs)

(1− α) · rs
(1− α) · rs

−cm
−cm
lh − cm
−cm
−cm
−cm
−cm

lh > 6
lh ≤ 6

-
lh > 6
lh ≤ 6
lh > 6
lh ≤ 6

(la, lh, active, inc),wait
(la, lh, relevant, inc),match

(la + 1, lh, active, inc)
(la − lh, 1, relevant, nr)
(la, lh + 1, relevant, inc)

(la, lh, active, inc)

α
γ · (1− α) · (1− rs)

(1− γ) · (1− α) · (1− rs)
(1− α) · rs

−cm
lh − cm
−cm
−cm

-
-
-
-

(la, lh, active, rel),wait
(la, lh, relevant, rel),match

(la + 1, lh, active, rel)
(la − lh, 1, relevant, nr)
(la, lh + 1, relevant, inc)

(la, lh, active, rel)

α
γ · (1− α) · (1− rs)

(1− γ) · (1− α) · (1− rs)
(1− α) · rs

−cm
lh − cm
−cm
−cm

-
-
-
-

(la, lh, ·, nr), release (la, lh, ·, rel) 1 0 lh ≤ 6 ∧ lh > 1 ∧ la ≥ 1

(la, lh, ·, ·), exit exit 1 la + vd la > lh ∧ la > k

Table 4: State transition and reward matrices for an MDP for optimal double-spending strategies in Ethereum where ru is the uncle reward (i.e.
7
8

). Every state includes a flag (where nr = not released, rel = released, inc = included) indicating whether an attacker block has been or
will be included as an uncle in the honest chain. The release action corresponds to the release of the first block of the attackers fork with the
intention to be included as uncle in the honest chain. Therefore, it is only feasible if 1 < lh ≤ 6 and la ≥ 1, since it is otherwise equivalent to
a match or override or the honest chain is too long to include it as uncle. With the release action, no block is mined and a state transitions
from not released to released, which transitions to included with the next block mined on the honest chain. In Ethereum, γ is fixed at 0.5
and a match is possible even without a prepared block.

Consensus parameter Description

Block interval distribution Time to find a block
Mining power distribution of the miners PoW power distribution

Network-layer parameter Description

Block size distribution Variable transaction load
# of reachable network nodes Open TCP port nodes
Geo. distribution of nodes Worldwide distribution
Geo. mining pool distribution Worldwide distribution
# of connections per node Within network
# of connections of the miners Within network
Block request management system Possible Protocols

Standard mechanism (inv/getdata) Default
Unsolicited block push Miner only push block
Relay network Miner network
Sendheaders Bitcoin v0.12

Table 5: Parameters of the blockchain simulation.
network option is enabled.

4.2 Evaluation Results
In what follows, we present the results from our evaluation.

4.2.1 Simulator Validation
With the objective to experimentally validate our simulation, we

compared Bitcoin, Litecoin, and Dogecoin with their respective
simulated counterpart. For each blockchain, we adjusted the pa-
rameters of Table 5 according to the current parameters featured
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Figure 12: Geographical distribution of Bitcoin nodes and miners
used in our simulator.

by existing deployments of the investigated blockchains. For in-
stance, we measured Bitcoin’s block size distribution, as well as the
block generation rate7 in the real Bitcoin network between May to
November 2015 [21].

In order to measure the stale block rate rs in the real blockchain
networks, we crawled 24,000 Bitcoin blocks8, 100,000 Litecoin and
240,000 Dogecoin blocks9. We moreover adopt the miner mining
power distribution for the different blockchains from public block

7The block generation rate distribution follows the shifted geometric
distribution with p = 0.19 [21].
8from blockchain.info
9from blockchains.io



Bitcoin Litecoin Dogecoin

Block interval 10 min 2.5 min 1 min

Measured tMBP 8.7 s [8] 1.02 s 0.98 s
Simulated tMBP 9.42 s 0.86 s 0.83 s
Measured rs 0.41 % 0.27 % 0.62 %
Simulated rs (a)0.14%-(b)1.85% (b)0.24 % (b)0.79 %

Table 6: Median block propagation time (tMBP , in seconds), and
rs in the real networks and the simulation (10000 blocks for each
blockchain). (a) assumes that all miners use the relay network
and unsolicited block push, while (b) is only given the standard
propagation mechanism. We conclude that not all miners in Bitcoin
use the relay network and unsolicited block push.

explorers10. The number of connection per node in our simulations
follows the distribution due to Miller et al. [26].

Our findings (cf. Table 6) show that our simulator captures, to a
large extent, the performance of existing blockchain deployments.
For instance, our results show that the measured and simulated
median block propagation times are relatively close. The stale block
rates for Litecoin and Dogecoin are particularly close. In the case
of Bitcoin, the stale rate falls between the case when all miners use
the relay network and unsolicited block push, and the extreme case
where the relay network and unsolicited block push is not used by
any miner. Note that Litecoin and Dogecoin do not have any relay
network.

4.2.2 Impact of the Block Interval
In this section, we study the impact of the block interval on the

median block propagation time and the stale block rate in PoW-
based blockchains. To this end, we run our simulator for different
block interval times ranging from 25 minutes to 0.5 seconds (cf. Ta-
ble 7). Each simulation is run independently for 10000 consecutive
blocks, and for each of the four different block request management
system combinations: (Case 1) the standard block request manage-
ment, (Case 2) the standard block request management enhanced
by unsolicited block push from the miners, (Case 3) both former
components plus the relay network, and (Case 4) the send headers
mechanism with unsolicited block push and the relay network.

We observe first that for a block interval time of 10 minutes and a
standard request management system, our stale block rate is 1.85%,
which is comparable to 1.69% as reported by Wattenhofer et al. [9].
Recall that at the time of Wattenhofer’s study, the unsolicited block
push and relay network were not yet available.

Secondly, we observe that the introduction of the unsolicited
block push for miners significantly reduces the stale block rate. This
is the case since (i) miners are interconnected and profit most from
the unsolicited block push, and (ii) the propagation method of the
first node is crucial to reach the majority of the network rapidly. The
addition of the relay network does not seem to affect the stale block
rate significantly (given the Bitcoin’s transaction load) compared
to the unsolicited block push, and reduces the propagation time
only marginally. For bigger block sizes however (e.g. > 2MB) the
relay network indeed provides an advantage over the unsolicited
block push (cf. Table 8). Moreover, the relay network provides an
additional source of block information, in addition to the classical
P2P overlay network. Notice that although the impact of the send
header mechanisms compared to a fully deployed relay network and
unsolicited block push is limited, this mechanism mitigates partial
eclipse attacks [16].

To assess the impact of the block interval on the security of PoW
blockchains, we feed the resulting stale block rate into our MDP

10blockchain.info and https://www.litecoinpool.org/pools

models as shown in Table 7. Our results show that, for an adversary
equipped with 30% of the total mining power11, the lower is the con-
sensus time, the higher is the relative revenue from selfish mining
and the lower is the double-spending value. We observe that the
block propagation mechanism significantly impacts the security of
the blockchain, since it directly affects the stale block rate. The stan-
dard block propagation mechanism offers less resilience (in terms of
double-spending and selfish mining) than the other evaluated block
propagation mechanisms. We also note that the double-spending
value halves in Table 7 for the block propagation mechanism of Case
4 (which results in the lowest stale block rate when compared to the
other investigated mechanisms) when reducing the block interval
from 25 minutes to 0.5 seconds. Similarly, the relative revenue from
selfish mining increases from 0.33 to 0.42.

4.2.3 Impact of the Block size
We now study the impact of the block size on the performance

and security of the blockchain (cf. Table 8. To this end, we simulate
block sizes ranging from 0.1 MB to up to 8 MB, given a block
interval of 10 minutes.

Our results suggest that the block propagation time increases
linearly with the block size up to 4 MB; after 8 MB blocks, the
block propagation time and stale block rate increases exponentially.
Second, we clearly see that a better block propagation mechanism
significantly reduces the propagation times and the stale block rate.

This also suggests, conforming with our MDP models, that the
bigger the block size, the higher the relative revenue from selfish
mining and the lower the double-spending value (cf. Table 8). It
is however apparent that an efficient block propagation mechanism
effectively allows the network to keep nearly the same security pro-
visions against selfish mining and double-spending as we can see in
Case 3 (standard propagation mechanism, unsolicited block push,
relay network) and Case 4 (send headers propagation mechanism,
unsolicited block push, relay network). This confirms that an effi-
cient network propagation mechanism helps to increase the security
of the blockchain. Interestingly, given the block propagation mecha-
nism of Case 4, the resilience (in terms of double-spending value)
does not significantly change in Table 8 when increasing the block
size from 0.1 MB to 8 MB (vd changes from 12.9 to 12.68 block
rewards respectively). Similarly, the relative revenue from selfish
mining stays at rrel = 0.33, when all miners use the relay network.

Currently, a number of proposals suggest to chunk blocks and
download these chunks in parallel (e.g., Blocktorrent [35]). In a
separate experiment that we conducted, we implemented a block
propagation mechanisms that divides blocks into chunks of a few
kilobytes that can be queried from multiple peers. Our results show
that such a protocol does not improve the median block propagation
time compared to the send headers and relay network protocol, when
dealing with modest block sizes (i.e., smaller than 8 MB). This is due
to the fact that a chunked block propagates slower than the 10th and
25th percentile of nodes owing to: (i) the communication overhead
caused by the chunks, and (ii) because a node only forwards block
chunks if the respective block has been validated.

4.2.4 Throughput
We now evaluate the throughput achieved by various blockchain

instantiations. To this end, we vary the block size (from 0.1M B to
8 MB) and the block interval (from 0.5 seconds to 25 minutes) to
capture a larger number of blockchain instances with our simulator.
Here, we assume that the network relies on an efficient propagation

11Bitcoin’s resilience to malicious miners is based on the assumption
that the adversary cannot harvest more than 30% of the total mining
power [14, 16].



Case 1 Case 2 Case 3 Case 4

Block interval tMBP rs vd rrel tMBP rs vd rrel tMBP rs vd rrel tMBP rs vd rrel

25 minutes 35.73 1.72 % 12.47 0.34 25.66 0.16 % 12.86 0.33 22.50 0.03 % 12.89 0.33 22.44 0.02 % 12.89 0.33
10 minutes 14.7 1.51 % 12.52 0.34 10.65 0.13 % 12.88 0.33 9.41 0.14 % 12.86 0.33 9.18 0.13 % 12.87 0.33
2.5 minutes 4.18 1.82 % 12.45 0.34 2.91 0.16 % 12.86 0.33 2.60 0.16 % 12.86 0.33 2.59 0.15 % 12.86 0.33

1 minute 2.08 2.15 % 12.35 0.34 1.34 0.35 % 12.81 0.33 1.30 0.25 % 12.83 0.33 1.27 0.29 % 12.77 0.33
30 seconds 1.43 2.54 % 12.06 0.34 0.84 0.45 % 12.78 0.33 0.84 0.51 % 12.77 0.33 0.84 0.52 % 12.69 0.33
20 seconds 1.21 3.20 % 11.73 0.34 0.67 0.86 % 12.68 0.33 0.69 0.85 % 12.68 0.33 0.68 0.82 % 12.68 0.33
10 seconds 1.00 4.77 % 10.73 0.35 0.35 1.73 % 12.46 0.34 0.33 1.41 % 12.54 0.34 0.53 1.59 % 12.50 0.34
5 seconds 0.89 8.64 % 10.08 0.37 0.37 2.94 % 11.85 0.34 0.45 2.99 % 11.80 0.34 0.44 3.05 % 11.78 0.34
2 seconds 0.84 16.65 % 7.35 0.41 0.40 6.98 % 10.47 0.36 0.39 7.28 % 10.37 0.36 0.38 7.10 % 10.42 0.36
1 seconds 0.82 26.74 % 4.37 0.53 0.53 12.44 % 8.34 0.39 0.38 12.59 % 8.24 0.39 0.37 12.52 % 8.30 0.39

0.5 seconds 0.82 38.15 % 2.78 0.60 0.61 20.62 % 6.22 0.42 0.49 20.87 % 6.16 0.42 0.36 21.10 % 6.02 0.42

Table 7: Impact of the block interval on the median block propagation time (tMBP ) in seconds, and the stale block rate rs, vd and rrel given
the current Bitcoin block size distribution, an adversary with α = 0.3 and k = 6. Case 1 refers to the standard block propagation mechanism,
Case 2 refers to standard mechanism plus unsolicited block push, Case 3 to the combination of Case 2 plus the relay network and Case 4 to the
send headers with unsolicited block push and relay network.

Case 1 Case 2 Case 3 Case 4

Block Size tMBP rs vd rrel tMBP rs vd rrel tMBP rs vd rrel tMBP rs vd rrel

0.1 MB 3.18 0.32 % 12.80 0.33 2.12 0.03 % 12.89 0.33 2.02 0.03 % 12.89 0.33 2.02 0.2 % 12.90 0.33
0.25 MB 7.03 0.88 % 12.67 0.33 4.93 0.11 % 12.87 0.33 4.49 0.05 % 12.88 0.33 4.46 0.17 % 12.87 0.33
0.5 MB 13.62 1.63 % 12.48 0.34 9.84 0.13 % 12.87 0.33 8.65 0.05 % 12.88 0.33 8.64 0.06 % 12.87 0.33
1 MB 27.67 3.17 % 11.79 0.34 20.01 0.38 % 12.79 0.33 17.24 0.07 % 12.88 0.33 17.14 0.07 % 12.88 0.33
2 MB 57.79 6.24 % 10.57 0.36 44.6 1.12 % 12.61 0.34 35.49 0.08% 12.87 0.33 35.38 0.1 % 12.86 0.33
4 MB 133.30 11.85 % 8.20 0.38 126.57 5.46 % 10.51 0.35 78.01 0.12 % 12.85 0.33 78.40 0.13 % 12.66 0.33
8 MB 571.50 29.97 % 4.11 0.53 875.97 15.64 % 7.64 0.41 555.49 0.43 % 12.65 0.33 550.25 0.4 % 12.68 0.33

Table 8: Impact of the block size on the median block propagation time (tMBP ) in seconds, the stale block rate rs, vd and rrel, given the
current Bitcoin block generation interval and an adversary with α = 0.3 and k = 6.

tps vd rrel Block size Block interval

33.4 12.75 0.33 0.25MB 30 seconds
40 12.38 0.34 0.10MB 10 seconds
50 12.45 0.34 0.25MB 20 seconds
66.7 12.06 0.34 0.25MB 15 seconds
66.7 12.65 0.33 0.50MB 30 seconds
66.7 12.71 0.33 1.00MB 1 minute

Table 9: Throughput in transactions per second (tps) vs. security
measured in vd and rrel for an adversary with 30% mining power,
k = 6 and given 16 mining pools.
mechanism (send headers with unsolicited block push and relay
network for all miners). For each simulated blockchain instance,
we compute the resulting throughput in transactions per second
(tps), measure the stale block rate and infer vd and rrel in order to
assess the blockchain’s security with our MDP model (cf. Section 3).
We also assume an average transaction size of 250 bytes, k = 6
confirmations against double-spending and an adversary with 0.3
mining power and γ = 0.5.

In Table 9, we selectively list candidate blockchain instances
which could achieve a transactional throughput beyond 60 tps and
achieve similar security provisions to the existing Bitcoin system.
Clearly, our results indicate that different parameter configurations
can yield the same throughput—though with different security pro-
visions (due to a different stale block rate). In particular, we observe
that low consensus intervals offer less security compared to a higher
consensus interval given the same overall throughput, since the
network requires more round trips in order to commit the same
information to the blockchain. Our results show that there is con-
siderable room to enhance the scalability of existing PoW without
significantly compromising security.

5. RELATED WORK
A number of contributions analyze double-spending attacks in Bit-

coin [15,30]) but they do not consider optimal adversarial strategies.
Eyal and Sirer [14] show that a selfish miner can increase its

relative mining revenue by not directly publishing his blocks. Simi-
larly, Courtois and Bahack [7] study subversive mining strategies.
Our work shares similarities with Sapirshtein et al. [31]. Here, the
authors devise optimal adversarial strategies for selfish mining in
Bitcoin. Unlike [31], our work however captures optimal adversar-
ial selfish mining strategies for PoW-powered blockchain and takes
into account network delays and eclipse attacks. We additionally
capture optimal double-spending strategies—where we also take
into account the mining costs of the adversary, the number of re-
quired block confirmations, and the double-spending value in order
to properly account for costs of the attack.

GHOST [33] is an alternative to the longest chain rule for estab-
lishing consensus in PoW based blockchains and aims to alleviate
the negative impacts of stale blocks. Many PoW alternatives have
been proposed. In Proof of Stake (PoS) [29], the voting power of
peers is based on the amount of “stake” they own in the respective
blockchain system. Proof of Burn (PoB) is a proposal to replace
PoW by burning transaction outputs, such that they can no longer
be spent. Existing PoB-based blockchains however rely on PoW
in order to create blocks and therefore ultimately rely on PoW for
coin creation. Proof of Capacity (PoC), aims to use the available
hard-disk space in order to replace PoW. Bitcoin-NG [13] performs
leader election of PoW—allowing the leader to sign micro-blocks
until a new leader is elected. The literature features a number of
additional proposals [19, 23, 25, 37] that rely on classical Byzantine
fault tolerant consensus protocols in the hope to increase the con-
sensus efficiency and achieve high transactional throughput. Recent
studies propose to combine the use of PoW with BFT protocols to
realize highly-performant open consensus protocols (Byzcoin [24]).



6. CONCLUDING REMARKS
In this work, we introduced a novel quantitative framework to

objectively compare PoW blockchains given real world network
impacts and blockchain parameters. Our framework enables us to
evaluate the impact of network-layer parameters on the security of
PoW-based blockchain. By doing so, we show how to objectively
compare the security provisions of different PoW blockchain in-
stances. Namely, our framework allows us to push the boundaries
of PoW powered blockchains in terms of throughput in transactions
per second, while observing the impact on the security provisions
of the blockchain in terms of optimal selfish mining and double
spending strategies.

For instance, we find that Ethereum needs at least 37 block con-
firmations in order to match Bitcoin’s security with 6 block confir-
mations, given an adversary with 30% of the total mining power.
Our results indirectly suggest that Bitcoin’s blockchain offers more
security than Ethereum’s blockchain which rewards miners with
uncle rewards and performs uniform tie breaking for blockchain
fork resolutions. Our results additionally indicate that existing
PoW blockchains can achieve a throughput of 60 transactions per
second—without significantly affecting the blockchain’s security.
To the best of our knowledge, this is the first contribution that quan-
titatively evaluates the impact of the stale block rate on optimal
double-spending and selfish mining resistance of a PoW blockchain
(cf. Figure 7 and Figure 3). By doing so, our results quantitatively
capture the security of transactions based on their values, and on the
block confirmations—effectively quantifying the level of security
achieved by the famous required six block confirmations in Bitcoin.

Our insights do not only allow merchants to take into account
the security provisions when accepting transactions and to assess
their respective risk of double-spending, but also help miners in
quantifying a PoW blockchain’s resilience against selfish mining.
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